1
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
2
|
Gabashvili AN, Vasiukova AA, Rakitina AS, Garanina AS. The Issue on Dualistic Role of Neutrophils in Carcinogenesis and Their Possible Use for Treatment of Malignant Neoplasms. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:303-320. [PMID: 40367075 DOI: 10.1134/s000629792460368x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 05/16/2025]
Abstract
Neutrophils are phagocytic leukocytes of the myeloid series, which are the most common myeloid cells in human blood, normally accounting from 65 to 80% of all circulating leukocytes. Over the years of investigation of these cells, more and more evidence has emerged indicating functional plasticity of neutrophils and their ambiguous role in the tumor development. Similarly to the M1/M2 classification of macrophages, the N1/N2 paradigm could be applied to neutrophils, where N1-neutrophils exhibit tumor-suppressive properties, and N2-neutrophils contribute to tumor development and immune suppression. An important natural feature of neutrophils is their mobility and ability to overcome physical barriers, thus these cells, as well as their vesicles and membranes, could be used to deliver therapeutic drugs to tumor cells. In addition, neutrophils themselves could be activated and mobilized to fight the tumor. This review describes current state of research on the role of neutrophils in carcinogenesis, as well as possible approaches of using these cells and their derivatives as systems for targeted delivery of therapeutic drugs for treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Anna N Gabashvili
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anastasiia A Vasiukova
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - Aleksandra S Rakitina
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | | |
Collapse
|
3
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01051-y. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Mo Y, Fan D, Wang W, Wang S, Yan Y, Zhao Z. Identification of inflammation-related genes signature to establish a prognostic model in MGMT unmethylated glioblastoma patients. Discov Oncol 2025; 16:154. [PMID: 39932605 DOI: 10.1007/s12672-025-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Patients with unmethylated O6-methylguanine-DNA methyltransferase promoter (uMGMT) glioblastoma (GBM) have a poor prognosis. Inflammatory response can affect the prognosis, for it may have a significant impact on the tumor microenvironment (TME). This study aims to identify a prognostic signature of inflammation-related genes, which can predict the prognosis of uMGMT GBM patients. METHODS We examined the gene expression, somatic mutations, and overall survival of 159 GBM patients with uMGMT using the TCGA and CGGA databases. We identified molecular subtypes of uMGMT GBM patients based on the expression of inflammation-related genes. Furthermore, we determined principal component analysis (PCA), gene ontology (GO) analysis, pathway analysis and immune infiltration analysis between high and low-inflammation subtypes. We also examined the spatial and longitudinal heterogeneity of these two subtypes. The LASSO-Cox analyses were used to develop an inflammation-related prognostic model. RESULTS Our findings indicate that patients with uMGMT GBM can be divided into high-inflammation and low-inflammation subtypes. Patients with high levels of inflammation are more likely to develop an immunosuppressive microenvironment, which stimulates the production of immunosuppressive cytokines, immune checkpoints, and immunosuppressive cells. Nine inflammation-related genes (EREG, BDKRB1, DCBLD2, CD14, AHR, CLEC5A, LTA, SLC4A4, and LY6E) were found to have excellent predictive potential for patient survival in the prognostic model. CONCLUSIONS In conclusion, we created a new prognostic model including 9 inflammation-related genes. This model has produced meaningful results in evaluating patient prognosis, which may help with future therapeutic strategies for patients with uMGMT GBM.
Collapse
Affiliation(s)
- Yunzhao Mo
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Dandan Fan
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Wei Wang
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Shenchuan Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yingyu Yan
- Quality Management Department, The 921st Hospital of the Joint Logistics Support Force, Changsha, 410008, China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China.
| |
Collapse
|
5
|
Khan N, Tran KA, Chevre R, Locher V, Richter M, Sun S, Sadeghi M, Pernet E, Herrero-Cervera A, Grant A, Saif A, Downey J, Kaufmann E, Khader SA, Joubert P, Barreiro LB, Yipp BG, Soehnlein O, Divangahi M. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. Nat Immunol 2025; 26:174-187. [PMID: 39779870 PMCID: PMC11785525 DOI: 10.1038/s41590-024-02041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection. β-Glucan treatment reduces the morbidity and mortality against IAV infection, independent of host resistance. The enhanced survival is the result of increased recruitment of neutrophils via RoRγt+ T cells in the lung tissue. β-Glucan treatment promotes granulopoiesis in a type 1 interferon-dependent manner that leads to the generation of a unique subset of immature neutrophils utilizing a mitochondrial oxidative metabolism and producing interleukin-10. Collectively, our data indicate that β-glucan reprograms hematopoietic stem cells to generate neutrophils with a new 'regulatory' function, which is required for promoting disease tolerance and maintaining lung tissue integrity against viral infection.
