1
|
Eslamizade MJ, Saffarzadeh F, Khatami S, Davoudi S, Soleimani Z, Anajafi S, Khoshnazar A, Mehdizadeh M, Mohammadi-Yeganeh S, Janahmadi M. Deregulation of Melatonin Receptors and Differential Modulation of After-Hyperpolarization and Ih Currents Using Melatonin Treatment Due to Amyloid-β-Induced Neurotoxicity in the Hippocampus. Cell Biochem Funct 2024; 42:e4129. [PMID: 39344779 DOI: 10.1002/cbf.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Treatment with melatonin is routinely prescribed for its potent antioxidant and cognitive-promoting effects, nevertheless, it has yet to find neuromodulatory effects in normal and disease conditions. Therefore, to investigate its neuromodulatory mechanisms, melatonin was systemically administered over 10 consecutive days to both intracortical normal saline- and amyloid-β 1-42 (Aβ) peptide-injected rats. At the behavioral level, treatment with melatonin was associated with reduced efficacy in restoring Aβ-induced deficit in passive-avoidance memory. Whole-cell patch-clamp recordings from CA1 pyramidal neurons revealed that melatonin treatment reduced spontaneous and evoked intrinsic excitability in control rats while exerting a reduction of spontaneous, but not evoked activity, in the Aβ-injected group. Interestingly, treatment with melatonin enhances after-hyperpolarization in control, but not Aβ-injected rats. In contrast, our voltage-clamp study showed that Ih current is significantly enhanced by Aβ injection, and this effect is further strengthened by treatment with melatonin in Aβ-injected rats. Finally, we discovered that the transcription of melatonin receptors 1 (MT1) and 2 (MT2) is significantly upregulated in the hippocampi of Aβ-injected rats. Collectively, our study demonstrates that systemic treatment with melatonin has differential neuromodulation on CA1 neuronal excitability, at least in part, via differential effects on after-hyperpolarization and Ih currents due to Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammad J Eslamizade
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saffarzadeh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Soleimani
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
3
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
4
|
El Brouzi MY, Lamtai M, Zghari O, El Hamzaoui A, Rezqaoui A, Hadch Z, Fath N, Ouichou A, El Hessni A, Mesfioui A. Melatonin is a Neuroprotective and Antioxidant Agent against Neurotoxicity Induced by an Intrahippocampal Injection of Nickel in Rats. Neurotox Res 2024; 42:24. [PMID: 38598025 DOI: 10.1007/s12640-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Zahra Hadch
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Ali Ouichou
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neuro-Immunology and Behavior Unit, Faculty of Science, Ibn Tofail University, Kénitra, Morocco
| |
Collapse
|
5
|
Park JH, Hwang Y, Nguyen YND, Kim HC, Shin EJ. Ramelteon attenuates hippocampal neuronal loss and memory impairment following kainate-induced seizures. J Pineal Res 2024; 76:e12921. [PMID: 37846173 DOI: 10.1111/jpi.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 μg/μL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.
Collapse
Affiliation(s)
- Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT 2 receptor and MT 2-selective modulators. Eur J Med Chem 2023; 262:115888. [PMID: 37866336 DOI: 10.1016/j.ejmech.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland and regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus, is synthesized and directly released into the cerebrospinal fluid (CSF) of the third ventricle (3rdv), where it undergoes rapid absorption by surrounding tissues to exert its physiological function. The hippocampus, a vital structure in the limbic system adjacent to the ventricles, plays a pivotal role in emotional response and memory formation. Melatonin MT1 and MT2 receptors are G protein-coupled receptors (GPCRs) that primarily mediate melatonin's receptor-dependent effects. In comparison to the MT1 receptor, the widely expressed MT2 receptor is crucial for mediating melatonin's biological functions within the hippocampus. Specifically, MT2 receptor is implicated in hippocampal synaptic plasticity and memory processes, as well as neurogenesis and axogenesis. Numerous studies have demonstrated the involvement of MT2 receptors in the pathophysiology and pharmacology of Alzheimer's disease, depression, and epilepsy. This review focuses on the anatomical localization of MT2 receptor in the hippocampus, their physiological function in this region, and their signal transduction and pharmacological roles in neurological disorders. Additionally, we conducted a comprehensive review of MT2 receptor ligands used in psychopharmacology and other MT2-selective ligands over recent years. Ultimately, we provide an outlook on future research for selective MT2 receptor drug candidates.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Hongyuan Lu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
7
|
Radahmadi M, Salehifard K, Reisi P. In vivo synaptic potency, short-term and long-term plasticity at the hippocampal Schaffer collateral-CA1 synapses: Role of different light-dark cycles in male rats. Brain Res 2023; 1817:148514. [PMID: 37499734 DOI: 10.1016/j.brainres.2023.148514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The changes in the light-dark(L/D) cycle could modify cellular mechanisms in some brain regions. The present study compared the effects of various L/D cycles on invivo synaptic potency, short-term and long-term plasticity in the hippocampal CA1 area, adrenal glands weight(AGWs), corticosterone (CORT) levels, and body weight differences(BWD) in male rats. Male rats were assigned into different L/D cycle groups: L4/D20, L8/D16, L12/D12(control), L16/D8, and L20/D4. The slope, amplitude, and the area under curve(AUC) related to the field excitatory postsynaptic potentials(fEPSPs) were assessed, using the input-output(I/O) functions, paired-pulse(PP) responses at different interpulse intervals, and after the induction of long-term potentiation(LTP) in the hippocampal CA1 area. Also, the CORT levels, AGWs, and BWDs were measured in all groups. The slope, amplitude, and AUC of fEPSP in the I/O functions, all three phases of PP, before and after the LTP induction, were significantly decreased in all experimental groups, especially in the L20/D4 and L4/D20 groups. As such, the CORT levels and AGWs were significantly increased in all experimental groups, especially in the L20/D4 group. Overall, the uncommon L/D cycles (minimum and particularly maximum durations of light) significantly reduced the cellular mechanism of learning and memory. Also, downtrends were observed in synaptic potency, as well as short-term and long-term plasticity. The changes in PP with high interpulse intervals, or activity of GABAB receptors, were more significant than the changes in other PP phases with different L/D durations. Additionally, the CORT levels, adrenal glands, and body weight gain occurred time-independently concerning different L/D lengths.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
9
|
Kudara M, Kato-Ishikura E, Ikegaya Y, Matsumoto N. Ramelteon administration enhances novel object recognition and spatial working memory in mice. J Pharmacol Sci 2023; 152:128-135. [PMID: 37169477 DOI: 10.1016/j.jphs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Ramelteon is used to ameliorate sleep disorders that negatively affect memory performance; however, it remains unknown whether ramelteon strengthens neutral memories, which do not involve reward or punishment. To address this, we monitored behavior of mice treated with vehicle/ramelteon while they performed a novel object recognition task and a spontaneous alternation task. Object memory performance in the novel object recognition task was improved only if ramelteon was injected before training, suggesting that ramelteon specifically enhances the acquisition of object recognition memory. Ramelteon also enhanced spatial working memory in the spontaneous alternation task. Altogether, acute ramelteon treatment enhances memory in quasi-natural contexts.
