1
|
Jiang J, Fan M, Yuan W, Yue D, Wang Z, Yang L, Huang W, Jin L, Wang X, Ding L. Hepatic and intestinal tissue-specific Fxr deficiency alters bile acid homeostasis in female mice. Am J Physiol Gastrointest Liver Physiol 2025; 328:G774-G790. [PMID: 40338063 DOI: 10.1152/ajpgi.00387.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025]
Abstract
Farnesoid X receptor (FXR), predominantly expressed in the liver and intestine, plays a crucial role in regulating bile acid (BA) metabolism. However, the specific contributions of FXR in different tissues to BA homeostasis remain unclear. To elucidate the comprehensive roles of FXR, we developed a novel double tissue-specific knockout (KO) mouse model of Fxr in both liver and intestine (FxrΔL/ΔIN). Notably, FxrΔL/ΔIN mice exhibited significantly increased BA levels in the serum and liver, which were consistent with Fxr whole body KO mice (Fxr-/-). However, FxrΔL mice only showed elevated hepatic BA concentration, whereas FxrΔIN displayed remarkably increased BA concentration in feces. Fxr deletion increased the BA synthesis genes mRNA level, such as Cyp7a1 and Cyp8b1, but reduced the expression of FXR downstream target genes Shp and Fgf15. These findings provide a valuable model to underscore the pivotal functions of tissue-specific FXR in maintaining BA homeostasis. Moreover, these insights facilitate the development of FXR-targeted therapeutic strategies for the BA dysregulation disease treatment.NEW & NOTEWORTHY We successfully developed a double tissue-specific Fxr knockout (DKO) mouse model, which provides a novel tool for investigation of FXR functions in the liver and intestine. Unlike whole body KO, the DKO model excludes the FXR impact on other tissues. FxrΔL/ΔIN mice exhibited significantly increased BA levels in the serum and liver, which were consistent with Fxr-/- mice. We established a powerful tool for therapeutic strategies for bile acid metabolism disorders associated with FXR.
Collapse
Affiliation(s)
- Jiarui Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, People's Republic of China
| | - Mingjie Fan
- College of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Weian Yuan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Dawei Yue
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, People's Republic of China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, People's Republic of China
| | - Wendong Huang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Lihua Jin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Xu Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, People's Republic of China
| | - Lili Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Qiu J, Xu F, Wei H, Gao Y, Liu N, Zhao J, Yu Z, Chen L, Dou X. Metabolic restoration: Rhubarb polysaccharides as a shield against non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 305:141151. [PMID: 39965694 DOI: 10.1016/j.ijbiomac.2025.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) accounts for remarkable burden of death and costs worldwide with no recommended pharmacological intervention for the clinical management. This study aimed to investigate the efficacy and underlying mechanisms of rhubarb-derived polysaccharides (RP) in mitigating high-fat diet (HFD)-induced NAFLD and to analyze the primary monosaccharide components of RP. Forty male C57BL/6 mice were subjected to a dietary intervention consisting of either a high fat or chow diet for a duration of 12 weeks. RP (270, 540 mg·kg-1·d-1) was administered to the mice for 4 consecutive weeks from the 9th week. Various assessments were conducted, including histopathological examination, liver transcriptome analysis, non-targeted metabolomics analysis, and evaluation of protein expressions related to lipid and bile acid metabolism. This study found RP demonstrate a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. The metabolomics analysis of multi-tissues revealed that the RP exert a hepatoprotective effect against NAFLD by restoring the altered bile acids (BAs) and fatty acids (FFAs) metabolism through the improvement of BA transporter, nucleus hormone receptor, lipogenesis protein, FFA transporter, and lipolysis proteins. Hence, RP may serve as a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangying Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huaxin Wei
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanyan Gao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nian Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinghua Zhao
- The First Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang XY, Ding ZL, Xu YX, Yang DZ, Yang S, Fei H. Effect of Supplementing Exogenous Glucanase or/and Mannanase to Diets Containing Torula Yeast on Growth Performance, Biochemical Indices, Liver and Intestinal Morphology, and Intestinal Microbiota and Metabolism of Largemouth Bass (Micropterus salmoides). Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10560-z. [PMID: 40304965 DOI: 10.1007/s12602-025-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
In the current study, we investigated the effect of a basic diet (where 20% of fishmeal was replaced by torula yeast, referred to as the control group), supplementation with β-glucanase (1000 U·kg-1, referred to as the TYG group), β-mannanase (510 U·kg-1, referred to as the group), and their combination (TYGM group), on the growth and health of juvenile largemouth bass (Micropterus salmoides). After an 8-week feeding experiment, the results revealed that juveniles in the TYM and TYGM groups exhibited significantly higher specific growth rates and hepatic antioxidant capacity, along with notably reduced levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase activities in their serum. Histomorphological assessment indicated that dietary glucanase and/or mannanase could mitigate vacuolization and nuclear deviation in the liver, while also increasing villus width and height. Furthermore, 16S rRNA sequence analysis revealed a significant decrease in Mycoplasma levels in the TYM and TYGM groups, along with a notable increase in Cetobacterium content in the TYGM group compared to the other groups. Additionally, untargeted metabolomics analysis showed that the differentially expressed metabolites were primarily correlated with lipid metabolism, including steroid hormone biosynthesis (cholesterol sulfate), primary bile acid biosynthesis (cerebrosterol), and sphingolipid metabolism (phytosphingosine) between the control and TYGM groups. In conclusion, our study demonstrated that dietary glucanase + mannanase could partially alleviate the adverse impacts on the growth and health of juveniles caused by high levels of torula yeast in the diet.
