1
|
Oliveira LR, Pinheiro MR, Tuchina DK, Timoshina PA, Carvalho MI, Oliveira LM. Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies. Adv Drug Deliv Rev 2024; 212:115420. [PMID: 39096937 DOI: 10.1016/j.addr.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing ex vivo tissues in agents or by topical application of those agents in vivo, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.
Collapse
Affiliation(s)
- Luís R Oliveira
- Department of Public and Environmental Health, Polytechnic of Porto - School of Health (ESS), Porto, Portugal
| | - Maria R Pinheiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Daria K Tuchina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Polina A Timoshina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation; Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Carvalho
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Department of Electrical and Computer Engineering, Porto University - Faculty of Engineering, Porto, Portugal
| | - Luís M Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal.
| |
Collapse
|
2
|
Gong P, Tang X, Chen J, You H, Wang Y, Yu PK, Yu DY, Cense B. Deep learning-based label-free imaging of lymphatics and aqueous veins in the eye using optical coherence tomography. Sci Rep 2024; 14:6126. [PMID: 38480842 PMCID: PMC10937663 DOI: 10.1038/s41598-024-56273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
We demonstrate an adaptation of deep learning for label-free imaging of the micro-scale lymphatic vessels and aqueous veins in the eye using optical coherence tomography (OCT). The proposed deep learning-based OCT lymphangiography (DL-OCTL) method was trained, validated and tested, using OCT scans (23 volumetric scans comprising 19,736 B-scans) from 11 fresh ex vivo porcine eyes with the corresponding vessel labels generated by a conventional OCT lymphangiography (OCTL) method based on thresholding with attenuation compensation. Compared to conventional OCTL, the DL-OCTL method demonstrates comparable results for imaging lymphatics and aqueous veins in the eye, with an Intersection over Union value of 0.79 ± 0.071 (mean ± standard deviation). In addition, DL-OCTL mitigates the imaging artifacts in conventional OCTL where the OCT signal modelling was corrupted by the tissue heterogeneity, provides ~ 10 times faster processing based on a rough comparison and does not require OCT-related knowledge for correct implementation as in conventional OCTL. With these favorable features, DL-OCTL promises to improve the practicality of OCTL for label-free imaging of lymphatics and aqueous veins for preclinical and clinical imaging applications.
Collapse
Affiliation(s)
- Peijun Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Xiaolan Tang
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China
| | - Junying Chen
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China.
| | - Haijun You
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Big Data and Intelligent Robot (SCUT), Ministry of Education, Guangzhou, 510006, China
| | - Yuxing Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, 6009, Australia
- Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, 6009, Australia
- Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Barry Cense
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Jin Y, Zhang W, Yu M, Li J, Du Y, Wang W, Chen G, Ding X, Ding J. Glymphatic system dysfunction in middle-aged and elderly chronic insomnia patients with cognitive impairment evidenced by diffusion tensor imaging along the perivascular space (DTI-ALPS). Sleep Med 2024; 115:145-151. [PMID: 38364456 DOI: 10.1016/j.sleep.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Chronic insomnia impairs the glymphatic system and may lead to cognitive impairment and dementia in elderly population. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) has been proposed as a non-invasive method to measure the activity of human brain glymphatic. We aim to explore whether glymphatic function is impaired in middle-aged and elderly chronic insomnia individuals and to identify the relationships between glymphatic dysfunction and cognitive impairment. METHODS A total of 33 chronic insomnia patients (57.36 ± 5.44 years, 30 females) and 20 age- and sex-matched healthy controls (57.95 ± 5.78 years, 16 females) were prospectively enrolled between May 2022 and January 2023. All participants completed MRI screening, cognition and sleep assessments, and DTI-ALPS index analysis. RESULTS Our findings revealed that the DTI-ALPS index was significantly difference among the chronic insomnia patients with impaired cognition group (1.32 ± 0.14), with normal cognition group (1.46 ± 0.09), and healthy controls (1.61 ± 0.16) (p = 0.0012, p < 0.0001, p = 0.0008, respectively). Mini-Mental State Examination (MMSE) scores of chronic insomnia patients with cognitive impairment were positively correlated with the DTI-ALPS index (Partial correlation analyses after correction for age, sex, education level and duration of chronic insomnia: r = 0.78, p = 0.002). DTI-ALPS had moderate accuracy in distinguishing chronic insomnia patients with cognitive impairment from those with normal cognition. DATA CONCLUSION The glymphatic system dysfunction is involved in chronic insomnia among middle-aged and elderly individuals, and it has been found to be correlated with cognitive decline.
Collapse
Affiliation(s)
- Yu Jin
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Wenmin Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China; Department of Neurology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Mengjie Yu
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, 610225, China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 610225, China
| | - Jie Li
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Yang Du
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China; Department of Neurology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Weidong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China; Department of Neurology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Guangwen Chen
- Department of Radiology, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, 610017, China.
| | - Jurong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, 610225, China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, 610225, China.
| |
Collapse
|
4
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
5
|
Cho SW, Phan TTV, Nguyen VT, Park SM, Lee H, Oh J, Kim CS. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. PHOTOACOUSTICS 2023; 29:100456. [PMID: 36785577 PMCID: PMC9918423 DOI: 10.1016/j.pacs.2023.100456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
- Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| | - Hwidon Lee
- Harvard Medical School, Boston, Massachusetts MA 02115, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea
- Ohlabs Corporation, Busan 48513, the Republic of Korea
| | - Chang-Seok Kim
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| |
Collapse
|
6
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
7
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
8
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
9
|
Recent Technical Progression in Photoacoustic Imaging—Towards Using Contrast Agents and Multimodal Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For combining optical and ultrasonic imaging methodologies, photoacoustic imaging (PAI) is the most important and successful hybrid technique, which has greatly contributed to biomedical research and applications. Its theoretical background is based on the photoacoustic effect, whereby a modulated or pulsed light is emitted into tissue, which selectively absorbs the optical energy of the light at optical wavelengths. This energy produces a fast thermal expansion in the illuminated tissue, generating pressure waves (or photoacoustic waves) that can be detected by ultrasonic transducers. Research has shown that optical absorption spectroscopy offers high optical sensitivity and contrast for ingredient determination, for example, while ultrasound has demonstrated good spatial resolution in biomedical imaging. Photoacoustic imaging combines these advantages, i.e., high contrast through optical absorption and high spatial resolution due to the low scattering of ultrasound in tissue. In this review, we focus on advances made in PAI in the last five years and present categories and key devices used in PAI techniques. In particular, we highlight the continuously increasing imaging depth achieved by PAI, particularly when using exogenous reagents. Finally, we discuss the potential of combining PAI with other imaging techniques.