Collapse
Affiliation(s)
- Mikuru Kudara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Eriko Kato-Ishikura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Munley KM, Han Y, Lansing MX, Demas GE. Winter madness: Melatonin as a neuroendocrine regulator of seasonal aggression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:873-889. [PMID: 35451566 PMCID: PMC9587138 DOI: 10.1002/jez.2601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/25/2022]
Abstract
Individuals of virtually all vertebrate species are exposed to annual fluctuations in the deterioration and renewal of their environments. As such, organisms have evolved to restrict energetically expensive processes and activities to a specific time of the year. Thus, the precise timing of physiology and behavior is critical for individual reproductive success and subsequent fitness. Although the majority of research on seasonality has focused on seasonal reproduction, pronounced fluctuations in other non-reproductive social behaviors, including agonistic behaviors (e.g., aggression), also occur. To date, most studies that have investigated the neuroendocrine mechanisms underlying seasonal aggression have focused on the role of photoperiod (i.e., day length); prior findings have demonstrated that some seasonally breeding species housed in short "winter-like" photoperiods display increased aggression compared with those housed in long "summer-like" photoperiods, despite inhibited reproduction and low gonadal steroid levels. While fewer studies have examined how the hormonal correlates of environmental cues regulate seasonal aggression, our previous work suggests that the pineal hormone melatonin acts to increase non-breeding aggression in Siberian hamsters (Phodopus sungorus) by altering steroid hormone secretion. This review addresses the physiological and cellular mechanisms underlying seasonal plasticity in aggressive and non-aggressive social behaviors, including a key role for melatonin in facilitating a "neuroendocrine switch" to alternative physiological mechanisms of aggression across the annual cycle. Collectively, these studies highlight novel and important mechanisms by which melatonin regulates aggressive behavior in vertebrates and provide a more comprehensive understanding of the neuroendocrine bases of seasonal social behaviors broadly.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Yuqi Han
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Matt X. Lansing
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
12
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
13
|
Alshehri FS, Alghamdi BS, Hakami AY, Alshehri AA, Althobaiti YS. Melatonin attenuates morphine-induced conditioned place preference in Wistar rats. Brain Behav 2021; 11:e2397. [PMID: 34710287 PMCID: PMC8671767 DOI: 10.1002/brb3.2397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Morphine is the predominantly used drug for postoperative and cancer pain management. However, the abuse potential of morphine is the primary disadvantage of using opioids in pain management. Melatonin is a neurohormone synthesized in the pineal gland and is involved in circadian rhythms in mammals, as well as other physiological functions. Melatonin provenly attenuates alcohol-seeking and relapse behaviors in rats. Therefore, we aimed to investigate the involvement of the melatonergic system in attenuating morphine dependence. MATERIALS AND METHODS Male Wistar rats were divided into three groups: control, morphine, and morphine + melatonin. Animals were habituated for 3 days, and the initial preference was evaluated. Following the initial preference, the control group received the vehicle and was placed for a 45-min session in the assigned chamber every day, alternating between the two chambers, for 8 days. The morphine group received a morphine injection (5 mg/kg, IP) and was placed for a 45-min session in the white chamber, for a total of four sessions. The morphine + melatonin group received the morphine injection (5 mg/kg, IP) for a total of four sessions over an 8-day period. In the posttest session, the control and morphine groups received a vehicle injection 30 min before placement in the conditioned place preference (CPP). The morphine + melatonin group received a single injection of melatonin (50 mg/kg, IP) 30 min before the preference test. RESULTS Statistical analysis revealed that repeated administration of morphine for four sessions produced a significant increase in the CPP score in the morphine group compared to the control group. However, a single melatonin injection administered 30 min before the posttest attenuated morphine-seeking behavior and reduced morphine-induced place preference. CONCLUSION These findings provide novel evidence for the role of the melatonergic system as a potential target in modulating morphine-seeking behavior.
Collapse
Affiliation(s)
- Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alqassem Y Hakami
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdullah A Alshehri
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,College of Pharmacy, Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
14
|
Pistono C, Zimmermann A, Morel C, Herbeaux K, Héraud C, Dumont-Kientzy S, Pevet P, Felder-Schmittbuhl MP, Mathis C. Major role of MT 2 receptors in the beneficial effect of melatonin on long-term recognition memory in C57BL/6J male mice. Horm Behav 2021; 136:105076. [PMID: 34634697 DOI: 10.1016/j.yhbeh.2021.105076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Melatonin, a major signal of the circadian system, is also involved in brain functions such as learning and memory. Chronic melatonin treatment is known to improve memory performances, but the respective contribution of its central receptors, MT1 and MT2, is still unclear. Here, we used new single receptor deficient MT1-/- and MT2-/- mice to investigate the contribution of each receptor in the positive effect of chronic melatonin treatment on long-term recognition memory. The lack of MT2 receptor precluded memory-enhancing effect of melatonin in the object recognition task and to a lesser extent in the object location task, whereas the lack of MT1 receptor mitigated its effect in the object location task only. Our findings support a key role of MT2 in mediating melatonin's beneficial action on long-term object recognition memory, whereas MT1 may contribute to the effect on object location memory.
Collapse
Affiliation(s)
- Cristiana Pistono
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France.
| | - Amandine Zimmermann
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Chloé Morel
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Karine Herbeaux
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Céline Héraud
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Stéphanie Dumont-Kientzy
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Paul Pevet
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Chantal Mathis
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| |
Collapse
|
15
|
Elsayed NA, Boyer TM, Burd I. Fetal Neuroprotective Strategies: Therapeutic Agents and Their Underlying Synaptic Pathways. Front Synaptic Neurosci 2021; 13:680899. [PMID: 34248595 PMCID: PMC8262796 DOI: 10.3389/fnsyn.2021.680899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
Synaptic signaling is integral for proper brain function. During fetal development, exposure to inflammation or mild hypoxic-ischemic insult may lead to synaptic changes and neurological damage that impairs future brain function. Preterm neonates are most susceptible to these deleterious outcomes. Evaluating clinically used and novel fetal neuroprotective measures is essential for expanding treatment options to mitigate the short and long-term consequences of fetal brain injury. Magnesium sulfate is a clinical fetal neuroprotective agent utilized in cases of imminent preterm birth. By blocking N-methyl-D-aspartate receptors, magnesium sulfate reduces glutamatergic signaling, which alters calcium influx, leading to a decrease in excitotoxicity. Emerging evidence suggests that melatonin and N-acetyl-L-cysteine (NAC) may also serve as novel putative fetal neuroprotective candidates. Melatonin has important anti-inflammatory and antioxidant properties and is a known mediator of synaptic plasticity and neuronal generation. While NAC acts as an antioxidant and a precursor to glutathione, it also modulates the glutamate system. Glutamate excitotoxicity and dysregulation can induce perinatal preterm brain injury through damage to maturing oligodendrocytes and neurons. The improved drug efficacy and delivery of the dendrimer-bound NAC conjugate provides an opportunity for enhanced pharmacological intervention. Here, we review recent literature on the synaptic pathways underlying these therapeutic strategies, discuss the current gaps in knowledge, and propose future directions for the field of fetal neuroprotective agents.
