1
|
Dander E, Pischiutta F, Di Marzo N, Pascente R, Panini N, Fallati A, Biondi A, Zanier ER, D'Amico G. Development of a 3D ex vivo model of brain-leukemia interaction to study the role of activin A in the central nervous system microenvironment. Sci Rep 2025; 15:18915. [PMID: 40442333 PMCID: PMC12122680 DOI: 10.1038/s41598-025-03877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
B-cell type acute lymphoblastic leukemia (B-ALL) is the most common type of childhood malignancy. Although the survival rate nowadays exceeds 90%, central nervous system (CNS) involvement is associated with a poor outcome. Experimental models are needed to study the interaction between leukemia cells and the brain microenvironment to unravel new targets for drug intervention. We developed a novel three-dimensional (3D) ex vivo model utilizing murine organotypic cortical brain slices microinjected with human B-ALL cells, serving as a platform for investigating the influence of Activin A, a pro-leukemic factor, on leukemia invasion into the CNS. After injection, B-ALL cells exponentially increased in the cortical slices, promoting tissue mortality and an anti-inflammatory microenvironment phenotype, as demonstrated by morphological and gene expression alterations in microglia and astrocytes. Of note, Activin A pretreatment increased leukemia proliferation and exacerbated the effects on the microenvironment. Overall, our model presents an ideal platform for investigating the cross-talk between tumors and the brain microenvironment and the influence of disease-modifying factors. Moreover, it could facilitate drug screening across a spectrum of CNS cancers, meanwhile reducing animal usage.
Collapse
Affiliation(s)
- Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Francesca Pischiutta
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Noemi Di Marzo
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Rosaria Pascente
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicolò Panini
- Departement of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, 20157, Italy
| | - Alessandra Fallati
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
| | - Andrea Biondi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Elisa R Zanier
- Departement of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, via Pergolesi 33, Monza, MB, 20900, Italy.
| |
Collapse
|
2
|
Abstract
A contactless label-free method using a diamagnetophoretic ink to rapidly print three-dimensional (3D) scaffold-free multicellular structures is described. The inks consist of MCF-7 cells that are suspended in a culture medium to which a paramagnetic salt, diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen salt hydrate (Gd-DTPA), is added. When a magnetic field is applied, the host fluid containing the paramagnetic salt is attracted towards regions of high magnetic field gradient, displacing the ink towards regions with a low gradient. Using this method, 3D structures are printed on ultra-low attachment (ULA) surfaces. On a tissue culture treated (TCT) surface, a 3D printed spheroid coexists with a two-dimensional (2D) cell monolayer, where the composite is termed as a 2.5D structure. The 3D structures can be magnetically printed within 6 hours in a medium containing 25 mM Gd-DTPA. The influence of the paramagnetic salt on MCF-7 cell viability, cell morphology, and ability of cells to adhere to each other to stabilize the printed structures on both ULA and TCT surfaces is investigated. Gene expressions of hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) allow comparison of the relative stresses for the printed 3D and 2.5D cell geometries with those for 3D spheroids formed without magnetic assistance. This magnetic printing method can be potentially scaled to a higher throughput to rapidly print cells into 3D heterogeneous cell structures with variable geometries with repeatable dimensions for applications such as tissue engineering and tumour formation for drug discovery.
Collapse
|
3
|
Mishriki S, Abdel Fattah AR, Kammann T, Sahu RP, Geng F, Puri IK. Rapid Magnetic 3D Printing of Cellular Structures with MCF-7 Cell Inks. RESEARCH (WASHINGTON, D.C.) 2019; 2019:9854593. [PMID: 31549098 PMCID: PMC6750075 DOI: 10.34133/2019/9854593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
Abstract
A contactless label-free method using a diamagnetophoretic ink to rapidly print three-dimensional (3D) scaffold-free multicellular structures is described. The inks consist of MCF-7 cells that are suspended in a culture medium to which a paramagnetic salt, diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen salt hydrate (Gd-DTPA), is added. When a magnetic field is applied, the host fluid containing the paramagnetic salt is attracted towards regions of high magnetic field gradient, displacing the ink towards regions with a low gradient. Using this method, 3D structures are printed on ultra-low attachment (ULA) surfaces. On a tissue culture treated (TCT) surface, a 3D printed spheroid coexists with a two-dimensional (2D) cell monolayer, where the composite is termed as a 2.5D structure. The 3D structures can be magnetically printed within 6 hours in a medium containing 25 mM Gd-DTPA. The influence of the paramagnetic salt on MCF-7 cell viability, cell morphology, and ability of cells to adhere to each other to stabilize the printed structures on both ULA and TCT surfaces is investigated. Gene expressions of hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) allow comparison of the relative stresses for the printed 3D and 2.5D cell geometries with those for 3D spheroids formed without magnetic assistance. This magnetic printing method can be potentially scaled to a higher throughput to rapidly print cells into 3D heterogeneous cell structures with variable geometries with repeatable dimensions for applications such as tissue engineering and tumour formation for drug discovery.
Collapse
Affiliation(s)
- S. Mishriki
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - A. R. Abdel Fattah
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - T. Kammann
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Germany
| | - R. P. Sahu
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - F. Geng
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - I. K. Puri
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Tevis KM, Colson YL, Grinstaff MW. Embedded Spheroids as Models of the Cancer Microenvironment. ADVANCED BIOSYSTEMS 2017; 1:1700083. [PMID: 30221187 PMCID: PMC6135264 DOI: 10.1002/adbi.201700083] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To more accurately study the complex mechanisms behind cancer invasion, progression, and response to treatment, researchers require models that replicate both the multicellular nature and 3D stromal environment present in an in vivo tumor. Multicellular aggregates (i.e., spheroids) embedded in an extracellular matrix mimic are a prevalent model. Recently, quantitative metrics that fully utilize the capability of spheroids are described along with conventional experiments, such as invasion into a matrix, to provide additional details and insights into the underlying cancer biology. The review begins with a discussion of the salient features of the tumor microenvironment, introduces the early work on non-embedded spheroids as tumor models, and then concentrates on the successes achieved with the study of embedded spheroids. Examples of studies include cell movement, drug response, tumor cellular heterogeneity, stromal effects, and cancer progression. Additionally, new methodologies and those borrowed from other research fields (e.g., vascularization and tissue engineering) are highlighted that expand the capability of spheroids to aid future users in designing their cancer-related experiments. The convergence of spheroid research among the various fields catalyzes new applications and leads to a natural synergy. Finally, the review concludes with a reflection and future perspectives for cancer spheroid research.
Collapse
Affiliation(s)
- Kristie M. Tevis
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02215
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Metcalf Center for Science and Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
5
|
Jeong W, Jung S, Bazer FW, Song G, Kim J. Epidermal growth factor: Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy. Mol Cell Endocrinol 2016; 420:66-74. [PMID: 26620571 DOI: 10.1016/j.mce.2015.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of pLE cells, but this stimulatory effect was blocked by U0126, a pharmacological inhibitor or ERK1/2 MAPK. Collectively, these results provide new insights into mechanisms whereby EGF regulates development of the peri-implantation uterine LE at the fetal-maternal interface. These results indicate that endometrial- and/or conceptus derived EGF effects migration of uterine LE and that those stimulatory effects are regulated via the ERK1/2 MAPK pathway during early pregnancy in pigs.
Collapse
Affiliation(s)
- Wooyoung Jeong
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Seoungo Jung
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
6
|
The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 2015; 37:61-9. [DOI: 10.1007/s13277-015-4242-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 12/29/2022] Open
|
7
|
Nonaka M, Yawata T, Takemura M, Higashi Y, Nakai E, Shimizu K, Ueba T. Elevated cell invasion in a tumor sphere culture of RSV-M mouse glioma cells. Neurol Med Chir (Tokyo) 2014; 55:60-70. [PMID: 25744351 PMCID: PMC4533394 DOI: 10.2176/nmc.oa.2014-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are the sole population possessing high self-renewal activity in tumors, with their existence affecting tumor recurrence. However, the invasive activity of CSCs has yet to be fully understood. In this article, we established a tumor sphere culture of RSV-M mouse glioma cells (RSV-M-TS) and evaluated their migration and invasion activities. Histological analysis of a tumor formed by cranial injection of the RSV-M-TS cells showed highly invasive properties and similarities with human malignant glioma tissues. When the migration activity of both RSV-M and RSV-M-TS cells were compared by intracranial injection, rapid migration of RSV-M-TS cells was observed. To confirm the invasive capabilities of RSV-M-TS cells, a three-dimensional collagen invasion assay was performed in vitro using RSV-M, RSV-M-TS, and RSV-M-TS cells cultured with medium containing serum. RSV-M and RSV-M-TS cultured with medium containing serum for 8 days indicated low migration activity, while moderate invasion activity was observed in RSV-M-TS cells. This activity was further enhanced by incubation with medium containing serum overnight. To identify the genes involved in this invasion activity, we performed quantitative polymerase chain reaction (PCR) array analysis of RSV-M and RSV-M-TS cells. Of 84 cancer metastasis-related genes, up-regulation was observed in 24 genes, while 4 genes appeared to be down-regulated in RSV-M-TS cells. These results suggest that the enhanced invasive activity of glioma sphere cells correlates with a number of tumor metastasis-related genes and plays a role in the dissemination and invasion of glioma cells.