Collapse
Affiliation(s)
- Xiao Yan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li Ding
- College of Life Science, Huzhou University, Huzhou, 313000, China
| | - You Xing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dao Zhi Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Sun J, Liu HR, Zhu YX, Zhang W, Shi JS, Wu Q, Xu RX. Dendrobium nobile Lindl. alkaloids improve lipid metabolism by increasing LDL uptake through regulation of the LXRα/IDOL/LDLR pathway and inhibition of PCSK9 expression in HepG2 cells. Exp Ther Med 2025; 29:46. [PMID: 39885913 PMCID: PMC11775753 DOI: 10.3892/etm.2025.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/11/2024] [Indexed: 02/01/2025] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA) are active ingredients that can be extracted from the traditional Chinese herb Dendrobium Nobile Lindl. DNLA exhibits hypoglycemic and antihyperlipidemia effects. However, to the best of our knowledge, the specific molecular mechanism by which DNLA can regulate lipid metabolism remains unclear. The aim of the present study was to investigate the effect of DNLA on lipopolysaccharide (LPS)-induced lipid metabolism in HepG2 cells and its potential mechanism. HepG2 cells were treated with LPS with or without different concentrations of DNLA (0, 0.035, 0.35 and 3.5 µg/ml) for 48 h. Cell viability was then detected using the Cell Counting Kit-8 assay. The 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanideperchlorate-low-density lipoprotein (LDL) uptake assay was used to examine LDL uptake. In addition, possible mechanisms were explored using western blot analysis. The effect of the combination of DNLA with rosuvastatin calcium on the expression levels of the LDL receptor (LDLR) and proprotein convertase subtilisin/Kexin type 9 (PCSK9) was examined. The results indicated that LPS stimulation reduced the uptake of LDL by HepG2 cells, decreased the intracellular LDLR content, and increased the expression levels of inducible degrader of the LDLR (IDOL) and liver X receptor (LXR)α. DNLA intervention reversed all of the aforementioned LPS-induced effects in HepG2 cells. Additional mechanistic experiments revealed that DNLA exerted its effects mainly by regulating the LXRα/IDOL/LDLR pathway. It was shown that DNLA also reduced the expression levels of PCSK9, sterol regulatory element binding protein 2 and hepatocyte nuclear factor 1α. In addition, DNLA decreased the expression levels of PCSK9 in rosuvastatin calcium-induced HepG2 cells. Notably, DNLA was able to decrease 3-hydroxy-3-methylglutaryl-coenzyme A reductase and increase cytochrome p450 7A1 expression at the protein level, which are rate-limiting enzymes in cholesterol synthesis and metabolism. Collectively, these data suggested that DNLA could enhance LDL uptake of HepG2 cells by increasing LDLR expression through the LXRα/IDOL/LDLR pathway to alleviate the effects induced by LPS, suggesting the potential benefit of DNLA in improving lipid metabolism disorders.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Hao-Rui Liu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ya-Xin Zhu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Wei Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jing-Shan Shi
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Rui-Xia Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| |
Collapse
|
6
|
Varanasi SK, Chen D, Liu Y, Johnson MA, Miller CM, Ganguly S, Lande K, LaPorta MA, Hoffmann FA, Mann TH, Teneche MG, Casillas E, Mangalhara KC, Mathew V, Sun M, Jensen IJ, Farsakoglu Y, Chen T, Parisi B, Deota S, Havas A, Lee J, Chung HK, Schietinger A, Panda S, Williams AE, Farber DL, Dhar D, Adams PD, Feng GS, Shadel GS, Sundrud MS, Kaech SM. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 2025; 387:192-201. [PMID: 39787217 DOI: 10.1126/science.adl4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/26/2024] [Accepted: 10/30/2024] [Indexed: 01/12/2025]
Abstract
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. Furthermore, different BAs regulated CD8+ T cells differently; primary BAs induced oxidative stress, whereas the secondary BA lithocholic acid inhibited T cell function through endoplasmic reticulum stress, which was countered by ursodeoxycholic acid. We demonstrate that modifying BA synthesis or dietary intake of ursodeoxycholic acid could improve tumor immunotherapy in liver cancer model systems.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Melissa A Johnson
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cayla M Miller
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Souradipta Ganguly
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Kathryn Lande
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas H Mann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eduardo Casillas
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kailash C Mangalhara
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Varsha Mathew
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Sun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Timothy Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bianca Parisi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - H Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Debanjan Dhar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gerald S Shadel
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark S Sundrud
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Center for Digestive Health, Dartmouth Health, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
7
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
8
|
Taylor R, Basaly V, Kong B, Yang I, Brinker AM, Capece G, Bhattacharya A, Henry ZR, Otersen K, Yang Z, Meadows V, Mera S, Joseph LB, Zhou P, Aleksunes LM, Roepke T, Buckley B, Guo GL. Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model. Toxicol Sci 2024; 202:179-195. [PMID: 39302723 DOI: 10.1093/toxsci/kfae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Collapse
Affiliation(s)
- Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Anita M Brinker
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Gina Capece
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Zakiyah R Henry
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Katherine Otersen
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Stephanie Mera
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Peihong Zhou
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Troy Roepke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Brian Buckley
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| |
Collapse
|
9
|
Yang Z, Zarbl H, Kong B, Taylor R, Black K, Kipen H, Basaly V, Fang M, Guo GL. Liver-gut axis signaling regulates circadian energy metabolism in shift workers. FASEB J 2024; 38:e70203. [PMID: 39588921 PMCID: PMC11590413 DOI: 10.1096/fj.202402102r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Circadian rhythm is critical to maintaining the whole-body metabolic homeostasis of an organism. Chronic disruption of circadian rhythm by shift work is an important risk factor for metabolic diseases. Fibroblast growth factor 15/19 (FGF15/19), a key component in the liver-gut axis, potently suppresses bile acid (BA) synthesis and improves insulin sensitivity. FGF15/19 emerges as a novel pharmaceutical target for prevention and treatment of metabolic diseases. The nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) deacetylase plays an important role in the maintenance of hepatic homeostasis by linking hepatic metabolism to circadian rhythm. Here, our clinical study identified that circadian rhythmicity and levels of plasma FGF19 and BA profiling, and cellular NAD+-dependent SIRT1 signaling were disturbed in night shift (NS, n = 10) compared to day shift (DS, n = 12) nurses. Our in vitro data showed that recombinant FGF19 protein rescued cellular circadian rhythm disrupted by SIRT1 inhibitors. Furthermore, we determined the effect of FGF15 on circadian rhythm and hepatic metabolism in wild-type (WT), Fgf15 knockout (KO), and Fgf15 transgenic (TG) mice. The expressions of circadian-controlled genes (CCGs) involved in SIRT1 signaling, BA and lipid metabolism, and inflammation were disrupted in Fgf15 KO compared to WT and/or Fgf15 TG mice. Moreover, systemic FGF15 deficiency led to the circadian disturbance of NAD+-dependent SIRT1 signaling and significant reduction during nighttime in mice. These findings suggest that FGF15/19 regulates the circadian energy metabolism, which warrants further studies as a putative prognostic biomarker and pharmaceutical target for preventing against metabolic diseases associated with chronic shift work.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- VA New Jersey Health Care SystemVeterans Administration Medical CenterEast OrangeNew JerseyUSA
