1
|
Brewer MT, Mertens M, Colina-Iturralde A, Chelladurai JJ, Martin KA, Chinchilla-Vargas K, Kelly SM, Narasimhan B, Griffith RW, Jones DE. Implantation of a vaccine platform for extended antigen release (VPEAR) induces long-term immunity against Haemonchus contortus in sheep. Sci Rep 2025; 15:12168. [PMID: 40204811 PMCID: PMC11982313 DOI: 10.1038/s41598-025-95929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
The nematode Haemonchus contortus causes severe anemia in sheep and goats. Drug-resistant isolates are common, prompting a need for parasite control measures beyond chemotherapeutics. Vaccination is one promising approach for mitigation of clinical signs associated with haemonchosis. One challenge for H. contortus vaccine efforts is the need to administer repeated boosting doses at regular intervals. In this study, we evaluated a vaccine platform for extended antigen release (VPEAR) designed to initiate and maintain long-term immunity following a single immunization event in sheep. We compared a soluble vaccine depot with montanide adjuvant to the VPEAR platform with two different adjuvant combinations. Vaccination with VPEAR adjuvanted with DEAE-dextran induced antibody titers in 5 out of 6 vaccinated sheep up to 47 weeks post-vaccination. Challenge experiments revealed a 73% decrease in adult worm burden in this vaccine group compared to adjuvant alone and serum antibodies from these animals bound the luminal surface of the parasite intestine. Overall, the VPEAR platform was effective for long-term vaccination with no indication of immune tolerance to the parasite upon challenge.
Collapse
Affiliation(s)
- Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA.
| | - Micaela Mertens
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Alfredo Colina-Iturralde
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Jeba Jesudoss Chelladurai
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Katy A Martin
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Krystal Chinchilla-Vargas
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, USA
- Nanovaccine Institute, Iowa State University, Ames, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, USA
- Nanovaccine Institute, Iowa State University, Ames, USA
| | - Ronald W Griffith
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| |
Collapse
|
2
|
Nethi SK, Kothadiya S, White BM, Rachagani S, Bardhan R, Mallapragada SK. Polyanhydride Copolymer-Based Niclosamide Nanoparticles for Inhibiting Triple-Negative Breast Cancer: Metabolic Responses and Synergism with Paclitaxel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70362-70377. [PMID: 39666980 DOI: 10.1021/acsami.4c17961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The heterogeneity of tumors and the lack of effective therapies have resulted in triple-negative breast cancer (TNBC) exhibiting the least favorable outcomes among breast cancer subtypes. TNBC is characterized by its aggressive nature, often leading to high rates of relapse, metastasis, and mortality. Niclosamide (Nic), an Food and Drug Administration-approved anthelmintic drug, has been repurposed for cancer treatment; however, its application for TNBC is hindered by significant challenges, including strong hydrophobicity, poor aqueous solubility, and low bioavailability. This study aimed to develop Nic nanoparticles (Nic NPs) using biodegradable and biocompatible polyanhydride copolymers to enhance Nic's bioavailability and therapeutic efficacy. Nic NPs effectively inhibited migration, proliferation, and clonogenicity in both murine and human TNBC cells, inducing apoptosis and suppressing STAT3 signaling. For the first time, we utilized Raman spectroscopy and Seahorse extracellular flux assays to demonstrate the metabolic responses of TNBC cells to Nic NPs, revealing significant metabolic alterations, including the inhibition of mitochondrial respiration and glycolysis. Additionally, this study is the first to explore the combination therapy of repurposed Nic with the approved chemotherapeutic agent paclitaxel in the 4T1 TNBC immunocompetent mouse model. The combination of Nic NPs and paclitaxel significantly reduced tumor growth without adversely affecting the body weight of tumor-bearing mice. In summary, these findings suggest that Nic NPs could serve as a promising component in combination therapies for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa50011, United States
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa50011, United States
| | - Brianna M White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa50011, United States
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
3
|
Grego E, Kelly SM, McGill JL, Wannemuehler M, Narasimhan B. Bovine Respiratory Syncytial Virus Nanovaccine Induces Long-Lasting Humoral Immunity in Mice. ACS Pharmacol Transl Sci 2024; 7:3205-3215. [PMID: 39421663 PMCID: PMC11480889 DOI: 10.1021/acsptsci.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668. These nanovaccine formulations were administered to C57BL/6 mice by one of two prime-boost regimens (i.e., intranasal/intranasal or intranasal/subcutaneous) followed by assessment of humoral immunity. The cocktail nanovaccine induced sustained anti-F and anti-G serum IgG antibody responses for 12 weeks postprimary immunization. Using polyanhydride particles to deliver G protein in a prime-boost regime also significantly induced serum anti-G antibodies compared to protein and coadjuvant alone. Serum IgG induced by the nanovaccine demonstrated virus-neutralizing capability from 42 to 119 days postprimary immunization. Further, anti-F IgG antibodies were detected in the bronchoalveolar lavage fluid of vaccinated animals. Finally, the nanovaccine induced long-lived anti-F antibody secreting plasma cells that were detectable in the bone marrow 205 days postprimary immunization. Overall, the BRSV nanovaccine(s) successfully induced long-lived humoral immune responses capable of virus neutralization, making this a promising vaccine candidate for further evaluation in other relevant animal models.