Collapse
|
8
|
Hou CH, Lin FL, Tong KB, Hou SM, Liu JF. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway. Biochem Pharmacol 2014; 89:453-63. [PMID: 24685520 DOI: 10.1016/j.bcp.2014.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022]
Abstract
Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Ling Lin
- Department of Dermatology, Sijhih Cathay General Hospital, Taipei, Taiwan
| | - Kai-Biao Tong
- Veterinarian Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Sheng-Mon Hou
- Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Abstract
Glial tumors have demonstrated abilities to sustain growth via recruitment of glial progenitor cells (GPCs), which is believed to be driven by chemotactic cues. Previous studies have illustrated that mouse GPCs of different genetic backgrounds are able to replicate the dispersion pattern seen in the human disease. How GPCs with genetic backgrounds transformed by tumor paracrine signaling respond to extracellular cues via migration is largely unexplored, and remains a limiting factor in utilizing GPCs as therapeutic targets. In this study, we utilized a microfluidic device to examine the chemotaxis of three genetically-altered mouse GPC populations towards tumor conditioned media, as well as towards three growth factors known to initiate the chemotaxis of cells excised from glial tumors: Hepatocyte Growth Factor (HGF), Platelet-Derived Growth Factor-BB (PDGF-BB), and Transforming Growth Factor-α (TGF-α). Our results illustrate that GPC types studied exhibited chemoattraction and chemorepulsion by different concentrations of the same ligand, as well as enhanced migration in the presence of ultra-low ligand concentrations within environments of high concentration gradient. These findings contribute towards our understanding of the causative and supportive roles that GPCs play in tumor growth and reoccurrence, and also point to GPCs as potential therapeutic targets for glioma treatment.
Collapse
|
10
|
Scheck AC, Abdelwahab MG, Fenton KE, Stafford P. The ketogenic diet for the treatment of glioma: insights from genetic profiling. Epilepsy Res 2011; 100:327-37. [PMID: 22019313 DOI: 10.1016/j.eplepsyres.2011.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 01/22/2023]
Abstract
Seizures, particularly first onset seizures in adults, are a diagnostic hallmark of brain tumors (Giglio and Villano, 2010). Unfortunately, malignant brain tumors are almost uniformly fatal due, in part, to the limitations of available therapies. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities including those that enhance currently available therapies. One potential strategy is to exploit differences in metabolic regulation between normal cells and tumor cells through dietary approaches. Previous studies have shown that a high-fat, low-carbohydrate ketogenic diet (KD) extends survival in animal models of glioma; however, the mechanism for this effect is not entirely known. We examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors versus contralateral non-tumor containing brain from animals fed either a KD or a standard diet. We found that the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens, and a number of genes involved in modulating ROS levels and oxidative stress were altered in tumor cells. In addition, there was reduced expression of genes involved in signal transduction from growth factors known to be involved in glioma growth. These results suggest that the anti-tumor effect of the KD is multifactorial, and elucidation of genes whose expression is altered will help identify mechanisms through which ketones inhibit tumor growth, reduce seizure activity and provide neuroprotection.
Collapse
Affiliation(s)
- Adrienne C Scheck
- Neuro-Oncology Research, Barrow Neurological Institute® of St. Joseph's Hospital and Medical Center, 350W Thomas Rd., Phoenix, AZ 85013, USA.
| | | | | | | |
Collapse
|
11
|
Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2009; 222:1-10. [PMID: 19688773 DOI: 10.1002/jcp.21901] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), TGF-beta receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross-talk between cell-surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
12
|
Petrás M, Hutóczki G, Varga I, Vereb G, Szöllosi J, Bognár L, Ruszthi P, Kenyeres A, Tóth J, Hanzély Z, Scholtz B, Klekner A. [Expression pattern of invasion-related molecules in brain tumors of different origin]. Magy Onkol 2009; 53:253-258. [PMID: 19793689 DOI: 10.1556/monkol.53.2009.3.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tumor cell invasion into the surrounding brain tissue is mainly responsible for the failure of radical surgical resection and successful treatment, with tumor recurrence as microdisseminated disease. Epidermal growth factor receptors (EGFRs), integrins and their ligands in the extracellular matrix (ECM) predominantly participate in the invasion process, including the cell adhesion to the surrounding microenvironment and cell migration. The extent of infiltration of the surrounding brain tissue by malignant tumors strongly depends on the tumor cell type. Malignant gliomas show much more intensive peritumoral invasion than do metastatic tumors. In this study, the mRNA expression of 29 invasion-related molecules (18 cell membrane receptors or receptor subunits (EGFRs and integrins) and 11 ECM components: collagens, laminins and fibronectin) was investigated by quantitative reverse transcriptase-polymerase chain reaction. Fresh frozen human tissue samples from glioblastoma (GBM) and intracerebral bronchial adenocarcinoma metastases (five pieces from each) were evaluated. Significant differences were established in six of the 29 molecules (ErbB1, 2, 3, integrins alpha3, 7 and beta1). To confirm our results at the protein level, immunohistochemical analysis of nine molecules was performed. The staining intensity differed definitely in the case of ErbB1, 2 and integrins alpha3 and beta1. Determining the differences in invasion-related molecules in tumors of different origin can help identify the exact molecular mechanisms that facilitate peritumoral infiltration by glioblastoma cells. These results should allow the selection of target molecules for potential chemotherapeutic agents directed against highly invasive malignant gliomas.
Collapse
Affiliation(s)
- Miklós Petrás
- Debreceni Egyetem Orvos- és Egészségtudományi Centrum Idegsebészeti Klinika, Debrecen
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Human glioma cell culture: two FCS-free media could be recommended for clinical use in immunotherapy. In Vitro Cell Dev Biol Anim 2009; 45:500-11. [DOI: 10.1007/s11626-009-9215-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 04/29/2009] [Indexed: 01/26/2023]
|
14
|
Baritaki S, Chatzinikola AM, Vakis AF, Soulitzis N, Karabetsos DA, Neonakis I, Bonavida B, Spandidos DA. YY1 Over-expression in human brain gliomas and meningiomas correlates with TGF-beta1, IGF-1 and FGF-2 mRNA levels. Cancer Invest 2009; 27:184-92. [PMID: 19235591 DOI: 10.1080/07357900802210760] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study we examined by QRT-PCR the mRNA expression of TGF-beta 1, IGF-1, EGF, FGF-2 and YY1 in human brain tumors. Our findings introduce YY1, for the first time, as a novel gene implicated in brain gliomatogenesis and meningioma establishment. We present a positive correlation between the autocrine expression of YY1 and TGF-beta 1, IGF-1 and FGF-2, known to be involved in the progression of gliomas and meningiomas. We suggest that mRNA profiling of the above genes in the early stages of disease development could be useful for prognostic purposes, and these genes can be considered as potential targets for therapeutic approaches against brain tumors.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Clinical Virology, Medical School, University of Crete, Crete, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Various studies have demonstrated the tremendous tropism of stem cells for malignant gliomas, making these cells a potential vehicle for delivery of therapeutic genes to disseminated glioma cells. However, little is known about the mechanisms underlying the glioma-induced tropism of stem cells. Soluble factors including chemokines or growth factors released and expressed by glioma cells at least mediate the tropism of stem cells for gliomas. Here we review the possible mechanisms of stem cells tropism for malignant gliomas.
