1
|
Li Y, Feng Y, Geng S, Xu F, Guo H. The role of liquid-liquid phase separation in defining cancer EMT. Life Sci 2024; 353:122931. [PMID: 39038510 DOI: 10.1016/j.lfs.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Cancer EMT is a pivotal process that drives carcinogenesis, metastasis, and cancer recurrence, with its initiation and regulation intricately governed by biochemical pathways in a precise spatiotemporal manner. Recently, the membrane-less biomolecular condensates formed via liquid-liquid phase separation (LLPS) have emerged as a universal mechanism underlying the spatiotemporal collaboration of biological activities in cancer EMT. In this review, we first elucidate the current understanding of LLPS formation and its cellular functions, followed by an overview of valuable tools for investigating LLPS. Secondly, we examine in detail the LLPS-mediated biological processes crucial for the initiation and regulation of cancer EMT. Lastly, we address current challenges in advancing LLPS research and explore the potential modulation of LLPS using therapeutic agents.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
2
|
París Ogáyar M, López-Méndez R, Figueruelo-Campanero I, Muñoz-Ortiz T, Wilhelm C, Jaque D, Espinosa A, Serrano A. Finite element modeling of plasmonic resonances in photothermal gold nanoparticles embedded in cells. NANOSCALE ADVANCES 2024; 6:4635-4646. [PMID: 39263395 PMCID: PMC11386126 DOI: 10.1039/d4na00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
The use of plasmonic nanoparticles in performing photothermal treatments in cancer cells requires a full knowledge about their optical properties. The surface plasmon resonance is easily foreseen and measurable in colloidal suspensions, however it can be strongly modified when located inside cells. Assessing the optical behavior of plasmonic nanoparticles in cells is essential for an efficient and controlled treatment. This requires the combination of experimental data and computational models to understand the mechanisms that cause the change in their optical response. In this work, we investigate the plasmonic response of Au nanospheres (AuNSs) internalized into cancer cells (MCF-7). Experimental data are compared to the simulations provided by a 3D model based on a finite element method. We demonstrate the impact of physical parameters such as the type of NS assembly, the surrounding medium and the interparticle gap, in the photothermal efficiency of AuNSs. Results open the avenue to predict, by numerical calculations, the optical properties of plasmonic nanoparticles inside cells to minimize treatment costs and times in photothermal therapies.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | | | - Ignacio Figueruelo-Campanero
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid Plaza Ciencias, 1 Madrid 28040 Spain
| | - Tamara Muñoz-Ortiz
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University Paris 75005 France
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente, 7 Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente, 7 Madrid 28049 Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) C/ Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
- IMDEA Nanociencia C/Faraday, 9 Madrid 28049 Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio (ICV-CSIC) C/Kelsen, 5 Madrid 28049 Spain
| |
Collapse
|
3
|
Mowla A, Hepburn MS, Li J, Vahala D, Amos SE, Hirvonen LM, Sanderson RW, Wijesinghe P, Maher S, Choi YS, Kennedy BF. Multimodal mechano-microscopy reveals mechanical phenotypes of breast cancer spheroids in three dimensions. APL Bioeng 2024; 8:036113. [PMID: 39257700 PMCID: PMC11387014 DOI: 10.1063/5.0213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer cell invasion relies on an equilibrium between cell deformability and the biophysical constraints imposed by the extracellular matrix (ECM). However, there is little consensus on the nature of the local biomechanical alterations in cancer cell dissemination in the context of three-dimensional (3D) tumor microenvironments (TMEs). While the shortcomings of two-dimensional (2D) models in replicating in situ cell behavior are well known, 3D TME models remain underutilized because contemporary mechanical quantification tools are limited to surface measurements. Here, we overcome this major challenge by quantifying local mechanics of cancer cell spheroids in 3D TMEs. We achieve this using multimodal mechano-microscopy, integrating optical coherence microscopy-based elasticity imaging with confocal fluorescence microscopy. We observe that non-metastatic cancer spheroids show no invasion while showing increased peripheral cell elasticity in both stiff and soft environments. Metastatic cancer spheroids, however, show ECM-mediated softening in a stiff microenvironment and, in a soft environment, initiate cell invasion with peripheral softening associated with early metastatic dissemination. This exemplar of live-cell 3D mechanotyping supports that invasion increases cell deformability in a 3D context, illustrating the power of multimodal mechano-microscopy for quantitative mechanobiology in situ.
Collapse
Affiliation(s)
| | | | | | - Danielle Vahala
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sebastian E Amos
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | | | - Philip Wijesinghe
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Samuel Maher
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | | |
Collapse
|
4
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
5
|
Tanskanen A, Malone J, MacAulay C, Lane P. Multipath artifacts enable angular contrast in multimodal endoscopic optical coherence tomography. OPTICS EXPRESS 2023; 31:44224-44245. [PMID: 38178499 DOI: 10.1364/oe.504854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Multipath artifacts are inherent to double-clad fiber based optical coherence tomography (OCT), appearing as ghost images blurred in the A-line direction. They result from the excitation of higher-order inner-cladding modes in the OCT sample arm which cross-couple into the fundamental mode at discontinuities and thus are detected in single-mode fiber-based interferometers. Historically, multipath artifacts have been regarded as a drawback in single fiber endoscopic multimodal OCT systems as they degrade OCT quality. In this work, we reveal that multipath artifacts can be projected into high-quality two-dimensional en face images which encode high angle backscattering features. Using a combination of experiment and simulation, we characterize the coupling of Mie-range scatterers into the fundamental image (LP01 mode) and higher-order image (multipath artifact). This is validated experimentally through imaging of microspheres with an endoscopic multimodal OCT system. The angular dependence of the fundamental image and higher order image generated by the multipath artifact lays the basis for multipath contrast, a ratiometric measurement of differential coupling which provides information regarding the angular diversity of a sample. Multipath contrast images can be generated from OCT data where multipath artifacts are present, meaning that a wealth of clinical data can be retrospectively examined.
