1
|
Liu C, Li X. Role of leptin and adiponectin in immune response and inflammation. Int Immunopharmacol 2025; 161:115082. [PMID: 40516255 DOI: 10.1016/j.intimp.2025.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Adipose tissue has gained significant attention for its role in immune response and inflammation through the secretion of adipokines. Adipokines, such as leptin and adiponectin, are secreted by adipose tissue and have been implicated in various physiological processes, with a focus on their role in modulating immune responses and inflammation. Leptin and adiponectin are the most abundant adipokines in human, playing a crucial role in regulating functions of the heart, skeletal muscle, growth, and inflammation. Leptin, a pro-inflammatory adipokine, is involved in controlling food intake and energy expenditure, and it influences immune cell activation and cytokine production. In contrast, adiponectin, an anti-inflammatory adipokine, circulates at high levels in the plasma and modulates immune cell functions, counteracting the effects of leptin. Here we provided an overview of the role of adipokines in immune response and inflammation. In addition,The leptin-adiponectin ratio (Adpn/Lep) has emerged as a significant indicator of various metabolic diseases and conditions. Further research is needed to fully elucidate the mechanisms by which adipokines influence immune responses and to identify potential therapeutic targets for inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Chang Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong, Shanghai 200120, China.
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Ding Q, Cao W, Ge X, Cao F, Song Q, Jin Y, Sun T, Fang H, Li J, Li S. SMPD3 Inhibition Contributes to Nicotinamide-Ameliorated Hepatic Steatosis in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40404566 DOI: 10.1021/acs.jafc.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Alcohol-associated liver disease (ALD) is characterized by the reduction of hepatic nicotinamide adenine dinucleotide (NAD+), which exacerbates hepatic steatosis. The present study was conducted to investigate the protective role of nicotinamide (NAM), a foodborne precursor of NAD+ biosynthesis, in ALD. C57BL/6N mice were employed to establish the ALD model and were administered NAM by gavage. Our results showed that NAM supplementation significantly ameliorated alcohol-induced NAD+ reduction and lipid accumulation in both mice liver and cultured AML-12 hepatocytes and improved lipid metabolism-associated gene disorders. Alcohol-induced liver injury and oxidative stress were also blocked by NAM administration. Further transcriptomics analysis and validation revealed that alcohol-stimulated sphingomyelin phosphodiesterase 3 (SMPD3) was significantly reversed by NAM, along with the reduction of hepatic ceramide levels. Importantly, SMPD3 was upregulated in the livers of ALD patients. Genetically silencing SMPD3 alleviated alcohol-induced lipid accumulation in hepatocytes. ChIP assay identified SMPD3 as a direct downstream target of hypoxia-inducible factor 1 alpha (HIF-1α). Liver-specific Hif1α knockdown reduced the level of hepatic SMPD3 expression in mice. Activation of HIF-1α abolished the prevention of intrahepatic liver lipid deposition by NAM, while SMPD3 knockdown reversed HIF-1α activation-stimulated lipid accumulation, indicating that a HIF-1α-regulated SMPD3 pathway was involved in the beneficial role of NAM. NAM improved liver oxidative stress, while antioxidant MitoQ administration rescued HIF-1α/SMPD3 activation in ALD mice, implying that the antioxidant effect of NAM contributed to its inhibitory role on the HIF-1α/SMPD3 pathway. In conclusion, NAM ameliorates chronic alcohol intake-induced hepatic steatosis by inhibiting SMPD3. This study provides new insights into the mechanistic understanding of ALD and highlights NAM as a therapeutic choice for ALD treatment.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Xinxuan Ge
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yue Jin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Tianchi Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haoyi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Jiaxin Li
- Division of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
3
|
Che Z, Cai M, Dong X, Yuan Y, Wang Y, Xiao L, Song Y, Zhong J, Luo P, Wang H, Lu G, Sun Y, Xiao J. Angiotensinogen inhibition concurrently mitigates alcohol-associated hepatic and muscle injury. Metabolism 2025; 169:156275. [PMID: 40311841 DOI: 10.1016/j.metabol.2025.156275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
AIMS The organ communication mechanisms driven by alcohol-associated liver disease (ALD) remain inadequately understood. This study explores the endocrine roles of the hepatokine angiotensinogen (AGT) and the renin-angiotensin system (RAS) in ALD. METHODS AND RESULTS Hepatokine screening tests revealed that chronic-binge ethanol consumption upregulates hepatic AGT production, triggering downstream RAS activation. Hepatocyte-specific knockout of Agt (AGTΔHep) significantly alleviated ALD-induced liver injury. In organ screening between AGTflox/flox (AGTf/f) and AGTΔHep mice, skeletal muscle exhibited the most pronounced improvement in alcoholic myopathy (AM)-related phenotypes, including reduced muscle mass, enhanced oxidative stress, and mitochondrial dysfunction post-ethanol administration. Mechanistically, the renin-angiotensin axis transmits damaging signals from AGT to their membrane receptor AGTR1 in both hepatocytes and myocytes. Pharmacological inhibition of AGT, renin, and angiotensin-converting enzyme, as well as specific knockdown of Agtr1 in hepatocytes or myocytes, effectively attenuated both conditions. Activation of the counteractive axis of the RAS-AGTR1 pathway, involving Ang (1-7) and its membrane receptor MAS1, ameliorated the alcoholic injury of both the liver and muscle. Conversely, specific knockdown of Mas1 in hepatocytes and myocytes exacerbated these injuries. CONCLUSIONS Our work demonstrates that hepatokine AGT promotes ALD and AM through the activation of the RAS-AGTR1 axis and the inhibition of the Ang(1-7)-MAS1 axis, offering a foundation for concurrent therapeutic strategies for both diseases.