Collapse
Affiliation(s)
- Elizabeth Grego
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Sean M. Kelly
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Jodi L. McGill
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Wannemuehler
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Lopez CE, Zacharias ZR, Ross KA, Narasimhan B, Waldschmidt TJ, Legge KL. Polyanhydride nanovaccine against H3N2 influenza A virus generates mucosal resident and systemic immunity promoting protection. NPJ Vaccines 2024; 9:96. [PMID: 38822003 PMCID: PMC11143372 DOI: 10.1038/s41541-024-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. The antigenic drift/shift of IAV continually gives rise to new strains and subtypes, aiding IAV in circumventing previously established immunity. As a result, there has been substantial interest in developing a broadly protective IAV vaccine that induces, durable immunity against multiple IAVs. Previously, a polyanhydride nanoparticle-based vaccine or nanovaccine (IAV-nanovax) encapsulating H1N1 IAV antigens was reported, which induced pulmonary B and T cell immunity and resulted in cross-strain protection against IAV. A key feature of IAV-nanovax is its ability to easily incorporate diverse proteins/payloads, potentially increasing its ability to provide broad protection against IAV and/or other pathogens. Due to human susceptibility to both H1N1 and H3N2 IAV, several H3N2 nanovaccines were formulated herein with multiple IAV antigens to examine the "plug-and-play" nature of the polyanhydride nanovaccine platform and determine their ability to induce humoral and cellular immunity and broad-based protection similar to IAV-nanovax. The H3N2-based IAV nanovaccine formulations induced systemic and mucosal B cell responses which were associated with antigen-specific antibodies. Additionally, systemic and lung-tissue resident CD4 and CD8 T cell responses were enhanced post-vaccination. These immune responses corresponded with protection against both homologous and heterosubtypic IAV infection. Overall, these results demonstrate the plug-and-play nature of the polyanhydride nanovaccine platform and its ability to generate immunity and protection against IAV utilizing diverse antigenic payloads.
Collapse
Affiliation(s)
- Christopher E Lopez
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Thomas J Waldschmidt
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Kevin L Legge
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA.
- Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
7
|
Binnebose AM, Mullis AS, Haughney SL, Narasimhan B, Bellaire BH. Nanotherapeutic delivery of antibiotic cocktail enhances intra-macrophage killing of Mycobacterium marinum. FRONTIERS IN ANTIBIOTICS 2023; 2:1162941. [PMID: 39816663 PMCID: PMC11732124 DOI: 10.3389/frabi.2023.1162941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 01/18/2025]
Abstract
Mycobacterium marinum is a waterborne pathogen responsible for tuberculosis-like infections in cold-blooded animals and is an opportunistic pathogen in humans. M. marinum is the closest genetic relative of the Mycobacterium tuberculosis complex and is a reliable surrogate for drug susceptibility testing. We synthesized and evaluated two nanoparticle (NP) formulations for compatibility with rifampicin, isoniazid, pyrazinamide, and ethambutol (PIRE), the front-line antimycobacterial drugs used in combination against active tuberculosis infections. Improved in vitro antimicrobial activity was observed with encapsulated rifampicin alone or in a cocktail of drugs formulated through co-encapsulation in amphiphilic polyanhydride NPs. Broth antimicrobial testing revealed that the encapsulation of PIRE in NP resulted in a significant increase in antimicrobial activity, with the benefit over soluble formulations at biologically relevant concentrations ranging from >10 to >3,000 fold. M. marinum-infected human macrophages treated with NP-PIRE were cleared of viable bacteria in 48 h following a single treatment, representing a >4 log reduction in colony-forming units and a >2,000-fold increase in antimicrobial activity. The amphiphilic polyanhydride nanoparticles demonstrated the ability to co-encapsulate PIRE antibiotics and enhance their antimicrobial activity against M. marinum in infected macrophages in culture and in vitro. These data suggest that polyanhydride nanoparticles are a promising nanotherapeutic for combatting Mycobacterium infections through improved intracellular targeting of encapsulated antibiotics.