| |
Collapse
|
10
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell Mol Gastroenterol Hepatol 2024; 18:101403. [PMID: 39278403 PMCID: PMC11546130 DOI: 10.1016/j.jcmgh.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here, we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. METHODS To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, and metabolic phenotyping, including body composition, indirect calorimetry, glucose tolerance analyses, quantification of the composition of the gut microbiome, and assessment of bile acid signaling pathways. RESULTS iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt. In addition, the alpha and beta diversity of the gut microbiome was reduced in iKO mice, with several alterations in microbe species being associated with the observed increases in plasma bile acids. These increases in plasma bile acids were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. CONCLUSIONS Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid homeostasis and whole-body energy balance, likely via activation of TGR5.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Jeanine Vidola
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Sarah Pfreundschuh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Daniel Rizzolo
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Grace L Guo
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
11
|
Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, Tian W, Wang S, Liu X, Yuan X, Wang Y, Li L, Feng B, Li Z, Guo X, Qiu J, Zhang C, Hou J, Sun Y, Yang X, Zuo X, Heikenwalder M, Li Y, Yuan D, Li S. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metab 2024; 36:2086-2103.e9. [PMID: 38971153 DOI: 10.1016/j.cmet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuesong Liu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yiyuan Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, Medical faculty, University Tübingen, Ottfried-Müller Strasse 37, Tübingen, Germany.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China; Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
Liu Z, Chen L, Chen M, Linghu L, Liao Z, Chen M, Wang G. Sarmentol H derived from Sedum sarmentosum Bunge directly targets FXR to mitigate cholestasis by recruiting SRC-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155759. [PMID: 38788394 DOI: 10.1016/j.phymed.2024.155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Farnesoid X receptor (FXR) is a vital receptor for bile acids and plays an important role in the treatment of cholestatic liver disease. In addition to traditional bile acid-based steroidal agonists, synthetic alkaloids are the most commonly reported non-steroidal FXR agonists. Sarmentol H is a nor-sesquiterpenoid obtained from Sedum sarmentosum Bunge, and in vitro screening experiments have shown that it might be related to the regulation of the FXR pathway in a previous study. PURPOSE To investigate the therapeutic effects of sarmentol H on cholestasis and to determine whether sarmentol H directly targets FXR to mitigate cholestasis. Furthermore, this study aimed to explore the key amino acid residues involved in the binding of sarmentol H to FXR through site-directed mutagenesis. METHODS An intrahepatic cholestasis mouse model was established to investigate the therapeutic effects of sarmentol H on cholestasis. In vitro experiments, including Co-Ip and FXR-EcRE-Luc assays, were performed to assess whether sarmentol H activates FXR by recruiting the receptor coactivator SRC1. CETSA, SIP, DARTS, and ITC were used to determine the binding of sarmentol H to FXR protein. The key amino acid residues for sarmentol H binding to FXR were analyzed by molecular docking and site-directed mutagenesis. Finally, we conducted in vivo experiments on wild-type and Fxr-/- mice to further validate the anticholestatic target of sarmentol H. RESULTS Sarmentol H had significant ameliorative effects on the pathological conditions of cholestatic mice induced with ANIT. In vitro experiments suggested that it is capable of activating FXR and regulating downstream signaling pathways by recruiting SRC1. The target validation experiments showed that sarmentol H had the ability to bind to FXR as a ligand (KD = 2.55 μmol/L) and enhance the stability of its spatial structure. Moreover, site-directed mutagenesis revealed that THR292 and TYR365 were key binding sites for sarmentol H and FXR. Furthermore, knockout of the Fxr gene resulted in a significantly higher degree of ANIT-induced cholestatic liver injury than that in wild-type cholestatic mice, and the amelioration of cholestasis or regulatory effects on FXR downstream genes by sarmentol H also disappeared in Fxr-/- cholestatic mice. CONCLUSION Sarmentol H is an FXR agonist. This is the first study to show that it exerts a significant therapeutic effect on cholestatic mice, and can directly bind to FXR and activate it by recruiting the coactivator SRC1.
Collapse
Affiliation(s)
- Zhenxiu Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingyun Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lang Linghu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Li C, Tian J, Liu N, Song D, Steer CJ, Han Q, Song G. MicroRNA-206 as a potential cholesterol-lowering drug is superior to statins in mice. J Lipid Res 2024; 65:100576. [PMID: 38866328 PMCID: PMC11292365 DOI: 10.1016/j.jlr.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis, and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis, and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol, and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis, and fecal-neutral steroid excretion. MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.
Collapse
Affiliation(s)
- Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China; The First College of Clinical Medicine, Shanxi Medical University, Taiyuan City, China
| | - Jing Tian
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Ningning Liu
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China.
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
15
|
Chow MD, Otersen K, Wassef A, Kong B, Yamarthy S, Rizzolo D, Yang I, Buckley B, Lu A, Crook N, Lee M, Gao J, Naganand S, Stofan MF, Armstrong L, Schumacher J, Taylor R, Henry Z, Basaly V, Yang Z, Zhang M, Huang M, Kagan L, Brunetti L, Sadek R, Lee YH, Guo GL. Effects of intestine-specific deletion of FGF15 on the development of fatty liver disease with vertical sleeve gastrectomy. Hepatol Commun 2024; 8:e0444. [PMID: 38780301 PMCID: PMC11124683 DOI: 10.1097/hc9.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure. We hypothesized the reduction of obesity and resolution of MASLD by SGx may be mediated by FGF15/19. METHODS First, we conducted hepatic gene expression analysis in obese patients undergoing SGx, with the results showing increased expression of FGF19 in obese patients' livers. Next, we used wild-type and intestine-specific Fgf15 knockout mice (Fgf15ile-/-) to determine the effects of FGF15 deficiency on improving the metabolic effects. RESULTS SGx improved metabolic endpoints in both genotypes, evidenced by decreased obesity, improved glucose tolerance, and reduced MASLD progression. However, Fgf15ile-/- mice showed better improvement compared to wild-type mice after SGx, suggesting that other mediators than FGF15 are also responsible for the beneficial effects of FGF15 deficiency. Further gene expression analysis in brown adipose tissue suggests increased thermogenesis. CONCLUSIONS FGF15 deficiency, the larger BA pool and higher levels of secondary BAs may increase energy expenditure in extrahepatic tissues, which may be responsible for improved metabolic functions following SGx.