Collapse
Affiliation(s)
- Zhaodi Che
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mingxiang Cai
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xiaowu Dong
- Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Yuan Yuan
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Aier School of Ophthalmology, Central South University, Changsha 410083, China
| | - Yaodong Wang
- Kunshan Hospital of Chinese Medicine, Kunshan Affiliated Hospital of Yangzhou University, Suzhou 215000, China
| | - Lu Xiao
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yali Song
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiajun Zhong
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pingping Luo
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Wang
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guotao Lu
- Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China.
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200092, China.
| | - Jia Xiao
- Department of Anesthesiology and Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China.
| |
Collapse
|
4
|
Borgne-Sanchez A, Fromenty B. Mitochondrial dysfunction in drug-induced hepatic steatosis: Recent findings and current concept. Clin Res Hepatol Gastroenterol 2025; 49:102529. [PMID: 39798918 DOI: 10.1016/j.clinre.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα). Many drugs have been shown to cause mitochondrial dysfunction, which can lead to acute and chronic liver lesions. While severe inhibition of mitochondrial FAO would eventually cause microvesicular steatosis, hypoglycemia, and liver failure, moderate impairment of this metabolic pathway can induce macrovacuolar steatosis, which can progress in the long term to steatohepatitis and cirrhosis. Drugs can impair mitochondrial FAO through several mechanisms including direct inhibition of FAO enzymes, sequestration of coenzyme A and l-carnitine, impairment of the activity of one or several MRC complexes and reduced PPARα expression. In drug-induced macrovacuolar steatosis, non-mitochondrial mechanisms can also be involved in lipid accumulation including increased de novo lipogenesis and reduced very-low-density lipoprotein secretion. Nonetheless, mitochondrial dysfunction and subsequent oxidative stress appear to be key events in the progression of steatosis to steatohepatitis. Patients suffering from metabolic dysfunction-associated steatotic liver disease (MASLD) and treated with mitochondriotoxic drugs should be closely monitored to reduce the risk of acute liver injury or a faster transition of steatosis to steatohepatitis. Therapies based on the mitochondrial cofactor l-carnitine, the antioxidant N-acetylcysteine, or thyromimetics might be useful to prevent or treat drug-induced mitochondrial dysfunction, steatosis, and steatohepatitis.
Collapse
Affiliation(s)
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France.
| |
Collapse
|
5
|
Wang L, Dong W, Fan L, Kong H, Liang S, Huang Z, Chen J, Zhi S, Xu S, Qiu Q, Yang M, Hou Y, Hu Y, Pan T, Zheng M, Li X, Huang Z, Song L. Repression of the ERRγ-CYP2E1 pathway by FGF4 mitigates alcohol-associated liver injury. Hepatology 2025:01515467-990000000-01184. [PMID: 40009617 DOI: 10.1097/hep.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) represents a critical global health challenge characterized by liver damage resulting from excessive alcohol consumption. Early detection and timely intervention are essential for optimizing patient outcomes. However, the mechanisms underlying alcohol-induced liver injury have not been fully elucidated. Fibroblast growth factor 4 (FGF4) has been implicated in the progression of various liver diseases. This study aims to elucidate the role of FGF4 in the pathogenesis of ALD. APPROACH AND RESULTS We analyzed human liver specimens and observed significant upregulation of FGF4 mRNA and protein levels in patients with ALD. Consistent findings were noted in mouse models subjected to a Lieber-DeCarli liquid diet. Importantly, hepatic FGF4 expression exhibited a positive correlation with ALD severity in both human subjects and murine models. Hepatocyte-specific deletion of Fgf4 ( Fgf4 -LKO) exacerbated alcohol-induced liver injury through increased oxidative stress, inflammation, and apoptosis. Specifically, Fgf4 -LKO mice demonstrated heightened susceptibility to ethanol plus CCl 4 -induced fibrosis and liver injury. However, treatment with the ERRγ inverse agonist GSK5182 and CYP2E1 inhibitor chlormethiazole (CMZ) mitigated the exacerbated liver injury associated with Fgf4 deficiency. Mechanistic investigations revealed that FGFR4 phosphorylates ERRγ, promoting its ubiquitination and degradation in hepatocytes. Hepatic-specific knockout of Fgfr4 intensified alcohol-induced liver injury and nullified the protective conferred of recombinant FGF4 △NT . CONCLUSIONS Our study identifies FGF4 as a stress-responsive regulator in liver pathophysiology, operating through an FGFR4-mediated ERRγ-CYP2E1 signaling pathway. These results underscore the potential of FGF4 and its downstream pathways as therapeutic targets for ALD treatment.