Collapse
Affiliation(s)
- Feng Xu
- Department of Neurosurgery, Shanghai Neurosurgical Center, Huashan Hospital of Fudan University, Shanghai 200040, China
| | | |
Collapse
|
16
|
Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 2007; 121:276-83. [PMID: 17372907 DOI: 10.1002/ijc.22679] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The c-Met receptor and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly overexpressed in malignant gliomas. Signaling through c-Met as well as exposure to hypoxia can stimulate glioma cell migration and invasion. In several cancer cell types, hypoxia was shown to activate the c-met promoter, which contains hypoxia inducible factor-1 (HIF-1) binding sites. We hypothesized that hypoxia might upregulate c-Met also in glioma cells. Analyzing 18 different glioblastoma cell lines and 10 glioblastoma primary cultures, we found that in 50% of both the cell lines and the primary cultures c-Met protein levels were increased following exposure to hypoxia. Upregulation of c-met in response to hypoxia was also detected at the transcriptional level. In all primary cultures and in 16 of the 18 cell lines (89%), HIF-1 alpha levels were increased by hypoxia. Transfection of siRNA against HIF-1 alpha abgrogated the hypoxic induction of c-Met, suggesting that c-Met expression is upregulated by a HIF-1 alpha-dependent mechanism. Hypoxia sensitized glioblastoma cell lines which showed hypoxic induction of c-Met to the motogenic effects of SF/HGF. These findings suggest that approximately half of all human glioblastomas respond to hypoxia with an induction of c-Met, which can enhance the stimulating effect of SF/HGF on tumor cell migration.
Collapse
Affiliation(s)
- Carmen Eckerich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Murai T, Miyauchi T, Yanagida T, Sako Y. Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10. Biochem J 2006; 395:65-71. [PMID: 16390331 PMCID: PMC1409701 DOI: 10.1042/bj20050582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Invasive tumour cells, such as gliomas, frequently express EGF (epidermal growth factor) receptor at a high level and they exhibit enhanced cell migration in response to EGF. We reported previously that tumour cell migration is associated with ectodomain cleavage of CD44, the major adhesion molecule that is implicated in tumour invasion and metastasis, and that the cleavage is enhanced by ligation of CD44. In the present study, we show that EGF promotes CD44 cleavage and CD44-dependent cell migration. Introduction of a dominant-negative mutant of the small GTPase Rac1 or depletion of Rac1 by RNAi (RNA interference) abrogated CD44 cleavage induced by EGF. Treatment with PD98059, an inhibitor for MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase), also suppressed the CD44 cleavage. Furthermore, RNAi studies showed that EGF induced ADAM10 (a disintegrin and metalloproteinase 10)-dependent CD44 cleavage and cell migration. These results indicate that EGF induces ADAM10-mediated CD44 cleavage through Rac1 and mitogen-activated protein kinase activation, and thereby promotes tumour cell migration and invasion.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Laboratory of Molecular and Cellular Recognition, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| | | | | | | |
Collapse
|
18
|
Riemenschneider MJ, Mueller W, Betensky RA, Mohapatra G, Louis DN. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1379-87. [PMID: 16251422 PMCID: PMC1603783 DOI: 10.1016/s0002-9440(10)61225-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.
Collapse
Affiliation(s)
- Markus J Riemenschneider
- Department of Pathology, Molecular Neuro-Oncology Laboratory, 149-7151, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
19
|
Sato H, Kuwashima N, Sakaida T, Hatano M, Dusak JE, Fellows-Mayle WK, Papworth GD, Watkins SC, Gambotto A, Pollack IF, Okada H. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther 2005; 12:757-68. [PMID: 15832173 DOI: 10.1038/sj.cgt.7700827] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have created a novel cellular vehicle for gene therapy of malignant gliomas by transfection of murine bone marrow stroma cells (MSCs) with a cDNA encoding epidermal growth factor receptor (EGFR). These cells (EGFR-MSCs) demonstrate enhanced migratory responses toward glioma-conditioned media in comparison to primary MSCs in vitro. Enhanced migration of EGFR-MSC was at least partially dependent on EGF-EGFR, PI3-, MAP kinase kinase, and MAP kinases, protein kinase C, and actin polymerization. Unlike primary MSCs, EGFR-MSCs were resistant to FasL-mediated cytotoxicity and were capable of stimulating allogeneic mixed lymphocyte reaction, suggesting EGFR-MSCs possess suitable characteristics as vehicles for brain tumor immuno-gene therapy. Following injection at various sites, including the contralateral hemisphere in the brain of syngeneic mice, EGFR-MSCs were able to migrate toward GL261 gliomas or B16 melanoma in vivo. Finally, intratumoral injection with EGFR-MSC adenovirally engineered to secrete interferon-alpha to intracranial GL261 resulted in significantly prolonged survival in comparison to controls. These data indicate that EGFR-MSCs may serve as attractive vehicles for infiltrating brain malignancies such as malignant gliomas.
Collapse
Affiliation(s)
- Hidemitsu Sato
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213-1863, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sukumvanich P, DesMarais V, Sarmiento CV, Wang Y, Ichetovkin I, Mouneimne G, Almo S, Condeelis J. Cellular localization of activated N-WASP using a conformation-sensitive antibody. ACTA ACUST UNITED AC 2005; 59:141-52. [PMID: 15362118 DOI: 10.1002/cm.20030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The main regulators of Arp2/3 activity appear to be N-WASP and the other members of the Scar/WAVE family of proteins. We show here that after EGF stimulation, N-WASP is recruited to the nucleation zone of the dynamic leading edge compartment of carcinoma cells, with maximal recruitment of N-WASP within 1 min after EGF stimulation. The timing of N-WASP recruitment mirrors the timing of barbed-end formation at the leading edge. To determine the cellular activation of N-WASP after EGF stimulation, we made a conformation-sensitive antibody (CSA) against the CRIB domain of N-WASP that is predicted to recognize N-WASP in its open, active conformation, but not in its closed, inactive conformation. The ability of CSA to detect only active N-WASP was demonstrated by in vitro experiments using immunoprecipitation of active N-WASP from EGF-stimulated cells and Cdc42 activation of N-WASP activity. In cell staining experiments, N-WASP is maximally accessible to CSA 40 sec after EGF stimulation and this activated N-WASP is in the nucleation zone. These results indicate that active N-WASP is present at the leading edge of lamellipods, an unexpected finding given its reported involvement in filopod formation. This work establishes the feasibility of using antibodies directed against specific conformations or epitopes with changing accessibilities as a window on the status and localization of activity.
Collapse
Affiliation(s)
- P Sukumvanich
- Department of Obstetrics, Gynecology, and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoshida D, Watanabe K, Takahashi H, Sugisaki Y, Teramoto A. Apoptotic induction by BE16627B on human malignant glioma cell lines by an anti-matrix metalloproteinase agent. Brain Tumor Pathol 2003; 20:13-9. [PMID: 14604227 DOI: 10.1007/bf02478942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have elucidated the pharmacological action of the anti-matrix metalloproteinase inhibitor BE16627B on glioma cells. The study was limited to the noncytotoxic dose range. The aim of the study was to investigate whether the cytotoxicity of BE16627B, an anti-MMP agent, is related to apoptosis in the human malignant glioma cell lines U87MG, U251MG, and U373MG. MTT assay was performed to detect the cytotoxic dose range. Agarose gel electrophoresis was performed with purified genomic DNA following exposure to 20 to 500 microM BE16627B for 24 h, compared with 0 microM for the control group. Transmission electron microscopy (TEM) was employed to study nuclear fragmentation following exposure to 0, 20, and 500 microM of the agent for 24 h. An in situ endolabeling assay was performed to determine the index of apoptotic induction. MTT assay revealed that concentrations of 100 microM and above were cytotoxic. DNA laddering was demonstrated in agarose gel electrophoresis. TEM disclosed condensing and fragmentation of the chromatin. None of these changes were observed in the control group and the noncytotoxic dose group. The in situ endolabeling study disclosed that the apoptotic index was significantly elevated by cytotoxic doses of this agent (U373MG; control, 4.0%; 500 microM, 68.5%). These results indicated that cytotoxic concentrations of BE16627B induced apoptosis in human malignant glioma cell lines. In our previous report, this agent inhibited activity of MMP in noncytotoxic concentrations. Further study should be done to determine the pharmacological action of toxic BE16627B.
Collapse
Affiliation(s)
- Daizo Yoshida
- Department of Neurosurgery, Nippon Medical School, 1-1-5 Sendagi. Bunkyo-ku, Tokyo 113-8603, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Surgery, chemotherapy, and radiation therapy have become standard of practice in treating malignant brain tumors. Unfortunately, the prognosis of these malignant tumors still remains poor. Immunotoxins are a relatively new adjuvant treatment for brain tumors. Within the last few years an increased amount of clinically-oriented research involving immunotoxins has been published. This has led to numerous clinical trials which although encouraging have not yet born out the "magic bullet" concept envisioned for immunotoxins. In this review article the history, design, toxicity, and pharmokinetics of immunotoxins will be discussed in detail.