Collapse
Affiliation(s)
- Andrea M. Binnebose
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Cargill Animal Nutrition, Elk River, MN, United States
| | - Adam S. Mullis
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Ross KA, Tingle AM, Senapati S, Holden KG, Wannemuehler MJ, Mallapragada SK, Narasimhan B, Kohut ML. Novel nanoadjuvants balance immune activation with modest inflammation: implications for older adult vaccines. Immun Ageing 2023; 20:28. [PMID: 37344886 PMCID: PMC10283283 DOI: 10.1186/s12979-023-00349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Age-associated impairments of immune response and inflammaging likely contribute to poor vaccine efficacy. An appropriate balance between activation of immune memory and inflammatory response may be more effective in vaccines for older adults; attempts to overcome reduced efficacy have included the addition of adjuvants or increased antigenic dose. Next generation vaccine formulations may also use biomaterials to both deliver and adjuvant vaccine antigens. In the context of aging, it is important to determine the degree to which new biomaterials may enhance antigen-presenting cell (APC) functions without inducing potent inflammatory responses of APCs or other immune cell types (e.g., T cells). However, the effect of newer biomaterials on these cell types from young and older adults remains unknown. RESULTS In this pilot study, cells from young and older adults were used to evaluate the effect of novel biomaterials such as polyanhydride nanoparticles (NP) and pentablock copolymer micelles (Mi) and cyclic dinucleotides (CDN; a STING agonist) on cytokine and chemokine secretion in comparison to standard immune activators such as lipopolysaccharide (LPS) and PMA/ionomycin. The NP treatment showed adjuvant-like activity with induction of inflammatory cytokines, growth factors, and select chemokines in peripheral blood mononuclear cells (PBMCs) of both young (n = 6) and older adults (n = 4), yet the degree of activation was generally less than LPS. Treatment with Mi or CDN resulted in minimal induction of cytokines and chemokine secretion with the exception of increased IFN-α and IL-12p70 by CDN. Age-related decreases were observed across multiple cytokines and chemokines, yet IFN-α, IL-12, and IL-7 production by NP or CDN stimulation was equal to or greater than in cells from younger adults. Consistent with these results in aged humans, a combination nanovaccine composed of NP, Mi, and CDN administered to aged mice resulted in a greater percentage of antigen-specific CD4+ T cells and greater effector memory cells in draining lymph nodes compared to an imiquimod-adjuvanted vaccine. CONCLUSIONS Overall, our novel biomaterials demonstrated a modest induction of cytokine secretion with a minimal inflammatory profile. These findings suggest a unique role for biomaterial nanoadjuvants in the development of next generation vaccines for older adults.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - April M Tingle
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
| | - Sujata Senapati
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Immunobiology, Iowa State University, Ames, IA, 50011, USA.
- Kinesiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Mullis AS, Broderick SR, Phadke KS, Peroutka-Bigus N, Bellaire BH, Rajan K, Narasimhan B. Data analytics-guided rational design of antimicrobial nanomedicines against opportunistic, resistant pathogens. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102647. [PMID: 36581257 DOI: 10.1016/j.nano.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/27/2022]
Abstract
Nanoparticle carriers can improve antibiotic efficacy by altering drug biodistribution. However, traditional screening is impracticable due to a massive dataspace. A hybrid informatics approach was developed to identify polymer, antibiotic, and particle determinants of antimicrobial nanomedicine activity against Burkholderia cepacia, and to model nanomedicine performance. Polymer glass transition temperature, drug octanol-water partition coefficient, strongest acid dissociation constant, physiological charge, particle diameter, count and mass mean polydispersity index, zeta potential, fraction drug released at 2 h, and fraction release slope at 2 h were highly correlated with antimicrobial performance. Graph analysis provided dimensionality reduction while preserving nonlinear descriptor-property relationships, enabling accurate modeling of nanomedicine performance. The model successfully predicted particle performance in holdout validation, with moderate accuracy at rank-ordering. This data analytics-guided approach provides an important step toward the development of a rational design framework for antimicrobial nanomedicines against resistant infections by selecting appropriate carriers and payloads for improved potency.