Collapse
|
6
|
Vonk SJW, van Swieten TP, Cocina A, Rabouw FT. Photonic Artifacts in Ratiometric Luminescence Nanothermometry. NANO LETTERS 2023. [PMID: 37450686 PMCID: PMC10375589 DOI: 10.1021/acs.nanolett.3c01602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Ongoing developments in science and technology require temperature measurements at increasingly higher spatial resolutions. Nanocrystals with temperature-sensitive luminescence are a popular thermometer for these applications offering high precision and remote read-out. Here, we demonstrate that ratiometric luminescence thermometry experiments may suffer from systematic errors in nanostructured environments. We place lanthanide-based luminescent nanothermometers at controlled distances of up to 600 nm from a Au surface. Although this geometry supports no absorption or scattering resonances, distortion of the emission spectra of the thermometers due to the modified density of optical states results in temperature read-out errors of up to 250 K. Our simple analytical model explains the effects of thermometer emission frequencies, experimental equipment, and sample properties on the magnitude of the errors. We discuss the relevance of our findings in several experimental scenarios. Such errors do not always occur, but they are expected in measurements near reflecting interfaces or scattering objects.
Collapse
Affiliation(s)
- Sander J W Vonk
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Thomas P van Swieten
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ario Cocina
- Optical Materials Engineering Laboratory, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Freddy T Rabouw
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
7
|
Steelman ZA, Martens S, Tran J, Coker ZN, Sedelnikova A, Kiester AS, O’Connor SP, Ibey BL, Bixler JN. Rapid and precise tracking of water influx and efflux across cell membranes induced by a pulsed electric field. BIOMEDICAL OPTICS EXPRESS 2023; 14:1894-1910. [PMID: 37206120 PMCID: PMC10191652 DOI: 10.1364/boe.485627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Quantitative measurements of water content within a single cell are notoriously difficult. In this work, we introduce a single-shot optical method for tracking the intracellular water content, by mass and volume, of a single cell at video rate. We utilize quantitative phase imaging and a priori knowledge of a spherical cellular geometry, leveraging a two-component mixture model to compute the intracellular water content. We apply this technique to study CHO-K1 cells responding to a pulsed electric field, which induces membrane permeabilization and rapid water influx or efflux depending upon the osmotic environment. The effects of mercury and gadolinium on water uptake in Jurkat cells following electropermeabilization are also examined.
Collapse
Affiliation(s)
| | - Stacey Martens
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Jennifer Tran
- University of Wisconsin-Madison School of Pharmacy, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | | - Allen S. Kiester
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | | | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
| |
Collapse
|
8
|
Liang F, Zhu J, Chai H, Feng Y, Zhao P, Liu S, Yang Y, Lin L, Cao L, Wang W. Non-Invasive and Minute-Frequency 3D Tomographic Imaging Enabling Long-Term Spatiotemporal Observation of Single Cell Fate. SMALL METHODS 2023:e2201492. [PMID: 36950762 DOI: 10.1002/smtd.202201492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Immature and mature bone marrow-derived dendritic cells exhibit distinct intracellular mechanical properties. Sci Rep 2023; 13:1967. [PMID: 36737470 PMCID: PMC9898242 DOI: 10.1038/s41598-023-28625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) patrol the organism at an immature stage to detect the presence of pathogens. Once activated, these mature DCs reach the lymph nodes to activate antigen-specific T lymphocytes and thus initiate an adaptative immune response to control the pathogen. The migration of both immature and mature DCs is a key process for their optimal function. DC migration requires transit through narrow constrictions that is allowed by their high local and global deformation capabilities. In addition to cytoplasmic changes, the nucleus mechanical properties also have a major impact for cellular migration and motility. Yet, nucleus intracellular mobility of dendritic cells or its variation upon maturation have not been investigated. Our study defines the biophysical phenotypic variations of dendritic cells upon maturation using interferometric deformability cytometry. This method characterizes different cellular mechanical properties, such as elongation and nucleus offset, by assessing the refractive index spatial distribution of shear-induced deformed cells. By using these parameters, our data suggest that in vitro bone marrow derived dendritic cell (BMDC) maturation induces cell stiffening and reduces nucleus mobility, allowing to distinguish immature and mature dendritic cells. Overall, our method provides insights on intracellular mechanical properties of two dendritic cell states.
Collapse
|
10
|
Jeon HJ, Lim HG, Shung KK, Lee OJ, Kim MG. Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing. Sci Rep 2022; 12:19873. [PMID: 36400803 PMCID: PMC9674693 DOI: 10.1038/s41598-022-22075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasound at a high pulse repetition frequency (PRF) can capture and analyze a single object from a heterogeneous sample. However, eliminating possible errors in the manual setting and time-consuming processes when postprocessing integrated backscattering (IB) coefficients of backscattered signals is crucial. In this study, an automated cell-type classification system that combines a label-free acoustic sensing technique with deep learning-empowered artificial intelligence models is proposed. We applied an one-dimensional (1D) convolutional autoencoder to denoise the signals and conducted data augmentation based on Gaussian noise injection to enhance the robustness of the proposed classification system to noise. Subsequently, denoised backscattered signals were classified into specific cell types using convolutional neural network (CNN) models for three types of signal data representations, including 1D CNN models for waveform and frequency spectrum analysis and two-dimensional (2D) CNN models for spectrogram analysis. We evaluated the proposed system by classifying two types of cells (e.g., RBC and PNT1A) and two types of polystyrene microspheres by analyzing their backscattered signal patterns. We attempted to discover cell physical properties reflected on backscattered signals by controlling experimental variables, such as diameter and structure material. We further evaluated the effectiveness of the neural network models and efficacy of data representations by comparing their accuracy with that of baseline methods. Therefore, the proposed system can be used to classify reliably and precisely several cell types with different intrinsic physical properties for personalized cancer medicine development.