Collapse
|
10
|
Weng X, Wei D, Yang Z, Pang W, Pang K, Gu B, Wei X. Photodynamic therapy reduces metastasis of breast cancer by minimizing circulating tumor cells. BIOMEDICAL OPTICS EXPRESS 2021; 12:3878-3886. [PMID: 34457386 PMCID: PMC8367230 DOI: 10.1364/boe.429947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Cancer metastasis after traditional surgery introduces a high barrier to therapy efficacy. Photodynamic therapy (PDT) for cancer is based on a photochemical process of photosensitizers that concentrate in tumors and release oxidant species under light excitation to destroy cells. Compared with traditional surgery, PDT provides minimal invasion and targeted therapy. In this in vivo study, we monitor the real-time and long-term dynamics of circulating tumor cells (CTCs) after a single round of PDT and after surgical resection in a breast cancer animal model. The CTC level is low after PDT treatment, and the recurrence of the primary tumor is postponed in the PDT group compared with the resection group. We find that metastasis is correlated with the CTC level, and the PDT-treated mice show no metastasis in the lung or liver. Our results suggest PDT can effectively reduce metastasis by minimizing CTCs after treatment and is a great technology for breast cancer therapy.
Collapse
Affiliation(s)
- Xiaofu Weng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Dan Wei
- Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai 200030, China
| | - Wen Pang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science and Technology University, Beijing 100192, China
| | - Bobo Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Biomedical Engineering Department, Peking University, Beijing, 100081, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
11
|
Novoselova MV, Abakumova TO, Khlebtsov BN, Zatsepin TS, Lazareva EN, Tuchin VV, Zharov VP, Gorin DA, Galanzha EI. Optical clearing for photoacoustic lympho- and angiography beyond conventional depth limit in vivo. PHOTOACOUSTICS 2020; 20:100186. [PMID: 32637316 PMCID: PMC7327268 DOI: 10.1016/j.pacs.2020.100186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic (PA) imaging (PAI) is an emerging powerful tool for noninvasive real-time mapping of blood and lymphatic vessels and lymph nodes in vivo to diagnose cancer, lymphedema and other diseases. Among different PAI instruments, commercially available raster-scanning optoacoustic mesoscopy (RSOM) (iThera Medical GmbH., Germany) is useful for high-resolution imaging of different tissues with high potential of clinical translation. However, skin light scattering prevents mapping vessels and nodes deeper than 1-2 mm, that limits diagnostic values of PAI including RSOM. Here we demonstrate that glycerol-based tissue optical clearing (TOC) overcomes this challenge by reducing light scattering that improves RSOM depth penetration. In preclinical model of mouse limb in vivo, the replacement of conventional acoustic coupling agents such as water on the mixture of 70 % glycerol and 30 % ultrasound (US) gel resulted in the increase of tissue imaging depth in 1.5-2 times with 3D visualization of vessels with diameter down to 20 μm. To distinguish blood and lymphatic networks, we integrated label-free PA angiography (i.e., imaging of blood vessels), which uses hemoglobin as endogenous contrast agent, with PA lymphography based on labeling of lymphatic vessels with exogenous PA contrast agents. Similar to well-established clinical lymphography, contrast agents were injected in tissue and taken up by lymphatic vessels within a few minutes that provided quick RSOM lymphography. Furthermore, co-injection of PA contrast dye and multilayer nanocomposites as potential low-toxic drug-cargo showed selective prolonged accumulation of nanocomposites in sentinel lymph nodes. Overall, our findings open perspectives for deep and high resolution 3D PA angio- and lymphography, and for PA-guided lymphatic drug delivery using new RSOM & TOC approach.
Collapse
Affiliation(s)
| | | | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russia
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
12
|
In Vivo Lymphatic Circulating Tumor Cells and Progression of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12102866. [PMID: 33028044 PMCID: PMC7650582 DOI: 10.3390/cancers12102866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Deadly metastases occur when tumor cells are shed from primary tumor into lymph and blood that circulate in distinct networks of vessels and disseminate circulating tumor cells (CTCs) through the body. Therefore, detection of CTCs at potentially treatable early disease stage might improve patient survival. However, most efforts have been made to test CTCs in blood only. Here, we explored the clinically relevant photoacoustic and fluorescent flow cytometry for early in vivo detection of lymphatic CTCs using metastatic melanoma and breast cancer mouse models. We demonstrated the presence of detectable lymphatic CTCs at pre-metastatic disease, estimated correlation between CTCs, primary tumor, and metastasis, and observed parallel CTC dissemination by blood and lymph. Our findings suggest the use of lymphatic CTC testing in vivo as a new indicator of metastasis initiation, and combined assessment of two body fluids as a more promising diagnostic platform compared to existing mono-detection of blood CTCs. Abstract The dissemination of circulating tumor cells (CTCs) by lymph fluid is one of the key events in the development of tumor metastasis. However, little progress has been made in studying lymphatic CTCs (L-CTCs). Here, we demonstrate the detection of L-CTCs in preclinical mouse models of melanoma and breast cancer using in vivo high-sensitivity photoacoustic and fluorescent flow cytometry. We discovered that L-CTCs are be detected in pre-metastatic disease stage. The smallest primary tumor that shed L-CTCs was measured as 0.094mm×0.094mm, its volume was calculated as 0.0004 mm3; and its productivity was estimated as 1 L-CTC per 30 minutes. As the disease progressed, primary tumors continued releasing L-CTCs with certain individual dynamics. The integrated assessment of lymph and blood underlined the parallel dissemination of CTCs at all disease stages. However, the analysis of links between L-CTC counts, blood CTC (B-CTC) counts, primary tumor size and metastasis did not reveal statistically significant correlations, likely due to L-CTC heterogeneity. Altogether, our results showed the feasibility of our diagnostic platform using photoacoustic flow cytometry for preclinical L-CTC research with translational potential. Our findings also demonstrated new insights into lymphatic system involvement in CTC dissemination. They help to lay the scientific foundation for the consideration of L-CTCs as prognostic markers of metastasis and to emphasize the integrative assessment of lymph and blood.