Collapse
Affiliation(s)
- Edward Rustamzadeh
- Department of Neurosurgery, Graduate School, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
23
|
Brockmann MA, Ulbricht U, Grüner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 2003; 52:1391-9; discussion 1399. [PMID: 12762884 DOI: 10.1227/01.neu.0000064806.87785.ab] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 01/28/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Glioma cell migration is determined by a complex interplay between soluble motogens and extracellular matrix components. Several growth factors are thought to be involved in glioma cell migration; however, little is known about their motogenic potency relative to one another. METHODS Using modified Boyden chamber assays, we compared the chemotactic effects of scatter factor/hepatocyte growth factor (SF/HGF), transforming growth factor (TGF)-alpha, TGF-beta1, TGF-beta2, epidermal growth factor (EGF), fibroblast growth factor (FGF)-1, FGF-2, insulin-like growth factor (IGF)-1, IGF-2, platelet-derived growth factor (PDGF)-AA, PDGF-BB, vascular endothelial growth factor (VEGF), pleiotrophin (PTN), and midkine (MK) in concentrations ranging from 1 pmol/L to 50 nmol/L on three different human glioblastoma cell lines. Checkerboard analyses distinguished between chemotaxis and chemokinesis. We further investigated the motogenic effects on human cerebral microvascular endothelial cells and analyzed receptor expression profiles. RESULTS SF/HGF was the most potent chemotactic factor for all three glioblastoma cell lines, inducing up to 33-fold stimulation of migration. TGF-alpha showed the second strongest effect (up to 17-fold stimulation), and FGF-1 was also chemotactic for all three glioblastoma cell lines analyzed (maximal 4-fold effect). EGF, FGF-2, IGF-1, IGF-2, TGF-beta1, and TGF-beta2 were chemotactic for one or two of the cell lines (2- to 4-fold effects), whereas PDGF-AA, PDGF-BB, VEGF, PTN, and MK had no effect. In contrast, the most potent stimulators of cerebral microvascular endothelial cell migration were PDGF-AA (4-fold) and PDGF-BB (6-fold). CONCLUSION The expression levels of SF/HGF and TGF-alpha as well as their respective receptors, MET and EGFR, are known to correlate with glioma malignancy grade. The particularly strong motogenic effects of these two growth factors suggest that they could be promising targets for an antimigratory component of glioma therapy, at least in comparison with the 12 other factors that were analyzed.
Collapse
Affiliation(s)
- Marc-Alexander Brockmann
- Hans-Dietrich Herrmann Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
de Boüard S, Christov C, Guillamo JS, Kassar-Duchossoy L, Palfi S, Leguerinel C, Masset M, Cohen-Hagenauer O, Peschanski M, Lefrançois T. Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg 2002; 97:169-76. [PMID: 12134908 DOI: 10.3171/jns.2002.97.1.0169] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The reliable assessment of the invasiveness of gliomas in vitro has proved elusive, because most invasion assays inadequately model in vivo invasion in its complexity. Recently, organotypical brain cultures were successfully used in short-term invasion studies on glioma cell lines. In this paper the authors report that the invasiveness of human glioma biopsy specimens directly implanted into rodent brain slices by using the intraslice implantation system (ISIS) can be quantified with precision. The model was first validated by the demonstration that, in long-term studies, established glioma cells survive in the ISIS and follow pathways of invasion similar to those in vivo. METHODS Brain slices (400 microm thick) from newborn mice were maintained on millicell membranes for 15 days. Cells from two human and one rodent glioblastoma multiforme (GBM) cell lines injected into the ISIS were detected by immunohistochemistry or after transfection with green fluorescent protein-containing vectors. Preferential migration along blood vessels was identified using confocal and fluorescent microscopy. Freshly isolated (< or = 24 hours after removal) 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-prelabeled human glioma biopsy specimens were successfully implanted in 19 (83%) of 23 cases, including 12 GBMs and seven lower grade gliomas (LGGs). Morphometric quantification of distance and density of tumor cell invasion showed that the GBMs were two to four times more invasive than the LGGs. Heterogeneity of invasion was also observed among GBMs and LGGs. Directly implanted glioma fragments were more invasive than spheroids derived from the same biopsy specimen. CONCLUSIONS The ISIS combines a high success rate, technical simplicity, and detailed quantitative measurements and may, therefore, be used to study the invasiveness of biopsy specimens of gliomas of different grades.
Collapse
Affiliation(s)
- Sophie de Boüard
- Institut Nationale de la Santé et de la Recherche Médicale, Unité 421, Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Engebraaten O, Hjortland GO, Juell S, Hirschberg H, Fodstad O. Intratumoral immunotoxin treatment of human malignant brain tumors in immunodeficient animals. Int J Cancer 2002; 97:846-52. [PMID: 11857366 DOI: 10.1002/ijc.10137] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Treatment of malignant brain tumors remains a clinical challenge. New treatment modalities are under investigation and among these are intratumoral infusion of immunotoxins that bind to specific cell surface molecules on the malignant cells. We have compared the efficacy of the 425.3-PE immunotoxin (which targets the epidermal growth factor [EGF] receptor) with the well-known immunotoxin Tfn-CRM107 (which targets the transferrin receptor), for the treatment of subcutaneous and intracranial human gliomas in nude animals. Bolus intratumoral administration of 1 microg Tfn-CRM107 or 425.3-PE into sc U87Mg tumors in nude mice reduced the tumor volume to 29 and 79%, respectively, of that in the control group 18 days after start of treatment. Higher doses of Tfn-CRM107 were toxic to the animals, whereas 425.3-PE was tolerated, with a dose-response relationship of up to 8 microg, a dose that reduced the tumor volume to 2% of control. In nude rats, treatment of intracerebral U87Mg tumors with Tfn-CRM107 proved ineffective and doses above 10 ng/animal were toxic to tumor-bearing rats. In contrast, intratumoral administration of 4 microg 425.3-PE increased symptom-free survival from 23 days to 40 days, with 2/9 surviving more than 90 days. We have recently shown that immunodeficient rats inoculated intracerebrally with precultured glioblastoma biopsy specimens develop highly infiltrative brain tumors. Direct interstitial infusion of immunotoxins into such tumors reduced the number of animals with detectable tumors at autopsy after 3 months, from 8/9 in the control animals to 4/6 and 2/6 in animals treated with Tfn-CRM107 and 425.3-PE, respectively. In conclusion, the anti-EGF receptor immunotoxin 425.3-PE exhibited promising efficacy, comparable to or better than that of Tfn-CRM107, an immunotoxin that in early clinical trials has been found to give responses in patients with brain tumors.
Collapse
Affiliation(s)
- Olav Engebraaten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | | | | | |
Collapse
|
26
|
Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M, Pestell RG. Rho Family GTPases Regulate Mammary Epithelium Cell Growth and Metastasis Through Distinguishable Pathways. Mol Med 2001. [DOI: 10.1007/bf03401974] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Tysnes BB, Mahesparan R. Biological mechanisms of glioma invasion and potential therapeutic targets. J Neurooncol 2001; 53:129-47. [PMID: 11716066 DOI: 10.1023/a:1012249216117] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current understanding of glioma biology reveals targets for anti-invasive therapy which include manipulations of extracellular matrix and receptors, growth factors and cytokines, proteases, cytoskeletal components, oncogenes and tumor suppressor genes. A better understanding of the complex regulation and the signalling molecules involved in glioma invasion is still needed in order to design new and effective treatment modalities towards invasive tumor cells. Representative and valid in vitro experimental systems and animal models of gliomas are necessary for the characterization of the invasive phenotype and further development of anti-invasive therapy. In the future, it will probably be important to move from comparative genomic modelling through protein characterization based on advanced proteomic techniques to analyse tissue samples, where the aim for gliomas should be to compare invaded and non-invaded tissue. This will hopefully render promising new therapeutic targets for gliomas.