Collapse
Affiliation(s)
- Hyeon-Ju Jeon
- grid.482520.90000 0004 0578 4668Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul, 07071 Republic of Korea
| | - Hae Gyun Lim
- grid.412576.30000 0001 0719 8994Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - K. Kirk Shung
- grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - O-Joun Lee
- grid.411947.e0000 0004 0470 4224Department of Artificial Intelligence, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Min Gon Kim
- grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
11
|
Comprehensive single-shot biophysical cytometry using simultaneous quantitative phase imaging and Brillouin spectroscopy. Sci Rep 2022; 12:18285. [PMID: 36316372 PMCID: PMC9622723 DOI: 10.1038/s41598-022-23049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Single-cell analysis, or cytometry, is a ubiquitous tool in the biomedical sciences. Whereas most cytometers use fluorescent probes to ascertain the presence or absence of targeted molecules, biophysical parameters such as the cell density, refractive index, and viscosity are difficult to obtain. In this work, we combine two complementary techniques-quantitative phase imaging and Brillouin spectroscopy-into a label-free image cytometry platform capable of measuring more than a dozen biophysical properties of individual cells simultaneously. Using a geometric simplification linked to freshly plated cells, we can acquire the cellular diameter, volume, refractive index, mass density, non-aqueous mass, fluid volume, dry volume, the fractional water content of cells, both by mass and by volume, the Brillouin shift, Brillouin linewidth, longitudinal modulus, longitudinal viscosity, the loss modulus, and the loss tangent, all from a single acquisition, and with no assumptions of underlying parameters. Our methods are validated across three cell populations, including a control population of CHO-K1 cells, cells exposed to tubulin-disrupting nocodazole, and cells under hypoosmotic shock. Our system will unlock new avenues of research in biophysics, cell biology, and medicine.
Collapse
|
12
|
Nguyen TL, Pradeep S, Judson-Torres RL, Reed J, Teitell MA, Zangle TA. Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine. ACS NANO 2022; 16:11516-11544. [PMID: 35916417 PMCID: PMC10112851 DOI: 10.1021/acsnano.1c11507] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.
Collapse
|
13
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Steelman ZA, Coker ZN, Kiester A, Noojin G, Ibey BL, Bixler JN. Quantitative phase microscopy monitors subcellular dynamics in single cells exposed to nanosecond pulsed electric fields. JOURNAL OF BIOPHOTONICS 2021; 14:e202100125. [PMID: 34291579 DOI: 10.1002/jbio.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
A substantial body of literature exists to study the dynamics of single cells exposed to short duration (<1 μs), high peak power (~1 MV/m) transient electric fields. Much of this research is limited to traditional fluorescence-based microscopy techniques, which introduce exogenous agents to the culture and are only sensitive to a single molecular target. Quantitative phase imaging (QPI) is a coherent imaging modality which uses optical path length as a label-free contrast mechanism, and has proven highly effective for the study of single-cell dynamics. In this work, we introduce QPI as a useful imaging tool for the study of cells undergoing cytoskeletal remodeling after nanosecond pulsed electric field (nsPEF) exposure. In particular, we use cell swelling, dry mass and disorder strength measurements derived from QPI phase images to monitor the cellular response to nsPEFs. We hope this demonstration of QPI's utility will lead to a further adoption of the technique for the study of directed energy bioeffects.
Collapse
Affiliation(s)
- Zachary A Steelman
- National Research Council Research Associateship Program, Washington, District of Columbia, USA
| | - Zachary N Coker
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- SAIC, San Antonio, Texas, USA
| | - Allen Kiester
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | | | - Bennett L Ibey
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Joel N Bixler
- 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
15
|
Steelman ZA, Sedelnikova A, Coker ZN, Kiester A, Noojin G, Ibey BL, Bixler JN. Visualizing bleb mass dynamics in single cells using quantitative phase microscopy. APPLIED OPTICS 2021; 60:G10-G18. [PMID: 34613190 DOI: 10.1364/ao.426147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Understanding biological responses to directed energy (DE) is critical to ensure the safety of personnel within the Department of Defense. At the Air Force Research Laboratory, we have developed or adapted advanced optical imaging systems that quantify biophysical responses to DE. One notable cellular response to DE exposure is the formation of blebs, or semi-spherical protrusions of the plasma membrane in living cells. In this work, we demonstrate the capacity of quantitative phase imaging (QPI) to both visualize and quantify the formation of membrane blebs following DE exposure. QPI is an interferometric imaging tool that uses optical path length as a label-free contrast mechanism and is sensitive to the non-aqueous mass density, or dry mass, of living cells. Blebs from both CHO-K1 and U937 cells were generated after exposure to a series of 600 ns, 21.2 kV/cm electric pulses. These blebs were visualized in real time, and their dry mass relative to the rest of the cell body was quantified as a function of time. It is our hope that this system will lead to an improved understanding of both DE-induced and apoptotic blebbing.
Collapse
|
16
|
Su Y, Fu R, Du W, Yang H, Ma L, Luo X, Wang R, Lin X, Jin X, Shan X, Lv W, Huang G. Label-Free and Quantitative Dry Mass Monitoring for Single Cells during In Situ Culture. Cells 2021; 10:cells10071635. [PMID: 34209893 PMCID: PMC8303735 DOI: 10.3390/cells10071635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.
Collapse
|
17
|
Arifler D, Guillaud M. Assessment of internal refractive index profile of stochastically inhomogeneous nuclear models via analysis of two-dimensional optical scattering patterns. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200345RR. [PMID: 33973424 PMCID: PMC8107832 DOI: 10.1117/1.jbo.26.5.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Optical scattering signals obtained from tissue constituents contain a wealth of structural information. Conventional intensity features, however, are mostly dictated by the overall morphology and mean refractive index of these constituents, making it very difficult to exclusively sense internal refractive index fluctuations. AIM We perform a systematic analysis to elucidate how changes in internal refractive index profile of cell nuclei can best be detected via optical scattering. APPROACH We construct stochastically inhomogeneous nuclear models and numerically simulate their azimuth-resolved scattering patterns. We then process these two-dimensional patterns with the goal of identifying features that directly point to subnuclear structure. RESULTS Azimuth-dependent intensity variations over the side scattering range provide significant insights into subnuclear refractive index profile. A particular feature we refer to as contrast ratio is observed to be highly sensitive to the length scale and extent of refractive index fluctuations; further, this feature is not susceptible to changes in the overall size and mean refractive index of nuclei, thereby allowing for selective tracking of subnuclear structure that can be linked to chromatin distribution. CONCLUSIONS Our analysis will potentially pave the way for scattering-based assessment of chromatin reorganization that is considered to be a key hallmark of precancer progression.