Collapse
|
13
|
Liu S, Wang H, Zhang C, Dong J, Liu S, Xu R, Tian C. In Vivo Photoacoustic Sentinel Lymph Node Imaging Using Clinically-Approved Carbon Nanoparticles. IEEE Trans Biomed Eng 2019; 67:2033-2042. [PMID: 31751215 DOI: 10.1109/tbme.2019.2953743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Breast cancer is the most common type of invasive cancer and one of the leading causes of cancer death in women worldwide. Correct staging of breast cancer is critical to the survival rate of the patients. Sentinel lymph node (SLN) biopsy (SLNB), currently the gold standard technique for breast cancer staging, requires preoperative and intraoperative image guidance for noninvasive SLN identification and minimal surgical invasion. However, existing image guidance techniques suffer from a variety of limitations, such as ionizing radiation, high cost, and poor imaging depth. To address the clinical challenges, new methodology has to be developed. METHODS We developed a photoacoustic (PA) imaging procedure for noninvasive and nonradioactive SLN identification and biopsy guidance enhanced with a clinically-approved lymphatic tracer, i.e., carbon nanoparticles (CNPs) suspension injection. RESULTS In vivo experiments show that the proposed procedure could sensitively identify the SLN and provide high-contrast image guidance for fine-needle aspiration simulation. In addition, we demonstrated that CNPs have significantly better performance than other commonly-used contrast agents, such as methylene blue and indocyanine green. CONCLUSION PA imaging technique using clinically-approved CNPs as the contrast agent is capable for noninvasive and nonradioactive SLN identification and high-contrast biopsy guidance, and should be considered as a new tool for assisting SLNB in breast cancer staging. SIGNIFICANCE The proposed CNPs-enhanced PA imaging technique provides a practical way for SLN identification and biopsy guidance for breast cancer patients and paves the way for clinical translation of PA SLN imaging.
Collapse
|
14
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
15
|
Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, Gupta N. Active Lymphatic Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-Infrared Nanoparticles. Invest Ophthalmol Vis Sci 2019; 59:2699-2707. [PMID: 29860456 DOI: 10.1167/iovs.17-22850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. Methods A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Results Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Conclusions Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Collapse
Affiliation(s)
- Yeni H Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| | - Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Shireen Khattak
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael Lapinski
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fang Cheng
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Glaucoma Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Tuchin VV, Zharov VP, Galanzha EI. Biophotonics for lymphatic theranostics in animals and humans. JOURNAL OF BIOPHOTONICS 2018; 11:e201811001. [PMID: 30006983 PMCID: PMC6548310 DOI: 10.1002/jbio.201811001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Valery V Tuchin
- Laboratory of Biomedical Photoacoustics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the RAS, Saratov, Russia
| | - Vladimir P Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, Saratov, Russia
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Ekaterina I Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, Saratov, Russia
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), UAMS, Little Rock, AR, USA
| |
Collapse
|
17
|
Gong P, Yu DY, Wang Q, Yu PK, Karnowski K, Heisler M, Francke A, An D, Sarunic MV, Sampson DD. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography. JOURNAL OF BIOPHOTONICS 2018; 11:e201800070. [PMID: 29920959 DOI: 10.1002/jbio.201800070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/14/2018] [Indexed: 05/08/2023]
Abstract
We employ optical coherence tomography (OCT) and optical coherence microscopy (OCM) to study conjunctival lymphatics in porcine eyes ex vivo. This study is a precursor to the development of in vivo imaging of the collecting lymphatics for potentially guiding and monitoring glaucoma filtration surgery. OCT scans at 1300 nm and higher-resolution OCM scans at 785 nm reveal the lymphatic vessels via their optical transparency. Equivalent signal characteristics are also observed from blood vessels largely free of blood (and devoid of flow) in the ex vivo conjunctiva. In our lymphangiography, vessel networks were segmented by compensating the depth attenuation in the volumetric OCT/OCM signal, projecting the minimum intensity in two dimensions and thresholding to generate a three-dimensional vessel volume. Vessel segmentation from multiple locations of a range of porcine eyes (n = 21) enables visualization of the vessel networks and indicates the varying spatial distribution of patent lymphatics. Such visualization provides a new tool to investigate conjunctival vessels in tissue ex vivo without need for histological tissue processing and a valuable reference on vessel morphology for the in vivo label-free imaging studies of lymphatics to follow.
Collapse
Affiliation(s)
- Peijun Gong
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Qiang Wang
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Paula K Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Karol Karnowski
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
| | - Morgan Heisler
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Ashley Francke
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Dong An
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Marinko V Sarunic
- Biomedical Optics Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, Australia
- University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
18
|
Sun RW, Tuchin VV, Zharov VP, Galanzha EI, Richter GT. Current status, pitfalls and future directions in the diagnosis and therapy of lymphatic malformation. JOURNAL OF BIOPHOTONICS 2018; 11:e201700124. [PMID: 28851128 PMCID: PMC11184539 DOI: 10.1002/jbio.201700124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Lymphatic malformations are complex congenital vascular lesions composed of dilated, abnormal lymphatic channels of varying size that can result in significant esthetic and physical impairment due to relentless growth. Lymphatic malformations comprised of micro-lymphatic channels (microcystic) integrate and infiltrate normal soft tissue, leading to a locally invasive mass. Ultrasonography and magnetic resonance imaging assist in the diagnosis but are unable to detect microvasculature present in microcystic lymphatic malformations. In this review, we examine existing tools and elaborate on alternative diagnostic methods in assessing lymphatic malformations. In particular, photoacoustics, low-toxicity nanoparticles and optical clearing can overcome existing challenges in the examination of lymphatic channels in vivo. In combination with photothermal scanning and flow cytometry, Photoacoustic techniques may provide a versatile tool for lymphatic-related clinical applications, potentially leading to a single diagnostic and therapeutic platform to overcome limitations in current imaging techniques and permit targeted theranostics of microcystic lymphatic malformations.