Collapse
Affiliation(s)
- Nada A. Elsayed
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theresa M. Boyer
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A. Melatonin Ameliorates Cadmium-Induced Affective and Cognitive Impairments and Hippocampal Oxidative Stress in Rat. Biol Trace Elem Res 2021; 199:1445-1455. [PMID: 32613486 DOI: 10.1007/s12011-020-02247-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
The present work aims to evaluate the effect of melatonin (Mel) on affective and cognitive disorders induced by chronic exposure to Cadmium (Cd). Male and female Wistar rats received either an intraperitoneal injection of saline solution NaCl (0.9%), Mel (4 mg/kg), Cd (1 mg/kg), or Cd (1 mg/kg) + Mel (4 mg/kg) for 8 weeks. Behavioral disorders were evaluated by different tests mainly the open field and elevated plus maze tests for anxiety-like behavior, forced swimming test (FST) for depression-like behavior, and the Y-maze and Morris water maze (MWM) tests for cognitive disorders. Thereafter, oxidative stress indices and histology of the hippocampus were evaluated. The results confirm that Cd administration has anxiogenic-like effects in both anxiety tests and depressive-like effects in the FST and leads to memory and learning disabilities in the Y-maze and MWM. We also report that Mel counteracts these neurobehavioral disorders. Biochemical assays showed that rats intoxicated with Cd significantly increased levels of nitric oxide (NO) and lipid peroxidation (LPO), while the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased in the hippocampus. In contrast, Mel administration attenuates the Cd-induced changes. The histopathological studies in the hippocampus of rats also supported that Mel markedly reduced the Cd-induced neuronal loss in CA3 sub-region. Overall, our results suggest that Mel could be used to protect against Cd-induced neurobehavioral changes via its antioxidant properties in the hippocampus. The effects of Cd and Mel are sex-dependent, knowing that Cd is more harmful in males, while Mel is more protective in females.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco.
| | - Sofia Azirar
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, 133, 14000, Kenitra, BP, Morocco
| |
Collapse
|
17
|
Munley KM, Trinidad JC, Deyoe JE, Adaniya CH, Nowakowski AM, Ren CC, Murphy GV, Reinhart JM, Demas GE. Melatonin-dependent changes in neurosteroids are associated with increased aggression in a seasonally breeding rodent. J Neuroendocrinol 2021; 33:e12940. [PMID: 33615607 DOI: 10.1111/jne.12940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Aggression is a complex social behaviour that allows individuals to compete for access to limited resources (eg, mates, food and territories). Excessive or inappropriate aggression, however, has become problematic in modern societies, and current treatments are largely ineffective. Although previous work in mammals suggests that aggressive behaviour varies seasonally, seasonality is largely overlooked when developing clinical treatments for inappropriate aggression. Here, we investigated how the hormone melatonin regulates seasonal changes in neurosteroid levels and aggressive behaviour in Siberian hamsters, a rodent model of seasonal aggression. Specifically, we housed males in long-day (LD) or short-day (SD) photoperiods, administered timed s.c. melatonin injections (which mimic a SD-like signal) or control injections, and measured aggression using a resident-intruder paradigm after 9 weeks of treatment. Moreover, we quantified five steroid hormones in circulation and in brain regions associated with aggressive behaviour (lateral septum, anterior hypothalamus, medial amygdala and periaqueductal gray) using liquid chromatography-tandem mass spectrometry. SD hamsters and LD hamsters administered timed melatonin injections (LD-M) displayed increased aggression and exhibited region-specific decreases in neural dehydroepiandrosterone, testosterone and oestradiol, but showed no changes in progesterone or cortisol. Male hamsters also showed distinct associations between neurosteroids and aggressive behaviour, in which neural progesterone and dehydroepiandrosterone were positively correlated with aggression in all treatment groups, whereas neural testosterone, oestradiol and cortisol were negatively correlated with aggression only in LD-M and SD hamsters. Collectively, these results provide insight into a novel neuroendocrine mechanism of mammalian aggression, in which melatonin reduces neurosteroid levels and elevates aggressive behaviour.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Catherine H Adaniya
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea M Nowakowski
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Grace V Murphy
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - John M Reinhart
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
18
|
McCauley JP, Petroccione MA, D'Brant LY, Todd GC, Affinnih N, Wisnoski JJ, Zahid S, Shree S, Sousa AA, De Guzman RM, Migliore R, Brazhe A, Leapman RD, Khmaladze A, Semyanov A, Zuloaga DG, Migliore M, Scimemi A. Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1. Cell Rep 2020; 33:108255. [PMID: 33053337 PMCID: PMC7700820 DOI: 10.1016/j.celrep.2020.108255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing.
Collapse
Affiliation(s)
- John P McCauley
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | - Lianna Y D'Brant
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Department of Physics, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Gabrielle C Todd
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Nurat Affinnih
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Justin J Wisnoski
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Shergil Zahid
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Swasti Shree
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA; Bethlehem Central High School, 700 Delaware Avenue, Delmar, NY 12054, USA
| | - Alioscka A Sousa
- Federal University of São Paulo, Department of Biochemistry, 100 Rua Tres de Maio, São Paulo 04044-020, Brazil; National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Rose M De Guzman
- Department of Psychology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, 153 Via Ugo La Malfa, Palermo 90146, Italy
| | - Alexey Brazhe
- Department of Biophysics, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Ulitsa Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Richard D Leapman
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Alexander Khmaladze
- Department of Physics, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Alexey Semyanov
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Ulitsa Miklukho-Maklaya 16/10, Moscow 117997, Russia; Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Ulitsa 19с1, Moscow 119146, Russia
| | - Damian G Zuloaga
- Department of Psychology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 153 Via Ugo La Malfa, Palermo 90146, Italy
| | - Annalisa Scimemi
- Department of Biology, SUNY Albany, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
19
|
Ozansoy M, Ozansoy MB, Yulug B, Cankaya S, Kilic E, Goktekin S, Kilic U. Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci 2020; 73:237-244. [PMID: 32061493 DOI: 10.1016/j.jocn.2019.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent studies have been revealed that oxidative damage is the main cause of aging and age-related neurodegenerative diseases like Alzheimer's disease (AD). Melatonin is secreted from the pineal gland and its secretion has been found to be altered in AD. In the last decade the role of exosomes in spreading toxic proteins and inducing the propagation of diseases like AD has been discussed. However, it is not known how melatonin affects the amount of exosomes released from the cells and the content of the exosomes. OBJECTIVE Herein, we investigated the possible role of melatonin treatment in the releasing of exosomes and exosomal tau content in an in vitro Aβ toxicity model. METHOD SH-SY5Y cell line was used. The optimum concentration of Aβ was determined by cell viability and cell proliferation tests. Melatonin (100 µM) was applied before and after Aβ application. Total exosomes isolated from cell culture media were immunoprecipitated. The amount of released exosomes and their tau content were analyzed by Western blots. RESULTS Our data demonstrated for the first time that melatonin treatment clearly affected the amount of released exosomes. It would decrease the amyloid beta load and toxicity by inhibiting exosome release. We also demonstated that melatonin also affected the level of tau carried by exosomes depending on whether melatonin was applied before or after Aβ application. CONCLUSION It is considered that the effect of melatonin in the release of exosomes and exosomal tau content would contribute the development of therapeutic strategies in AD and related disorders.