Collapse
Affiliation(s)
- B B Tysnes
- Department of Anatomy and Cell Biology, University of Bergen, Norway.
| | | |
Collapse
|
28
|
Watanabe K, Yoshida D, Noha M, Teramoto A. Suppression of matrix metalloproteinase-2 and -9 mediated invasiveness by a novel matrix metalloproteinase inhibitor, BE16627B. J Neurooncol 2001; 52:1-9. [PMID: 11451198 DOI: 10.1023/a:1010639313832] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell invasion is a nature of malignant gliomas, demeriting to many efforts of the treatment. Matrix metalloproteinase (MMP) is acknowledged as a key factor in this complicated process. The aim of this study was to investigate whether inhibition of MMP activity in malignant glioma cells could be achieved by a novel agent, BE16627B (BE). Malignant glioma cell lines, U87MG, U251MG, and U373MG, were employed to evaluate inhibitory effect on zymogram, type IV collagenolysis assay, and haptoinvasion assay for 24 h exposure of BE, following preliminar
Collapse
Affiliation(s)
- K Watanabe
- Department of Neurosurgery, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Jung S, Ackerley C, Ivanchuk S, Mondal S, Becker LE, Rutka JT. Tracking the invasiveness of human astrocytoma cells by using green fluorescent protein in an organotypical brain slice model. J Neurosurg 2001; 94:80-9. [PMID: 11147903 DOI: 10.3171/jns.2001.94.1.0080] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although it is known that malignant astrocytomas infiltrate diffusely into regions of normal brain, it is frequently difficult to identify unequivocally the solitary, invading astrocytoma cell in histopathological preparations or experimental astrocytoma models. The authors describe an experimental system that facilitates the tracking of astrocytoma cells by using nonneoplastic cerebral tissue as the substrate for invasion. METHODS Cerebral tissue was cut into 1-mm-thick slices and cultured in the upper chamber of a Transwell culture dish on top of a polyester membrane (0.4-mm pore size) that was bathed in medium supplied by the lower chamber. Two astrocytoma cell lines, U-87 MG (U87) and U343 MG-A (U343), were selected because of their differing basal cell motilities in monolayer cultures. The astrocytoma cells were stably transfected with vectors that expressed green fluorescent protein (GFP), either alone or as a fusion protein with the receptor for hyaluronic acid-mediated motility (RHAMM) in either sense or antisense orientations. Stably transfected clones that had high levels of GFP expression were selected using the direct visualization provided by fluorescence microscopy and fluorescence-activated cell-sorter analysis. The GFP-expressing astrocytoma cell clones were implanted into the center of the brain slice and the degree of astrocytoma invasion into brain tissue was measured at different time points by using the optical sectioning provided by the confocal laser microscope. The authors observed that GFP-expressing astrocytoma cells could be readily tracked and followed in this model system. Individual astrocytoma cells that exhibited green fluorescence could be readily identified following their migration through the brain slices. The GFP-labeled U87 astrocytoma cells migrated farther into the brain slice than the U343 astrocytoma cells. The RHAMM-transfected GFP-labeled astrocytoma cells also infiltrated farther than the GFP-labeled astrocytoma cells themselves. The expression of antisense RHAMM virtually abrogated the invasion of the brain slices by both astrocytoma cell lines. CONCLUSIONS The authors believe that this organotypical culture system may be of considerable utility in studying the process of astrocytoma invasion, not only because it provides a better representation of the extracellular matrix molecules normally encountered by invading astrocytoma cells, but also because the GFP tag enables tracking of highly migratory and invasive astrocytoma cells under direct vision.
Collapse
Affiliation(s)
- S Jung
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Rotsch C, Jacobson K, Condeelis J, Radmacher M. EGF-stimulated lamellipod extension in adenocarcinoma cells. Ultramicroscopy 2001; 86:97-106. [PMID: 11215638 DOI: 10.1016/s0304-3991(00)00102-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extension of lamellipodia has been triggered by the application of epidermal growth factor (EGF). We have used an atomic force microscope (AFM) to investigate this lamellipodial extension. During extension we could detect an increase in height from about 500 nm for the stable lamellipodium to typical values of 600-800 nm for the extending lamellipodium. The AFM was also used to determine the mechanical properties of the lamellipodium where we found a decrease of the elastic modulus by a factor of 1.4 at the same location within the same cell. Both findings are consistent with the cortical expansion hypothesis, suggesting that severing of actin filaments, leading to a swelling of the cytoskeleton, generates the protrusive force during lamellipodial extension.
Collapse
Affiliation(s)
- C Rotsch
- Lehrstuhl für Angewandte Physik, Ludwig-Maximilians Universität München, Germany
| | | | | | | |
Collapse
|
31
|
Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J, Carbone JM, Naughton CK, Catalona WJ, Ackerman JJ, Gordon JI, Humphrey PA, Milbrandt J. Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 2001; 7:101-7. [PMID: 11135623 DOI: 10.1038/83231] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcription factor early growth response protein 1 (EGR1) is overexpressed in a majority of human prostate cancers and is implicated in the regulation of several genes important for prostate tumor progression. Here we have assessed the effect of Egr1 deficiency on tumor development in two transgenic mouse models of prostate cancer (CR2-T-Ag and TRAMP). Using a combination of high-resolution magnetic resonance imaging and histopathological and survival analyses, we show that tumor progression was significantly impaired in Egr1-/- mice. Tumor initiation and tumor growth rate were not affected by the lack of Egr1; however, Egr1 deficiency significantly delayed the progression from prostatic intra-epithelial neoplasia to invasive carcinoma. These results indicate a unique role for Egr1 in regulating the transition from localized, carcinoma in situ to invasive carcinoma.
Collapse
Affiliation(s)
- S A Abdulkadir
- Department of Pathology, Washington University, Box 8118, 660 S Euclid Avenue, St. Louis, Missouri 63119, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Transforming growth factor alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR or erbB1). Identified since 1985 in the central nervous system (CNS), its functions in this organ have started to be determined during the past decade although numerous questions remain unanswered. TGFalpha is widely distributed in the nervous system, both glial and neuronal cells contributing to its synthesis. Although astrocytes appear as its main targets, mediating in part TGFalpha effects on different neuronal populations, results from different studies have raised the possibility for a direct action of this growth factor on neurons. A large array of experimental data have thus pointed to TGFalpha as a multifunctional factor in the CNS. This review is an attempt to present, in a comprehensive manner, the very diverse works performed in vitro and in vivo which have provided evidences for (i) an intervention of TGFalpha in the control of developmental events such as neural progenitors proliferation/cell fate choice, neuronal survival/differentiation, and neuronal control of female puberty onset, (ii) its role as a potent regulator of astroglial metabolism including astrocytic reactivity, (iii) its neuroprotective potential, and (iv) its participation to neuropathological processes as exemplified by astroglial neoplasia. In addition, informations regarding the complex modes of TGFalpha action at the molecular level are provided, and its place within the large EGF family is precised with regard to the potential interactions and substitutions which may take place between TGFalpha and its kindred.
Collapse
Affiliation(s)
- M P Junier
- INSERM U421, Faculté de Médecine, 8, rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
33
|
Hedberg KM, Dellheden B, Wikstrand CJ, Fredman P. Monoclonal anti-GD3 antibodies selectively inhibit the proliferation of human malignant glioma cells in vitro. Glycoconj J 2000; 17:717-26. [PMID: 11425192 DOI: 10.1023/a:1011026823362] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The frequently occurring alteration of ganglioside expression in tumor cells has been implicated to play a role in the uncontrolled growth of these cells; antibodies to such gangliosides might affect tumor cell growth. We have studied the effect of IgM monoclonal antibodies to two glioma-associated gangliosides, GD3 and GM2, on cell proliferation of four human glioma cell lines and one renal tumor cell line. Of the two anti-ganglioside antibodies tested, only the anti-GD3 antibody resulted in a significant (p<0.005) inhibition of cell proliferation as measured by thymidine incorporation and Brd-U labeling, after 24h incubation. The effect was not dependent on any serum factor and no increased cell death was observed. All cell lines contained higher or similar amounts of GM2 than GD3, and both antigens were shown to be expressed on the cell surface and accessible to antibodies. The selective effect of anti-GD3 antibodies as contrasted to the inactivity of anti-GM2 antibodies suggests a possible role for ganglioside GD3 in tumor cell proliferation.
Collapse
Affiliation(s)
- K M Hedberg
- Institute of Clinical Neuroscience, Section of Experimental Neuroscience, Göteborg University, Sahlgrenska University Hospital/Mölndal, Sweden
| | | | | | | |
Collapse
|
34
|
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov KE, Pestell RG, Lisanti MP. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem 2000; 275:20717-25. [PMID: 10748172 DOI: 10.1074/jbc.m909895199] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Caveolin-1 is a principal component of caveolae membranes that may function as a transformation suppressor. For example, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (D7S522; 7q31.1) that is deleted in human cancers, including mammary carcinomas. However, little is known about the role of caveolins in regulating cell movement, a critical parameter in determining metastatic potential. Here, we examine the role of caveolin-1 in cell movement. For this purpose, we employed an established cellular model, MTLn3, a metastatic rat mammary adenocarcinoma cell line. In this system, epidermal growth factor (EGF) stimulation induces rapid lamellipod extension and cell migration. Interestingly, we find that MTLn3 cells fail to express detectable levels of endogenous caveolin-1. To restore caveolin-1 expression in MTLn3 cells efficiently, we employed an inducible adenoviral gene delivery system to achieve tightly controlled expression of caveolin-1. We show here that caveolin-1 expression in MTLn3 cells inhibits EGF-stimulated lamellipod extension and cell migration and blocks their anchorage-independent growth. Under these conditions, EGF-induced activation of the p42/44 mitogen-activated protein kinase cascade is also blunted. Our results suggest that caveolin-1 expression in motile MTLn3 cells induces a non-motile phenotype.