Collapse
Affiliation(s)
- Ravi W. Sun
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov National Research State University, Saratov, Russia
- Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
- Laboratory of Femtomedicine, ITMO University, St. Petersburg, Russia
| | - Vladimir P. Zharov
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ekaterina I. Galanzha
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LLDT), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gresham T. Richter
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Hospital, Little Rock, Arkansas
| |
Collapse
|
19
|
Timin AS, Litvak MM, Gorin DA, Atochina-Vasserman EN, Atochin DN, Sukhorukov GB. Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization. Adv Healthc Mater 2018; 7. [PMID: 29193876 DOI: 10.1002/adhm.201700818] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine.
Collapse
Affiliation(s)
- Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Maxim M. Litvak
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Dmitry A. Gorin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- Skoltech Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Skolkovo Innovation Center; Building 3 Moscow 143026 Russian Federation
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- RASA Center; Kazan Federal University; 18 Kremlyovskaya Street Kazan 42008 Russian Federation
- Pulmonary; Allergy and Critical Care Division; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Dmitriy N. Atochin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Cardiovascular Research Center; Massachusetts General Hospital; 149 East, 13 Street Charlestown MA 02129 USA
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
20
|
Semyachkina-Glushkovskaya O, Abdurashitov A, Dubrovsky A, Bragin D, Bragina O, Shushunova N, Maslyakova G, Navolokin N, Bucharskaya A, Tuchin V, Kurths J, Shirokov A. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29275545 PMCID: PMC8357332 DOI: 10.1117/1.jbo.22.12.121719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/04/2017] [Indexed: 05/02/2023]
Abstract
The meningeal lymphatic vessels were discovered 2 years ago as the drainage system involved in the mechanisms underlying the clearance of waste products from the brain. The blood-brain barrier (BBB) is a gatekeeper that strongly controls the movement of different molecules from the blood into the brain. We know the scenarios during the opening of the BBB, but there is extremely limited information on how the brain clears the substances that cross the BBB. Here, using the model of sound-induced opening of the BBB, we clearly show how the brain clears dextran after it crosses the BBB via the meningeal lymphatic vessels. We first demonstrate successful application of optical coherence tomography (OCT) for imaging of the lymphatic vessels in the meninges after opening of the BBB, which might be a new useful strategy for noninvasive analysis of lymphatic drainage in daily clinical practice. Also, we give information about the depth and size of the meningeal lymphatic vessels in mice. These new fundamental data with the applied focus on the OCT shed light on the mechanisms of brain clearance and the role of lymphatic drainage in these processes that could serve as an informative platform for a development of therapy and diagnostics of diseases associated with injuries of the BBB such as stroke, brain trauma, glioma, depression, or Alzheimer disease.
Collapse
Affiliation(s)
| | - Arkady Abdurashitov
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Saratov State University, Department of Optics and Biophotonics, Saratov, Russia
| | - Alexander Dubrovsky
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Saratov State University, Department of Optics and Biophotonics, Saratov, Russia
| | - Denis Bragin
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- University of New Mexico School of Medicine, Department of Neurosurgery, Albuquerque, New Mexico, United States
| | - Olga Bragina
- University of New Mexico School of Medicine, Department of Neurosurgery, Albuquerque, New Mexico, United States
| | - Nataliya Shushunova
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
| | - Galina Maslyakova
- Saratov State Medical University, Department of Pathological Anatomy, Saratov, Russia
| | - Nikita Navolokin
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Saratov State Medical University, Department of Pathological Anatomy, Saratov, Russia
| | - Alla Bucharskaya
- Saratov State Medical University, Department of Pathological Anatomy, Saratov, Russia
| | - Valery Tuchin
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Saratov State University, Department of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Laboratory of Biophotonics, Tomsk, Russia
- Precision Mechanics and Control Institute of the Russian Academy of Sciences, Laboratory of Laser Diagnostics of Technical and Living Systems, Saratov, Russia
| | - Juergen Kurths
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Humboldt University, Physics Department, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Alexander Shirokov
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State Medical University, Saratov, Russia
- Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Leggio L, Gawali S, Gallego D, Rodríguez S, Sánchez M, Carpintero G, Lamela H. Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm. BIOMEDICAL OPTICS EXPRESS 2017; 8:1430-1440. [PMID: 28663839 PMCID: PMC5480554 DOI: 10.1364/boe.8.001430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 05/07/2023]
Abstract
In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of high-power diode lasers [corrected] at 870 and 905 nm as excitation sources. The high-power diode lasers [corrected] are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.
Collapse
|
22
|
Hemphill AS, Tay JW, Wang LV. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:121502. [PMID: 27626770 PMCID: PMC5019185 DOI: 10.1117/1.jbo.21.12.121502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 05/08/2023]
Abstract
One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit (typically ?1??mm). To overcome this challenge, wavefront shaping techniques that use a spatial light modulator (SLM) to correct the phase of the incident wavefront have recently been developed. These techniques are able to focus light through scattering media beyond the optical diffusion limit. However, the low speeds of typically used liquid crystal SLMs limit the focusing speed. Here, we present a method using a digital micromirror device (DMD) and an electro-optic modulator (EOM) to measure the scattering-induced aberrations, and using a liquid crystal SLM to apply the correction to the illuminating wavefront. By combining phase modulation from an EOM with the DMD’s ability to provide selective illumination, we exploit the DMD’s higher refresh rate for phase measurement. We achieved focusing through scattering media in less than 8 ms, which is sufficiently short for certain in vivo applications, as it is comparable to the speckle correlation time of living tissue.
Collapse
Affiliation(s)
- Ashton S. Hemphill
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jian Wei Tay
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, Saint Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
23
|
Yang X, Zhang Y, Zhao K, Zhao Y, Liu Y, Gong H, Luo Q, Zhu D. Skull Optical Clearing Solution for Enhancing Ultrasonic and Photoacoustic Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1903-6. [PMID: 26886977 DOI: 10.1109/tmi.2016.2528284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The performance of photoacoustic microscopy (PAM) degrades due to the turbidity of the skull that introduces attenuation and distortion of both laser and stimulated ultrasound. In this manuscript, we demonstrated that a newly developed skull optical clearing solution (SOCS) could enhance not only the transmittance of light, but also that of ultrasound in the skull in vitro. Thus the photoacoustic signal was effectively elevated, and the relative strength of the artifacts induced by the skull could be suppressed. Furthermore in vivo studies demonstrated that SOCS could drastically enhance the performance of photoacoustic microscopy for cerebral microvasculature imaging.