Collapse
Affiliation(s)
- Monica D. Chow
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Katherine Otersen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sowmya Yamarthy
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Naomi Crook
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Lee
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Judy Gao
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sareena Naganand
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Mary F. Stofan
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Laura Armstrong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Min Zhang
- Children’s Liver Disease Center, 302 Military Hospital, Beijing, China
| | - Mingxing Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-Sen University (SYSU), Zhuhai, Guangdong, China
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Yi-Horng Lee
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers Center for Lipid Research, New Brunswick, New Jersey, USA
| |
Collapse
|
16
|
Taylor R, Yang Z, Henry Z, Capece G, Meadows V, Otersen K, Basaly V, Bhattacharya A, Mera S, Zhou P, Joseph L, Yang I, Brinker A, Buckley B, Kong B, Guo GL. Characterization of individual bile acids in vivo utilizing a novel low bile acid mouse model. Toxicol Sci 2024; 199:316-331. [PMID: 38526215 DOI: 10.1093/toxsci/kfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Bile acids (BAs) are signaling molecules synthesized in the liver initially by CYP7A1 and CYP27A1 in the classical and alternative pathways, respectively. BAs are essential for cholesterol clearance, intestinal absorption of lipids, and endogenous modulators of farnesoid x receptor (FXR). FXR is critical in maintaining BA homeostasis and gut-liver crosstalk. Complex reactions in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs. In this study, we characterized the in vivo effects of three-day feeding of cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological/non-hepatotoxic concentrations in a novel low-BA mouse model (Cyp7a1-/-/Cyp27a1-/-, DKO). Liver injury, BA levels and composition and BA signaling by the FXR-fibroblast growth factor 15 (FGF15) axis were determined. Overall, higher basal inflammation and altered lipid metabolism in DKO mice might be associated with low BAs. CA, DCA, and UDCA feeding activated FXR signals with tissue specificity. Dietary CA and DCA similarly altered tissue BA profiles to be less hydrophobic, while UDCA promoted a more hydrophobic tissue BA pool with the profiles shifted toward non-12α-OH BAs and secondary BAs. However, UDCA did not offer any overt protective effects as expected. These findings allow us to determine the precise effects of individual BAs in vivo on BA-FXR signaling and overall BA homeostasis in liver physiology and pathologies.
Collapse
Affiliation(s)
- Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Zakiyah Henry
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Gina Capece
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Katherine Otersen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Stephanie Mera
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Laurie Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Ill Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Brian Buckley
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
- Veterans Administration Medical Center, VA New Jersey Health Care System, East Orange, New Jersey 07017, USA
| |
Collapse
|
17
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Li Y, Yang H, Fu B, Kaneko G, Li H, Tian J, Wang G, Wei M, Xie J, Yu E. Integration of Multi-Omics, Histological, and Biochemical Analysis Reveals the Toxic Responses of Nile Tilapia Liver to Chronic Microcystin-LR Exposure. Toxins (Basel) 2024; 16:149. [PMID: 38535815 PMCID: PMC10974751 DOI: 10.3390/toxins16030149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2025] Open
Abstract
Microcystin-LR (MC-LR) is a cyanobacterial metabolite produced during cyanobacterial blooms and is toxic to aquatic animals, and the liver is the main targeted organ of MC-LR. To comprehensively understand the toxicity mechanism of chronic exposure to environmental levels of MC-LR on the liver of fish, juvenile Nile tilapia were exposed to 0 μg/L (control), 1 μg/L (M1), 3 μg/L (M3), 10 μg/L (M10), and 30 μg/L (M30) MC-LR for 60 days. Then, the liver hepatotoxicity induced by MC-LR exposure was systematically evaluated via histological and biochemical determinations, and the underlying mechanisms were explored through combining analysis of biochemical parameters, multi-omics (transcriptome and metabolome), and gene expression. The results exhibited that chronic MC-LR exposure caused slight liver minor structural damage and lipid accumulation in the M10 group, while resulting in serious histological damage and lipid accumulation in the M30 group, indicating obvious hepatotoxicity, which was confirmed by increased toxicity indexes (i.e., AST, ALT, and AKP). Transcriptomic and metabolomic analysis revealed that chronic MC-LR exposure induced extensive changes in gene expression and metabolites in six typical pathways, including oxidative stress, apoptosis, autophagy, amino acid metabolism, primary bile acid biosynthesis, and lipid metabolism. Taken together, chronic MC-LR exposure induced oxidative stress, apoptosis, and autophagy, inhibited primary bile acid biosynthesis, and caused fatty deposition in the liver of Nile tilapia.
Collapse
Affiliation(s)
- Yichao Li
- Faculty of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Huici Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China;
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX 77901, USA;
| | - Hongyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Jingjing Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Guangjun Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Mingken Wei
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China;
| | - Jun Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Ermeng Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| |
Collapse
|
19
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575400. [PMID: 38260602 PMCID: PMC10802577 DOI: 10.1101/2024.01.12.575400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background and Aims Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. Methods To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, and assessment of bile acid signaling pathways. Results iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt . These increases were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. Conclusion Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid metabolism and whole-body energy balance, likely via activation of TGR5.
Collapse
|
20
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Axelrod CL, Langohr I, Dantas WS, Heintz EC, Vandanmagsar B, Yang S, Zunica ERM, Leigh Townsend R, Albaugh VL, Berthoud HR, Kirwan JP. Weight-independent effects of Roux-en-Y gastric bypass surgery on remission of nonalcoholic fatty liver disease in mice. Obesity (Silver Spring) 2023; 31:2960-2971. [PMID: 37731222 PMCID: PMC10895705 DOI: 10.1002/oby.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Obesity is a driver of non-alcoholic fatty liver disease (NAFLD), and interventions that decrease body weight, such as bariatric surgery and/or calorie restriction (CR), may serve as effective therapies. This study compared the effects of Roux-en-Y gastric bypass surgery (RYGB) and CR on hepatic function in mice with obesity and NAFLD. METHODS C57BL/6J mice were fed a high-fat diet to promote obesity. At 16 weeks of age, mice were randomized to sham surgery (sham), RYGB, or CR weight matched to RYGB (WM). Body weight/composition, food intake, and energy expenditure (EE) were measured throughout treatment. Liver histopathology was evaluated from H&E-stained sections. Hepatic enzymes and glycogen content were determined by ELISA. Transcriptional signatures were revealed via RNA sequencing. RESULTS RYGB reduced hepatic lipid content and adiposity while increasing EE and lean body mass relative to WM. Hepatic glycogen and bile acid content were increased after RYGB relative to sham and WM. RYGB activated enterohepatic signaling and genes regulating hepatic lipid homeostasis. CONCLUSIONS RYGB improved whole-body composition and hepatic lipid homeostasis to a greater extent than CR in mice. RYGB was associated with discrete remodeling of the hepatic transcriptome, suggesting that surgery may be mechanistically additive to CR.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wagner S. Dantas
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C. Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bolormaa Vandanmagsar
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth R. M. Zunica
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - R. Leigh Townsend
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Vance L. Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Metamor Institute, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Hans-Rudolf Berthoud