Collapse
Affiliation(s)
- Luyao Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenliya Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Fan
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Liang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuobing Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zhi
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyan Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoling Qiu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaomiao Yang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yushu Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Hu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongtong Pan
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Chagas CL, da Silva NF, Rodrigues IG, Arcoverde GMPF, Ferraz VD, Sobral Filho DC, Diniz ADS, Pinho CPS, Cabral PC, de Arruda IKG. Different factors modulate visceral and subcutaneous fat accumulation in adults: a single-center study in Brazil. Front Nutr 2025; 12:1524389. [PMID: 40070477 PMCID: PMC11895334 DOI: 10.3389/fnut.2025.1524389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
Background Abdominal adipose tissue consists of visceral and subcutaneous fat deposits, each with unique metabolic and functional properties. Identifying the characteristics that influence different obesity phenotypes can support targeted prevention and intervention strategies. Objective To identify predictive factors associated with visceral and subcutaneous adipose tissue accumulation. Methods This is a cross-sectional study including adults of both sexes aged ≥20 years under outpatient care in a public healthcare service in Northeast Brazil. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were measured via ultrasound. Anthropometric, clinical, sociodemographic, and behavioral variables were incorporated into the predictive model. Results A total of 347 individuals were included. They were median age of 47.0 years (interquartile range: 39.0 to 56.0). Visceral obesity was found in 79.3% of the sample. Adjusted analysis demonstrated that physical inactivity (OR 2.3; 95% CI 1.1-4.7; p = 0.023) and elevated waist circumference (WC) (OR 6.4; 95% CI 2.6-15.8 p < 0.001) were associated with VAT accumulation. Alcohol consumption increased the likelihood of SAT accumulation by 2.2 times (95% CI 1.3-3.7; p = 0.005), while elevated WC raised this likelihood by 4.5 times (95% CI 2.1-9.8; p < 0.001). The VAT/SAT ratio was significantly higher in older adults (OR 5.5; 95%CI 2.0-14.8; p = 0.001), among individuals of Mixed Race and Black, those with lower educational levels (OR 2.4; 95%CI 1.1-5.2; p = 0.028), and in diabetics (OR 2.4; 95%CI 1.2-4.9; p = 0.017). Conclusion Distinct factors influence visceral and subcutaneous obesity. Sedentary behavior emerged as an independent predictor of visceral obesity, while alcohol consumption was associated with a subcutaneous obesity pattern. Diabetes and sociodemographic factors (older age, non-White race, and lower education) were predictive of an elevated VAT/SAT ratio.
Collapse
Affiliation(s)
| | | | - Isa Galvão Rodrigues
- Universidade de Pernambuco - UPE, Recife, Brazil
- Pronto Socorro Universitário Cardiológico de Pernambuco – PROCAPE, Recife, Brazil
| | | | | | - Dário Celestino Sobral Filho
- Universidade de Pernambuco - UPE, Recife, Brazil
- Pronto Socorro Universitário Cardiológico de Pernambuco – PROCAPE, Recife, Brazil
| | | | - Cláudia Porto Sabino Pinho
- Universidade Federal de Pernambuco - UFPE, Recife, Brazil
- Pronto Socorro Universitário Cardiológico de Pernambuco – PROCAPE, Recife, Brazil
| | | | | |
Collapse
|
7
|
Cai YT, Liu YC, Gu YY, Zhu YQ, Liu YH, Chen J, Yang Y, Liu MX. Red fluorescent AIE bioprobes with a large Stokes shift for droplet-specific imaging and fatty liver diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125325. [PMID: 39490184 DOI: 10.1016/j.saa.2024.125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Lipid droplets (LDs) as spherical dynamic subcellular organelles, play an important role in various cellular functions such as protein degradation, lipid metabolism, energy storage, signal transduction, and membrane formation. Abnormal function of LDs will lead to a series of diseases and hence monitoring the status of LDs is particularly important. In this study, we synthesized a water-insoluble red fluorescent emitting small molecule fluorescent probe (TPE-TCF), which exhibited aggregation-induced emission (AIE) properties and enabled highly selective real-time imaging of LDs (Pearson's R value was 0.90). More interestingly, this probe was able to track the dynamic processes of LDs in living cells, including lipophagy, and monitor fatty liver disease in mice. Therefore, TPE-TCF with red fluorescence emission, good biocompatibility, large Stokes shift, AIE properties, LDs imaging, and fatty liver recognition capabilities can be practically used in more LDs-related diseases.