Collapse
|
24
|
Kotagiri N, Sakon J, Han H, Zharov VP, Kim JW. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization. NANOSCALE 2016; 8:12658-67. [PMID: 26935543 PMCID: PMC4919181 DOI: 10.1039/c5nr08686h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance to SWNTs. Furthermore, iAmp coating offers protection to SWNTs against their nonspecific adsorption across disparate cell types, which has precluded a targeted strategy, and enables selective molecular targeting. The iAmp can therefore be used as an efficient dispersant, a photostable fluorescent agent, and a biocompatible disguising agent, alleviating CNTs' drawbacks and rendering them suitable for nanotheranostic and drug delivery applications.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA.
| | | | | | | | | |
Collapse
|
25
|
Neuschmelting V, Lockau H, Ntziachristos V, Grimm J, Kircher MF. Lymph Node Micrometastases and In-Transit Metastases from Melanoma: In Vivo Detection with Multispectral Optoacoustic Imaging in a Mouse Model. Radiology 2016; 280:137-50. [PMID: 27144537 DOI: 10.1148/radiol.2016160191] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose To study whether multispectral optoacoustic tomography (MSOT) can serve as a label-free imaging modality for the detection of lymph node micrometastases and in-transit metastases from melanoma on the basis of the intrinsic contrast of melanin in comparison to fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT). Materials and Methods The study was approved by the institutional animal care and use committee. Sequential MSOT was performed in a mouse B16F10 melanoma limb lymph node metastasis model (n = 13) to survey the development of macro-, micro- and in-transit metastases (metastases that are in transit from the primary tumor site to the local nodal basin) in vivo. The in vitro limit of detection was assessed in a B16F10 cell phantom. Signal specificity was determined on the basis of a simultaneous lymphadenitis (n = 4) and 4T1 breast cancer lymph metastasis (n = 2) model. MSOT was compared with intravenous FDG PET/CT. The diagnosis was assessed with histologic examination. Differences in the signal ratio (metastatic node to contralateral limb) between the two modalities were determined with the two-tailed paired t test. Results The mean signal ratios acquired with MSOT in micrometastases (2.5 ± 0.3, n = 6) and in-transit metastases (8.3 ± 5.8, n = 4) were higher than those obtained with FDG PET/CT (1.1 ± 0.5 [P < .01] and 1.3 ± 0.6 [P < .05], respectively). MSOT was able to help differentiate even small melanoma lymph node metastases from the other lymphadenopathies (P < .05 for both) in vivo, whereas FDG PET/CT could not (P > .1 for both). In vitro, the limit of detection was at an approximate cell density of five cells per microliter (P < .01). Conclusion MSOT enabled detection of melanoma lymph node micrometastases and in-transit metastases undetectable with FDG PET/CT and helped differentiate melanoma metastasis from other lymphadenopathies. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Volker Neuschmelting
- From the Department of Radiology (V. Neuschmelting, H.L., J.G., M.F.K.), Molecular Pharmacology Program (H.L., J.G.), and Center for Molecular Imaging and Nanotechnology (CMINT) (J.G., M.F.K.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Institute for Biological and Medical Imaging, Helmholtz Zentrum, Munich, Germany (V. Ntziachristos); Department of Biological Imaging, Technische Universität München, Munich, Germany (V. Ntziachristos); and Departments of Radiology (J.G., M.F.K.) and Pharmacology (J.G.), Weill Cornell Medical College, New York, NY
| | - Hannah Lockau
- From the Department of Radiology (V. Neuschmelting, H.L., J.G., M.F.K.), Molecular Pharmacology Program (H.L., J.G.), and Center for Molecular Imaging and Nanotechnology (CMINT) (J.G., M.F.K.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Institute for Biological and Medical Imaging, Helmholtz Zentrum, Munich, Germany (V. Ntziachristos); Department of Biological Imaging, Technische Universität München, Munich, Germany (V. Ntziachristos); and Departments of Radiology (J.G., M.F.K.) and Pharmacology (J.G.), Weill Cornell Medical College, New York, NY
| | - Vasilis Ntziachristos
- From the Department of Radiology (V. Neuschmelting, H.L., J.G., M.F.K.), Molecular Pharmacology Program (H.L., J.G.), and Center for Molecular Imaging and Nanotechnology (CMINT) (J.G., M.F.K.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Institute for Biological and Medical Imaging, Helmholtz Zentrum, Munich, Germany (V. Ntziachristos); Department of Biological Imaging, Technische Universität München, Munich, Germany (V. Ntziachristos); and Departments of Radiology (J.G., M.F.K.) and Pharmacology (J.G.), Weill Cornell Medical College, New York, NY
| | - Jan Grimm
- From the Department of Radiology (V. Neuschmelting, H.L., J.G., M.F.K.), Molecular Pharmacology Program (H.L., J.G.), and Center for Molecular Imaging and Nanotechnology (CMINT) (J.G., M.F.K.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Institute for Biological and Medical Imaging, Helmholtz Zentrum, Munich, Germany (V. Ntziachristos); Department of Biological Imaging, Technische Universität München, Munich, Germany (V. Ntziachristos); and Departments of Radiology (J.G., M.F.K.) and Pharmacology (J.G.), Weill Cornell Medical College, New York, NY
| | - Moritz F Kircher
- From the Department of Radiology (V. Neuschmelting, H.L., J.G., M.F.K.), Molecular Pharmacology Program (H.L., J.G.), and Center for Molecular Imaging and Nanotechnology (CMINT) (J.G., M.F.K.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Institute for Biological and Medical Imaging, Helmholtz Zentrum, Munich, Germany (V. Ntziachristos); Department of Biological Imaging, Technische Universität München, Munich, Germany (V. Ntziachristos); and Departments of Radiology (J.G., M.F.K.) and Pharmacology (J.G.), Weill Cornell Medical College, New York, NY
| |
Collapse
|
26
|
Zou L, Wang H, He B, Zeng L, Tan T, Cao H, He X, Zhang Z, Guo S, Li Y. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics 2016; 6:762-72. [PMID: 27162548 PMCID: PMC4860886 DOI: 10.7150/thno.14988] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer metastasis accounts for the high mortality of many types of cancer. Owing to the unique advantages of high specificity and minimal invasiveness, photothermal therapy (PTT) has been evidenced with great potential in treating cancer metastasis. In this review, we outline the current approaches of PTT with respect to its application in treating metastatic cancer. PTT can be used alone, guided with multimodal imaging, or combined with the current available therapies for effective treatment of cancer metastasis. Numerous types of photothermal nanotherapeutics (PTN) have been developed with encouraging therapeutic efficacy on metastatic cancer in many preclinical animal experiments. We summarize the design and performance of various PTN in PTT alone and their combinational therapy. We also point out the lacking area and the most promising approaches in this challenging field. In conclusion, PTT or their combinational therapy can provide an essential promising therapeutic modality against cancer metastasis.