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
22
|
Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother 2023; 168:115606. [PMID: 37812893 DOI: 10.1016/j.biopha.2023.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Bile acids (BAs) facilitate the absorption of dietary lipids and vitamins and have also been identified as signaling molecules involved in regulating their own metabolism, glucose and lipid metabolism, as well as immunity. Disturbances in BA homeostasis are associated with various enterohepatic and metabolic diseases, such as cholestasis, nonalcoholic steatohepatitis, inflammatory bowel disease, and obesity. As a key regulator, the nuclear orphan receptor farnesoid X receptor (FXR, NR1H4) precisely regulates BA homeostasis by transcriptional regulation of genes involved in BA synthesis, metabolism, and enterohepatic circulation. FXR is widely regarded as the most potential therapeutic target. Obeticholic acid is the only FXR agonist approved to treat patients with primary biliary cholangitis, but its non-specific activation of systemic FXR also causes high-frequency side effects. In recent years, developing tissue-specific FXR-targeting drugs has become a research highlight. This article provides a comprehensive overview of the role of tissue-specific intestine/liver FXR in regulating genes involved in BA homeostasis and briefly discusses tissue-specific FXR as a therapeutic target for treating diseases. These findings provide the basis for the development of tissue-specific FXR modulators for the treatment of enterohepatic and metabolic diseases associated with BA dysfunction.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Bhattacharya A, Taylor RE, Guo GL. In vivo mouse models to study bile acid synthesis and signaling. Hepatobiliary Pancreat Dis Int 2023; 22:466-473. [PMID: 37620226 PMCID: PMC10790561 DOI: 10.1016/j.hbpd.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The synthesis of bile acids (BAs) is carried out by complex pathways characterized by sequential chemical reactions in the liver through various cytochromes P450 (CYP) and other enzymes. Maintaining the integrity of these pathways is crucial for normal physiological function in mammals, encompassing hepatic and neurological processes. Studying on the deficiencies in BA synthesis genes offers valuable insights into the significance of BAs in modulating farnesoid X receptor (FXR) signaling and metabolic homeostasis. By creating mouse knockout (KO) models, researchers can manipulate deficiencies in genes involved in BA synthesis, which can be used to study human diseases with BA dysregulation. These KO mouse models allow for a more profound understanding of the functions and regulations of genes responsible for BA synthesis. Furthermore, KO mouse models shed light on the distinct characteristics of individual BA and their roles in nuclear receptor signaling. Notably, alterations of BA synthesis genes in mouse models have distinct differences when compared to human diseases caused by the same BA synthesis gene deficiencies. This review summarizes several mouse KO models used to study BA synthesis and related human diseases, including mice deficient in Cyp7a1, Cyp27a1, Cyp7a1/Cyp27a1, Cyp8b1, Cyp7b1, Cyp2c70, Cyp2a12, and Cyp2c70/Cyp2a12, as well as germ-free mice.
Collapse
Affiliation(s)
- Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rulaiha E Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey, USA.
| |
Collapse
|
24
|
Zhou YF, Nie J, Shi C, Zheng WW, Ning K, Kang J, Sun JX, Cong X, Xie Q, Xiang H. Lysimachia christinae polysaccharide attenuates diet-induced hyperlipidemia via modulating gut microbes-mediated FXR-FGF15 signaling pathway. Int J Biol Macromol 2023; 248:125725. [PMID: 37419267 DOI: 10.1016/j.ijbiomac.2023.125725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Polysaccharides are one of the most abundant and active components of Lysimachia christinae (L. christinae), which is widely adopted for attenuating abnormal cholesterol metabolism; however, its mechanism of action remains unclear. Therefore, we fed a natural polysaccharide (NP) purified from L. christinae to high-fat diet mice. These mice showed an altered gut microbiota and bile acid pool, which was characterized by significantly increased Lactobacillus murinus and unconjugated bile acids in the ileum. Oral administration of the NP reduced cholesterol and triglyceride levels and enhanced bile acid synthesis via cholesterol 7α-hydroxylase. Additionally, the effects of NP are microbiota-dependent, which was reconfirmed by fecal microbiota transplantation (FMT). Altered gut microbiota reshaped bile acid metabolism by modulating bile salt hydrolase (BSH) activity. Therefore, bsh genes were genetically engineered into Brevibacillus choshinensis, which was gavaged into mice to verify BSH function in vivo. Finally, adeno-associated-virus-2-mediated overexpression or inhibition of fibroblast growth factor 15 (FGF15) was used to explore the farnesoid X receptor-fibroblast growth factor 15 pathway in hyperlipidemic mice. We identified that the NP relieves hyperlipidemia by altering the gut microbiota, which is accompanied by the active conversion of cholesterol to bile acids.
Collapse
Affiliation(s)
- Yong-Fei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Wei-Wei Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Ke Ning
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jing Kang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Ji-Xiang Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Xiaoqiang Cong
- The Cardiovascular Department, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| |
Collapse
|
25
|
Xing C, Huang X, Wang D, Yu D, Hou S, Cui H, Song L. Roles of bile acids signaling in neuromodulation under physiological and pathological conditions. Cell Biosci 2023; 13:106. [PMID: 37308953 PMCID: PMC10258966 DOI: 10.1186/s13578-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
Bile acids (BA) are important physiological molecules not only mediating nutrients absorption and metabolism in peripheral tissues, but exerting neuromodulation effect in the central nerve system (CNS). The catabolism of cholesterol to BA occurs predominantly in the liver by the classical and alternative pathways, or in the brain initiated by the neuronal-specific enzyme CYP46A1 mediated pathway. Circulating BA could cross the blood brain barrier (BBB) and reach the CNS through passive diffusion or BA transporters. Brain BA might trigger direct signal through activating membrane and nucleus receptors or affecting activation of neurotransmitter receptors. Peripheral BA may also provide the indirect signal to the CNS via farnesoid X receptor (FXR) dependent fibroblast growth factor 15/19 (FGF15/19) pathway or takeda G protein coupled receptor 5 (TGR5) dependent glucagon-like peptide-1 (GLP-1) pathway. Under pathological conditions, alterations in BA metabolites have been discovered as potential pathogenic contributors in multiple neurological disorders. Attractively, hydrophilic ursodeoxycholic acid (UDCA), especially tauroursodeoxycholic acid (TUDCA) can exert neuroprotective roles by attenuating neuroinflammation, apoptosis, oxidative or endoplasmic reticulum stress, which provides promising therapeutic effects for treatment of neurological diseases. This review summarizes recent findings highlighting the metabolism, crosstalk between brain and periphery, and neurological functions of BA to elucidate the important role of BA signaling in the brain under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Dongxue Wang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Dengjun Yu
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- Anhui Medical University, Heifei, 230032, China
| | - Haoran Cui
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Lung Song
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
- Anhui Medical University, Heifei, 230032, China.
| |
Collapse
|
26
|
Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7:e0127. [PMID: 37058105 PMCID: PMC10109454 DOI: 10.1097/hc9.0000000000000127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
NASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH. The farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis, and dysregulation of bile acids has been implicated in the pathogenesis of NASH. As a result, modulators of FXR that show desirable effects in mitigating key characteristics of NASH have been developed as promising therapeutic approaches. However, global FXR activation causes adverse effects such as cholesterol homeostasis imbalance and pruritus. The development of targeted FXR modulation is necessary for ideal NASH therapeutics, but information regarding tissue-specific and cell-specific FXR functionality is limited. In this review, we highlight FXR activation in the regulation of bile acid homeostasis and NASH development, examine the current literature on tissue-specific regulation of nuclear receptors, and speculate on how FXR regulation will be beneficial in the treatment of NASH.