Collapse
Affiliation(s)
- Nargis Khan
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Kim A Tran
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Raphael Chevre
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Mathis Richter
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Sarah Sun
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Mina Sadeghi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Andrea Herrero-Cervera
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Alexandre Grant
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Ahmed Saif
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Philippe Joubert
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec, Canada
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 PMCID: PMC11685811 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
9
|
Dong W, Li J, Zhuang Z. Neutrophil-related Signature Characterizes Immune Landscape and Predicts Prognosis of Invasive Breast Cancer. Biochem Genet 2024:10.1007/s10528-024-10940-0. [PMID: 39417978 DOI: 10.1007/s10528-024-10940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
As a leading prevalent malignancy, breast cancer remains a significant worldwide health issue. Recent research indicates that neutrophils play a crucial role in breast cancer development. The prognostic significance of neutrophil-related genes (NRGs) or the immune landscape of the neutrophil-related signature in invasive breast cancer (IBC) is, nevertheless, unknown. To uncover innovative therapy alternatives, the significance of the neutrophil-related signatures in IBC was evaluated here. Briefly, a prediction model based on neutrophil-related core prognostic genes and The Cancer Genome Atlas data was created (TCGA). The model may assess IBC patients' prognosis. The IBC data from the Gene Expression Omnibus (GEO) confirmed the prognostic accuracy of the model. The overall survival (OS) of patients was worse in the group with a high NRGs score compared to the group with a low NRGs score. In addition, patients with low NRGs scores were considerably more sensitive to vinorelbine, cyclophosphamide, epirubicin, gemcitabine, paclitaxel, 5-fluorouracil, docetaxel, and cisplatin. Patients with low NRGs scores responded better to CTLA-4 and PD-1 treatments. Additionally, the immune microenvironment components were more abundant in patients with low NRGs scores. Moreover, qRT-PCR results confirmed that LEF1 had a higher expression level in tumor samples compared to normal samples, whereas NRG1 and STX11 exhibited lower expression levels in tumor samples than in normal samples. These results suggest that NRGs might be utilized as biomarkers to predict the prognosis of individuals with IBC, thereby paving the way for the creation of customized therapies for IBC.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Zhang Y, Wang X, Mou Y, Wang Y, Liu W, Feng W, Chen R, Zhang M, Sun J. Traditional Chinese medicine in the treatment of lung pre-metastatic niche: Efficacies and mechanisms. Heliyon 2024; 10:e38431. [PMID: 39398007 PMCID: PMC11470612 DOI: 10.1016/j.heliyon.2024.e38431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Metastasis is the main cause of death in cancer patients, the lung is one of the most common metastatic organs of malignant solid tumors. Before tumor cells metastasize to the lungs, they interact with immunosuppressive cells, alveolar epithelial cells, and lung fibroblasts to form a pre-metastatic niche. The pre-metastatic niche is a key factor leading to tumor cell metastasis to the lungs. Research has found that traditional Chinese medicine and its components can inhibit the formation of pre-metastatic niche. Therefore, this article reviewed the research progress on the formation of lung pre-metastatic niche and the intervention of traditional Chinese medicine in pulmonary PMN, in order to provide new Chinese medicine prescriptions and research ideas for further clinical prevention and treatment of tumor metastasis to the lung.
Collapse
Affiliation(s)
- YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - XiaoYan Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - YingZheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - WeiDong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - WeiKe Feng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Rong Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - MeiZhi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Jing Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| |
Collapse
|
11
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
12
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
13
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
14
|
Liu L, Li Q, Chen C, Xin W, Han C, Hua Z. Oncolytic bacteria VNP20009 expressing IFNβ inhibits melanoma progression by remodeling the tumor microenvironment. iScience 2024; 27:109372. [PMID: 38510114 PMCID: PMC10951989 DOI: 10.1016/j.isci.2024.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
In the tumor microenvironment (TME), tumor-associated NEs (TANs) have the potential to be protumorigenic or antitumorigenic within the TME in response to environmental cues. The diversity and plasticity of NEs (NEs) underlie the dual potential of TANs in the TME. Here, we utilized the tumor-targeting bacterium VNP20009 (VNP) to carry a plasmid expressed IFNβ (VNP-IFNβ), which can deliver IFNβ and remodel TANs to an antitumorigenic phenotype, and performed preclinical evaluations in the B16F10 lung metastasis model and the B16F10 subcutaneous xenograft model. Compared with VNP, VNP-IFNβ recruited more NEs and macrophages (Mφs) with antitumor phenotypes in lung metastases and activated dendritic cells (DCs) differentiation, which activated antitumor immune responses of CD4+ T cells, and ultimately inhibited melanoma progression. This study enriches the bacterial-mediated tumor therapy by using tumor-targeting bacteria to deliver IFNβ to the tumor site and inhibit melanoma growth and metastasis by remodeling the tumor immune microenvironment.