Collapse
|
27
|
Liang C, Xu L, Song G, Liu Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev 2016; 45:6250-6269. [DOI: 10.1039/c6cs00458j] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanomedicine approaches may bring new opportunities for tumor metastasis treatment.
Collapse
Affiliation(s)
- Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- China
| | - Guosheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- China
| |
Collapse
|
28
|
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 2015; 10:1937-52. [PMID: 25580097 DOI: 10.1166/jbn.2014.1953] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes.
Collapse
|
29
|
Tuchina DK, Shi R, Bashkatov AN, Genina EA, Zhu D, Luo Q, Tuchin VV. Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. JOURNAL OF BIOPHOTONICS 2015; 8:332-46. [PMID: 25760425 DOI: 10.1002/jbio.201400138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 05/22/2023]
Abstract
The aim of this study was to estimate the glucose diffusion coefficients ex vivo in skin of mice with diabetes induced in vivo by alloxan in comparison to non-diabetic mice. The temporal dependences of collimated transmittance of tissue samples immersed in glucose solutions were measured in the VIS-NIR spectral range to quantify the glucose diffusion/permeability coefficients and optical clearing efficiency of mouse skin. The average thickness of intact healthy and diabetic skin was 0.023 ± 0.006 cm and 0.019 ± 0.005 cm, respectively. Considerable differences in optical and kinetic properties of diabetic and non-diabetic skin were found: clearing efficiency was 1.5-fold better and glucose diffusivity was 2-fold slower for diabetic skin. Experimental Setup for measuring collimated transmittance spectra of mouse skin samples.
Collapse
Affiliation(s)
- Daria K Tuchina
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lai P, Wang L, Tay JW, Wang LV. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. NATURE PHOTONICS 2015; 9:126-132. [PMID: 25914725 PMCID: PMC4407998 DOI: 10.1038/nphoton.2014.322] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/04/2014] [Indexed: 05/18/2023]
Abstract
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, ultrasonically guided wavefront shaping technologies have been developed to address this limitation. So far, the focusing resolution of most implementations has been limited by acoustic diffraction. Here, we introduce nonlinear photoacoustically guided wavefront shaping (PAWS), which achieves optical diffraction-limited focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen relaxation effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. As a result, light is effectively focused to a single optical speckle grain on the scale of 5-7 µm, which is ~10 times smaller than the acoustic focus with an enhancement factor of ~6,000 in peak fluence. This technology has the potential to benefit many applications that desire highly confined strong optical focus in tissue.
Collapse
Affiliation(s)
| | | | | | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899
| |
Collapse
|
31
|
Abstract
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy.
Collapse
Affiliation(s)
- Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging & Nanomedicine (LOMIN), National Institute of Biomedical Imaging & Bioengineering (NIBIB), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Kotagiri N, Kim JW. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. Int J Nanomedicine 2014; 9 Suppl 1:85-105. [PMID: 24872705 PMCID: PMC4024978 DOI: 10.2147/ijn.s51854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such "stealth" CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jin-Woo Kim
- Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
33
|
Yang X, Liu Y, Zhu D, Shi R, Luo Q. Dynamic monitoring of optical clearing of skin using photoacoustic microscopy and ultrasonography. OPTICS EXPRESS 2014; 22:1094-104. [PMID: 24515069 DOI: 10.1364/oe.22.001094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tissue optical clearing technique has shown great potential for enhancing the imaging depth and contrast of optical imaging modalities. However, the mechanism of optical clearing is still in controversy. In this manuscript, we combined photoacoustic microscopy with ultrasonography to monitor the dermic changes induced by optical clearing agents at different immersion time points. The measured parameters were correlated with the optical clearing process, and could be used to assess the optical clearing effect. Both in vitro and in vivo results demonstrated that photoacoustic microscopy and ultrasonography can potentially be used as a powerful tool in screening optical clearing agents and exploring the mechanism of optical clearing.
Collapse
|
34
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
35
|
Tafreshi NK, Gillies RJ, Morse DL. Molecular imaging of breast cancer lymph node metastasis. Eur J Radiol 2013; 81 Suppl 1:S160-1. [PMID: 23083574 DOI: 10.1016/s0720-048x(12)70067-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Narges K Tafreshi
- Dept. Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
36
|
Galanzha EI, Zharov VP. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo. Cancers (Basel) 2013; 5:1691-738. [PMID: 24335964 PMCID: PMC3875961 DOI: 10.3390/cancers5041691] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022] Open
Abstract
Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1-10 CTC/mL) due to the small volume of blood samples (5-10 mL). Consequently, they can miss up to 103-104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102-103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC's capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5-4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.
Collapse
Affiliation(s)
- Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 USA
| |
Collapse
|
37
|
Woo J, Baumann A, Arguello V. Recent advancements of flow cytometry: new applications in hematology and oncology. Expert Rev Mol Diagn 2013; 14:67-81. [DOI: 10.1586/14737159.2014.862153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Pan D, Kim B, Wang LV, Lanza GM. A brief account of nanoparticle contrast agents for photoacoustic imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:517-43. [PMID: 23983210 PMCID: PMC4067981 DOI: 10.1002/wnan.1231] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds.