Collapse
Affiliation(s)
- Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
| |
Collapse
|
27
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Li Z, Zhang Q, Liu X, Zhao M. Recombinant Humanized IgG1 Antibody Promotes Reverse Cholesterol Transport through FcRn-ERK1/2-PPARα Pathway in Hepatocytes. Int J Mol Sci 2022; 23:ijms232314607. [PMID: 36498935 PMCID: PMC9736681 DOI: 10.3390/ijms232314607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperlipidemia-associated lipid disorders are considered the cause of atherosclerotic cardiovascular disease. Reverse cholesterol transport (RCT) is a mechanism by which excess peripheral cholesterol is transported to the liver and further converted into bile acid for excretion from the body in feces, which contributes to reducing hyperlipidemia as well as cardiovascular disease. We previously found that the recombinant humanized IgG1 antibody promotes macrophages to engulf lipids and increases cholesterol efflux to high-density lipoprotein (HDL) through ATP-binding cassette sub-family A1 (ABCA1), one of the key proteins related to RCT. In the present study, we explored other RCT related proteins expression on hepatocytes, including scavenger receptor class B type I (SR-BI), apolipoprotein A-I (ApoA-I), and apolipoprotein A-II (ApoA-II), and its modulation mechanism involved. We confirmed that the recombinant humanized IgG1 antibody selectively activated ERK1/2 to upregulate SR-BI, ApoA-I, and ApoA-II expression in mice liver and human hepatocellular carcinoma cell lines HepG2 cells. The rate-limiting enzymes of bile acid synthesis, including cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), exhibited a significant increase when treated with the recombinant humanized IgG1 antibody, as well as increased excretion of bile acids in feces. Besides, abolishment or mutation of peroxisome proliferator-activated receptor α (PPARα)/RXR binding site on SR-BI promoter eliminated SR-BI reporter gene luciferase activity even in the presence of the recombinant humanized IgG1 antibody. Knock down the neonatal Fc receptor (FcRn) on hepatocytes impaired the effect of recombinant humanized IgG1 antibody on activation of ERK1/2, as well as upregulation of SR-BI, ApoA-I, and ApoA-II expression. In conclusion, one of the mechanisms on the recombinant humanized IgG1 antibody attenuates hyperlipidemia in ApoE-/- mice model fed with high-fat-diet might be through reinforcement of liver RCT function in an FcRn-ERK1/2-PPARα dependent manner.
Collapse
Affiliation(s)
- Zhonghao Li
- Key Lab for Shock and Microcirculation Research of Guangdong, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xianyan Liu
- Key Lab for Shock and Microcirculation Research of Guangdong, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Key Lab for Shock and Microcirculation Research of Guangdong, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
29
|
Wang R, Fan X, Lu Y, Chen D, Zhao Y, Qi K. Dietary acetic acid suppress high-fat diet-induced obesity in mice by altering taurine conjugated bile acids metabolism. Curr Res Food Sci 2022; 5:1976-1984. [PMID: 36312883 PMCID: PMC9596597 DOI: 10.1016/j.crfs.2022.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Vinegar is widely used in Chinese diet as a traditional condiment, and its functional component acetic acid has been proposed to prevent obesity, while its mechanism is still unclear. Bile acids (BAs) have been reported to have a protective effect on obesity. This study demonstrated that high-fat diet induced obesity (DIO) seriously disturbed BAs balance by significantly decreasing hepatic BAs synthesis and increasing fecal BAs excretion. However, acetate supplemented in the high-fat diet can restore BAs balance by mainly promoting hepatic taurine conjugated BAs (tauro-BAs) synthesis and decreasing fecal tauro-BAs excretion. The tauro-BAs, as the antagonists, inhibited the intestinal-liver farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15)-FGF receptor 4 (FGFR4) signaling pathway, and negatively regulated the production of hepatic BAs. Present study provided important clues for further investigation of the mechanism of acetic acid inhibiting DIO. Obesity disturbed Bile acids (BAs) balance by decreasing hepatic BAs synthesis. Obesity disturbed BAs balance by increasing fecal BAs excretion. Acetate restored BAs by promoting hepatic synthesis and decreasing fecal excretion. The hepatic BAs inhibited FXR-SHP, negative feedback regulated BAs production. The ileal taurine conjugated BAs inhibited FXR-FGF15-FGFR4, regulated BAs production.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yuanyuan Lu
- Department of Children's Health Care Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China,Corresponding author.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China,Corresponding author.
| |
Collapse
|
30
|
Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, Liu L, Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med 2022; 9:972603. [PMID: 36158845 PMCID: PMC9492915 DOI: 10.3389/fcvm.2022.972603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing researches have considered gut microbiota as a new “metabolic organ,” which mediates the occurrence and development of metabolic diseases. In addition, the liver is an important organ of lipid metabolism, and abnormal lipid metabolism can cause the elevation of blood lipids. Among them, elevated low-density lipoprotein cholesterol (LDL-C) is related with ectopic lipid deposition and metabolic diseases, and statins are widely used to lower LDL-C. In recent years, the gut microbiota has been shown to mediate statins efficacy, both in animals and humans. The effect of statins on microbiota abundance has been deeply explored, and the pathways through which statins reduce the LDL-C levels by affecting the abundance of microbiota have gradually been explored. In this review, we discussed the interaction between gut microbiota and cholesterol metabolism, especially the cholesterol-lowering effect of statins mediated by gut microbiota, via AMPK-PPARγ-SREBP1C/2, FXR and PXR-related, and LPS-TLR4-Myd88 pathways, which may help to explain the individual differences in statins efficacy.
Collapse
Affiliation(s)
- ChangXin Sun
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZePing Wang
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LanQing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoNan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiYe Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZongLiang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LongTao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: LongTao Liu
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Min Wu
| |
Collapse
|
31
|
Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int J Mol Sci 2022; 23:ijms23116046. [PMID: 35682726 PMCID: PMC9181207 DOI: 10.3390/ijms23116046] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver. The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic syndrome and cholestatic diseases.