Collapse
Affiliation(s)
- Lina Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; Nanjing University, Nanjing 210023, Jiangsu, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu, Changzhou, Jiangsu 213164, China
- TargetPharma Laboratories Inc, Changzhou 213164, Jiangsu, China
| |
Collapse
|
15
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
16
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
18
|
Roberts BK, Collado G, Barnes BJ. Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189061. [PMID: 38141865 PMCID: PMC11977173 DOI: 10.1016/j.bbcan.2023.189061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY 11030, United States of America
| | - Gilbert Collado
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America.
| |
Collapse
|
19
|
Chen Z, Wang Q, Liu J, Wang W, Yuan W, Liu Y, Sun Z, Wang C. Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes Dis 2024; 11:176-188. [PMID: 37588211 PMCID: PMC10425748 DOI: 10.1016/j.gendis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
A pre-metastatic niche (PMN) is a protective microenvironment that facilitates the colonization of disseminating tumor cells in future metastatic organs. Extracellular vesicles (EVs) play a role in intercellular communication by delivering cargoes, such as noncoding RNAs (ncRNAs). The pivotal role of extracellular vesicle-derived noncoding RNAs (EV-ncRNAs) in the PMN has attracted increasing attention. In this review, we summarized the effects of EV-ncRNAs on the PMN in terms of immunosuppression, vascular permeability and angiogenesis, inflammation, metabolic reprogramming, and fibroblast alterations. In particular, we provided a comprehensive overview of the effects of EV-ncRNAs on the PMN in different cancers. Finally, we discussed the promising clinical applications of EV-ncRNAs, including their potential as diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengzeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
20
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
21
|
Phatale V, Famta P, Srinivasarao DA, Vambhurkar G, Jain N, Pandey G, Kolipaka T, Khairnar P, Shah S, Singh SB, Raghuvanshi RS, Srivastava S. Neutrophil membrane-based nanotherapeutics: Propitious paradigm shift in the management of cancer. Life Sci 2023; 331:122021. [PMID: 37582468 DOI: 10.1016/j.lfs.2023.122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability. Nanocarriers (NCs) have been explored to deliver various therapeutic moieties such as chemotherapeutic agents and photothermal agents, etc. However, several limitations, such as rapid clearance by the reticuloendothelial system, poor extravasation into the tumor microenvironment, and low systemic half-life are roadblocks to successful clinical translation. To circumvent the pitfalls of currently available treatment modalities, neutrophil membrane (NM)-based nanotherapeutics have emerged as a promising platform for cancer management. Their versatile features such as natural tumor tropism, tumor-specific accumulation, and prevention from rapid clearance owing to their autologous nature make them an effective anticancer NCs. In this manuscript, we have discussed various methods for isolation, coating and characterization of NM. We have discussed the role of NM-coated nanotherapeutics as neoadjuvant and adjuvant in different treatment modalities, such as chemotherapy, photothermal and photodynamic therapies with rationales behind their inclusion. Clinical hurdles faced during the bench-to-bedside translation with possible solutions have been discussed. We believe that in the upcoming years, NM-coated nanotherapeutics will open a new horizon in cancer management.
Collapse
Affiliation(s)
- Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
22
|
Liu H, Zhang G, Gao R. Cellular and molecular characteristics of the premetastatic niches. Animal Model Exp Med 2023; 6:399-408. [PMID: 37902101 PMCID: PMC10614130 DOI: 10.1002/ame2.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
The premetastatic niches (PMN) formed by primary tumor-derived molecules regulate distant organs and tissues to further favor tumor colonization. Targeted PMN therapy may prevent tumor metastasis in the early stages, which is becoming increasingly important. At present, there is a lack of in-depth understanding of the cellular and molecular characteristics of the PMN. Here, we summarize current research advances on the cellular and molecular characteristics of the PMN. We emphasize that PMN intervention is a potential therapeutic strategy for early prevention of tumor metastasis, which provides a promising basis for future research and clinical application.
Collapse
Affiliation(s)
- Hongfei Liu
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
23
|
Zhong J, Zong S, Wang J, Feng M, Wang J, Zhang H, Xiong L. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119493. [PMID: 37201766 DOI: 10.1016/j.bbamcr.2023.119493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The notion that neutrophils only perform a specific set of single functions in the body has changed with the advancement of research methods. As the most abundant myeloid cells in human blood, neutrophils are currently emerging as important regulators of cancer. Given the duality of neutrophils, neutrophil-based tumor therapy has been clinically carried out in recent years and has made some progress. But due to the complexity of the tumor microenvironment, the therapeutic effect is still not satisfactory. Therefore, in this review, we discuss the direct interaction of neutrophils with the five most common cancer cells and other immune cells in the tumor microenvironment. Also, this review covered current limitations, potential future possibilities, and therapeutic approaches targeting neutrophil function in cancer therapy.
Collapse
Affiliation(s)
- Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mingrui Feng
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China
| | - Hongyan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, Nanchang 330066, China.