Collapse
Affiliation(s)
- Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yong-Hong Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China.
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
8
|
Liu M, Zhou M, Ren X, Xie Y. Establishment and application of murine models of alcoholic liver disease: A narrative review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:271-284. [PMID: 39715699 DOI: 10.1111/acer.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
In recent years, there have been significant advances in pathological research on alcoholic liver disease (ALD), with suitable animal models making a significant contribution. However, the currently established animal ALD models still have some significant drawbacks, especially the inability to induce the entire human ALD lineage, which may be related to physiological differences between animals and humans. This review comprehensively summarized the most widely used experimental models of ALD, including voluntary drinking, Lieber-DeCarli, Meadows-Cook, Tsukamoto-French, NIAAA, and the "second hit" model. "Second hit" refers to an additional factor that damages the liver. There are various "second hit" models that fall into two main categories: particular diets and drugs. These models can either simulate human drinking patterns more accurately or produce varying degrees of ALD without significantly increasing animal mortality. We introduced the established method of the original models, discussed the advantages and disadvantages of the existing models from the aspects of operability and practicality, and provided existing improvement methods, hoping to provide a reference for future researchers.
Collapse
Affiliation(s)
- Mengsi Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Mingying Zhou
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xueyi Ren
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yandi Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
9
|
Gratacós-Ginès J, Ariño S, Sancho-Bru P, Bataller R, Pose E. MetALD: Clinical aspects, pathophysiology and treatment. JHEP Rep 2025; 7:101250. [PMID: 39897615 PMCID: PMC11782861 DOI: 10.1016/j.jhepr.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD) are the most prevalent causes of chronic liver disease worldwide. Both conditions have many pathophysiological mechanisms in common, such as altered lipid and bile acid metabolism, and share some similar clinical features. Furthermore, metabolic risk factors and alcohol often co-exist in the same individuals and have recently been shown to act synergistically to markedly increase the risk of liver disease. Given the high prevalence and impact of this interaction, steatotic liver disease due to the combination of metabolic dysfunction and moderate-to-high alcohol intake has been termed MetALD in the new steatotic liver disease nomenclature, attracting the interest of the scientific community. Subsequent studies have investigated the prevalence of MetALD, which ranges from 1.7% to 17% in cohorts of patients with steatotic liver disease, depending on the population setting and study design. A few cohort studies have also assessed the prognosis of this patient population, with preliminary data suggesting that MetALD is associated with an intermediate risk of liver fibrosis, decompensation and mortality among steatotic liver disease subtypes. In this review article, we examine the clinical evidence and the experimental models of MetALD and discuss the clinical implications of the term for early detection and management. We provide insight into the pathophysiological mechanisms of the synergistic effect of alcohol and metabolic risk factors, possible screening strategies, the use of biomarkers and emerging models of care, as well as potential therapeutic interventions with a special focus on medications for MASLD, highlighting the most promising drugs for patients with MetALD.
Collapse
Affiliation(s)
- Jordi Gratacós-Ginès
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ramon Bataller
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas, CIBEREHD, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Zheng K, Yang L, Zhang RS, Qian YH, Zhou YG, Huang WF, Lin JC, Shi YJ, Kong XN. Puerarin Alleviates Alcoholic Liver Disease via Suppressing Lipolysis Induced by Sympathetic Outflow. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:863-888. [PMID: 40374377 DOI: 10.1142/s0192415x25500326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The aim of this study was to evaluate the therapeutic effect of puerarin (PUE) on alcoholic liver disease (ALD) and elucidate the potential mechanism from the perspective of lipolysis and hepatic steatosis. Assessment of PUE efficacy against ALD was performed using serum biochemical parameters and the histological examination of liver and adipose tissue via Hematoxylin and eosin (H&E) staining. The potential mechanisms underlying the amelioration of ALD by PUE were investigated using Western blotting (WB) analysis and immunofluorescence (IHC) staining. We demonstrated that PUE attenuated steatosis in ALD by alleviating ethanol-induced liver damage and lipid accumulation, suppressing the expression of lipid synthesis genes, upregulating the expression of lipid metabolism genes, and reducing lipolysis by inhibiting adipose triglyceride lipase (ATGL) activation and the phosphorylation of hormone-sensitive lipase (HSL). In conclusion, PUE ameliorates ALD by inhibiting the sympathetic outflow-mediated activation of key lipolysis enzymes ATGL and HSL. These findings provide a solid theoretical foundation for the potential application of PUE in the clinical treatment of ALD.