Collapse
Affiliation(s)
- Dipanjan Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108
| | - Benjamin Kim
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108
| |
Collapse
|
39
|
Grootendorst DJ, Steenbergen W, Manohar S, Ruers TJM. Optical techniques for the intraoperative assessment of nodal status. Future Oncol 2013; 9:1741-55. [PMID: 24156334 DOI: 10.2217/fon.13.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lymphatic system is an important pathway in the metastatic spread of many malignancies and a key prognostic indicator. Nondestructive assessment of the nodal status during surgery could limit the amount of lymph nodes that need to be resected and allow for immediate regional lymphadenectomy during sentinel lymph node biopsy procedures. This review looks into the possibilities of conventional medical imaging methods that are capable of intraoperative nodal assessment and discusses multiple newly developed optical techniques. The physical background behind these techniques is reviewed and a concise overview of their main advantages and disadvantages is provided. These recent innovations show that while the application of optical modalities for intraoperative nodal staging is not yet applied routinely, there is reason enough to expect their introduction in the near future.
Collapse
Affiliation(s)
- Diederik J Grootendorst
- Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology & Technical Medicine, Science & Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
40
|
Zhu D, Larin KV, Luo Q, Tuchin VV. Recent progress in tissue optical clearing. LASER & PHOTONICS REVIEWS 2013; 7:732-757. [PMID: 24348874 DOI: 10.1002/lpor.2013.7.issue-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/23/2012] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. [Formula: see text].
Collapse
Affiliation(s)
- Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology Wuhan, China
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, USA and Department of Physiology and Biophysics, Baylor College of Medicine Houston, USA ; Department of Optics and Biophotonics, Saratov State University Saratov, 410012, Russia
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan, China ; Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology Wuhan, China
| | - Valery V Tuchin
- Department of Optics and Biophotonics, Saratov State University Saratov, 410012, Russia ; Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precise Mechanics and Control RAS Saratov, 410028, Russia ; Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
41
|
Zhu D, Larin KV, Luo Q, Tuchin VV. Recent progress in tissue optical clearing. LASER & PHOTONICS REVIEWS 2013; 7:732-757. [PMID: 24348874 PMCID: PMC3856422 DOI: 10.1002/lpor.201200056] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/23/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. [Formula: see text].
Collapse
Affiliation(s)
- Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and TechnologyWuhan, China
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, USA and Department of Physiology and Biophysics, Baylor College of MedicineHouston, USA
- Department of Optics and Biophotonics, Saratov State UniversitySaratov, 410012, Russia
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and TechnologyWuhan, China
| | - Valery V Tuchin
- Department of Optics and Biophotonics, Saratov State UniversitySaratov, 410012, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precise Mechanics and Control RASSaratov, 410028, Russia
- Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, University of Oulu, FIN-90014Oulu, Finland
| |
Collapse
|
42
|
Bayer CL, Joshi PP, Emelianov SY. Photoacoustic imaging: a potential tool to detect early indicators of metastasis. Expert Rev Med Devices 2013; 10:125-34. [PMID: 23278229 DOI: 10.1586/erd.12.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The metastasis of cancer is a multistage process involving complex biological interactions and difficult to predict outcomes. Accurate assessment of the extent of metastasis is critical for clinical practice; unfortunately, medical imaging methods capable of identifying the early stages of invasion and metastasis are lacking. Photoacoustic imaging is capable of providing noninvasive, real-time imaging of significant anatomical and physiological changes. indicating the progression of cancer invasion and metastasis. Preclinically, photoacoustic methods have been used to image lymphatic anatomy, including the sentinel lymph nodes, to identify circulating tumor cells within vasculature and to detect micrometastases. Progress has begun toward the development of clinically applicable photoacoustic imaging systems to assist with the determination of cancer stage and likelihood of metastatic invasion.
Collapse
Affiliation(s)
- Carolyn L Bayer
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA.
| | | | | |
Collapse
|
43
|
Mehrmohammadi M, Yoon SJ, Yeager D, Emelianov SY. Photoacoustic Imaging for Cancer Detection and Staging. CURRENT MOLECULAR IMAGING 2013; 2:89-105. [PMID: 24032095 PMCID: PMC3769095 DOI: 10.2174/2211555211302010010] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer is one of the leading causes of death in the world. Diagnosing a cancer at its early stages of development can decrease the mortality rate significantly and reduce healthcare costs. Over the past two decades, photoacoustic imaging has seen steady growth and has demonstrated notable capabilities to detect cancerous cells and stage cancer. Furthermore, photoacoustic imaging combined with ultrasound imaging and augmented with molecular targeted contrast agents is capable of imaging cancer at the cellular and molecular level, thus opening diverse opportunities to improve diagnosis of tumors, detect circulating tumor cells and identify metastatic lymph nodes. In this paper we introduce the principles of photoacoustic imaging, and review recent developments in photoacoustic imagingas an emerging imaging modality for cancer diagnosis and staging.