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China.
| |
Collapse
|
24
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
25
|
Dong G, Chen P, Xu Y, Liu T, Yin R. Cancer-associated fibroblasts: Key criminals of tumor pre-metastatic niche. Cancer Lett 2023; 566:216234. [PMID: 37236390 DOI: 10.1016/j.canlet.2023.216234] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant and important components of the tumour mesenchyme, and have been extensively studied for their role in primary tumours. CAFs provide biomechanical support for tumour cells and play key roles in immunosuppression and tumour metastasis. CAFs can promote epithelial-mesenchymal transition (EMT) of the primary tumour by secreting extracellular vesicles (EVs), increasing adhesion to tumour cells, remodelling the extracellular matrix (ECM) of the primary tumour, and changing its mechanical stiffness, which provides a pathway for tumour metastasis. Moreover, CAFs can form cell clusters with circulating tumour cells (CTCs) to help them resist blood shear forces and achieve colonisation of distant host organs. Recent studies have revealed their roles in pre-metastatic niche (PMN) formation and prevention. In this review, we discuss the role of CAFs in PMN formation and therapeutic interventions targeting PMN and CAFs to prevent metastasis.
Collapse
Affiliation(s)
- Guozhang Dong
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Peng Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China.
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China; Jiangsu Biobank of Clinical Resources, Nanjing, 210009, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, China
| |
Collapse
|
26
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
27
|
Chen E, Yu J. The role and metabolic adaptations of neutrophils in premetastatic niches. Biomark Res 2023; 11:50. [PMID: 37158964 PMCID: PMC10169509 DOI: 10.1186/s40364-023-00493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
It has been found that tumor cells create microenvironments in distant organs that promote their survival and growth in advance of their arrival. These predetermined microenvironments are referred to as "pre-metastatic niches". Increasing attention is being paid to neutrophils' role in forming the pre-metastatic niche. As major components of the pre-metastatic niche, tumor-associated neutrophils (TANs) play an important role in the formation of the pre-metastatic niche through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together create a pre-metastatic niche well suited for tumor cell seeding and growth. However, how TANs modulate their metabolism to survive and exert their functions in the process of metastasis remains largely to be discovered. Accordingly, the objective of this review is to assess the role that neutrophils play in the formation of pre-metastatic niche and to explore the metabolism alteration of neutrophils in cancer metastasis. A better understanding of the role of TANs in pre-metastatic niche will help us discover new mechanisms of metastasis and develop new therapies targeting TANs.
Collapse
Affiliation(s)
- Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China.
| |
Collapse
|
28
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Friedmann-Morvinski D, Hambardzumyan D. Monocyte-neutrophil entanglement in glioblastoma. J Clin Invest 2023; 133:163451. [PMID: 36594465 PMCID: PMC9797336 DOI: 10.1172/jci163451] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) is the most belligerent and frequent brain tumor in adults. Research over the past two decades has provided increased knowledge of the genomic and molecular landscape of GBM and highlighted the presence of a high degree of inter- and intratumor heterogeneity within the neoplastic compartment. It is now appreciated that GBMs are composed of multiple distinct and impressionable neoplastic and non-neoplastic cell types that form the unique brain tumor microenvironment (TME). Non-neoplastic cells in the TME form reciprocal interactions with neoplastic cells to promote tumor growth and invasion, and together they influence the tumor response to standard-of-care therapies as well as emerging immunotherapies. One of the most prevalent non-neoplastic cell types in the GBM TME are myeloid cells, the most abundant of which are of hematopoietic origin, including monocytes/monocyte-derived macrophages. Less abundant, although still a notable presence, are neutrophils of hematopoietic origin and intrinsic brain-resident microglia. In this Review we focus on neutrophils and monocytes that infiltrate tumors from the blood circulation, their heterogeneity, and their interactions with neoplastic cells and other non-neoplastic cells in the TME. We conclude with an overview of challenges in targeting these cells and discuss avenues for therapeutic exploitation to improve the dismal outcomes of patients with GBM.
Collapse
Affiliation(s)
- Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, Tisch Cancer Institute, and,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
30
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Single-Cell Transcriptomic Profiles of Lung Pre-Metastatic Niche Reveal Neutrophil and Lymphatic Endothelial Cell Roles in Breast Cancer. Cancers (Basel) 2022; 15:cancers15010176. [PMID: 36612175 PMCID: PMC9818165 DOI: 10.3390/cancers15010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The establishment of a pre-metastatic niche (PMN) is critical for cancer metastasis. However, it remains unclear as to which phenotypes induce changes in the PMN. Single-cell transcriptomic profiling of all cells of the lung in cancer-bearing MMTV-PyVT mice revealed an increased infiltration of N2-type neutrophils and classical monocytes associated with chronic inflammation; notably, lung neutrophils isolated from mice with primary cancer exhibited similar N2-type phenotypes and expressed high levels of inflammatory and angiogenic factors. We also discovered a new cluster of Ki67-upregulated lymphatic endothelial cells (ECs) that activated several cell division-related pathways. Receptor-ligand interactions within the lung potentially mediated PMN formation; these were exemplified by the cross talk of lymphatic EC-N2-type neutrophil via S100A6. In vitro study revealed S100A6 impaired EC tight junction and increased the transendothelial migration of neutrophils. Our results highlight the molecular mechanisms that shape lung PMN and inspire preventive strategies for lung metastasis in breast cancer.