Collapse
Affiliation(s)
- Mehmet Ozansoy
- T.C. Istanbul Bahcesehir University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Muzaffer Beyza Ozansoy
- T.C. Istanbul Aydin University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Burak Yulug
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Seyda Cankaya
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey
| | - Ertugrul Kilic
- T.C. Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Sule Goktekin
- T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Ulkan Kilic
- University of Health Sciences, Medical School, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
20
|
Figueiró PW, Moreira DDS, Dos Santos TM, Prezzi CA, Rohden F, Faccioni-Heuser MC, Manfredini V, Netto CA, Wyse ATS. The neuroprotective role of melatonin in a gestational hypermethioninemia model. Int J Dev Neurosci 2019; 78:198-209. [PMID: 31476364 DOI: 10.1016/j.ijdevneu.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na+,K+-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na+,K+-ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68 μmol/g body weight) and/or melatonin (10 mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na+,K+-ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na+,K+-ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.
Collapse
Affiliation(s)
- Paula W Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Daniella de S Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Caroline A Prezzi
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Maria Cristina Faccioni-Heuser
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, ICBS, UFRGS, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Vanusa Manfredini
- Laboratório de Hematologia e Citologia Clínica, Universidade Federal do Pampa, BR 472, Km 592, Caixa Postal 118, Uruguaiana, RS, 97508-000, Brazil
| | - Carlos A Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
21
|
Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, Felder-Schmittbuhl MP. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res 2019; 67:e12575. [PMID: 30937953 DOI: 10.1111/jpi.12575] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Melatonin (MLT) exerts its physiological effects principally through two high-affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a "knock-in" strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co-expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.
Collapse
Affiliation(s)
- Paul Klosen
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Sarawut Lapmanee
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | | | | - David Hicks
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pevet
- Institute for Cellular and Integrative Neurosciences (UPR 3212), CNRS and University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
22
|
Ansari Dezfouli M, Zahmatkesh M, Farahmandfar M, Khodagholi F. Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol Behav 2019; 204:65-75. [DOI: 10.1016/j.physbeh.2019.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
|
23
|
Jilg A, Bechstein P, Saade A, Dick M, Li TX, Tosini G, Rami A, Zemmar A, Stehle JH. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res 2019; 66:e12553. [PMID: 30618149 PMCID: PMC6405292 DOI: 10.1111/jpi.12553] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Mechanisms of hippocampus-related memory formation are time-of-day-dependent. While the circadian system and clock genes are related to timing of hippocampal mnemonic processes (acquisition, consolidation, and retrieval of long-term memory [LTM]) and long-term potentiation (LTP), little is known about temporal gating mechanisms. Here, the role of the neurohormone melatonin as a circadian time cue for hippocampal signaling and memory formation was investigated in C3H/He wildtype (WT) and melatonin receptor-knockout ( MT 1 / 2 - / - ) mice. Immunohistochemical and immunoblot analyses revealed the presence of melatonin receptors on mouse hippocampal neurons. Temporal patterns of time-of-day-dependent clock gene protein levels were profoundly altered in MT 1 / 2 - / - mice compared to WT animals. On the behavioral level, WT mice displayed better spatial learning efficiency during daytime as compared to nighttime. In contrast, high error scores were observed in MT 1 / 2 - / - mice during both, daytime and nighttime acquisition. Day-night difference in LTP, as observed in WT mice, was absent in MT 1 / 2 - / - mice and in WT animals, in which the sympathetic innervation of the pineal gland was surgically removed to erase rhythmic melatonin synthesis. In addition, treatment of melatonin-deficient C57BL/6 mice with melatonin at nighttime significantly improved their working memory performance at daytime. These results illustrate that melatonin shapes time-of-day-dependent learning efficiency in parallel to consolidating expression patterns of clock genes in the mouse hippocampus. Our data suggest that melatonin imprints a time cue on mouse hippocampal signaling and gene expression to foster better learning during daytime.
Collapse
Affiliation(s)
- Antje Jilg
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Philipp Bechstein
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Anastasia Saade
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Moritz Dick
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Tian Xiao Li
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
| | - Gianluca Tosini
- Morehouse School of Medicine, Pharmacology & Toxicology, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | - Abdelhaq Rami
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| | - Ajmal Zemmar
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Jörg H. Stehle
- Juha Hernesniemi International Neurosurgery Center, Henan Provincial People’s Hospital, School of Medicine, Henan University, Zhengzhou 450003, China
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Germany
| |
Collapse
|
24
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
25
|
Caumo W, Hidalgo MP, Souza A, Torres ILS, Antunes LC. Melatonin is a biomarker of circadian dysregulation and is correlated with major depression and fibromyalgia symptom severity. J Pain Res 2019; 12:545-556. [PMID: 30787633 PMCID: PMC6365222 DOI: 10.2147/jpr.s176857] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE This study compared urinary 6-sulfatoxymelatonin (aMT6s) over 24 hours among fibromyalgia (FM), major depression disorder (MDD), and healthy control (HC) groups, and examined whether rhythm is correlated with depressive symptoms. To answer this question we compared the rhythm of urinary aMT6s secretion among each group in four time series: morning (06:00-12:00 hours), afternoon (12:00-18:00 hours), evening (18:00-24:00 hours), and night (24:00-06:00 hours). In the FM subjects, we assessed if the rhythm of urinary aMT6s secretion is associated with pain severity, sleep quality, number of trigger points (NTPs), and the pain pressure threshold (PPT). PATIENTS AND METHODS We included 54 women, aged 18-60 years with diagnosis of FM (n=18), MDD (n=19), and HC (n =17). The 24-hour urinary aMT6s was evaluated according to four standardized periods. The assessment instruments were the Hamilton Depression Rating Scale (HDRS), Pittsburgh Sleep Quality Index, and Fibromyalgia Impact Questionnaire. RESULTS A generalized estimating equation revealed no difference in the daily load of aMT6s secretion among the three groups (P=0.49). However, at the daily time (06:00-18:00 hours), the load secretion of aMT6s reached 41.54% and 60.71% in the FM and MDD, respectively, as compared to 20.73% in the HC (P<0.05). A higher score in the HDRS was positively correlated with the amount of aMT6s secretion during daytime (06:00-18:00 hours). Also, multivariate linear regression revealed that in FM subjects, the aMT6s secretion during daytime (06:00-18:00 hours) was negatively correlated with the PPTlog (partial η2=0.531, P=0.001). However, it was positively correlated with depressive symptoms (partial η2=0.317, P=0.01); PQSI (partial η2=0.306, P=0.017), and NTPs (partial η2=0.23, P=0.04). CONCLUSION A more significant load of aMT6s secretion during daytime hours was observed in MDD and FM subjects compared to HC. These findings help to comprehend the biological basis of these disorders and show how disruption in melatonin secretion is positively correlated with clinical symptoms.