Collapse
Affiliation(s)
- Mohammad Mehrmohammadi
- Department of Biomedical Engineering, University of Texas at Austin, Austin TX 78712, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Soon Joon Yoon
- Department of Biomedical Engineering, University of Texas at Austin, Austin TX 78712, USA
| | - Douglas Yeager
- Department of Biomedical Engineering, University of Texas at Austin, Austin TX 78712, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin TX 78712, USA
| |
Collapse
|
44
|
Kim JW, Galanzha EI, Zaharoff DA, Griffin RJ, Zharov VP. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol Pharm 2013; 10:813-30. [PMID: 23379366 DOI: 10.1021/mp300577s] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many life-threatening diseases are disseminated through biological fluids, such as blood, lymph, and cerebrospinal fluid. The migration of tumor cells through the vascular circulation is a mandatory step in metastasis, which is responsible for ∼90% of cancer-associated mortality. Circulating pathogenic bacteria, viruses, or blood clots lead to other serious conditions including bacteremia, sepsis, viremia, infarction, and stroke. Therefore, technologies capable of detecting circulating tumor cells (CTCs), circulating bacterial cells (CBCs), circulating endothelial cells (CECs), circulating blood clots, cancer biomarkers such as microparticles and exosomes, which contain important microRNA signatures, and other abnormal features such as malaria parasites in biological fluids may facilitate early diagnosis and treatment of metastatic cancers, infections, and adverse cardiovascular events. Unfortunately, even in a disease setting, circulating abnormal cells are rare events that are easily obscured by the overwhelming background material in whole blood. Existing detection methods mostly rely on ex vivo analyses of limited volumes (a few milliliters) of blood samples. These small volumes limit the probability of detecting CTCs, CECs, CBCs and other rare phenomena. In vivo detection platforms capable of continuously monitoring the entire blood volume may substantially increase the probability of detecting circulating abnormal cells and, in particular, increase the opportunity to identify exceedingly rare and potentially dangerous subsets of these cells, such as circulating cancer stem cells (CCSCs). In addition, in vivo detection technologies capable of destroying and/or capturing circulating abnormal cells may inhibit disease progression. This review focuses on novel therapeutic and diagnostic (theranostic) platforms integrating in vivo real-time early diagnosis and nano-bubble based targeted therapy of CTCs, CECs, CBCs and other abnormal objects in circulation. This critical review particularly focuses on nanotechnology-based theranostic (nanotheranostic) approaches, especially in vivo photoacoustic (PA) and photothermal (PT) nanotheranostic platforms. We emphasize an urgent need for in vivo platforms composed of multifunctional contrast nanoagents, which utilize diverse modalities to realize a breakthrough for early detection and treatment of harmful diseases disseminated through the circulation.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Bio/Nano Technology Laboratory, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
45
|
Menyaev YA, Nedosekin DA, Sarimollaoglu M, Juratli MA, Galanzha EI, Tuchin VV, Zharov VP. Optical clearing in photoacoustic flow cytometry. BIOMEDICAL OPTICS EXPRESS 2013; 4:3030-41. [PMID: 24409398 PMCID: PMC3862168 DOI: 10.1364/boe.4.003030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 05/03/2023]
Abstract
Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins.
Collapse
Affiliation(s)
- Yulian A. Menyaev
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Dmitry A. Nedosekin
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mustafa Sarimollaoglu
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mazen A. Juratli
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya St., Saratov, 410012 Russia
- Institute of Precise Mechanics and Control of RAS, 28 Rabochaya St., Saratov, 410028 Russia
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, P.O. BOX 4500, 90014 Finland
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| |
Collapse
|
46
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
47
|
Zhang Y, Li J, Cao L, Xu W, Yin Z. Circulating tumor cells in hepatocellular carcinoma: detection techniques, clinical implications, and future perspectives. Semin Oncol 2012; 39:449-60. [PMID: 22846862 DOI: 10.1053/j.seminoncol.2012.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with a huge challenge in terms of its complex etiology and its management. The fact that the most common site of early tumor recurrence in liver transplantation for HCC is the transplanted allograft strongly suggests that circulating tumor cells (CTCs) are really an active source of HCC metastasis or recurrence. In the past decade, with the tremendous progress in the technology of CTC detection, there is convincing evidence that CTCs have great potential as a marker for metastatic disease and poor prognosis in patients with a malignancy. Currently some interesting and encouraging results have been achieved in HCC CTC detection, although the knowledge about its clinical relevance in HCC is lagging behind other major tumor types. Here we will review existing and developing methodologies for CTC detection, discuss future perspectives, and describe the potential clinical impact of the identification and molecular characterization of CTC subset or circulating cancer stem cells in HCC patients. Particular attention is given to the results based on the HCC CTC study.
Collapse
Affiliation(s)
- Yu Zhang
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
Galanzha EI, Zharov VP. Photoacoustic flow cytometry. Methods 2012; 57:280-96. [PMID: 22749928 PMCID: PMC4799719 DOI: 10.1016/j.ymeth.2012.06.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/24/2012] [Accepted: 06/10/2012] [Indexed: 12/19/2022] Open
Abstract
Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8 nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and cardiovascular disorders with a potential to inhibit, if not prevent, metastasis, sepsis, and strokes or heart attack by well-timed personalized therapy.
Collapse
Affiliation(s)
- Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
49
|
de la Zerda A, Kim JW, Galanzha EI, Gambhir SS, Zharov VP. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 6:346-69. [PMID: 22025336 DOI: 10.1002/cmmi.455] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Various nanoparticles have raised significant interest over the past decades for their unique physical and optical properties and biological utilities. Here we summarize the vast applications of advanced nanoparticles with a focus on carbon nanotube (CNT)-based or CNT-catalyzed contrast agents for photoacoustic (PA) imaging, cytometry and theranostics applications based on the photothermal (PT) effect. We briefly review the safety and potential toxicity of the PA/PT contrast nanoagents, while showing how the physical properties as well as multiple biological coatings change their toxicity profiles and contrasts. We provide general guidelines needed for the validation of a new molecular imaging agent in living subjects, and exemplify these guidelines with single-walled CNTs targeted to α(v) β(3) , an integrin associated with tumor angiogenesis, and golden carbon nanotubes targeted to LYVE-1, endothelial lymphatic receptors. An extensive review of the potential applications of advanced contrast agents is provided, including imaging of static targets such as tumor angiogenesis receptors, in vivo cytometry of dynamic targets such as circulating tumor cells and nanoparticles in blood, lymph, bones and plants, methods to enhance the PA and PT effects with transient and stationary bubble conjugates, PT/PA Raman imaging and multispectral histology. Finally, theranostic applications are reviewed, including the nanophotothermolysis of individual tumor cells and bacteria with clustered nanoparticles, nanothrombolysis of blood clots, detection and purging metastasis in sentinel lymph nodes, spectral hole burning and multiplex therapy with ultrasharp rainbow nanoparticles.
Collapse
Affiliation(s)
- Adam de la Zerda
- Molecular Imaging Program at Stanford, the Bio-X Program and the Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA.
| | | | | | | | | |
Collapse
|
50
|
Programmable Construction of Nanostructures: Assembly of Nanostructures with Various Nanocomponents. IEEE NANOTECHNOLOGY MAGAZINE 2012. [DOI: 10.1109/mnano.2011.2181736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|