Collapse
Affiliation(s)
- W Zhang
- Department of Molecular Pharmacology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 2000; 82:52-5. [PMID: 10638966 PMCID: PMC2363180 DOI: 10.1054/bjoc.1999.0876] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a growing family of zinc-dependent endopeptidases that are capable of degrading various components of the extracellular matrix. These enzymes have been implicated in a variety of physiological and pathological conditions including embryogenesis and tumour invasion. The synthesis of many MMPs is thought to be regulated by growth factors, cytokines and hormones. In this study, we investigated the effects of five exogenous growth factors known to be expressed by gliomas [epidermal growth factor (EGF), basic growth factor (bFGF), transforming growth factor beta (TGF-beta1,2) and vascular endothelial growth factor (VEGF)].on MMP-2 and MMP-9 expression in an ependymoma, two grade III astrocytomas, a grade III oligoastrocytoma and a benign meningioma. Zymogram analysis revealed that the effects of the growth factors depended upon the cell lines used in the study. Growth factors generally up-regulated MMP-2 and MMP-9 expression in the gliomas but were least effective in the meningioma; the effect being most prominent with TGF-beta1 and TGF-beta2 in all the cell lines. It is hypothesized that paracrine growth factor interplay may be crucial in the regulation of MMP expression by glioma invasion of the normal brain.
Collapse
Affiliation(s)
- H K Rooprai
- Experimental Neuro-oncology Group, Department of Neuropathology, Institute of Psychiatry, De Crespigny Park, London, UK
| | | | | | | |
Collapse
|
36
|
Cuevas P, Reimers D, Diaz D, Lozano RM, Giménez-Gallego G. Apoptosis of glioma cells induced by the fibroblast growth factor inhibitor 1,3,6-naphthalenetrisulfonate. Neurosci Lett 1999; 275:149-51. [PMID: 10568521 DOI: 10.1016/s0304-3940(99)00752-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factors (FGFs) are powerful angiogenic polypeptides that are involved in the autocrine growth stimulation of gliomas. We report here that addition to glioma cell cultures of 1,3,6-naphthalenetrisulfonate (NTS), an inhibitor of the mitogenic activity of FGFs, significantly enhanced apoptosis, as assessed by terminal deoxynucleotidyl transferase (TdT) assay. The pro-apoptotic effect of NTS was time-dependent. These findings suggest that FGF may play a pivotal role in the survival of glioma cells, and support a clinical interest of NTS as a leading compound for the development of new antitumorals.
Collapse
Affiliation(s)
- P Cuevas
- Departamento de Investigación, Servicio de Histología, Hospital Ramón y Cajal, Madrid, Spain.
| | | | | | | | | |
Collapse
|
37
|
Khoshyomn S, Penar PL, Rossi J, Wells A, Abramson DL, Bhushan A. Inhibition of phospholipase C-gamma1 activation blocks glioma cell motility and invasion of fetal rat brain aggregates. Neurosurgery 1999; 44:568-77; discussion 577-8. [PMID: 10069594 DOI: 10.1097/00006123-199903000-00073] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Phospholipase C (PLC)-gamma is a cytosolic enzyme activated by several growth factor (GF) receptors (epidermal GF receptor [EGFR], platelet-derived GF receptor, and insulin-like GF 1 receptor), and its activation is associated with increased cell motility (but not cell proliferation) in nonglioma cell lines. Because up-regulated activation of EGFR has been consistently linked to poor patient survival in patients with glioblastoma multiforme (GBM) and because inhibition of EGFR activation by tyrosine kinase inhibitors prevents glioma infiltration in vitro, we hypothesized that inhibition of PLC-gamma activation would inhibit glioma cell invasiveness. METHODS Our experimental model assesses tumor spheroid invasion of fetal rat brain spheroids by confocal microscopy. We treated U87 GBM spheroids, and those derived from a single patient, with the PLC inhibitor U73122. We also transfected rat C6 glioma cells with the PLCz complementary deoxyribonucleic acid coding for a dominant negative PLC-gamma1 src-homology-2/src-homology-3 peptide fragment, which blocks binding and activation of PLC-gamma1 by GF receptors. Two clones (C6F and C6E) were grown into spheroids and were tested for invasiveness in the spheroid model and for responsiveness to GFs in a standard in vitro motility assay. RESULTS The infiltration rate of the patient GBM cell line overexpressing wild-type EGFR was reduced by 2 micromol/L U73122 from a slope (percent invasion/h) of 0.74+/-0.08 (with the inactive congener U73343) to 0.04+/-0.053 (P = 8 x 10(-7) by two-tailed t test, 92% reduction); the integral rate, another measure of invasion, was reduced from 49.7+/-13 percent-hours per hour to 13.6+/-12 (P = 0.002, 72% reduction). The U87 spheroid invasion rate was reduced by 0.5 micromol/L U73122 from 46.7+/-8.5 percent-hours per hour to 11.2+/-4.6 (P = 3 x 10(-5)); the slope decreased from 1.7+/-0.41 percent per hour to 0.35+/-0.14 (P = 0.0001). The C6F and C6E clones demonstrated attachment to and "surrounding" of the fetal rat brain aggregate but no true invasion by confocal or light microscopy. PLCz blocked the motility response to epidermal GF, platelet-derived GF, and insulin-like GF. There was a significant decrease in PLC-gamma1-associated tyrosine phosphorylation. CONCLUSION These results support a key role for PLC-gamma activation as a common postreceptor pathway for GF-induced tumor infiltration and further identify PLC-gamma1 as a possible target for anti-invasive therapy for GBMs.
Collapse
Affiliation(s)
- S Khoshyomn
- Division of Neurosurgery, Vermont Regional Cancer Center and the University of Vermont College of Medicine, Burlington, 05401, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The goal of this work was to determine the molecular basis for the induction of tumour vascularization and progression by injury. Magnetic resonance imaging (MRI) studies demonstrated that administration of wound fluid derived from cutaneous injuries in pigs reduced the lag for vascularization and initiation of growth of C6 glioma spheroids, implanted in nude mice, and accelerated tumour doubling time. The former effect can be attributed to the angiogenic capacity of wound fluid as detected in vivo by MRI, and in vitro in promoting endothelial cell proliferation. The latter effect, namely the induced rate of tumour growth, is consistent with the angiogenic activity of wound fluid as well as with the finding that wound fluid was directly mitogenic to the tumour cells, and accelerated growth of C6 glioma in spheroid culture. Of the multiple growth factors present in wound fluid, two key factors, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) and platelet-derived growth factor (PDGF), were identified as the dominant mitogens for C6 glioma, and inhibition of their activity using specific neutralizing antibodies suppressed the mitogenic effect of wound fluid on DNA synthesis in C6 glioma. This study suggests that the stimulatory effect of injury on tumour progression can possibly be attenuated by therapeutic targeting directed against a limited number of specific growth factors.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
39
|
Hussaini IM, Brown MD, Karns LR, Carpenter J, Redpath GT, Gonias SL, Vandenberg SR. Epidermal growth factor differentially regulates low density lipoprotein receptor-related protein gene expression in neoplastic and fetal human astrocytes. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990101)25:1<71::aid-glia7>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Nygaard SJ, Haugland HK, Laerum OD, Lund-Johansen M, Bjerkvig R, Tysnes OB. Dynamic determination of human glioma invasion in vitro. J Neurosurg 1998; 89:441-7. [PMID: 9724119 DOI: 10.3171/jns.1998.89.3.0441] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to evaluate whether there is any relationship between survival of patients with brain tumor and tumor proliferation or tumor invasion in vitro. METHODS Samples of freshly resected brain tumors from 14 patients with glioblastoma multiforme (GBM) were directly grown as three-dimensional multicellular spheroids. The tumor spheroids were cocultured with fetal rat brain cell aggregates (BCAs), used to represent an organotypical normal brain tissue model. Before the coculture, the tumor spheroids and the BCAs were stained with two different carbocyanine dyes, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) and 3,3'-dioctadecycloxacarbocyanine perchlorate (DiO), respectively. During the coculture, confocal laser scanning microscopy allowed a sequential analysis of tumor cell invasion by visualizing dynamic aspects of the invasive process. Single cocultures were examined at three different time points (24, 48, and 96 hours). During the observation period there was a change in the structural morphology of the cocultures, with a progressive decrease in BCA volume. Furthermore, the scanning confocal micrographs revealed a bidirectional movement of tumor cells and normal cells into brain and tumor tissue, respectively. It is also shown that there is a considerable variation in the rate of BCA destruction in cocultures of glioma spheroids generated directly from biopsy specimens. This variation is seen both between spheroids generated from the same biopsy as well as between spheroids that are grown from different biopsy specimens. Cell proliferation measured by Ki-67 immunohistochemical analysis of biopsy samples obtained in the same patients revealed a correlation between tumor cell proliferation and tissue destruction of the BCAs, as determined by a reduction in BCA volume (p = 0.0338). No correlation was found when survival was related to the same parameters (p > 0.05). CONCLUSIONS The present work provides a model for quick and efficient assessment of dynamic interactions between tumor and normal brain tissue shortly after surgery.