Collapse
Affiliation(s)
- Ke Zheng
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Shuo Zhang
- Clinical Medicine Admitted Class of 2020, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
| | - Yi-Han Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Ge Zhou
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Fan Huang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Cheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan-Jun Shi
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao-Ni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Liu S, Zhu K, Huang Y, Ye W, Wu J. PRDM16 in thermogenic adipocytes mediates an inter-organ protective signaling against alcohol-associated liver disease. Mol Cell Endocrinol 2025; 595:112407. [PMID: 39505231 PMCID: PMC12044534 DOI: 10.1016/j.mce.2024.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Alcohol-associated liver disease (ALD) is one of the major chronic liver diseases and despite the dire clinical needs and extensive research efforts, no effective therapies are available for late-stages of ALD except for liver transplantation. Adipose tissue dysfunction has been implicated in the progression of ALD. Furthermore, it has been previously suggested that thermogenic fat can be activated after alcohol consumption. In this study, increased thermogenic gene expression was detected in both classical brown adipose tissue and beige adipocytes in mice that were given alcohol challenges even when housed at thermoneutrality. In particular, higher expression level of Prdm16, the key transcriptional co-component for beige fat function, was observed in the subcutaneous fat of mice after alcohol challenges. The objective of the present study is to explore the functional significance of adipocyte PRDM16 in the context of ALD. Even though Prdm16 adipocyte-specific-deleted mice (Prdm16-adKO) did not show liver defects at the basal level, following two different alcohol challenge regimens, exacerbated ALD phenotypes were observed in Prdm16-adKO mice compared to that of the control Prdm16 fl/fl mice. Mechanistic investigation suggests that adipose dysfunction after alcohol abuse, including alcohol-induced changes in adipose lipolytic activity, fatty acid oxidation and adipokine levels, may render the worsened ALD phenotype in Prdm16-adKO mice. These results indicate PRDM16-mediated signaling in fat plays a protective role against liver injury caused by alcohol abuse, suggesting it may represent a potential therapeutic target against ALD.
Collapse
Affiliation(s)
- Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Weilai Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Marek GW, Malhi H. MetALD: Does it require a different therapeutic option? Hepatology 2024; 80:1424-1440. [PMID: 38820071 PMCID: PMC12172020 DOI: 10.1097/hep.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.
Collapse
Affiliation(s)
- George W Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
13
|
Hong X, Huang S, Jiang H, Ma Q, Qiu J, Luo Q, Cao C, Xu Y, Chen F, Chen Y, Sun C, Fu H, Liu Y, Li C, Chen F, Qiu P. Alcohol-related liver disease (ALD): current perspectives on pathogenesis, therapeutic strategies, and animal models. Front Pharmacol 2024; 15:1432480. [PMID: 39669199 PMCID: PMC11635172 DOI: 10.3389/fphar.2024.1432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Alcohol-related liver disease (ALD) is a major cause of morbidity and mortality worldwide. It encompasses conditions such as fatty liver, alcoholic hepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. Numerous recent studies have demonstrated the critical role of oxidative stress, abnormal lipid metabolism, endoplasmic reticulum stress, various forms of cell death (including apoptosis, necroptosis, and ferroptosis), intestinal microbiota dysbiosis, liver immune response, cell autophagy, and epigenetic abnormalities in the pathogenesis of ALD. Currently, abstinence, corticosteroids, and nutritional therapy are the traditional therapeutic interventions for ALD. Emerging therapies for ALD mainly include the blockade of inflammatory pathways, the promotion of liver regeneration, and the restoration of normal microbiota. Summarizing the advances in animal models of ALD will facilitate a more systematic investigation of the pathogenesis of ALD and the exploration of therapeutic targets. This review summarizes the latest insight into the pathogenesis and molecular mechanisms of ALD, as well as the pros and cons of ALD rodent models, providing a basis for further research on therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlu Cao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyang Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuzhe Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunfeng Sun