Collapse
Affiliation(s)
- Wolnei Caumo
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil,
- Pain and Anesthesia in Surgery Department, School of Medicine, UFRGS, Porto Alegre, Brazil,
| | - Maria Paz Hidalgo
- Psychiatry Department, School of Medicine, UFRGS, Porto Alegre, Brazil
- Laboratorio de Cronobiologia e Sono do Hospital de Clinicas de Porto Alegre; Porto Alegre, Brazil
| | - Andressa Souza
- Postgraduate Program in Health and Human Development, La Salle Universitary Center, Canoas, Brazil
| | - Iraci L S Torres
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
- Pharmacology Department, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Brazil
| | - Luciana C Antunes
- Centro de Ciências da Saúde - Departamento de Nutrição da Universidade Federal De Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
26
|
Beriwal N, Namgyal T, Sangay P, Al Quraan AM. Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon 2019; 5:e01190. [PMID: 30775579 PMCID: PMC6360340 DOI: 10.1016/j.heliyon.2019.e01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
The anti-oxidant effects of melatonin and the immune-pineal axis are well established. However, how they play a role in the pathogenesis of neurodegenerative diseases is not well elucidated. A better understanding of this neuro-immuno-endocrinological link can help in the development of novel therapies with higher efficacy to alleviate symptomatology, slow disease progression and improve the quality of life. Recent studies have shown that the immune-pineal axis acts as an immunological buffer, neurohormonal switch and it also intricately links the pathogenesis of neurodegenerative diseases (like Multiple sclerosis, Alzheimer's disease, Parkinson's disease) and inflammation at a molecular level. Furthermore, alteration in circadian melatonin production is seen in neurodegenerative diseases. This review will summarise the mechanics by which the immune-pineal axis and neuro-immuno-endocrinological disturbances affect the pathogenesis and progression of neurodegenerative diseases. It will also explore, how this understanding will help in the development of novel hybrid melatonin hormone therapies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nitya Beriwal
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, 4751, Mangels Boulevard, Fairfield, 94534, CA, USA
| | | | | | | |
Collapse
|
27
|
Lawson K. Is there a role for melatonin in fibromyalgia? AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.4.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Beigi B, Shahidi S, Komaki A, Sarihi A, Hashemi-Firouzi N. Pretraining hippocampal stimulation of melatonin type 2 receptors can improve memory acquisition in rats. Int J Neurosci 2018; 129:492-500. [PMID: 30431374 DOI: 10.1080/00207454.2018.1545770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Learning and memory are among the most important cognitive functions of the brain. Melatonin receptor type 2 (MT2R) is located in the hippocampus and participates in learning and memory processes. In the present study, we examined the role of hippocampal MT2R activation in the acquisition, consolidation, and retrieval of learning and memory in novel object recognition (NOR) and passive avoidance (PA) tasks. METHODS IIK7 (0.03, 0.3, and 3 μg/μl/side), as a selective MT2R agonist, or vehicle was injected bilaterally into the dentate gyrus (DG) region of the hippocampus in rats five minutes before training, immediately after training, and five minutes before the retrieval-behavioral tasks, respectively. The discrimination index (DI) was measured in the NOR task, while step-through latency in acquisition (STLa), number of trials to acquisition (NOT), step-through latency in the retention trial (STLr), and time spent in the dark compartment (TDC) were determined in the PA task. RESULTS The pretraining intrahippocampal injection of IIK7 at all doses significantly improved acquisition in the PA task. On the other hand, the posttraining intrahippocampal administration of IIK7 had no significant effects on consolidation. The preretrieval intrahippocampal injection of IIK7 at different doses attenuated the retrieval of memory. However, the NOR data showed that the intrahippocampal injection of IIK7 at different doses had no significant effects on the acquisition, consolidation, or retrieval in this task. DISCUSSION Based on the findings, stimulation of MT2R could improve acquisition, whereas it had no effects on consolidation. It could impair retrieval in the PA task, while it had no effects on object recognition in rats.
Collapse
Affiliation(s)
- Bita Beigi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Siamak Shahidi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Alireza Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Abdolrahman Sarihi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Nasrin Hashemi-Firouzi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| |
Collapse
|
29
|
Sung JY, Bae JH, Lee JH, Kim YN, Kim DK. The Melatonin Signaling Pathway in a Long-Term Memory In Vitro Study. Molecules 2018; 23:molecules23040737. [PMID: 29570621 PMCID: PMC6017053 DOI: 10.3390/molecules23040737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) via phosphorylation in the hippocampus is an important signaling mechanism for enhancing memory processing. Although melatonin is known to increase CREB expression in various animal models, the signaling mechanism between melatonin and CREB has been unknown in vitro. Thus, we confirmed the signaling pathway between the melatonin receptor 1 (MT1) and CREB using melatonin in HT-22 cells. Melatonin increased MT1 and gradually induced signals associated with long-term memory processing through phosphorylation of Raf, ERK, p90RSK, CREB, and BDNF expression. We also confirmed that the calcium, JNK, and AKT pathways were not involved in this signaling pathway by melatonin in HT-22 cells. Furthermore, we investigated whether melatonin regulated the expressions of CREB-BDNF associated with long-term memory processing in aged HT-22 cells. In conclusion, melatonin mediated the MT1-ERK-p90RSK-CREB-BDNF signaling pathway in the in vitro long-term memory processing model and increased the levels of p-CREB and BDNF expression in melatonin-treated cells compared to untreated HT-22 cells in the cellular aged state. Therefore, this paper suggests that melatonin induces CREB signaling pathways associated with long-term memory processing in vitro.
Collapse
Affiliation(s)
- Jin-Young Sung
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Ji-Hyun Bae
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Yoon-Nyun Kim
- Dongsan Medical Center, Department of Internal Medicine, Keimyung University, Daegu 42931, Korea.
| | - Dae-Kwang Kim
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
30
|
Keskin-Aktan A, Akbulut KG, Yazici-Mutlu Ç, Sonugur G, Ocal M, Akbulut H. The effects of melatonin and curcumin on the expression of SIRT2, Bcl-2 and Bax in the hippocampus of adult rats. Brain Res Bull 2018; 137:306-310. [DOI: 10.1016/j.brainresbull.2018.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/10/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
|
31
|
Sinha B, Wu Q, Li W, Tu Y, Sirianni AC, Chen Y, Jiang J, Zhang X, Chen W, Zhou S, Reiter RJ, Manning SM, Patel NJ, Aziz-Sultan AM, Inder TE, Friedlander RM, Fu J, Wang X. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J Pineal Res 2018; 64. [PMID: 28796402 DOI: 10.1111/jpi.12443] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
The function of melatonin as a protective agent against newborn hypoxic-ischemic (H-I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H-I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H-I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H-I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H-I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.
Collapse
MESH Headings
- Animals
- Astrocytes/cytology
- Blotting, Western
- Cells, Cultured
- Female
- Genotype
- Hippocampus/cytology
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Immunohistochemistry
- Male
- Melatonin/therapeutic use
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Theoretical
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
Collapse
Affiliation(s)
- Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Neonatology, Boston University School of Medicine, Boston, MA, USA
| | - Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Sirianni
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanchun Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Clinical Laboratory, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Simon M Manning
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali M Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- The Joslin Beth Israel Deaconess Foot Center, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
32
|
Chen LY, Renn TY, Liao WC, Mai FD, Ho YJ, Hsiao G, Lee AW, Chang HM. Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 2017; 63. [PMID: 28480587 DOI: 10.1111/jpi.12417] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury.