Collapse
Affiliation(s)
- Adam S Mullis
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| | - Scott R Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, United States.
| | - Kruttika S Phadke
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States.
| | - Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States.
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States; Nanovaccine Institute, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
11
|
Abstract
Polyanhydrides (PAs) are a class of synthetic biodegradable polymers employed as controlled drug delivery vehicles. They can be synthesized and scaled up from low-cost starting materials. The structure of PAs can be manipulated synthetically to meet desirable characteristics. PAs are biocompatible, biodegradable, and generate nontoxic metabolites upon degradation, which are easily eliminated from the body. The rate of water penetrating into the polyanhydride (PA) matrix is slower than the anhydride bond cleavage. This phenomenon sets PAs as "surface-eroding drug delivery carriers." Consequently, a variety of PA-based drug delivery carriers in the form of solid implants, pasty injectable formulations, microspheres, nanoparticles, etc. have been developed for the sustained release of small molecule drugs, and vaccines, peptide drugs, and nucleic acid-based active agents. The rate of drug delivery is often controlled by the polymer erosion rate, which is influenced by the polymer structure and composition, crystallinity, hydrophobicity, pH of the release medium, device size, configuration, etc. Owing to the above-mentioned interesting physicochemical and mechanical properties of PAs, the present review focuses on the advancements made in the domain of synthetic biodegradable biomedical PAs for therapeutic delivery applications. Various classes of PAs, their structures, their unique characteristics, their physicochemical and mechanical properties, and factors influencing surface erosion are discussed in detail. The review also summarizes various methods involved in the synthesis of PAs and their utility in the biomedical domain as drug, vaccine, and peptide delivery carriers in different formulations are reviewed.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| |
Collapse
|
12
|
Long-Lasting Protection Induced by a Polyanhydride Nanovaccine against Respiratory Syncytial Virus in an Outbred Mouse Model. J Virol 2022; 96:e0150222. [PMID: 36314826 PMCID: PMC9683007 DOI: 10.1128/jvi.01502-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children. In humans, natural infection with RSV affords only partial long-term protection from reinfection, and there is no licensed RSV vaccine currently available. We have developed a new vaccine candidate, termed RSVNanoVax, composed of polyanhydride nanoparticles encapsulating the RSV prefusion F protein and a CpG 1668 oligodeoxynucleotide adjuvant. We recently reported that vaccination of inbred BALB/c mice with RSVNanoVax induced both RSV-specific cellular and humoral immunity, which provided protection from viral replication and RSV-induced disease. To further assess the efficacy of RSVNanoVax, here, we utilized outbred Swiss Webster mice to examine vaccine efficacy in a more genetically diverse population. Following intranasal prime-boost vaccination with RSVNanoVax, Swiss Webster mice exhibited robust titers of systemic RSV F-directed IgG antibodies and RSV F-directed IgA within the lungs and nasal passages that were sustained out to at least 1 year post-vaccination. Serum antibodies maintained robust neutralizing activity against both RSV A and B strains. Following RSV challenge, vaccinated Swiss Webster mice exhibited rapid viral clearance from the lungs. Overall, our results indicate that RSVNanoVax represents a promising RSV vaccine candidate capable of providing long-term protection and immunity in a genetically diverse population. IMPORTANCE Respiratory syncytial virus (RSV) infection causes thousands of infections and deaths in children and elderly adults each year. Research in this field is of great importance as there remains no licensed vaccine to prevent RSV infections. We developed a novel vaccine candidate, RSVNanoVax, utilizing the RSV prefusion F protein encapsulated in polyanhydride nanoparticles. Here, we show that the intranasal delivery of RSVNanoVax protected outbred mice from viral replication within the lungs when challenged with RSV out to 1 year post-vaccination. Additionally, RSV-specific antibody responses were generated in both the serum and lung tissue and sustained long-term. These results demonstrate that our vaccine is an encouraging candidate for driving long-term protection in the lungs in a genetically diverse population.