Collapse
|
32
|
Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer. Nat Commun 2022; 13:6725. [PMID: 36344512 PMCID: PMC9640649 DOI: 10.1038/s41467-022-34407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The poor prognosis of head and neck cancer (HNC) is associated with metastasis within the lymph nodes (LNs). Herein, the proteome of 140 multisite samples from a 59-HNC patient cohort, including primary and matched LN-negative or -positive tissues, saliva, and blood cells, reveals insights into the biology and potential metastasis biomarkers that may assist in clinical decision-making. Protein profiles are strictly associated with immune modulation across datasets, and this provides the basis for investigating immune markers associated with metastasis. The proteome of LN metastatic cells recapitulates the proteome of the primary tumor sites. Conversely, the LN microenvironment proteome highlights the candidate prognostic markers. By integrating prioritized peptide, protein, and transcript levels with machine learning models, we identify nodal metastasis signatures in blood and saliva. We present a proteomic characterization wiring multiple sites in HNC, thus providing a promising basis for understanding tumoral biology and identifying metastasis-associated signatures.
Collapse
|
33
|
Tumor-Associated Neutrophils in Colorectal Cancer Development, Progression and Immunotherapy. Cancers (Basel) 2022; 14:cancers14194755. [PMID: 36230676 PMCID: PMC9563115 DOI: 10.3390/cancers14194755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The colorectal-cancer (CRC) incidence rate and mortality have remained high for several years. In recent years, immune-checkpoint-inhibitor (ICI) therapy has rapidly developed. However, it is only effective in a few CRC patients with microsatellite-instability-high (MSI-H) or mismatch-repair-deficient (dMMR) CRC. How to improve the efficiency of ICI therapy in CRC patients with microsatellite stability (MSS) remains a huge obstacle. Tumor-associated neutrophils (TANs), which are similar to macrophages, also have N1 and N2 phenotypes. They can be recruited and polarized through different cytokines or chemokines, and then play an antitumor or tumor-promoting role. In CRC, we find that the prognostic significance of TANs is still controversial. In this review, we describe the antitumor regulation of TANs, and their mechanism of promoting tumor progression by boosting the transformation of inflammation into tumors, facilitating tumor-cell proliferation, metastasis and angiogenesis. The targeting of TANs combined with ICIs may be a new treatment model for CRC. Relevant animal experiments have shown good responses, and clinical trials have also been carried out in succession. TANs, as “assistants” of ICI treatment, may become the key to the success of CRC immunotherapy, although no significant results have been obtained.
Collapse
|
34
|
The distinct roles of exosomes in innate immune responses and therapeutic applications in cancer. Eur J Pharmacol 2022; 933:175292. [PMID: 36150532 DOI: 10.1016/j.ejphar.2022.175292] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
The innate immune system is one of the major constituents of the host's defense against invading pathogens and extracellular vesicles (EVs) are involved in regulating its responses. Exosomes, a subclass of EVs, released from eukaryotic cells, contribute to intracellular communication and drive various biological processes by transferring nuclei acids, proteins, lipids, and carbohydrates between cells, protecting cargo from enzymatic degradation and immune recognition and consequent elimination by the immune system. A growing body of evidence has revealed that exosomes produced from host cells, infected cells, tumor cells, and immune cells regulate innate immune signaling and responses and thus play a significant role in the propagation of pathogens. Immune cells can recognize exosomes-bearing components including DNA strands, viral RNAs, and even proteins by various mechanisms such as through Toll-like receptor/NF-κB signaling, inducing cytokine production and reprogramming the innate immune responses, immunosuppression or immunesupportive. There is persuasive preclinical and clinical evidence that exosomes are therapeutic strategies for immunotherapy, cancer vaccine, drug-delivery system, and diagnostic biomarker. However, further scrutiny is essential to validate these findings. In this review, we describe the current facts on the regulation of innate immune responses by exosomes. We also describe the translational application of exosomes as cancer-therapy agents and immunotherapy.
Collapse
|
35
|
Zheng Z, Xu Y, Shi Y, Shao C. Neutrophils in the tumor microenvironment and their functional modulation by mesenchymal stromal cells. Cell Immunol 2022; 379:104576. [DOI: 10.1016/j.cellimm.2022.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
36
|
Pylaeva E, Korschunow G, Spyra I, Bordbari S, Siakaeva E, Ozel I, Domnich M, Squire A, Hasenberg A, Thangavelu K, Hussain T, Goetz M, Lang KS, Gunzer M, Hansen W, Buer J, Bankfalvi A, Lang S, Jablonska J. During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Rep 2022; 40:111171. [PMID: 35977505 DOI: 10.1016/j.celrep.2022.111171] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/08/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Georg Korschunow
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Irem Ozel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Kruthika Thangavelu
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Moritz Goetz
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, 44139 Dortmund, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Düsseldorf/Essen, 45147 Essen, Germany.