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
15
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Soto Sauza KA, Ryan KK. FGF21 mediating the Sex-dependent Response to Dietary Macronutrients. J Clin Endocrinol Metab 2024; 109:e1689-e1696. [PMID: 38801670 PMCID: PMC11319005 DOI: 10.1210/clinem/dgae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sex is key variable influencing body composition and substrate utilization. At rest, females maintain greater adiposity than males and resist the mobilization of fat. Males maintain greater lean muscle mass and mobilize fat readily. Determining the mechanisms that direct these sex-dependent effects is important for both reproductive and metabolic health. Here, we highlight the fundamental importance of sex in shaping metabolic physiology and assess growing evidence that the hepatokine fibroblast growth factor-21 (FGF21) plays a mechanistic role to facilitate sex-dependent responses to a changing nutritional environment. First, we examine the importance of sex in modulating body composition and substrate utilization. We summarize new data that point toward sex-biased effects of pharmacologic FGF21 administration on these endpoints. When energy is not limited, metabolic responses to FGF21 mirror broader sex differences; FGF21-treated males conserve lean mass at the expense of increased lipid catabolism, whereas FGF21-treated females conserve fat mass at the expense of reduced lean mass. Next, we examine the importance of sex in modulating the endogenous secretion of FGF21 in response to changing macronutrient and energy availability. During the resting state when energy is not limited, macronutrient imbalance increases the secretion of FGF21 more so in males than females. When energy is limited, the effect of sex on both the secretion of FGF21 and its metabolic actions may be reversed. Altogether, we argue that a growing literature supports FGF21 as a plausible mechanism contributing to the sex-dependent mobilization vs preservation of lipid storage and highlight the need for further research.
Collapse
Affiliation(s)
- Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
18
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages. Hepatol Commun 2024; 8:e0410. [PMID: 38551384 PMCID: PMC10984668 DOI: 10.1097/hc9.0000000000000410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a major health care challenge worldwide with limited therapeutic options. Although mesenchymal stem/stromal cells (MSCs) represent a newly emerging therapeutic approach to treat ALD, thus far, there have been extensive efforts to try and enhance their efficacy, including genetically engineering MSCs. FGF21, an endocrine stress-responsive hormone, has been shown to regulate energy balance, glucose, and lipid metabolism and to enhance the homing of MSCs toward injured sites. Therefore, the purpose of this study was to investigate whether MSCs that overexpress FGF21 (FGF21-MSCs) improve the therapeutic effect of MSCs in treating ALD. METHODS Human umbilical cord-derived MSCs served as the gene delivery vehicle for the FGF21 gene. Human umbilical cord-derived MSCs were transduced with the FGF21 gene using lentiviral vectors to mediate FGF21 overexpression. We utilized both chronic Lieber-DeCarli and Gao-binge models of ethanol-induced liver injury to observe the therapeutic effect of FGF21-MSCs. Liver injury was phenotypically evaluated by performing biochemical methods, histology, and inflammatory cytokine levels. RESULTS Compared with MSCs alone, administration of MSCs overexpressing FGF21(FGF21-MSCs) treatment significantly enhanced the therapeutic effect of ALD in mice, as indicated by the alleviation of liver injury with reduced steatosis, inflammatory infiltration, oxidative stress, and hepatic apoptosis, and the promotion of liver regeneration. Mechanistically, FGF21 could facilitate the immunomodulatory function of MSCs on macrophages by setting metabolic commitment for oxidative phosphorylation, which enables macrophages to exhibit anti-inflammatory inclination. CONCLUSIONS Our data elucidate that MSC modification by FGF21 could enhance their therapeutic effect in ALD and may help in the exploration of effective MSCs-based cell therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaolei Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Inflammation and Immune-mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.