Collapse
Affiliation(s)
- Dizem Arifler
- Middle East Technical University, Northern Cyprus Campus, Physics Group, Kalkanli, Turkey
| | - Martial Guillaud
- British Columbia Cancer Research Center, Department of Integrative Oncology, Imaging Unit, Vancouver BC, Canada
| |
Collapse
|
18
|
Bakhshandeh S, Taïeb HM, Schlüßler R, Kim K, Beck T, Taubenberger A, Guck J, Cipitria A. Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement. SOFT MATTER 2021; 17:853-862. [PMID: 33232425 DOI: 10.1039/d0sm01556c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm. These studies have either been conducted in suspended cells, or cells adhered on 2D substrates, neither of which reflects the situation in vivo where cells are surrounded by the extracellular matrix (ECM). To better approximate the 3D situation, we encapsulated cells in 3D covalently-crosslinked alginate hydrogels with varying stiffness, and imaged the 3D RI distribution of cells, using a combined optical diffraction tomography (ODT)-epifluorescence microscope. Unexpectedly, the nuclei of cells in 3D displayed a higher ρ than the cytoplasm, in contrast to 2D cultures. Using a Brillouin-epifluorescence microscope we subsequently showed that in addition to higher ρ, the nuclei also had a higher longitudinal modulus (M) and viscosity (η) compared to the cytoplasm. Furthermore, increasing the stiffness of the hydrogel resulted in higher M for both the nuclei and cytoplasm of cells in stiff 3D alginate compared to cells in compliant 3D alginate. The ability to quantify intracellular biophysical properties with non-invasive techniques will improve our understanding of biological processes such as dormancy, apoptosis, cell growth or stem cell differentiation.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gul B, Ashraf S, Khan S, Nisar H, Ahmad I. Cell refractive index: Models, insights, applications and future perspectives. Photodiagnosis Photodyn Ther 2020; 33:102096. [PMID: 33188939 DOI: 10.1016/j.pdpdt.2020.102096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023]
Abstract
Cell refractive index (RI) is an intrinsic optical parameter that governs the propagation of light (i.e., scattering and absorption) in the cell matrix. The RI of cell is sensitively correlated with its mass distribution and thereby has the capability to provide important insights for diverse biological models. Herein, we review the cell refractive index and the fundamental models for measurement of cell RI, summarize the published RI data of cell and cell organelles and discuss the associated insights. Illustrative applications of cell RI in cell biology are also outlined. Finally, future research trends and applications of cell RI, including novel imaging techniques, reshaping flow cytometry and microfluidic platforms for single cell manipulation are discussed. The rapid technological advances in optical imaging integrated with microfluidic regime seems to enable deeper understanding of subcellular dynamics with high spatio-temporal resolution in real time.
Collapse
Affiliation(s)
- Banat Gul
- Department of Basic Sciences, Military College of Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Sumara Ashraf
- Department of Physics, The Women University Multan, Pakistan
| | - Shamim Khan
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hasan Nisar
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Germany
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
20
|
Cohen-Maslaton S, Barnea I, Taieb A, Shaked NT. Cell and nucleus refractive-index mapping by interferometric phase microscopy and rapid confocal fluorescence microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000117. [PMID: 32468735 DOI: 10.1002/jbio.202000117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 05/12/2023]
Abstract
We present a multimodal technique for measuring the integral refractive index and the thickness of biological cells and their organelles by integrating interferometric phase microscopy (IPM) and rapid confocal fluorescence microscopy. First, the actual thickness maps of the cellular compartments are reconstructed using the confocal fluorescent sections, and then the optical path difference (OPD) map of the same cell is reconstructed using IPM. Based on the co-registered data, the integral refractive index maps of the cell and its organelles are calculated. This technique enables rapidly measuring refractive index of live, dynamic cells, where IPM provides quantitative imaging capabilities and confocal fluorescence microscopy provides molecular specificity of the cell organelles. We acquire human colorectal adenocarcinoma cells and show that the integral refractive index values are similar for the whole cell, the cytoplasm and the nucleus on the population level, but significantly different on the single cell level.
Collapse
Affiliation(s)
- Shir Cohen-Maslaton
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Almog Taieb
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Liu J, Xu Y, Wang W, Wen Y, Hong H, Lu JQ, Tian P, Hu XH. Machine learning of diffraction image patterns for accurate classification of cells modeled with different nuclear sizes. JOURNAL OF BIOPHOTONICS 2020; 13:e202000036. [PMID: 32506803 DOI: 10.1002/jbio.202000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
Measurement of nuclear-to-cytoplasm (N:C) ratios plays an important role in detection of atypical and tumor cells. Yet, current clinical methods rely heavily on immunofluroescent staining and manual reading. To achieve the goal of rapid and label-free cell classification, realistic optical cell models (OCMs) have been developed for simulation of diffraction imaging by single cells. A total of 1892 OCMs were obtained with varied nuclear volumes and orientations to calculate cross-polarized diffraction image (p-DI) pairs divided into three nuclear size groups of OCMS , OCMO and OCML based on three prostate cell structures. Binary classifications were conducted among the three groups with image parameters extracted by the algorithm of gray-level co-occurrence matrix. The averaged accuracy of support vector machine (SVM) classifier on test dataset of p-DI was found to be 98.8% and 97.5% respectively for binary classifications of OCMS vs OCMO and OCMO vs OCML for the prostate cancer cell structure. The values remain about the same at 98.9% and 97.8% for the smaller prostate normal cell structures. The robust performance of SVM over clustering classifiers suggests that the high-order correlations of diffraction patterns are potentially useful for label-free detection of single cells with large N:C ratios.