| |
Collapse
|
37
|
Abstract
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
Collapse
Affiliation(s)
- Oliver Cucanic
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Rae H Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Nederlof R, Reidel S, Spychala A, Gödecke S, Heinen A, Lautwein T, Petzsch P, Köhrer K, Gödecke A. Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction. Front Immunol 2022; 13:908023. [PMID: 35911749 PMCID: PMC9334797 DOI: 10.3389/fimmu.2022.908023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI. Insulin-like growth factor 1 (IGF1) treatment reduces infarct size and improves cardiac function after MI via IGF1 receptor mediated signaling in myeloid cells. Our study aimed to investigate the effect of IGF1 on neutrophil phenotype both in vitro and in vivo after MI. We show that IGF1 induces an anti-inflammatory phenotype in bone marrow derived neutrophils. On the molecular and functional level IGF1 treated neutrophils were indistinguishable from those induced by IL4. Surprisingly, insulin, even though it is highly similar to IGF1 did not create anti-inflammatory neutrophils. Notably, the IGF1 effect was independent of the canonical Ras/Raf/ERK or PI3K/AKT pathway, but depended on activation of the JAK2/STAT6 pathway, which was not activated by insulin treatment. Single cell sequencing analysis 3 days after MI also showed that 3 day IGF1 treatment caused a downregulation of pro-inflammatory genes and upstream regulators in most neutrophil and many macrophage cell clusters whereas anti-inflammatory genes and upstream regulators were upregulated. Thus, IGF1 acts like an anti-inflammatory cytokine on myeloid cells in vitro and attenuates the pro-inflammatory phenotype of neutrophils and macrophages in vivo after MI. IGF1 treatment might therefore represent an effective immune modulatory therapy to improve the outcome after MI.
Collapse
Affiliation(s)
- Rianne Nederlof
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sophia Reidel
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Spychala
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stefanie Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Heinen
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: Axel Gödecke,
| |
Collapse
|
39
|
Hussain T, Domnich M, Bordbari S, Pylaeva E, Siakaeva E, Spyra I, Ozel I, Droege F, Squire A, Lienenklaus S, Sutter K, Hasenberg A, Gunzer M, Lang S, Jablonska J. IFNAR1 Deficiency Impairs Immunostimulatory Properties of Neutrophils in Tumor-Draining Lymph Nodes. Front Immunol 2022; 13:878959. [PMID: 35833131 PMCID: PMC9271705 DOI: 10.3389/fimmu.2022.878959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are the first organs where the metastatic spread of different types of cancer, including head and neck cancer (HNC), occurs and have therefore high prognostic relevance. Moreover, first anti-cancer immune responses have been shown to be initiated in such LNs via tumor-educated myeloid cells. Among myeloid cells present in TDLNs, neutrophils represent a valuable population and considerably participate in the activation of effector lymphocytes there. Tumor-supportive or tumor-inhibiting activity of neutrophils strongly depends on the surrounding microenvironment. Thus, type I interferon (IFN) availability has been shown to prime anti-tumor activity of these cells. In accordance, mice deficient in type I IFNs show elevated tumor growth and metastatic spread, accompanied by the pro-tumoral neutrophil bias. To reveal the mechanism responsible for this phenomenon, we have studied here the influence of defective type I IFN signaling on the immunoregulatory activity of neutrophils in TDLNs. Live imaging of such LNs was performed using two-photon microscopy in a transplantable murine HNC model. CatchupIVM-red and Ifnar1-/- (type I IFN receptor- deficient) CatchupIVM-red mice were used to visualize neutrophils and to assess their interaction with T-cells in vivo. We have evaluated spatiotemporal patterns of neutrophil/T-cell interactions in LNs in the context of type I interferon receptor (IFNAR1) availability in tumor-free and tumor-bearing animals. Moreover, phenotypic and functional analyses were performed to further characterize the mechanisms regulating neutrophil immunoregulatory capacity. We demonstrated that inactive IFNAR1 leads to elevated accumulation of neutrophils in TDLNs. However, these neutrophils show significantly impaired capacity to interact with and to stimulate T-cells. As a result, a significant reduction of contacts between neutrophils and T lymphocytes is observed, with further impairment of T-cell proliferation and activation. This possibly contributes to the enhanced tumor growth in Ifnar1-/- mice. In agreement with this, IFNAR1-independent activation of downstream IFN signaling using IFN-λ improved the immunostimulatory capacity of neutrophils in TDLNs and contributed to the suppression of tumor growth. Our results suggest that functional type I IFN signaling is essential for neutrophil immunostimulatory capacity and that stimulation of this signaling may provide a therapeutic opportunity in head and neck cancer patients.
Collapse
Affiliation(s)
- Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sharareh Bordbari
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Irem Ozel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
- Biospectroscopy Research Department, Institut für Analytische Wissenschaften (ISAS) e.V., Dortmund, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
- *Correspondence: Jadwiga Jablonska,
| |
Collapse
|
40
|
Wu M, Liang Y, Zhang X. Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer. Front Oncol 2022; 12:860932. [PMID: 35719975 PMCID: PMC9204317 DOI: 10.3389/fonc.2022.860932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has become the most common malignant disease in the world according to the International Agency for Research on Cancer (IARC), and the most critical cause of death is distant metastasis. The lung is the extremely common visceral site for breast cancer metastasis. Lung metastasis of breast cancer is not only dependent on the invasive ability of the tumor itself, but also closely relates to the pulmonary microenvironment. In the progression of breast cancer, the formation of specific microenvironment in lungs can provide suitable conditions for the metastasis of breast cancer. Pulmonary inflammatory response, angiogenesis, extracellular matrix remodeling, some chemotherapeutic agents and so on all play important roles in the formation of the pulmonary microenvironment. This review highlights recent findings regarding the alterations of pulmonary microenvironment in lung metastasis of breast cancer, with a focus on various cells and acellular components.