Collapse
|
20
|
Qiu J, Dong F, Zhuge H, Han Q, Li J, Guo R, Dou X, Li J, Li S. Preventive effect of low-carbohydrate high-fat dietary pattern on liver disease caused by alcohol consumption via a 6pgd-involved mechanism in mice. Food Funct 2024; 15:732-746. [PMID: 38117162 DOI: 10.1039/d3fo04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A low-carbohydrate high-fat (LCHF) dietary pattern has been reported to improve chronic metabolic diseases. However, whether and how the LCHF diet affects the pathological progression in patients with alcohol-related liver diseases (ALD) is largely unknown. This study was conducted to evaluate the effect of the LCHF diet on ALD and clarify its potential mechanism(s). The ALD model was established by feeding C57BL/6N mice with a Lieber-DeCarli liquid alcohol diet with a modified carbohydrate/fat ratio under an isoenergetic pattern. After an eight-week intervention, we observed that the LCHF diet significantly reduced alcohol-induced hepatic steatosis and liver injury, along with improved lipid metabolic-related gene disorders and redox imbalance. The alcohol-stimulated increase in pro-inflammatory cytokine cytokines expression, including TNF-α, IL-1β, and IL-6, was markedly reversed by the LCHF diet. Liver transcriptome sequencing and qPCR validation showed that twenty-four alcohol-disturbed genes were significantly reversed by LCHF-diet intervention. The top differentially expressed genes were selected for further investigation. Among them, 6-phosphogluconate dehydrogenase (6PGD) was significantly up-regulated by alcohol treatment in both the liver and cultured hepatocytes. Spearman correlation analysis revealed that 6PGD was positively associated with hepatic steatosis, liver injury, and oxidative stress indexes. In vitro, the 6PGD knockdown ameliorated alcohol-induced hepatotoxicity and intracellular lipid accumulation, as well as lipid metabolic-related gene disorders, implying the involvement of 6PGD in LCHF-protected ALD. In conclusion, LCHF diet intervention alleviated chronic alcohol consumption-induced liver dysfunction in mice. 6PGD is a potential novel target for ALD prevention that contributes to LCHF-improved ALD. A LCHF diet might be a promising choice for ALD management.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Fan Dong
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China
| | - Jiayu Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR. China.
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR. China
| |
Collapse
|
21
|
Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:764-783. [PMID: 37582985 DOI: 10.1038/s41575-023-00822-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM INFINITE 1286, Lille, France
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Zhou C, Ruiz HH, Ling L, Maurizi G, Sakamoto K, Liberini CG, Wang L, Stanley A, Egritag HE, Sanz SM, Lindtner C, Butera MA, Buettner C. Sympathetic overdrive and unrestrained adipose lipolysis drive alcohol-induced hepatic steatosis in rodents. Mol Metab 2023; 78:101813. [PMID: 37777008 PMCID: PMC10590866 DOI: 10.1016/j.molmet.2023.101813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Hepatic steatosis is a key initiating event in the pathogenesis of alcohol-associated liver disease (ALD), the most detrimental organ damage resulting from alcohol use disorder. However, the mechanisms by which alcohol induces steatosis remain incompletely understood. We have previously found that alcohol binging impairs brain insulin action, resulting in increased adipose tissue lipolysis by unrestraining sympathetic nervous system (SNS) outflow. Here, we examined whether an impaired brain-SNS-adipose tissue axis drives hepatic steatosis through unrestrained adipose tissue lipolysis and increased lipid flux to the liver. METHODS We examined the role of lipolysis, and the brain-SNS-adipose tissue axis and stress in alcohol induced hepatic triglyceride accumulation in a series of rodent models: pharmacological inhibition of the negative regulator of insulin signaling protein-tyrosine phosphatase 1β (PTP1b) in the rat brain, tyrosine hydroxylase (TH) knockout mice as a pharmacogenetic model of sympathectomy, adipocyte specific adipose triglyceride lipase (ATGL) knockout mice, wildtype (WT) mice treated with β3 adrenergic agonist or undergoing restraint stress. RESULTS Intracerebral administration of a PTP1b inhibitor, inhibition of adipose tissue lipolysis and reduction of sympathetic outflow ameliorated alcohol induced steatosis. Conversely, induction of adipose tissue lipolysis through β3 adrenergic agonism or by restraint stress worsened alcohol induced steatosis. CONCLUSIONS Brain insulin resistance through upregulation of PTP1b, increased sympathetic activity, and unrestrained adipose tissue lipolysis are key drivers of alcoholic steatosis. Targeting these drivers of steatosis may provide effective therapeutic strategies to ameliorate ALD.