Collapse
Affiliation(s)
- Jing Liu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Yaohui Xu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Yuhua Wen
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Heng Hong
- Department of Pathology and Comparative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jun Q Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Peng Tian
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
22
|
Zhang H, Steelman ZA, Ceballos S, Chu KK, Wax A. Reconstruction of angle-resolved backscattering through a multimode fiber for cell nuclei and particle size determination. APL PHOTONICS 2020; 5:076105. [PMID: 36874207 PMCID: PMC9980710 DOI: 10.1063/5.0011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/25/2020] [Indexed: 06/18/2023]
Abstract
We demonstrate reconstruction of angle-resolved optical backscattering after transmission through a multimode fiber. Angle-resolved backscattering is an important tool for particle sizing, and has been developed as a diagnostic modality for detecting epithelial precancer. In this work, we fully characterized the transfer function of a multimode fiber using a plane-wave illumination basis across two dimensions. Once characterized, angle-resolved scattering information which has been scrambled by multimodal propagation can be easily and accurately reconstructed. Our technique was validated using a Mie theory-based inverse light scattering analysis (ILSA) algorithm on polystyrene microsphere phantoms of known sizes. To demonstrate the clinical potential of this approach, nuclear morphology was determined from the reconstructed angular backscattering from MCF-10A human mammary epithelial cell samples and validated against quantitative image analysis (QIA) of fluorescence microscopy images.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 227708, USA
| | - Zachary A Steelman
- Department of Biomedical Engineering, Duke University, Durham, NC, 227708, USA
| | - Silvia Ceballos
- Department of Biomedical Engineering, Duke University, Durham, NC, 227708, USA
| | - Kengyeh K Chu
- Department of Biomedical Engineering, Duke University, Durham, NC, 227708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC, 227708, USA
| |
Collapse
|
23
|
Rathi S, Zoubek N, Zagarese VJ, Johnson DS. Differential interference contrast microscopy with adjustable plastic Sanderson prisms. APPLIED OPTICS 2020; 59:3404-3410. [PMID: 32400452 DOI: 10.1364/ao.381056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Differential interference contrast (DIC) microscopy is a technique to image spatially dependent gradients in optical path lengths. Contrast is produced through the splitting of polarized light with quartz Wollaston prisms. Here we demonstrate that light splitting for DIC microscopy can also be achieved with Sanderson prisms consisting of polycarbonate bars under a bending load. Comparable image contrast while imaging cultured cells was achieved with this alternative technique. These results demonstrate an inexpensive and easily adjustable alternative to traditional quartz Wollaston prisms.
Collapse
|
24
|
Jin J, Lu JQ, Wen Y, Tian P, Hu XH. Deep learning of diffraction image patterns for accurate classification of five cell types. JOURNAL OF BIOPHOTONICS 2020; 13:e201900242. [PMID: 31804752 DOI: 10.1002/jbio.201900242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Development of label-free methods for accurate classification of cells with high throughput can yield powerful tools for biological research and clinical applications. We have developed a deep neural network of DINet for extracting features from cross-polarized diffraction image (p-DI) pairs on multiple pixel scales to accurately classify cells in five types. A total of 6185 cells were measured by a polarization diffraction imaging flow cytometry (p-DIFC) method followed by cell classification with DINet on p-DI data. The averaged value and SD of classification accuracy were found to be 98.9% ± 1.00% on test data sets for 5-fold training and test. The invariance of DINet to image translation, rotation, and blurring has been verified with an expanded p-DI data set. To study feature-based classification by DINet, two sets of correctly and incorrectly classified cells were selected and compared for each of two prostate cell types. It has been found that the signature features of large dissimilarities between p-DI data of correctly and incorrectly classified cell sets increase markedly from convolutional layers 1 and 2 to layers 3 and 4. These results clearly demonstrate the importance of high-order correlations extracted at the deep layers for accurate cell classification.
Collapse
Affiliation(s)
- Jiahong Jin
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Jun Q Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Yuhua Wen
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Peng Tian
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| |
Collapse
|
25
|
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019; 176:419-434. [PMID: 30682370 DOI: 10.1016/j.cell.2018.12.035] [Citation(s) in RCA: 1715] [Impact Index Per Article: 285.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, 01307 Dresden, Germany.
| | - Amy Gladfelter
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tanja Mittag
- Department for Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Chen S, Liu X, Wang N, Ding Q, Wang X, Ge X, Bo E, Yu X, Yu H, Xu C, Liu L. Contrast of nuclei in stratified squamous epithelium in optical coherence tomography images at 800 nm. JOURNAL OF BIOPHOTONICS 2019; 12:e201900073. [PMID: 31100192 DOI: 10.1002/jbio.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 05/16/2023]
Abstract
Imaging nuclei of keratinocytes in the stratified squamous epithelium has been a subject of intense research since nucleus associated cellular atypia is the key criteria for the screening and diagnosis of epithelial cancers and their precursors. However, keratinocyte nuclei have been reported to be either low scattering or high scattering, so that these inconsistent reports might have led to misinterpretations of optical images, and more importantly, hindered the establishment of optical diagnostic criteria. We disclose that they are generally low scattering in the core using Micro-optical coherence tomography (μOCT) of 1.28-μm axial resolution in vivo; those previously reported "high scattering" or "bright" signals from nuclei are likely from the nucleocytoplasmic boundary, and the low-scattering nuclear cores were missed possibly due to insufficient axial resolutions (~4μm). It is further demonstrated that the high scattering signals may be associated with flattening of nuclei and cytoplasmic glycogen accumulation, which are valuable cytologic hallmarks of cell maturation.
Collapse
Affiliation(s)
- Si Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Xinyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Nanshuo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Xin Ge
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
27
|
Frankel RD. Orthogonal beam ballistic backscatter stimulated Raman microscopy. OPTICS EXPRESS 2019; 27:22770-22786. [PMID: 31510563 DOI: 10.1364/oe.27.022770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
When the axial gain length of a stimulated Raman microscope is less than about 40% of the emission wavelength significant dipole-like ballistic backscatter will occur. Here we analyze a scanning microscope configured with orthogonal water dipping pump and probe objectives that satisfies this criterion. The pump beam focus may be a Gaussian spot or a droplet Bessel beam which minimizes the secondary Bessel beam lobes and provides multiple simultaneous pump focal spot regions. Radial and linearly polarized pump beams enable backscattered polarized signals along both transverse axes of the probe beam. Low level Mie backscatter is the primary photon noise source which should enable rapid sub-wavelength resolution 3-dimensional imaging of label-free Raman contrast for in-vivo pathology, as well as, imaging physiologic concentrations of Raman labelled metabolites and drugs.