Collapse
|
13
|
Phanse Y, Puttamreddy S, Loy D, Ramirez JV, Ross KA, Alvarez-Castro I, Mogler M, Broderick S, Rajan K, Narasimhan B, Bartholomay LC. RNA Nanovaccine Protects against White Spot Syndrome Virus in Shrimp. Vaccines (Basel) 2022; 10:vaccines10091428. [PMID: 36146509 PMCID: PMC9504209 DOI: 10.3390/vaccines10091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
In the last 15 years, crustacean fisheries have experienced billions of dollars in economic losses, primarily due to viral diseases caused by such pathogens as white spot syndrome virus (WSSV) in the Pacific white shrimp Litopenaeus vannamei and Asian tiger shrimp Penaeus monodon. To date, no effective measures are available to prevent or control disease outbreaks in these animals, despite their economic importance. Recently, double-stranded RNA-based vaccines have been shown to provide specific and robust protection against WSSV infection in cultured shrimp. However, the limited stability of double-stranded RNA is the most significant hurdle for the field application of these vaccines with respect to delivery within an aquatic system. Polyanhydride nanoparticles have been successfully used for the encapsulation and release of vaccine antigens. We have developed a double-stranded RNA-based nanovaccine for use in shrimp disease control with emphasis on the Pacific white shrimp L. vannamei. Nanoparticles based on copolymers of sebacic acid, 1,6-bis(p-carboxyphenoxy)hexane, and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane exhibited excellent safety profiles, as measured by shrimp survival and histological evaluation. Furthermore, the nanoparticles localized to tissue target replication sites for WSSV and persisted through 28 days postadministration. Finally, the nanovaccine provided ~80% protection in a lethal WSSV challenge model. This study demonstrates the exciting potential of a safe, effective, and field-applicable RNA nanovaccine that can be rationally designed against infectious diseases affecting aquaculture.
Collapse
Affiliation(s)
- Yashdeep Phanse
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Pan Genome Systems, Madison, WI 53719, USA
| | - Supraja Puttamreddy
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Merck Animal Health, Ames, IA 50010, USA
| | - Duan Loy
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Veterinary Diagnostics Center, University of Nebraska Lincoln, Lincoln, NE 68583, USA
| | - Julia Vela Ramirez
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Kathleen A. Ross
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | | | - Mark Mogler
- Merck Animal Health, Ames, IA 50010, USA
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Scott Broderick
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
| | - Krishna Rajan
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
- Correspondence: (B.N.); (L.C.B.); Tel.: +1-515-294-8019 (B.N.); +1-608-890-1965 (L.C.B.)
| | - Lyric C. Bartholomay
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (B.N.); (L.C.B.); Tel.: +1-515-294-8019 (B.N.); +1-608-890-1965 (L.C.B.)
| |
Collapse
|
14
|
Siddoway AC, Verhoeven D, Ross KA, Wannemuehler MJ, Mallapragada SK, Narasimhan B. Structural Stability and Antigenicity of Universal Equine H3N8 Hemagglutinin Trimer upon Release from Polyanhydride Nanoparticles and Pentablock Copolymer Hydrogels. ACS Biomater Sci Eng 2022; 8:2500-2507. [PMID: 35604784 DOI: 10.1021/acsbiomaterials.2c00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seasonal influenza A virus infections present substantial costs to both health and economic resources each year. Current seasonal influenza vaccines provide suboptimal protection and require annual reformulation to match circulating strains. In this work, a recombinant equine H3N8 hemagglutinin trimer (rH33) known to generate cross-protective antibodies and protect animals against sublethal, heterologous virus challenge was used as a candidate vaccine antigen. Nanoadjuvants such as polyanhydride nanoparticles and pentablock copolymer hydrogels have been shown to be effective adjuvants, inducing both rapid and long-lived protective immunity against influenza A virus. In this work, polyanhydride nanoparticles and pentablock copolymer hydrogels were used to provide sustained release of the novel rH33 while also facilitating the retention of its structure and antigenicity. These studies lay the groundwork for the development of a novel universal influenza A virus nanovaccine by combining the equine H3N8 rH33 and polymeric nanoadjuvant platforms.