Collapse
Affiliation(s)
- Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Jui Ho
- School of Psychology, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
33
|
Zhang L, Chen F, Cao J, Dong Y, Wang Z, Chen Y. Melatonin modulates monochromatic light-induced melatonin receptor expression in the hypothalamus of chicks. Acta Histochem 2017; 119:733-739. [PMID: 28943001 DOI: 10.1016/j.acthis.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022]
Abstract
To study the mechanism of the effect of monochromatic light on physiological function in chicken, a total of 192 newly hatched chicks were randomly divided into intact, sham-operated and pinealectomy groups then exposed to white light (WL), red light (RL), green light (GL) and blue light (BL) using a light-emitting diode (LED) system for two weeks. At P14, the hypothalami were immediately collected for immunohistochemical staining of melatonin receptor subtypes (Mel1a and Mel1b) and detection of Mel1a and Mel1b expressions using RT-PCR and western blot. Immunohistochemical staining of the hypothalamus showed that the Mel1a-ir cells were distributed in the preoptic area (POA), nucleus preopticus periventricularis (POP) and suprachiasmatic nuclei (SCN), and the Mel1b-ir cells were presented in the POA and SCN. Analysis of RT-PCR and western blot showed that the mRNA and protein levels of Mel1a and Mel1b in the hypothalamus of chick exposed to GL were increased by 10.7-29.3%, 9.18-35.9% and 8.97-27.3% compared to those in the chicks exposed to WL (P=0.029-0.002), RL (P=0.027-0.001) and BL (P=0.038-0.007) in the intact group, respectively. After pinealectomy, however, these parameters decreased and there were no significant differences among the WL, RL, GL and BL groups. These findings suggested that melatonin plays a critical role in GL illumination-enhanced Mel1a and Mel1b expressions in the hypothalamus of chicks.
Collapse
Affiliation(s)
- Liwei Zhang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Funing Chen
- Changping Hospital of Integrated Chinese and Western Medicine, Beijing 102208, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animal, College of Animal Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Rocha AKADA, de Lima E, Amaral F, Peres R, Cipolla-Neto J, Amado D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav 2017; 71:23-34. [PMID: 28460319 DOI: 10.1016/j.yebeh.2017.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Department of Physiology, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Fernanda Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Departament of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
35
|
Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222:2921-2939. [DOI: 10.1007/s00429-017-1439-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
|
36
|
Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses. Neurochem Res 2017; 42:1438-1448. [PMID: 28214985 DOI: 10.1007/s11064-017-2200-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/23/2022]
Abstract
Epilepsy-associated cognitive impairment is common, and negatively impacts patients' quality of life. However, most antiepileptic drugs focus on the suppression of seizures, and fewer emphasize treatment of cognitive dysfunction. Melatonin, an indolamine synthesized primarily in the pineal grand, is reported to be neuroprotective against several central nervous system disorders. In this study, we investigated whether melatonin could reverse cognitive dysfunction in lithium-pilocarpine treated rats. Chronic treatment with melatonin (8 mg/kg daily for 15 days) after induction of status epilepticus significantly alleviated seizure severity, reduced neuronal death in the CA1 region of the hippocampus, improved spatial learning (as measured by the Morris water maze test), and reversed LTP impairments, compared to vehicle treatment. Furthermore, we found that melatonin rescued the decreased surface levels of GluR2 in the CA1 region observed in epilepsy, which might be the underlying mechanism of the neuroprotective and synapse-modulating function of melatonin. Our study provides experimental evidence for the possible clinical utility of melatonin as an adjunctive therapy to prevent epilepsy-associated cognitive impairments.
Collapse
|
37
|
Liu Y, Ni C, Li Z, Yang N, Zhou Y, Rong X, Qian M, Chui D, Guo X. Prophylactic Melatonin Attenuates Isoflurane‐Induced Cognitive Impairment in Aged Rats through Hippocampal Melatonin Receptor 2 – cAMP Response Element Binding Signalling. Basic Clin Pharmacol Toxicol 2017; 120:219-226. [PMID: 27515785 DOI: 10.1111/bcpt.12652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yajie Liu
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Cheng Ni
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Zhengqian Li
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Ning Yang
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Yang Zhou
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Xiaoying Rong
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Min Qian
- Department of Anesthesiology Peking University Third Hospital Beijing China
| | - Dehua Chui
- Neuroscience Research Institute & Department of Neurobiology Peking University Beijing China
| | - Xiangyang Guo
- Department of Anesthesiology Peking University Third Hospital Beijing China
| |
Collapse
|
38
|
Sharif R, Aghsami M, Gharghabi M, Sanati M, Khorshidahmad T, Vakilzadeh G, Mehdizadeh H, Gholizadeh S, Taghizadeh G, Sharifzadeh M. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function. Behav Brain Res 2017; 316:115-124. [PMID: 27555536 DOI: 10.1016/j.bbr.2016.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
Oxidative stress and mitochondrial dysfunction play indispensable role in memory and learning impairment. Growing evidences have shed light on anti-oxidative role for melatonin in memory deficit. We have previously reported that inhibition of protein kinase A by H-89 can induce memory impairment. Here, we investigated the effect of melatonin on H-89 induced spatial memory deficit and pursued their interactive consequences on oxidative stress and mitochondrial function in Morris Water Maze model. Rats received melatonin (50 and 100μg/kg/side) and H-89(10μM) intra-hippocampally 30min before each day of training. Animals were trained for 4 consecutive days, each containing one block from four trials. Oxidative stress indices, including thiobarbituric acid (TBARS), reactive oxygen species (ROS), thiol groups, and ferric reducing antioxidant power (FRAP) were assessed using spectrophotometer. Mitochondrial function was evaluated through measuring ROS production, mitochondrial membrane potential (MMP), swelling, outer membrane damage, and cytochrome c release. As expected from our previous report, H-89 remarkably impaired memory by increasing the escape latency and traveled distance. Intriguingly, H-89 significantly augmented TBARS and ROS levels, caused mitochondrial ROS production, swelling, outer membrane damage, and cytochrome c release. Moreover, H-89 lowered thiol, FRAP, and MMP values. Intriguingly, melatonin pre-treatment not only effectively hampered H-89-mediated spatial memory deficit at both doses, but also reversed the H-89 effects on mitochondrial and biochemical indices upon higher dose. Collectively, these findings highlight a protective role for melatonin against H-89-induced memory impairment and indicate that melatonin may play a therapeutic role in the treatment of oxidative- related neurodegenerative disorders.
Collapse
Affiliation(s)
- Rojin Sharif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Mehdi Gharghabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Tina Khorshidahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran; College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, MB, Canada; Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Gelareh Vakilzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shervin Gholizadeh
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Ghorban Taghizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran.
| |
Collapse
|
39
|
Erdem Koç G, Kaplan S, Altun G, Gümüş H, Gülsüm Deniz Ö, Aydin I, Emin Onger M, Altunkaynak Z. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol 2016; 92:590-5. [PMID: 27442260 DOI: 10.1080/09553002.2016.1206223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Adverse effects on human health caused by electromagnetic fields (EMF) associated with the use of mobile phones, particularly among young people, are increasing all the time. The potential deleterious effects of EMF exposure resulting from mobile phones being used in close proximity to the brain require particular evaluation. However, only a limited number of studies have investigated the effects of prenatal exposure to EMF in the development of the pyramidal cells using melatonin (MEL) and omega-3 (ω-3). MATERIALS AND METHODS We established seven groups of pregnant rats consisting of three animals each; control (CONT), SHAM, EMF, EMF + MEL, MEL, EMF + ω-3 and ω-3 alone. The rats in the EMF, EMF + MEL, EMF + ω-3 groups were exposed to 900 MHz EMF for 60 min/day in an exposure tube during the gestation period. The CONT, MEL and ω-3 group rats were not placed inside the exposure tube or exposed to EMF during the study period. After delivery, only spontaneously delivered male rat pups were selected for the establishment of further groups. Each group of offspring consisted of six animals. The optical fractionator technique was used to determine total pyramidal neuron numbers in the rat hippocampal region. RESULTS The total number of pyramidal cells in the cornu ammonis (CA) in the EMF group was significantly lower than in the CONT, SHAM, EMF + MEL, and EMF + ω-3 groups. No significant difference was observed between the EMF, MEL and ω-3 groups. No difference was also observed between any groups in terms of rats' body or brain weights. CONCLUSION MEL and ω-3 can protect the cell against neuronal damage in the hippocampus induced by 900 MHz EMF. However, further studies are now needed to evaluate the chronic effects of 900 MHz EMF on the brain in the prenatal period.