Collapse
|
28
|
Eldridge WJ, Ceballos S, Shah T, Park HS, Steelman ZA, Zauscher S, Wax A. Shear Modulus Measurement by Quantitative Phase Imaging and Correlation with Atomic Force Microscopy. Biophys J 2019; 117:696-705. [PMID: 31349989 DOI: 10.1016/j.bpj.2019.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 02/03/2023] Open
Abstract
Many approaches have been developed to characterize cell elasticity. Among these, atomic force microscopy (AFM) combined with modeling has been widely used to characterize cellular compliance. However, such approaches are often limited by the difficulties associated with using a specific instrument and by the complexity of analyzing the measured data. More recently, quantitative phase imaging (QPI) has been applied to characterize cellular stiffness by using an effective spring constant. This metric was further correlated to mass distribution (disorder strength) within the cell. However, these measurements are difficult to compare to AFM-derived measurements of Young's modulus. Here, we describe, to our knowledge, a new way of analyzing QPI data to directly retrieve the shear modulus. Our approach enables label-free measurement of cellular mechanical properties that can be directly compared to values obtained from other rheological methods. To demonstrate the technique, we measured shear modulus and phase disorder strength using QPI, as well as Young's modulus using AFM, across two breast cancer cell-line populations dosed with three different concentrations of cytochalasin D, an actin-depolymerizing toxin. Comparison of QPI-derived and AFM moduli shows good agreement between the two measures and further agrees with theory. Our results suggest that QPI is a powerful tool for cellular biophysics because it allows for optical quantitative measurements of cell mechanical properties.
Collapse
Affiliation(s)
- Will J Eldridge
- Duke University, Department of Biomedical Engineering, Durham, North Carolina.
| | - Silvia Ceballos
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Tejank Shah
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Han Sang Park
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Zachary A Steelman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Stefan Zauscher
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Adam Wax
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| |
Collapse
|
29
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
30
|
Lam VK, Nguyen T, Phan T, Chung BM, Nehmetallah G, Raub CB. Machine Learning with Optical Phase Signatures for Phenotypic Profiling of Cell Lines. Cytometry A 2019; 95:757-768. [PMID: 31008570 DOI: 10.1002/cyto.a.23774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
Robust and reproducible profiling of cell lines is essential for phenotypic screening assays. The goals of this study were to determine robust and reproducible optical phase signatures of cell lines for classification with machine learning and to correlate optical phase parameters to motile behavior. Digital holographic microscopy (DHM) reconstructed phase maps of cells from two pairs of cancer and non-cancer cell lines. Seventeen image parameters were extracted from each cell's phase map, used for linear support vector machine learning, and correlated to scratch wound closure and Boyden chamber chemotaxis. The classification accuracy was between 90% and 100% for the six pairwise cell line comparisons. Several phase parameters correlated with wound closure rate and chemotaxis across the four cell lines. The level of cell confluence in culture affected phase parameters in all cell lines tested. Results indicate that optical phase features of cell lines are a robust set of quantitative data of potential utility for phenotypic screening and prediction of motile behavior. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Van K Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC
| | - Thanh Nguyen
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Thuc Phan
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Byung-Min Chung
- Department of Biology, The Catholic University of America, Washington, DC
| | - George Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC
| |
Collapse
|
31
|
Steelman ZA, Ho DS, Chu KK, Wax A. Light scattering methods for tissue diagnosis. OPTICA 2019; 6:479-489. [PMID: 33043100 PMCID: PMC7544148 DOI: 10.1364/optica.6.000479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light scattering has become a common biomedical research tool, enabling diagnostic sensitivity to myriad tissue alterations associated with disease. Light-tissue interactions are particularly attractive for diagnostics due to the variety of contrast mechanisms that can be used, including spectral, angle-resolved, and Fourier-domain detection. Photonic diagnostic tools offer further benefit in that they are non-ionizing, non-invasive, and give real-time feedback. In this review, we summarize recent innovations in light scattering technologies, with a focus on clinical achievements over the previous ten years.
Collapse
|
32
|
Wang S, Liu J, Lu JQ, Wang W, Al-Qaysi SA, Xu Y, Jiang W, Hu XH. Development and evaluation of realistic optical cell models for rapid and label-free cell assay by diffraction imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800287. [PMID: 30447049 DOI: 10.1002/jbio.201800287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Methods for rapid and label-free cell assay are highly desired in life science. Single-shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross-polarized diffraction image (p-DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p-DI pairs. Image patterns have been characterized by a gray-level co-occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p-DI data provide useful insight for understanding light scattering by single cells and improving OCM.
Collapse
Affiliation(s)
- Shuting Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Jing Liu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Jun Q Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Safaa A Al-Qaysi
- Department of Physics, East Carolina University, Greenville, North Carolina
- College of Pharmacy, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaohui Xu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Wenhuan Jiang
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan, China
- Department of Physics, East Carolina University, Greenville, North Carolina
| |
Collapse
|
33
|
Hassani H, Kreysing E. Noninvasive measurement of the refractive index of cell organelles using surface plasmon resonance microscopy. OPTICS LETTERS 2019; 44:1359-1362. [PMID: 30874650 DOI: 10.1364/ol.44.001359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The health of a eukaryotic cell depends on the proper functioning of its cell organelles. Characterizing these nanometer- to micrometer-scaled specialized subunits without disturbing the cell is challenging but can also provide valuable insights regarding the state of a cell. We show that objective-based scanning surface plasmon resonance microscopy can be used to analyze the refractive index of cell organelles quantitatively in a noninvasive and label-free manner with a lateral resolution at the diffraction limit.