Collapse
|
32
|
Kong B, Rizzolo D, Taylor RE, Guo GL. Bile Acid Profiling in Mouse Biofluids and Tissues. Methods Mol Biol 2022; 2455:305-318. [PMID: 35213003 PMCID: PMC8922367 DOI: 10.1007/978-1-0716-2128-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bile acids (BAs) serve as important signaling molecules and are endogenous ligands of nuclear and cell membrane receptors to regulate physiological and pathological processes. BA synthesis and metabolism have been impaired in NASH patients because of liver injury, inflammation or obstruction of bile ducts. On the other hand, the changes in BA composition might alter the activation status of various cell signaling pathways and contribute to NASH pathogenesis. Due to the rapidly increasing interests in the roles of individual BA in disease development, this chapter will focus on the method for analyzing individual BA profile in mouse biofluids and tissues by high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC-MS).
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Rulaiha E Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ, USA.
| |
Collapse
|
33
|
Song W, Sun LY, Zhu ZJ. Effects of Previous Kasai Surgery on Gut Microbiota and Bile Acid in Biliary Atresia With End-Stage Liver Disease. Front Med (Lausanne) 2021; 8:704328. [PMID: 34646837 PMCID: PMC8502819 DOI: 10.3389/fmed.2021.704328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Biliary atresia (BA) is the most common cholestatic liver disease in neonates. Although the Kasai procedure can improve temporary biliary drainage in some cases, complications and liver fibrosis still develop. Liver transplantation is the ultimate treatment. The current study aimed to investigate the effect of previous Kasai surgery on gut microbiota and bile acid in BA with end-stage liver disease. Methods: Patients with BA with end-stage liver disease were divided into two groups according to whether they had previously undergone Kasai surgery (non-Kasai: n = 8, post-Kasai: n = 8). Metagenomic sequencing and ultraperformance liquid chromatography/tandem mass spectrometry were performed to identify the gut microbiota and bile acid. Results: Previous Kasai surgery had some effects on gut microbiota and bile acid in BA with end-stage liver disease. In the gut microbiome, the differential species were mainly distributed at the species level. Veillonella atypica had a significant increase in the non-Kasai group (P < 0.05). Bacteroides spp., Prevotella spp., Barnesiella spp., Parabacteroides spp., Heliobacterium spp., Erysipelatoclostridium spp. and Diaporthe spp. were increased in the post-Kasai group (P < 0.05). Concerning functional profiles, methionine biosynthesis was enriched in the non-Kasai group, while pyridoxal biosynthesis and riboflavin biosynthesis were enriched in the post-Kasai group (linear discriminant analysis > 2, P < 0.05). In stools, 17 bile acids were distinctly elevated in the post-Kasai group, such as cholic acid, chenodeoxycholic acid, β-muricholic acid and tauro α-muricholate (P < 0.05). Spearman correlation test showed that V. atypica had an enormously positive correlation with liver enzymes. Faecalibacterium prausnitzii and Escherichia coli were associated with derivatives of the alternative pathway of bile acid metabolism. Conclusion: Previous Kasai surgery can improve the gut microbiota and bile acid in patients with BA with end-stage liver disease. This improvement contributes to maintaining the intestinal barrier.
Collapse
Affiliation(s)
- Wei Song
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China.,Department of Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Lumbreras S, Ricobaraza A, Baila-Rueda L, Gonzalez-Aparicio M, Mora-Jimenez L, Uriarte I, Bunuales M, Avila MA, Monte MJ, Marin JJG, Cenarro A, Gonzalez-Aseguinolaza G, Hernandez-Alcoceba R. Gene supplementation of CYP27A1 in the liver restores bile acid metabolism in a mouse model of cerebrotendinous xanthomatosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:210-221. [PMID: 34485606 PMCID: PMC8399082 DOI: 10.1016/j.omtm.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/30/2023]
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disease caused by mutations in the CYP27A1 gene, encoding the sterol 27-hydroxylase. Disruption of the bile acid biosynthesis pathway and accumulation of toxic precursors such as cholestanol cause chronic diarrhea, bilateral juvenile cataracts, tissue deposition of cholestanol and cholesterol (xanthomas), and progressive motor/neuropsychiatric alterations. We have evaluated the therapeutic potential of adeno-associated virus (AAV) vectors expressing CYP27A1 in a CTX mouse model. We found that a vector equipped with a strong liver-specific promoter (albumin enhancer fused with the α1 anti-trypsin promoter) is well tolerated and shows therapeutic effect at relatively low doses (1.5 × 1012 viral genomes [vg]/kg), when less than 20% of hepatocytes overexpress the transgene. This vector restored bile acid metabolism and normalized the concentration of most bile acids in plasma. By contrast, standard treatment (oral chenodeoxycholic acid [CDCA]), while reducing cholestanol, did not normalize bile acid composition in plasma and resulted in supra-physiological levels of CDCA and its derivatives. At the transcriptional level, only the vector was able to avoid the induction of xenobiotic-induced pathways in mouse liver. In conclusion, the overexpression of CYP27A1 in a fraction of hepatocytes using AAV vectors is well tolerated and provides full metabolic restoration in Cyp27a1−/− mice. These features make gene therapy a feasible option for the etiological treatment of CTX patients.
Collapse
Affiliation(s)
- Sara Lumbreras
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Ana Ricobaraza
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lucia Baila-Rueda
- Unidad Clinica y de Investigacion en Lipidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragón), CIBERCV, 50009 Zaragoza, Spain
| | - Manuela Gonzalez-Aparicio
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lucia Mora-Jimenez
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Iker Uriarte
- IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,University of Navarra, CIMA, Hepatology Program, FIMA, 31008 Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Bunuales
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matias A Avila
- IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,University of Navarra, CIMA, Hepatology Program, FIMA, 31008 Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Monte
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Ana Cenarro
- Unidad Clinica y de Investigacion en Lipidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragón), CIBERCV, 50009 Zaragoza, Spain
| | - Gloria Gonzalez-Aseguinolaza
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,Vivet Therapeutics SAS, 75008 Paris, France
| | - Ruben Hernandez-Alcoceba
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
35
|
Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, Chan AP, Brearley-Sholto MC, Wahlström A, Ashby JW, Barshop W, Wohlschlegel J, Calkin AC, Liu Y, Thorell A, Meikle PJ, Drew BG, Mack JJ, Marschall HU, Tarling EJ, Edwards PA, de Aguiar Vallim TQ. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 2021; 33:1671-1684.e4. [PMID: 34270928 PMCID: PMC8353952 DOI: 10.1016/j.cmet.2021.06.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.
Collapse
Affiliation(s)
- Bethan L Clifford
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Leslie R Sedgeman
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Pauline Morand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Angela Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alvin P Chan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Madelaine C Brearley-Sholto
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Annika Wahlström
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julianne W Ashby
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anna C Calkin
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yingying Liu
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Anders Thorell
- Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Brian G Drew
- Central Clinical School, Monash University, Melbourne, VIC, Australia; Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Peter A Edwards
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
36
|
Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proc Natl Acad Sci U S A 2021; 118:2019388118. [PMID: 33526687 DOI: 10.1073/pnas.2019388118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.