Collapse
Affiliation(s)
- Gülüna Erdem Koç
- a Department of Histology and Embryology, Faculty of Medicine , Adnan Menderes University , Aydın , Turkey
| | - Suleyman Kaplan
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Gamze Altun
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Hasan Gümüş
- c Department of Physics, Faculty of Arts and Sciences , Ondokuz Mayıs University , Samsun , Turkey
| | - Ömür Gülsüm Deniz
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Isinsu Aydin
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Mehmet Emin Onger
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Zuhal Altunkaynak
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| |
Collapse
|
40
|
Mosińska P, Socała K, Nieoczym D, Laudon M, Storr M, Fichna J, Wlaź P. Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behav Brain Res 2016; 307:199-207. [DOI: 10.1016/j.bbr.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/26/2022]
|
41
|
Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats. Psychopharmacology (Berl) 2016; 233:2229-39. [PMID: 27007604 DOI: 10.1007/s00213-016-4272-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/08/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Previous studies have demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) exerts an antidepressant activity in rodent models of acute stress and improves cognitive impairments in a rat model of Alzheimer's disease (AD). However, the role of piromelatine in chronic stress-induced memory dysfunction remains unclear. OBJECTIVE The aim of this study was to determine whether piromelatine ameliorates chronic mild stress (CMS)-induced memory deficits and explore the underlying mechanisms. METHODS Rats were exposed randomly to chronic mild stressors for 7 weeks to induce anhedonia (reflected by a significant decrease in sucrose intake), which was used to select rats vulnerable (CMS-anhedonic, CMSA) or resistant (CMS-resistant, CMSR) to stress. Piromelatine (50 mg/kg) was administered daily during the last 2 weeks of CMS. The tail suspension and forced swimming tests were adopted to further characterize vulnerable and resilient rats. The Y-maze and novel object recognition (NOR) tests were used to evaluate memory performance. Brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB), and cytogenesis were measured in the hippocampus. RESULTS We found that only CMSA rats displayed significant increases in immobility time in the tail suspension and forced swimming tests; memory deficits in the Y-maze and NOR tests; significant decreases in hippocampal BDNF, CREB, and pCREB expression; and cytogenesis. All these anhedonia-associated effects were reversed by piromelatine. CONCLUSIONS Piromelatine ameliorates memory deficits associated with CMS-induced anhedonia in rats and this effect may be mediated by restoring hippocampal BDNF, CREB, and cytogenesis deficits.
Collapse
|
42
|
Spasojevic N, Stefanovic B, Jovanovic P, Dronjak S. Anxiety and Hyperlocomotion Induced by Chronic Unpredictable Mild Stress Can Be Moderated with Melatonin Treatment. Folia Biol (Praha) 2016; 62:250-257. [PMID: 28189148 DOI: 10.14712/fb2016062060250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Preclinical studies have shown that melatonin exercised antidepressant-like and anxiolyticlike effects in animal models of anxiety. The aim of the present study was to correlate the changes in behaviour induced by melatonin treatment with the activity of the dopaminergic system in the hippocampus of Wistar rats exposed to chronic, unpredictable, mild stress (CUMS). Male Wistar rats, 11 weeks old, were subjected to chronic stress for 28 successive days. Separate groups of control and stressed rats were intraperitoneally injected daily either with melatonin (10 mg/kg/day, i.p.) or placebo (5% ethanol). The open-field and elevated plus-maze tests were used to assess locomotor activities and anxiety levels. The content of dopamine (DA) in the hippocampal tissues was determined using radioenzymatic assay, while changes in tyrosine hydroxylase (TH) mRNA and protein levels in the hippocampus were determined using real-time RT-PCR and Western immunoblotting. Chronic stress led to reduction in the hippocampal dopaminergic content without affecting the levels of TH protein. These changes were accompanied by increased locomotor activity and higher anxiety levels in the open-field test. Administration of melatonin for 28 days resulted in an increase in the hippocampal DA content as a result of elevated TH protein levels. Melatonin showed an improvement in anxiety-like behaviour along with significantly reduced exploration. We could conclude that melatonin may stimulate dopaminergic synthesis in the hippocampus in order to suppress stress-induced behaviour.
Collapse
Affiliation(s)
- N Spasojevic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - B Stefanovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - P Jovanovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| | - S Dronjak
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Serbia
| |
Collapse
|
43
|
Tang J, Tao Y, Jiang B, Chen Q, Hua F, Zhang J, Zhu G, Chen Z. Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review. Transl Stroke Res 2015; 7:20-32. [PMID: 26561051 DOI: 10.1007/s12975-015-0432-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
Germinal matrix hemorrhage (GMH) is defined as the rupture of immature blood vessels in the subependymal zone of premature infants with significant mortality and morbidity. Considering the notable social and ecological stress brought by GMH-induced brain injury and sequelae, safe and efficient pharmacological preventions are badly needed. Currently, several appropriate animal models are available to mimic the clinical outcomes of GMH in human patients. In the long run, hemorrhagic strokes are the research target. Previously, we found that minocycline was efficient to alleviate GMH-induced brain edema and posthemorrhagic hydrocephalus (PHH) in rats, which may be closely related to the activation of cannabinoid receptor 2 (CB2R). However, how the two molecules correlate and the underlined molecular pathway remain unknown. To extensively understand current experimental GMH treatment, this literature review critically evaluates existing therapeutic strategies, potential treatments, and potentially involved molecular mechanisms. Each strategy has its own advantages and disadvantages. Some of the mechanisms are still controversial, requiring an increasing number of animal experiments before the therapeutic strategy would be widely accepted.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Feng Hua
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - John Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
44
|
Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 2015; 156:305-317. [PMID: 25599452 DOI: 10.1097/01.j.pain.0000460311.71572.5f] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropathic pain is an important public health problem for which only a few treatments are available. Preclinical studies show that melatonin (MLT), a neurohormone acting on MT1 and MT2 receptors, has analgesic properties, likely through MT2 receptors. Here, we determined the effects of the novel selective MLT MT2 receptor partial agonist N-{2-([3-bromophenyl]-4-fluorophenylamino)ethyl}acetamide (UCM924) in 2 neuropathic pain models in rats and examined its supraspinal mechanism of action. In rat L5-L6 spinal nerve ligation and spared nerve injury models, UCM924 (20-40 mg/kg, subcutaneously) produced a prolonged antinociceptive effect that is : (1) dose-dependent and blocked by the selective MT2 receptor antagonist 4-phenyl-2-propionamidotetralin, (2) superior to a high dose of MLT (150 mg/kg) and comparable with gabapentin (100 mg/kg), but (3) without noticeable motor coordination impairments in the rotarod test. Using double staining immunohistochemistry, we found that MT2 receptors are expressed by glutamatergic neurons in the rostral ventrolateral periaqueductal gray. Using in vivo electrophysiology combined with tail flick, we observed that microinjection of UCM924 into the ventrolateral periaqueductal gray decreased tail flick responses, depressed the firing activity of ON cells, and activated the firing of OFF cells; all effects were MT2 receptor-dependent. Altogether, these data demonstrate that selective MT2 receptor partial agonists have analgesic properties through modulation of brainstem descending antinociceptive pathways, and MT2 receptors may represent a novel target in the treatment of neuropathic pain.