Collapse
|
34
|
Zhang H, Steelman ZA, Ho DS, Chu KK, Wax A. Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology. JOURNAL OF BIOPHOTONICS 2019; 12:e201800258. [PMID: 30239148 PMCID: PMC6375761 DOI: 10.1002/jbio.201800258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 05/05/2023]
Abstract
In recent years, significant work has been devoted to the use of angle-resolved elastic scattering for the extraction of nuclear morphology in tissue. By treating the nucleus as a Mie scattering object, techniques such as angle-resolved low-coherence interferometry (a/LCI) have demonstrated substantial success in identifying nuclear alterations associated with dysplasia. Because optical biopsies are inherently noninvasive, only a small, discretized portion of the 4π scattering field can be collected from tissue, limiting the amount of information available for diagnostic purposes. In this work, we comprehensively characterize the diagnostic impact of variations in angular sampling, range and noise for inverse light scattering analysis of nuclear morphology, using a previously reported dataset from 40 patients undergoing a/LCI optical biopsy for cervical dysplasia. The results from this analysis are applied to a benchtop scanning a/LCI system which compromises angular range for wide-area scanning capability. This work will inform the design of next-generation optical biopsy probes by directing optical design towards parameters which offer the most diagnostic utility.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zachary A. Steelman
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Correspondence: Zachary A. Steelman, Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC, 27705, USA
| | - Derek S. Ho
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Kengyeh K. Chu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
35
|
Leblanc-Hotte A, Sen Nkwe N, Chabot-Roy G, Affar EB, Lesage S, Delisle JS, Peter YA. On-chip refractive index cytometry for whole-cell deformability discrimination. LAB ON A CHIP 2019; 19:464-474. [PMID: 30570636 DOI: 10.1039/c8lc00938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On-chip high-throughput phenotyping of single cells has gained a lot of interest recently due to the discrimination capability of label-free biomarkers such as whole-cell deformability and refractive index. Here we present on-chip refractive index cytometry (RIC) for whole-cell deformability at a high measurement rate. We have further exploited a previously published on-chip optical characterization method which enhances cellular discrimination through the refractive index measurement of single cells. The proposed on-chip RIC can simultaneously probe the cellular refractive index, effective volume and whole-cell deformability while reaching a measurement rate up to 5000 cells per second. Additionally, the relative position of the nucleus inside the cell is reflected by the asymmetry of the measured curve. This particular finding is confirmed by our numerical simulation model and emphasized by a modified cytoskeleton HL-60 cells model. Furthermore, the proposed device discriminated HL-60 derived myeloid cells such as neutrophils, basophils and promyelocytes, which are indistinguishable using flow cytometry. To our knowledge, this is the first integrated device to simultaneously characterize the cellular refractive index and whole-cell deformability, yielding enhanced discrimination of large myeloid cell populations.
Collapse
Affiliation(s)
- Antoine Leblanc-Hotte
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Eldridge WJ, Hoballah J, Wax A. Molecular and biophysical analysis of apoptosis using a combined quantitative phase imaging and fluorescence resonance energy transfer microscope. JOURNAL OF BIOPHOTONICS 2018; 11:e201800126. [PMID: 29896886 DOI: 10.1002/jbio.201800126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2016] [Accepted: 06/06/2018] [Indexed: 05/19/2023]
Abstract
Apoptotic mechanisms are often dysregulated in cancerous phenotypes. Additionally, many anticancer treatments induce apoptosis and necrosis, and the monitoring of this apoptotic activity can allow researchers to identify therapeutic efficiency. Here, we introduce a microscope which combines quantitative phase imaging (QPI) with the ability to detect molecular events via fluorescence (or Förster) resonance energy transfer (FRET). The system was applied to study cells undergoing apoptosis to correlate the onset of apoptotic enzyme activity as observed using a FRET-based apoptosis sensor with whole cell morphological changes analyzed via QPI. The QPI data showed changes in cell disorder strength during the initiation of apoptotic enzymatic activity.
Collapse
Affiliation(s)
- Will J Eldridge
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jawad Hoballah
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
37
|
Abstract
Ultraviolet (UV) spectroscopy is a powerful tool for quantitative (bio)chemical analysis, but its application to molecular imaging and microscopy has been limited. Here we introduce ultraviolet hyperspectral interferometric (UHI) microscopy, which leverages coherent detection of optical fields to overcome significant challenges associated with UV spectroscopy when applied to molecular imaging. We demonstrate that this method enables quantitative spectral analysis of important endogenous biomolecules with subcellular spatial resolution and sensitivity to nanometer-scaled structures for label-free molecular imaging of live cells.
Collapse
|
38
|
Yurkin MA. How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?: A Comment on two papers by Steelman et al. and Schürmann et al. Read the Responses to this Comment: e201800091 and e201800095. JOURNAL OF BIOPHOTONICS 2018; 11:e201800033. [PMID: 29722164 DOI: 10.1002/jbio.201800033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
In recent papers Steelman et al. ("Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies") and Schürmann et al. ("Cell nuclei have lower refractive index and mass density than cytoplasm") obtained quantitative phase images of whole cells of various types and corresponding isolated nuclei and concluded that the refractive index (RI) of the nucleus is significantly smaller than that of the cytoplasm. The comment shows that this conclusion and assumptions used in retrieving the RI necessarily imply a characteristic dip in the center of the whole-cell phase images. This dip is not present in any of the phase images in the discussed papers, which is a strong argument against the conclusion of smaller nucleus RI. It is also discussed whether a different processing of the phase images can help to clarify this issue.
Collapse
Affiliation(s)
- Maxim A Yurkin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
39
|
Steelman ZA, Eldridge WJ, Wax A. Response to Comment on "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033. JOURNAL OF BIOPHOTONICS 2018; 11:e201800091. [PMID: 29722169 PMCID: PMC6814151 DOI: 10.1002/jbio.201800091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 05/05/2023]
Abstract
Recently, Maxim A. Yurkin commented on our paper "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies" as well as on a complementary study "Cell nuclei have lower refractive index and mass density than cytoplasm" from Schürmann et al. In his comment, Yurkin concluded that quantitative phase images of cells with nuclei that are less optically dense than the cytoplasm must exhibit a characteristic concavity, the absence of which is evidence against our conclusion of a less-dense nucleus. In this response, we suggest that Yurkin's conclusion is reached through an oversimplification of the spatial refractive index distribution within cells, which does not account for high index inclusions such as the nucleolus. We further cite recent studies in 3-dimensional refractive index imaging, in which the preponderance of studies supports our conclusion. Finally, we comment on the current state of knowledge regarding subcellular refractive index distributions in living cells.