Collapse
Affiliation(s)
- Chunxue Zhou
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry H Ruiz
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Ling
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulia Maurizi
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenichi Sakamoto
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Claudia G Liberini
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ling Wang
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrien Stanley
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hale E Egritag
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sofia M Sanz
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Lindtner
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary A Butera
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
23
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Pokhrel S, Dilts M, Stahl Z, Boehme S, Frame G, Chiang JY, Ferrell JM. Tgr5-/- mice are protected from ethanol-induced metabolic alterations through enhanced leptin and Fgf21 signaling. Hepatol Commun 2023; 7:e0138. [PMID: 37185802 PMCID: PMC10145946 DOI: 10.1097/hc9.0000000000000138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is caused by chronic use of alcohol and ranges from hepatic steatosis to fibrosis and cirrhosis. Bile acids are physiological detergents that also regulate hepatic glucose and lipid homeostasis by binding to several receptors. One such receptor, Takeda G protein-coupled receptor 5 (TGR5), may represent a therapeutic target for ALD. Here, we used a chronic 10-day + binge ethanol-feeding model in mice to study the role of TGR5 in alcohol-induced liver injury. METHODS Female C57BL/6J wild-type mice and Tgr5-/- mice were pair-fed Lieber-DeCarli liquid diet with ethanol (5% v/v) or isocaloric control diet for 10 days followed by a gavage of 5% ethanol or isocaloric maltose control, respectively, to represent a binge-drinking episode. Tissues were harvested 9 hours following the binge, and metabolic phenotypes were characterized through examination of liver, adipose, and brain mechanistic pathways. RESULTS Tgr5-/- mice were protected from alcohol-induced accumulation of hepatic triglycerides. Interestingly, liver and serum levels of Fgf21 were significantly increased during ethanol feeding in Tgr5-/- mice, as was phosphorylation of Stat3. Parallel to Fgf21 levels, increased leptin gene expression in white adipose tissue and increased leptin receptor in liver were detected in Tgr5-/- mice fed ethanol diet. Adipocyte lipase gene expression was significantly increased in Tgr5-/- mice regardless of diet, whereas adipose browning markers were also increased in ethanol-fed Tgr5-/- mice, indicating potential for enhanced white adipose metabolism. Lastly, hypothalamic mRNA targets of leptin, involved in the regulation of food intake, were significantly increased in Tgr5-/- mice fed ethanol diet. CONCLUSIONS Tgr5-/- mice are protected from ethanol-induced liver damage and lipid accumulation. Alterations in lipid uptake and Fgf21 signaling, and enhanced metabolic activity of white adipose tissue, may mediate these effects.
Collapse
Affiliation(s)
- Sabita Pokhrel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Matthew Dilts
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Zachary Stahl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John Y.L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
25
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
26
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
27
|
Park SH, Seo W, Xu MJ, Mackowiak B, Lin Y, He Y, Fu Y, Hwang S, Kim SJ, Guan Y, Feng D, Yu L, Lehner R, Liangpunsakul S, Gao B. Ethanol and its Nonoxidative Metabolites Promote Acute Liver Injury by Inducing ER Stress, Adipocyte Death, and Lipolysis. Cell Mol Gastroenterol Hepatol 2022; 15:281-306. [PMID: 36243320 PMCID: PMC9791137 DOI: 10.1016/j.jcmgh.2022.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Binge drinking in patients with metabolic syndrome accelerates the development of alcohol-associated liver disease. However, the underlying mechanisms remain elusive. We investigated if oxidative and nonoxidative alcohol metabolism pathways, diet-induced obesity, and adipose tissues influenced the development of acute liver injury in a single ethanol binge model. METHODS A single ethanol binge was administered to chow-fed or high-fat diet (HFD)-fed wild-type and genetically modified mice. RESULTS Oral administration of a single dose of ethanol induced acute liver injury and hepatic endoplasmic reticulum (ER) stress in chow- or HFD-fed mice. Disruption of the Adh1 gene increased blood ethanol concentration and exacerbated acute ethanol-induced ER stress and liver injury in both chow-fed and HFD-fed mice, while disruption of the Aldh2 gene did not affect such hepatic injury despite high blood acetaldehyde levels. Mechanistic studies showed that alcohol, not acetaldehyde, promoted hepatic ER stress, fatty acid synthesis, and increased adipocyte death and lipolysis, contributing to acute liver injury. Increased serum fatty acid ethyl esters (FAEEs), which are formed by an enzyme-mediated esterification of ethanol with fatty acids, were detected in mice after ethanol gavage, with higher levels in Adh1 knockout mice than in wild-type mice. Deletion of the Ces1d gene in mice markedly reduced the acute ethanol-induced increase of blood FAEE levels with a slight but significant reduction of serum aminotransferase levels. CONCLUSIONS Ethanol and its nonoxidative metabolites, FAEEs, not acetaldehyde, promoted acute alcohol-induced liver injury by inducing ER stress, adipocyte death, and lipolysis.
Collapse
Affiliation(s)
- Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Laboratory of Hepatotoxicity, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Liqing Yu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: Bin Gao, MD, PhD, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892.
| |
Collapse
|
28
|
Luo W, Wang Y, Li Y, Zhang T. Letter to the editor: Adipose lipolysis is important for ethanol to induce fatty liver in the NIAAA murine model of chronic and binge ethanol feeding. Hepatology 2022; 77:E88-E89. [PMID: 36054123 DOI: 10.1002/hep.32712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yawen Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Shi H, Yu L. Reply. Hepatology 2022; 77:E90. [PMID: 36126086 DOI: 10.1002/hep.32714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Liqing Yu
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|