Collapse
Affiliation(s)
- Alaric C Siddoway
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Verhoeven
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | | | - Michael J Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Surya K Mallapragada
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications. ENCYCLOPEDIA OF MATERIALS: PLASTICS AND POLYMERS 2022:567-592. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Dassanayake RP, Atkinson BM, Mullis AS, Falkenberg SM, Nicholson EM, Casas E, Narasimhan B, Bearson SMD. Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Sci Rep 2021; 11:19276. [PMID: 34588573 PMCID: PMC8481502 DOI: 10.1038/s41598-021-98860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella is a threat to public health. Non-antibiotic therapies could serve as important countermeasures to control MDR Salmonella outbreaks. In this study, antimicrobial activity of cationic α-helical bovine NK-lysin-derived antimicrobial peptides was evaluated against MDR Salmonella outbreak isolates. NK2A and NK2B strongly inhibited MDR Salmonella growth while NK1 and NK2C showed minimum-to-no growth inhibition. Scrambled-NK2A, which is devoid of α-helicity but has the same net positive charge as NK2A, also failed to inhibit bacterial growth. Incubation of negatively charged MDR Salmonella with NK2A showed increased Zeta potential, indicating bacterial-peptide electrostatic attraction. Confocal and transmission electron microscopy studies revealed NK2A-mediated damage to MDR Salmonella membranes. LPS inhibited NK2A-mediated growth suppression in a dose-dependent response, suggesting irreversible NK2A-LPS binding. LPS-NK2A binding and bacterial membrane disruption was also confirmed via electron microscopy using gold nanoparticle-NK2A conjugates. Finally, NK2A-loaded polyanhydride nanoparticles showed sustained peptide delivery and anti-bacterial activity. Together, these findings indicate that NK2A α-helicity and positive charge are prerequisites for antimicrobial activity and that MDR Salmonella killing is mediated by direct interaction of NK2A with LPS and the inner membrane, leading to bacterial membrane permeabilization. With further optimization using nano-carriers, NK2A has the potential to become a potent anti-MDR Salmonella agent.
Collapse
Affiliation(s)
- Rohana P Dassanayake
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA.
| | - Briony M Atkinson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA
| | - Adam S Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shollie M Falkenberg
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Eduardo Casas
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shawn M D Bearson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA.
| |
Collapse
|
17
|
Kelly SM, Larsen KR, Darling R, Petersen AC, Bellaire BH, Wannemuehler MJ, Narasimhan B. Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine 2021; 39:3862-3870. [PMID: 34090702 DOI: 10.1016/j.vaccine.2021.05.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, continues to be a prominent biological warfare and bioterrorism threat. Vaccination is likely to remain the most effective and user-friendly public health measure to counter this threat in the foreseeable future. The commercially available AVA BioThrax vaccine has a number of shortcomings where improvement would lead to a more practical and effective vaccine for use in the case of an exposure event. Identification of more effective adjuvants and novel delivery platforms is necessary to improve not only the effectiveness of the anthrax vaccine, but also enhance its shelf stability and ease-of-use. Polyanhydride particles have proven to be an effective platform at adjuvanting the vaccine-associated adaptive immune response as well as enhancing stability of encapsulated antigens. Another class of adjuvants, the STING pathway-targeting cyclic dinucleotides, have proven to be uniquely effective at inducing a beneficial inflammatory response that leads to the rapid induction of high titer antibodies post-vaccination capable of providing protection against bacterial pathogens. In this work, we evaluate the individual contributions of cyclic di-GMP (CDG), polyanhydride nanoparticles, and a combination thereof towards inducing neutralizing antibody (nAb) against the secreted protective antigen (PA) from B. anthracis. Our results show that the combination nanovaccine elicited rapid, high titer, and neutralizing IgG anti-PA antibody following single dose immunization that persisted for at least 108 DPI.
Collapse
Affiliation(s)
- Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States
| | - Kristina R Larsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States
| | - Ross Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Andrew C Petersen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Ames, IA, United States.