Collapse
Affiliation(s)
- Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Liu J, Li S, Fei X, Nan X, Shen Y, Xiu H, Cormier SA, Lu C, Guo C, Wang S, Cai Z, Wang P. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matter-induced lung metastasis. Autophagy 2022; 18:971-989. [PMID: 34524943 PMCID: PMC9196782 DOI: 10.1080/15548627.2021.1965421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Epidemiological and clinical studies have shown that exposure to particulate matter (PM) is associated with an increased incidence of lung cancer and metastasis. However, the underlying mechanism remains unclear. Here, we demonstrated the central role of PM-induced neutrophil recruitment in promoting lung cancer metastasis. We found that reactive oxygen species (ROS)-mediated alveolar epithelial macroautophagy/autophagy was essential for initiating neutrophil chemotaxis and pre-metastatic niche formation in the lungs in response to PM exposure. During PM-induced autophagy, the E3 ubiquitin ligase TRIM37 was degraded and protected TRAF6 from proteasomal degradation in lung epithelial cells, which promoted the NFKB-dependent production of chemokines to recruit neutrophils. Importantly, ROS blockade, autophagy inhibition or TRAF6 knockdown abolished PM-induced neutrophil recruitment and lung metastasis enhancement. Our study indicates that host lung epithelial cells and neutrophils coordinate to promote cancer metastasis to the lungs in response to PM exposure and provides ideal therapeutic targets for metastatic progression.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ATII: alveolar type II; Cho-Traf6 siRNA: 5'-cholesterol-Traf6 siRNA; EMT: epithelial-mesenchymal transition; HBE: human bronchial epithelial; HCQ: hydroxychloroquine; MAPK: mitogen-activated protein kinase; NAC: N-acetyl-L-cysteine; NFKB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NS: normal saline; PM: particulate matter; ROS: reactive oxygen species; TRAF6: TNF receptor-associated factor 6; TRIM37: tripartite motif-containing 37.
Collapse
Affiliation(s)
- Jiajun Liu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Fei
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Nan
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Stephania A. Cormier
- Pennington Biomedical Researcher Center and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chaojie Lu
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuqi Guo
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shibo Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingli Wang
- Institute of Immunology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Yu R, Zhu B, Chen D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol Life Sci 2022; 79:191. [PMID: 35292881 PMCID: PMC8924142 DOI: 10.1007/s00018-022-04219-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) therapies have achieved remarkable clinical responses in patients with many different types of cancer; however, most patients who receive ICB monotherapy fail to achieve long-term responses, and some tumors become immunotherapy-resistant and even hyperprogressive. Type I interferons (IFNs) have been demonstrated to inhibit tumor growth directly and indirectly by acting upon tumor and immune cells, respectively. Furthermore, accumulating evidence indicates that endo- and exogenously enhancing type I IFNs have a synergistic effect on anti-tumor immunity. Therefore, clinical trials studying new treatment strategies that combine type I IFN inducers with ICB are currently in progress. Here, we review the cellular sources of type I IFNs and their roles in the immune regulation of the tumor microenvironment. In addition, we highlight immunotherapies based on type I IFNs and combination therapy between type I IFN inducers and ICBs.
Collapse
Affiliation(s)
- Renren Yu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
43
|
Abstract
Neutrophils are the most abundant myeloid cells in human blood and are emerging as important regulators of cancer. However, their functional importance has often been overlooked on the basis that they are short-lived, terminally differentiated and non-proliferative. Recent studies of their prominent roles in cancer have led to a paradigm shift in our appreciation of neutrophil functional diversity. This Review describes how neutrophil diversification, which in some contexts can lead to opposing functions, is generated within the tumour microenvironment as well as systemically. We compare neutrophil heterogeneity in cancer and in other pathophysiological contexts to provide an updated overview of our current knowledge of the functions of neutrophils in cancer.
Collapse
|
44
|
Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun 2022; 13:897. [PMID: 35173168 PMCID: PMC8850492 DOI: 10.1038/s41467-022-28438-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The formation of pre-metastatic niche is a key step in the metastatic burden. The pluripotent factor Lin28B is frequently expressed in breast tumors and is particularly upregulated in the triple negative breast cancer subtype. Here, we demonstrate that Lin28B promotes lung metastasis of breast cancer by building an immune-suppressive pre-metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2 neutrophils are then essential for immune suppression in pre-metastatic lung by PD-L2 up-regulation and a dysregulated cytokine milieu. We also identify that breast cancer-released exosomes with low let-7s are a prerequisite for Lin28B-induced immune suppression. Moreover, Lin28B-induced breast cancer stem cells are the main sources of low-let-7s exosomes. Clinical data further verify that high Lin28B and low let-7s in tumors are both indicators for poor prognosis and lung metastasis in breast cancer patients. Together, these data reveal a mechanism by which Lin28B directs the formation of an immune-suppressive pre-metastatic niche. The establishment of a pre-metastatic niche is a key step preceding metastasis formation. Here the authors show that tumor-intrinsic Lin28B, a RNA-binding protein, has an essential role in the formation of an immune-suppressive pre-metastatic niche, promoting lung metastasis of breast cancer.