Collapse
Affiliation(s)
- Zachary A. Steelman
- Correspondence: Zachary A. Steelman,
Department of Biomedical Engineering, Duke University, 101 Science Drive,
Durham, NC 27708,
| | | | | |
Collapse
|
40
|
Dardikman G, Nygate YN, Barnea I, Turko NA, Singh G, Javidi B, Shaked NT. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2018. [PMID: 29541511 PMCID: PMC5846521 DOI: 10.1364/boe.9.001177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.
Collapse
Affiliation(s)
- Gili Dardikman
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| | - Yoav N. Nygate
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| | - Itay Barnea
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| | - Nir A. Turko
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| | - Gyanendra Singh
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| | - Barham Javidi
- University of Connecticut, Faculty of Engineering, Department of Electrical and Computer Engineering, Storrs 06269-4157, Connecticut, USA
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Steelman ZA, Kim S, Jelly ET, Crose M, Chu KK, Wax A. Comparison of imaging fiber bundles for coherence-domain imaging. APPLIED OPTICS 2018; 57:1455-1462. [PMID: 29469848 PMCID: PMC6171504 DOI: 10.1364/ao.57.001455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/21/2018] [Indexed: 05/06/2023]
Abstract
Use of imaging fiber bundles for coherence-domain imaging has remained limited to date. In this work, we provide characterization of commercially available imaging bundles for coherence-domain imaging, by evaluating their modal structure for applicability to interferometric imaging. We further examine custom fabricated bundles developed in collaboration with a corporate partner for their ability to reduce interelement optical path length variability and cross talk between elements. The results presented here will serve as a useful guide for comparing fiber bundles for coherence imaging while also offering an improved understanding of the functionality and limitations of imaging bundles for advancing coherent imaging technologies.
Collapse
Affiliation(s)
- Zachary A. Steelman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | - Sanghoon Kim
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | - Evan T. Jelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | - Michael Crose
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | - Kengyeh K. Chu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| |
Collapse
|
42
|
Ling T, Boyle KC, Goetz G, Zhou P, Quan Y, Alfonso FS, Huang TW, Palanker D. Full-field interferometric imaging of propagating action potentials. LIGHT, SCIENCE & APPLICATIONS 2018; 7:107. [PMID: 30564313 PMCID: PMC6290013 DOI: 10.1038/s41377-018-0107-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 05/15/2023]
Abstract
Currently, cellular action potentials are detected using either electrical recordings or exogenous fluorescent probes that sense the calcium concentration or transmembrane voltage. Ca imaging has a low temporal resolution, while voltage indicators are vulnerable to phototoxicity, photobleaching, and heating. Here, we report full-field interferometric imaging of individual action potentials by detecting movement across the entire cell membrane. Using spike-triggered averaging of movies synchronized with electrical recordings, we demonstrate deformations up to 3 nm (0.9 mrad) during the action potential in spiking HEK-293 cells, with a rise time of 4 ms. The time course of the optically recorded spikes matches the electrical waveforms. Since the shot noise limit of the camera (~2 mrad/pix) precludes detection of the action potential in a single frame, for all-optical spike detection, images are acquired at 50 kHz, and 50 frames are binned into 1 ms steps to achieve a sensitivity of 0.3 mrad in a single pixel. Using a self-reinforcing sensitivity enhancement algorithm based on iteratively expanding the region of interest for spatial averaging, individual spikes can be detected by matching the previously extracted template of the action potential with the optical recording. This allows all-optical full-field imaging of the propagating action potentials without exogeneous labels or electrodes.
Collapse
Affiliation(s)
- Tong Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Kevin C. Boyle
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
| | - Peng Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA
| | - Yi Quan
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Felix S. Alfonso
- Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Tiffany W. Huang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
43
|
Stephan J, Keber F, Stierle V, Rädler JO, Paulitschke P. Single-Cell Optical Distortion Correction and Label-Free 3D Cell Shape Reconstruction on Lattices of Nanostructures. NANO LETTERS 2017; 17:8018-8023. [PMID: 29199833 DOI: 10.1021/acs.nanolett.7b04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Imaging techniques can be compromised by aberrations. Especially when imaging through biological specimens, sample-induced distortions can limit localization accuracy. In particular, this phenomenon affects localization microscopy, traction force measurements, and single-particle tracking, which offer high-resolution insights into biological tissue. Here we present a method for quantifying and correcting the optical distortions induced by single, adherent, living cells. The technique uses periodically patterned gold nanostructures as a reference framework to quantify optically induced displacements with micrometer-scale sampling density and an accuracy of a few nanometers. The 3D cell shape and a simplified geometrical optics approach are then utilized to remap the microscope image. Our experiments reveal displacements of up to several hundred nanometers, and in corrected images these distortions are reduced by a factor of 3. Conversely, the relationship between cell shape and distortion provides a novel method of 3D cell shape reconstruction from a single image, enabling label-free 3D cell analysis.
Collapse
Affiliation(s)
- Jürgen Stephan
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Felix Keber
- Physics Department, Technische Universität München , 85748 Garching, Germany
| | - Valentin Stierle
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
44
|
Chowdhury S, Eldridge WJ, Wax A, Izatt JA. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction. BIOMEDICAL OPTICS EXPRESS 2017; 8:5776-5793. [PMID: 29296504 PMCID: PMC5745119 DOI: 10.1364/boe.8.005776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions.
Collapse
Affiliation(s)
- Shwetadwip Chowdhury
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Will J. Eldridge
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Fitzpatrick Institute for Photonics, 1427 FCIEMAS, 101 Science Drive Box 90281, Durham, North Carolina 27708, USA
| |
Collapse
|