Collapse
|
45
|
de la Fuente Revenga M, Fernández-Sáez N, Herrera-Arozamena C, Morales-García JA, Alonso-Gil S, Pérez-Castillo A, Caignard DH, Rivara S, Rodríguez-Franco MI. Novel N-Acetyl Bioisosteres of Melatonin: Melatonergic Receptor Pharmacology, Physicochemical Studies, and Phenotypic Assessment of Their Neurogenic Potential. J Med Chem 2015; 58:4998-5014. [PMID: 26023814 DOI: 10.1021/acs.jmedchem.5b00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein we present a new family of melatonin-based compounds, in which the acetamido group of melatonin has been bioisosterically replaced by a series of reversed amides and azoles, such as oxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole, as well as other related five-membered heterocycles, namely, 1,3,4-oxadiazol(thio)ones, 1,3,4-triazol(thio)ones, and an 1,3,4-thiadiazole. New compounds were fully characterized at melatonin receptors (MT1R and MT2R), and results were rationalized by superimposition studies of their structures to the bioactive conformation of melatonin. We also found that several of these melatonin-based compounds promoted differentiation of rat neural stem cells to a neuronal phenotype in vitro, in some cases to a higher extent than melatonin. This unique profile constitutes the starting point for further pharmacological studies to assess the mechanistic pathways and the relevance of neurogenesis induced by melatonin-related structures.
Collapse
Affiliation(s)
- Mario de la Fuente Revenga
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nerea Fernández-Sáez
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clara Herrera-Arozamena
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José A Morales-García
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Sandra Alonso-Gil
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Ana Pérez-Castillo
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Daniel-Henri Caignard
- ∥Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| | - Silvia Rivara
- ⊥Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - María Isabel Rodríguez-Franco
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
46
|
Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 2015; 58:397-417. [PMID: 25726952 DOI: 10.1111/jpi.12224] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G-protein-coupled receptors, MT1 and MT2 , remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin EJ, Chung YH, Le HLT, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY, Nabeshima YI, Nabeshima T, Kim HC. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int J Neuropsychopharmacol 2015; 18:pyu105. [PMID: 25550330 PMCID: PMC4438546 DOI: 10.1093/ijnp/pyu105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. METHODS First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. RESULTS Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. CONCLUSIONS Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential.
Collapse
|
48
|
Domínguez-Alonso A, Valdés-Tovar M, Solís-Chagoyán H, Benítez-King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci 2015; 16:1907-27. [PMID: 25603176 PMCID: PMC4307341 DOI: 10.3390/ijms16011907] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
Melatonin (MEL), the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM)-dependent kinase II (CaMKII) by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2), partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.
Collapse
Affiliation(s)
- Aline Domínguez-Alonso
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| |
Collapse
|
49
|
Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates dexamethasone-induced inhibitory effects on the proliferation of cultured progenitor cells obtained from adult rat hippocampus. J Steroid Biochem Mol Biol 2015; 145:38-48. [PMID: 25305353 DOI: 10.1016/j.jsbmb.2014.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids, hormones that are released in response to stress, induce neuronal cell damage. The hippocampus is a primary target of glucocorticoids in the brain, the effects of which include the suppression of cell proliferation and diminished neurogenesis in the dentate gyrus. Our previous study found that melatonin, synthesized primarily in the pineal, pretreatment prevented the negative effects of dexamethasone, the glucocorticoid receptor agonist, on behavior and neurogenesis in rat hippocampus. In the present study, we attempted to investigate the interrelationship between melatonin and dexamethasone on the underlying mechanism of neural stem cell proliferation. Addition of dexamethasone to hippocampal progenitor cells from eight-week old rats resulted in a decrease in the number of neurospheres; pretreatment with melatonin precluded these effects. The immunocytochemical analyses indicated a reduction of Ki67 and nestin-positive cells in the dexamethasone-treated group, which was minimized by melatonin pretreatment. A reduction of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and G1-S phase cell cycle regulators cyclin E and CDK2 in dexamethasone-treated progenitor cells were prevented by pretreatment of melatonin. Moreover, luzindole, a melatonin receptor antagonist blocked the positive effect of melatonin whereas RU48, the glucocorticoid receptor antagonist blocked the negative effect of dexamethasone on the number of neurospheres. Moreover, we also found that dexamethasone increased the glucocorticoid receptor protein but decreased the level of MT1 melatonin receptor, whereas melatonin increased the level of MT1 melatonin receptor but decreased the glucocorticoid receptor protein. These suggest the crosstalk and cross regulation between the melatonin receptor and the glucocorticoid receptor on hippocampal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kasima Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
50
|
Boulle F, Massart R, Stragier E, Païzanis E, Zaidan L, Marday S, Gabriel C, Mocaer E, Mongeau R, Lanfumey L. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl Psychiatry 2014; 4:e485. [PMID: 25423137 PMCID: PMC4259995 DOI: 10.1038/tp.2014.125] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/30/2022] Open
Abstract
Stress-induced alterations in neuronal plasticity and in hippocampal functions have been suggested to be involved in the development of mood disorders. In this context, we investigated in the hippocampus the activation of intracellular signaling cascades, the expression of epigenetic markers and plasticity-related genes in a mouse model of stress-induced hyperactivity and of mixed affective disorders. We also determined whether the antidepressant drug agomelatine, a MT1/MT2 melatonergic receptor agonist/5-HT2C receptor antagonist, could prevent some neurobiological and behavioral alterations produced by stress. C57BL/6J mice, exposed for 3 weeks to daily unpredictable socio-environmental stressors of mild intensity, were treated during the whole procedure with agomelatine (50 mg kg(-1) per day, intraperitoneal). Stressed mice displayed robust increases in emotional arousal, vigilance and motor activity, together with a reward deficit and a reduction in anxiety-like behavior. Neurobiological investigations showed an increased phosphorylation of intracellular signaling proteins, including Atf1, Creb and p38, in the hippocampus of stressed mice. Decreased hippocampal level of the repressive epigenetic marks HDAC2 and H3K9me2, as well as increased level of the permissive mark H3K9/14ac suggested that chronic mild stress was associated with increased gene transcription, and clear-cut evidence was further indicated by changes in neuroplasticity-related genes, including Arc, Bcl2, Bdnf, Gdnf, Igf1 and Neurod1. Together with other findings, the present data suggest that chronic ultra-mild stress can model the hyperactivity or psychomotor agitation, as well as the mixed affective behaviors often observed during the manic state of bipolar disorder patients. Interestingly, agomelatine could normalize both the behavioral and the molecular alterations induced by stress, providing further insights into the mechanism of action of this new generation antidepressant drug.
Collapse
Affiliation(s)
- F Boulle
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,European Graduate School for Neuroscience (EURON), Maastricht, The Netherlands,Université Paris Descartes Paris 5, Paris, France
| | - R Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - E Stragier
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - E Païzanis
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - L Zaidan
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - S Marday
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | | | | | - R Mongeau
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,Université Paris Descartes Paris 5, Paris, France
| | - L Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France,Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, INSERM UMR 894, 75634 Paris, France. E-mail:
| |
Collapse
|