Collapse
Affiliation(s)
- S J Nygaard
- Department of Pathology, The Gade Institute, University of Bergen, Haukeland Hospital, Norway.
| | | | | | | | | | | |
Collapse
|
41
|
Bailly M, Yan L, Whitesides GM, Condeelis JS, Segall JE. Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells. Exp Cell Res 1998; 241:285-99. [PMID: 9637770 DOI: 10.1006/excr.1998.4031] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the first direct observation of chemotaxis to EGF by rat mammary carcinoma cells. When exposed to a gradient of EGF diffusing from a micropipette, MTLn3 cells displayed typical ameboid chemotaxis, extending a lamellipod-like protrusion and moving toward the pipette. Using a homogeneous upshift in EGF to model stimulated lamellipod extension (J. E. Segall et al., 1996, Clin. Exp. Metastasis 14, 61-72), we analyzed the relationship between adhesion and chemoattractant-stimulated protrusion. Exposure to EGF led to a rapid remodeling of the adhesive contacts on adherent cells, in synchrony with extension of a flat lamellipod over the substratum. EGF-stimulated lamellipods still extended in the presence of adhesion-blocking peptides or over nonadhesive surfaces. They were, however, slightly shorter and retracted rapidly under those conditions. The major protrusive structure observed on well-spread, adherent cells, after EGF stimulation was a flat broad lamellipod, whether or not in contact with the substratum, while cells in suspension showed transient protrusive activity over the entire cell surface. We conclude that the initial adhesive status of the cell conditions the shape of the outcoming protrusion. Altogether our results suggest that, although adhesive contacts are not necessary for lamellipod extension, they play a role in stabilizing the protrusion as well as in the control of its final shape and amplitude.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Numerous in vivo methodologies have documented the invasive behavior of glioma cells through normal brain parenchyma. Glioma cell locomotion has also been assessed with a number of in vitro assays including the Boyden chamber and other chemotaxis assays, colloidal gold cell tracking, analysis of migration of cells tumor cells from spheroids, confrontation cultures of glioma cells with aggregates of non-neoplastic tissue, time-lapse video microscopy, electron microscopic examination of the cytomorphologic correlates of cell motility, the radial dish assay, and quantitative enzyme immunoassay of proteins associated with invasion (e.g. laminin). Several of these techniques have been specifically modified to assess the effects of cytokines on glioma cell motility in vitro. Cytokines studied utilizing these methods include: epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), the bb dimer of platelet-derived growth factor (PDGFbb), nerve growth factor (NGF), interleukin 2 (IL-2), transforming growth factors alpha and beta 1 (TGF alpha and TGFstraat1), and tumor necrosis factor alpha (TNF alpha). This review summarizes the investigational methods used to evaluate random and directional glioma cell motility and invasion in vivo and in vitro. The roles of specific mitogens as motogens, as evaluated with these methods are then presented.
Collapse
Affiliation(s)
- M R Chicoine
- Washington University School of Medicine, Department of Neurological Surgery, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
43
|
Chan AY, Raft S, Bailly M, Wyckoff JB, Segall JE, Condeelis JS. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J Cell Sci 1998; 111 ( Pt 2):199-211. [PMID: 9405304 DOI: 10.1242/jcs.111.2.199] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of metastatic MTLn3 cells with EGF causes the rapid extension of lamellipods, which contain a zone of F-actin at the leading edge. In order to establish the mechanism for accumulation of F-actin at the leading edge and its relationship to lamellipod extension in response to EGF, we have studied the kinetics and location of EGF-induced actin nucleation activity in MTLn3 cells and characterized the actin dynamics at the leading edge by measuring the changes at the pointed and barbed ends of actin filaments upon EGF stimulation of MTLn3 cells. The major result of this study is that stimulation of MTLn3 cells with EGF causes a transient increase in actin nucleation activity resulting from the appearance of free barbed ends very close to the leading edge of extending lamellipods. In addition, cytochalasin D causes a significant decrease in the total F-actin content in EGF-stimulated cells, indicating that both actin polymerization and depolymerization are stimulated by EGF. Pointed end incorporation of rhodamine-labeled actin by the EGF stimulated cells is 2.12+/−0.47 times higher than that of control cells. Since EGF stimulation causes an increase in both barbed and pointed end incorporation of rhodamine-labeled actin in the same location, the EGF-stimulated nucleation sites are more likely due either to severing of pre-existing filaments or de novo nucleation of filaments at the leading edge thereby creating new barbed and pointed ends. The timing and location of EGF-induced actin nucleation activity in MTLn3 cells can account for the observed accumulation of F-actin at the leading edge and demonstrate that this F-actin rich zone is the primary actin polymerization zone after stimulation.
Collapse
Affiliation(s)
- A Y Chan
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Lamszus K, Schmidt NO, Jin L, Laterra J, Zagzag D, Way D, Witte M, Weinand M, Goldberg ID, Westphal M, Rosen EM. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int J Cancer 1998; 75:19-28. [PMID: 9426685 DOI: 10.1002/(sici)1097-0215(19980105)75:1<19::aid-ijc4>3.0.co;2-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malignant gliomas are characterized by rapid growth, infiltration of normal brain tissue, and high levels of tumor-associated angiogenesis. The genetic and local environmental tissue factors responsible for the malignant progression from low to high grade gliomas and the highly malignant behavior of glioblastomas are not well understood. In a study of 77 human brain tissue extracts, high grade (III-IV) tumors had significantly greater scatter factor (SF) content than did low grade tumors or non-neoplastic tissue. To investigate the potential significance of SF accumulation in gliomas, we measured the effects of SF on DNA synthesis and motility of cultured human glioma cell lines. SF stimulated DNA synthesis in 7/10 glioma cell lines and in 3/3 neuromicrovascular endothelial cell (NMVEC) lines, consistent with our previous report that SF stimulated cell proliferation of a few human glioma cell lines. SF markedly stimulated the chemotactic migration of 10/10 glioma cell lines as well as 3/3 NMVEC lines. In addition, SF stimulated the 2-dimensional migration of glioma cells on culture surfaces coated with specific extracellular matrix molecules (collagen i.v., laminin, and fibronection). As expected based on these biologic responses to SF, 10/10 glioma lines and 4/4 NMVEC lines expressed mRNA for c-met, the SF receptor. To assess the possible in vivo significance of these migration assays, we compared the chemotactic response of a glioma cell line to human brain cyst fluids and tumor extracts that contained high or low SF concentrations. Fluids and extracts with high SF content tended to induce higher levels of chemotactic migration than did fluids and extracts with low SF content. Addition of anti-SF monoclonal antibody (MAb) inhibited migration induced by fluids and extracts with high SF content by about 30-50%.