Collapse
|
37
|
Li Y, Chen L, Li L, Sottas C, Petrillo SK, Lazaris A, Metrakos P, Wu H, Ishida Y, Saito T, Golden-Mason L, Rosen HR, Wolff JJ, Silvescu CI, Garza S, Cheung G, Huang T, Fan J, Culty M, Stiles B, Asahina K, Papadopoulos V. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience 2021; 24:102457. [PMID: 34013171 PMCID: PMC8113880 DOI: 10.1016/j.isci.2021.102457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Translocator protein (TSPO, 18 kDa) levels increase in parallel with the evolution of simple steatosis (SS) to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD). However, TSPO function in SS and NASH is unknown. Loss of TSPO in hepatocytes in vitro downregulated acetyl-CoA acetyltransferase 2 and increased free cholesterol (FC). FC accumulation induced endoplasmic reticulum stress via IRE1A and protein kinase RNA-like ER kinase/ATF4/CCAAT-enhancer-binding protein homologous protein pathways and autophagy. TSPO deficiency activated cellular adaptive antioxidant protection; this adaptation was lost upon excessive FC accumulation. A TSPO ligand 19-Atriol blocked cholesterol binding and recapitulated many of the alterations seen in TSPO-deficient cells. These data suggest that TSPO deficiency accelerated the progression of SS. In NASH, however, loss of TSPO ameliorated liver fibrosis through downregulation of bile acid synthesis by reducing CYP7A1 and CYP27A1 levels and increasing farnesoid X receptor expression. These studies indicate a dynamic and complex role for TSPO in the evolution of NAFLD.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Petrillo
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Anthoula Lazaris
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Peter Metrakos
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Hangyu Wu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Lucy Golden-Mason
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Hugo R. Rosen
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | | | | | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tiffany Huang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjiang Fan
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bangyan Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Kinji Asahina
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
38
|
Fan Y, Yan LT, Yao Z, Xiong GY. Biochanin A Regulates Cholesterol Metabolism Further Delays the Progression of Nonalcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2021; 14:3161-3172. [PMID: 34276221 PMCID: PMC8277457 DOI: 10.2147/dmso.s315471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To discover the possible target of biochanin A (BCA) in the lipid metabolism pathway and further explore its mechanism to nonalcoholic fatty liver disease (NAFLD). METHODS We adopted a high-fat and high-glucose diet for 12 weeks to build the NAFLD rat model, which was then treated with different proportions of BCA for 4 weeks. General condition, body weight, Lee index, and liver index were then evaluated. Furthermore, blood lipid level and insulin resistance (IR) were detected. Moreover, hematoxylin and eosin and oil red O staining were used to observe the pathological changes in the liver. Finally, Western blotting was used to detect the protein expression levels of CYP7A1, HMGCR, LDLR, PPAR-α, PPAR-γ, and SREBP-1c in the liver. RESULTS The vital signs of rats in each group were stable. The treatment with BCA effectively reduced Lee index and liver index (F = 104.781, P < 0.05); however, the weight was not effected in each group. Additionally, BCA effectively reduced the related lipid metabolism indexes of NAFLD, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), blood glucose, insulin, IR (F =12.463 (TC), 6.909 [TG], and 15.3 effected 75 [LDL], P < 0.05), and increased HDL (F = 11.580, P < 0.05). We observed that BCA could significantly improve steatosis and inflammatory cell infiltration in liver slices. Furthermore, BCA significantly increased the CYP7A1, LDLR, and PPAR-α protein expression in the liver and downregulated the HMGCR, SREBP-1c, and PPAR-γ protein expression. CONCLUSION BCA could delay the liver damage of NAFLD induced by a high-fat diet, regulate the blood lipid level, and improve the expression of lipid metabolism-related genes in rats.
Collapse
Affiliation(s)
- Yan Fan
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, People’s Republic of China
| | - Long-Teng Yan
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| | - Zheng Yao
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
- Correspondence: Zheng Yao; Guang-Yi Xiong Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, No. 1076, Yuhua Road, Chenggong District, Kunming, Yunnan, 650500, People’s Republic of ChinaTel/Fax +86 189 0871 9365 Email ;
| | - Guang-Yi Xiong
- Key Laboratory of Microcosmic Syndrome Differentiation, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| |
Collapse
|
39
|
Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can Respir J 2020; 2020:9137251. [PMID: 33294085 PMCID: PMC7714608 DOI: 10.1155/2020/9137251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid receptor encoded by the Nr1h4 gene. FXR plays an important role in maintaining the stability of the internal environment and the integrity of many organs, including the liver and intestines. The expression of FXR in nondigestible tissues other than in the liver and small intestine is known as the expression of “nonclassical” bile acid target organs, such as blood vessels and lungs. In recent years, several studies have shown that FXR is widely involved in the pathogenesis of various respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, and idiopathic pulmonary fibrosis. Moreover, a number of works have confirmed that FXR can regulate the bile acid metabolism in the body and exert its anti-inflammatory and antifibrotic effects in the airways and lungs. In addition, FXR may be used as a potential therapeutic target for some respiratory diseases. For example, FXR can regulate the tumor microenvironment by regulating the balance of inflammatory and immune responses in the body to promote the occurrence and development of non-small-cell lung cancer (NSCLC), thereby being considered a potential target for immunotherapy of NSCLC. In this article, we provide an overview of the internal relationship between FXR and respiratory diseases to track the progress that has been achieved thus far in this direction and suggest potential therapeutic prospects of FXR in respiratory diseases.
Collapse
|
40
|
Bae-Gartz I, Kasper P, Großmann N, Breuer S, Janoschek R, Kretschmer T, Appel S, Schmitz L, Vohlen C, Quaas A, Schweiger MR, Grimm C, Fischer A, Ferrari N, Graf C, Frese CK, Lang S, Demir M, Schramm C, Fink G, Goeser T, Dötsch J, Hucklenbruch-Rother E. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci Rep 2020; 10:15424. [PMID: 32963289 PMCID: PMC7508970 DOI: 10.1038/s41598-020-72022-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany.
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nora Großmann
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | | | - Nina Ferrari
- Cologne Center for Prevention in Childhood and Youth / Heart Center Cologne, University Hospital of Cologne, Cologne, Germany.,Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christine Graf
- Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christian K Frese
- Proteomics Core Facility, CECAD Research Center, University Hospital of Cologne, Cologne, Germany.,Max-Planck-Unit for the Science of Pathogens, Charité University Medicine Berlin, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| |
Collapse
|
41
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|