Collapse
|
45
|
Chu Y, Sun T, Jiang C. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Olesch C, Brunn D, Aktay-Cetin Ö, Sirait-Fischer E, Pullamsetti SS, Grimminger F, Seeger W, Brüne B, Weigert A, Savai R. Picturing of the Lung Tumor Cellular Composition by Multispectral Flow Cytometry. Front Immunol 2022; 13:827719. [PMID: 35145525 PMCID: PMC8821098 DOI: 10.3389/fimmu.2022.827719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
The lung tumor microenvironment plays a critical role in the tumorigenesis and metastasis of lung cancer, resulting from the crosstalk between cancer cells and microenvironmental cells. Therefore, comprehensive identification and characterization of cell populations in the complex lung structure is crucial for development of novel targeted anti-cancer therapies. Here, a hierarchical clustering approach with multispectral flow cytometry was established to delineate the cellular landscape of murine lungs under steady-state and cancer conditions. Fluorochromes were used multiple times to be able to measure 24 cell surface markers with only 13 detectors, yielding a broad picture for whole-lung phenotyping. Primary and metastatic murine lung tumor models were included to detect major cell populations in the lung, and to identify alterations to the distribution patterns in these models. In the primary tumor models, major altered populations included CD324+ epithelial cells, alveolar macrophages, dendritic cells, and blood and lymph endothelial cells. The number of fibroblasts, vascular smooth muscle cells, monocytes (Ly6C+ and Ly6C–) and neutrophils were elevated in metastatic models of lung cancer. Thus, the proposed clustering approach is a promising method to resolve cell populations from complex organs in detail even with basic flow cytometers.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | | | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt, Germany
- *Correspondence: Andreas Weigert, ; Rajkumar Savai, ;
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- *Correspondence: Andreas Weigert, ; Rajkumar Savai, ;
| |
Collapse
|
47
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
48
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
49
|
Chang WA, Tsai MJ, Hung JY, Wu KL, Tsai YM, Huang YC, Chang CY, Tsai PH, Hsu YL. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers (Basel) 2021; 13:cancers13246252. [PMID: 34944871 PMCID: PMC8699319 DOI: 10.3390/cancers13246252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NKs) cells are cytotoxic effector cells, which can modulate tumor metastasis according to their function; however, the role of NK cells in lung cancer has not been extensively investigated. In this study, we determined the functional profiles of NK cells in a hypoxic tumor microenvironment (TME) of lung cancer. We revealed CD226 downregulation and functional repression of NK cells after hypoxic lung cancer priming and we then investigated their interaction with extracellular vesicles (EVs) and miR-150-5p. We also found that NK cells from lung cancer patients had lower expression of CD226 on their surface and exhibited a pro-inflammatory, pro-angiogenic and tumorigenesis phenotype by expressing VEGF, CXCL1, CXCL8, S100A8 and MMPs. Moreover, inhibition of miR-150 improved tumor surveillance by reversing CD226 expression and subsequently reinstating cytotoxic NK cell activity in an animal model. Our study introduces a new scenario for the pro-inflammatory and pro-angiogenic activities of NK cells in the hypoxic TME in lung cancer.
Collapse
Affiliation(s)
- Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Chao-Yuan Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2136-26)
| |
Collapse
|
50
|
The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021; 13:cancers13246206. [PMID: 34944826 PMCID: PMC8699466 DOI: 10.3390/cancers13246206] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cancer worldwide. Metastasis to secondary organs, such as the liver and lungs, is a key driver of CRC-related mortality. The tumor microenvironment, which consists of the primary cancer cells, as well as associated support and immune cells, significantly affects the behavior of CRC cells at the primary tumor site, as well as in metastatic lesions. In this paper, we review the role of the individual components of the tumor microenvironment on tumor progression, immune evasion, and metastasis, and we discuss the implications of these components on antitumor therapies. Abstract Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastases, most frequently to the liver and lung. In the primary tumor, as well as at each metastatic site, the cellular components of the tumor microenvironment (TME) contribute to tumor engraftment and metastasis. These include immune cells (macrophages, neutrophils, T lymphocytes, and dendritic cells) and stromal cells (cancer-associated fibroblasts and endothelial cells). In this review, we highlight how the TME influences tumor progression and invasion at the primary site and its function in fostering metastatic niches in the liver and lungs. We also discuss emerging clinical strategies to target the CRC TME.
Collapse
|