Collapse
Affiliation(s)
- K Lamszus
- Department of Radiation Oncology, Long Island Jewish Medical Center, New Hyde Park, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yoshida D, Piepmeier JM, Bergenheim T, Henriksson R, Teramoto A. Suppression of matrix metalloproteinase-2-mediated cell invasion in U87MG, human glioma cells by anti-microtubule agent: in vitro study. Br J Cancer 1998; 77:21-5. [PMID: 9459141 PMCID: PMC2151249 DOI: 10.1038/bjc.1998.4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because microtubules are important components of cell motility and intracellular transport, it is reasonable to propose that the depolymerizing effect of an antimicrotubule agent, estramustine, on glioma microtubules would modulate cell invasiveness. To determine whether matrix metalloproteinases, key factors in cell invasion, are affected by exposure to estramustine, a cell proliferation assay, a zymogram, a collagenolysis assay and a haptoinvasion assay were used in this study. The zymogram revealed that an activated (62 kDa) form of matrix metalloproteinase-2 diminished with increasing estramustine concentrations. The collagenolysis assay demonstrated approximately 2.5- to 21-fold lower rates of enzymatic activity suppressed by estramustine in a dose-dependent manner at estramustine concentrations of 1, 5, and 10 microM, compared with the control group. On the haptoinvasion assay, no statistically significant difference was seen in the 0.5 microM estramustine group, whereas 1-10 microM estramustine groups revealed significant suppression of invasion from 6 to 24 h in a dose-dependent manner. The results suggest that estramustine suppresses the invasion of U87MG cells in vitro using the decreasing available matrix metalloproteinase-2, an effect caused by the disassembly of microtubules. Suppression of the infiltrative capacity of malignant glioma cells could be of significant value in the treatment of this disease.
Collapse
Affiliation(s)
- D Yoshida
- Department of Neurosurgery, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Numerous in vivo methodologies have documented the invasive behavior of glioma cells through normal brain parenchyma. Glioma cell locomotion has also been assessed with a number of in vitro assays including the Boyden chamber and other chemotaxis assays, colloidal gold cell tracking, analysis of migration of cells tumor cells from spheroids, confrontation cultures of glioma cells with aggregates of non-neoplastic tissue, time-lapse video microscopy, electron microscopic examination of the cytomorphologic correlates of cell motility, the radial dish assay, and quantitative enzyme immunoassay of proteins associated with invasion (e.g. laminin). Several of these techniques have been specifically modified to assess the effects of cytokines on glioma cell motility in vitro. Cytokines studied utilizing these methods include: epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), the bb dimer of platelet-derived growth factor (PDGFbb), nerve growth factor (NGF), interleukin 2 (IL-2), transforming growth factors alpha and beta 1 (TGF alpha and TGFstraat1), and tumor necrosis factor alpha (TNF alpha). This review summarizes the investigational methods used to evaluate random and directional glioma cell motility and invasion in vivo and in vitro. The roles of specific mitogens as motogens, as evaluated with these methods are then presented.
Collapse
Affiliation(s)
- M R Chicoine
- Washington University School of Medicine, Department of Neurological Surgery, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
47
|
Yamamoto S, Wakimoto H, Aoyagi M, Hirakawa K, Hamada H. Modulation of motility and proliferation of glioma cells by hepatocyte growth factor. Jpn J Cancer Res 1997; 88:564-77. [PMID: 9263534 PMCID: PMC5921469 DOI: 10.1111/j.1349-7006.1997.tb00420.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Invasive proliferation is a critical biological characteristic of gliomas. We evaluated the activities of hepatocyte growth factor (HGF) on proliferation and motility of glioma cells, comparing them with the effects of other growth factors (EGF, bFGF, PDGF-BB, TGF-beta 1). Seven primary culture lines all expressed c-met and HGF mRNA, and secreted HGF. HGF stimulated 3H-thymidine uptake of every glioma cell line (30 to 70% upregulation). Boyden chamber assay and scattering assay revealed that HGF promoted cell motility with chemokinetic and strong chemotactic activities. Concentric circle assay showed that HGF promoted two-dimensional expansion (proliferation and motility) most strongly among the growth factors studied. Further, we analyzed 23 paraffin-embedded sections of surgically resected gliomas (7 grade II, 8 grade III, and 8 grade IV) by immunohistochemistry. Expression of HGF and Met increased with malignant progression of gliomas, suggesting that gliomas stimulated their invasive proliferation by autocrine HGF production. Neurons and vasculature were HGF-positive, and Met-positive glioma cells gathered around them. The data indicate that neurons and vasculature, which are the main tracks of glioma invasion, augment chemotactic invasion and proliferation of gliomas by paracrine HGF secretion. Clearly HGF plays a critical role in invasive proliferation of glioma cells and it is therefore a candidate target of therapeutic intervention.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Molecular Biotherapy Research, Cancer Chemotherapy Center, Cancer Institute, Tokyo
| | | | | | | | | |
Collapse
|
48
|
O'Rourke DM, Qian X, Zhang HT, Davis JG, Nute E, Meinkoth J, Greene MI. Trans receptor inhibition of human glioblastoma cells by erbB family ectodomains. Proc Natl Acad Sci U S A 1997; 94:3250-5. [PMID: 9096379 PMCID: PMC20355 DOI: 10.1073/pnas.94.7.3250] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our aim has been to understand the features of erbB receptor homo- and heterodimer assembly to develop approaches to disrupt receptor activation. We have developed a general approach to cause erbB receptor-specific trans inhibition of human neoplasia. The clonal progression of human astrocytomas to a more malignant phenotype often involves the amplification and overexpression of the epidermal growth factor receptor (EGFr) gene. We have selectively targeted the EGFr in human glioblastoma cells with kinase-deficient mutants of the erbB family derived from the ectodomain of the Neu oncogene that are able to form heterodimers with EGFr and inhibit EGFr-dependent phenotypes. In EGFr-positive U87MG human glioblastoma cells, expression of the Neu ectodomain inhibits EGF-, but not platelet-derived growth factor-, induced DNA synthesis; inhibits cell proliferation in the presence of EGF, but not platelet-derived growth factor; inhibits the ability of U87MG to form colonies in soft agar; and inhibits transforming efficiency in athymic mice. These studies establish that EGFr-mediated signal transduction is important in the maintenance of malignant glioma, and that trans receptor inhibition is a novel way to abrogate abnormal growth of these tumors. Neu ectodomains will be useful in determining the manner in which the EGFr contributes to glial tumorigenesis and in the design of pharmaceuticals that disable erbB family oncoproteins. In addition, these studies provide a rationale for the application of the Neu ectodomain in gene therapy approaches to human malignant glioma and, potentially, to other systemic epithelial malignancies expressing erbB family receptors.
Collapse
Affiliation(s)
- D M O'Rourke
- Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Brooks PC, Klemke RL, Schon S, Lewis JM, Schwartz MA, Cheresh DA. Insulin-like growth factor receptor cooperates with integrin alpha v beta 5 to promote tumor cell dissemination in vivo. J Clin Invest 1997; 99:1390-8. [PMID: 9077549 PMCID: PMC507955 DOI: 10.1172/jci119298] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tumor cell interactions with adhesion proteins and growth factors likely contribute to the metastatic cascade. Evidence is provided that insulin or insulin-like growth factor-mediated signals cooperate with the commonly expressed integrin alpha v beta 5 to promote spontaneous pulmonary metastasis of multiple tumor cell types in both the chick embryo and severe combined immune deficiency mouse/human chimeric models. Expression of alpha v beta 5 in tumor cells promoted their adhesion to vitronectin in vitro. However, cell motility required cytokine stimulation, which caused redistribution of alpha-actinin to membrane-adhesive sites containing alpha v beta 5. Significantly, ligation of alpha v beta 5 and cytokine receptors were both required for spontaneous pulmonary metastasis of multiple tumor types even though it was not necessary for primary tumor growth. Thus, tumor cell metastasis can be regulated by a functional cooperation between cytokine signaling events and the adhesion receptor alpha v beta 5 in a manner independent of tumor cell growth. These findings provide evidence that integrin ligation, in conjunction with cytokine activation, plays an important role in the dissemination of malignant tumor cells.
Collapse
Affiliation(s)
- P C Brooks
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Uhm JH, Dooley NP, Villemure JG, Yong VW. Mechanisms of glioma invasion: role of matrix-metalloproteinases. Neurol Sci 1997; 24:3-15. [PMID: 9043741 DOI: 10.1017/s0317167100021028] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most lethal properties of high grade gliomas is their ability to invade the surrounding normal brain tissue, as infiltrated cells often escape surgical resection and inevitably lead to tumour recurrence. The consequent poor prognosis and survival rate underscore the need to further understand and target the cellular mechanisms that underly tumour invasiveness. Proteases which degrade the surrounding stromal cells and extracellular matrix proteins have been demonstrated to be critical effectors of invasion for tumours of both central and peripheral origin. Within the nervous system, the role of metalloproteinases as well as other classes of proteases in mediating the invasive phenotype of high grade gliomas has been an intense area of research. We present in this article a review of this literature and address the possibility that these proteases and the biochemical pathways that regulate their expression, such as protein kinase C, may represent potential targets in the therapy of high grade gliomas.
Collapse
Affiliation(s)
- J H Uhm
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | | | | | | |
Collapse
|