| |
Collapse
|
18
|
Liu L, Kshirsagar P, Christiansen J, Gautam SK, Aithal A, Gulati M, Kumar S, Solheim JC, Batra SK, Jain M, Wannemuehler MJ, Narasimhan B. Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. J Biomed Mater Res A 2021; 109:893-902. [PMID: 32776461 PMCID: PMC8100985 DOI: 10.1002/jbm.a.37080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies and represents an increasing and challenging threat, especially with an aging population. The identification of immunogenic PC-specific upregulated antigens and an enhanced understanding of the immunosuppressive tumor microenvironment have provided opportunities to enable the immune system to recognize cancer cells. Due to its differential upregulation and functional role in PC, the transmembrane mucin MUC4 is an attractive target for immunotherapy. In the current study we characterized the antigen stability, antigenicity and release kinetics of a MUC4β-nanovaccine to guide further optimization and, in vivo evaluation. Amphiphilic polyanhydride copolymers based on 20 mol % 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and 80 mol % 1,6-bis(p-carboxyphenoxy)hexane were used to synthesize nanoparticles. Structurally stable MUC4β protein was released from the particles in a sustained manner and characterized by gel electrophoresis and fluorescence spectroscopy. Modest levels of protein degradation were observed upon release. The released protein was also analyzed by MUC4β-specific monoclonal antibodies using ELISA and showed no significant loss of epitope availability. Further, mice immunized with multiple formulations of combination vaccines containing MUC4β-loaded nanoparticles generated MUC4β-specific antibody responses. These results indicate that polyanhydride nanoparticles are viable MUC4β vaccine carriers, laying the foundation for evaluation of this platform for PC immunotherapy.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joyce C. Solheim
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
- Nanovaccine Institute, Iowa State University, Ames, Iowa
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
- Nanovaccine Institute, Iowa State University, Ames, Iowa
| |
Collapse
|
19
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
20
|
Ho W, Gao M, Li F, Li Z, Zhang X, Xu X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv Healthc Mater 2021; 10:e2001812. [PMID: 33458958 PMCID: PMC7995055 DOI: 10.1002/adhm.202001812] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/06/2020] [Indexed: 01/07/2023]
Abstract
Nucleic acid vaccines are a method of immunization aiming to elicit immune responses akin to live attenuated vaccines. In this method, DNA or messenger RNA (mRNA) sequences are delivered to the body to generate proteins, which mimic disease antigens to stimulate the immune response. Advantages of nucleic acid vaccines include stimulation of both cell-mediated and humoral immunity, ease of design, rapid adaptability to changing pathogen strains, and customizable multiantigen vaccines. To combat the SARS-CoV-2 pandemic, and many other diseases, nucleic acid vaccines appear to be a promising method. However, aid is needed in delivering the fragile DNA/mRNA payload. Many delivery strategies have been developed to elicit effective immune stimulation, yet no nucleic acid vaccine has been FDA-approved for human use. Nanoparticles (NPs) are one of the top candidates to mediate successful DNA/mRNA vaccine delivery due to their unique properties, including unlimited possibilities for formulations, protective capacity, simultaneous loading, and delivery potential of multiple DNA/mRNA vaccines. This review will summarize the many varieties of novel NP formulations for DNA and mRNA vaccine delivery as well as give the reader a brief synopsis of NP vaccine clinical trials. Finally, the future perspectives and challenges for NP-mediated nucleic acid vaccines will be explored.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Fengqiao Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Zhongyu Li
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Educationand School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringNew Jersey Institute of Technology323 Dr Martin Luther King Jr BlvdNewarkNJ07102USA
| |
Collapse
|
21
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
22
|
Biodistribution of degradable polyanhydride particles in Aedes aegypti tissues. PLoS Negl Trop Dis 2020; 14:e0008365. [PMID: 32898130 PMCID: PMC7500644 DOI: 10.1371/journal.pntd.0008365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/18/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Insecticide resistance poses a significant threat to the control of arthropods that transmit disease agents. Nanoparticle carriers offer exciting opportunities to expand the armamentarium of insecticides available for public health and other pests. Most chemical insecticides are delivered by contact or feeding, and from there must penetrate various biological membranes to reach target organs and kill the pest organism. Nanoparticles have been shown to improve bioactive compound navigation of such barriers in vertebrates, but have not been well-explored in arthropods. In this study, we explored the potential of polyanhydride micro- and nanoparticles (250 nm- 3 μm), labeled with rhodamine B to associate with and/or transit across insect biological barriers, including the cuticle, epithelium, midgut and ovaries, in female Ae. aeygpti mosquitoes. Mosquitoes were exposed using conditions to mimic surface contact with a residual spray or paint, topical exposure to mimic contact with aerosolized insecticide, or per os in a sugar meal. In surface contact experiments, microparticles were sometimes observed in association with the exterior of the insect cuticle. Nanoparticles were more uniformly distributed across exterior tissues and present at higher concentrations. Furthermore, by surface contact, topical exposure, or per os, particles were detected in internal organs. In every experiment, amphiphilic polyanhydride nanoparticles associated with internal tissues to a higher degree than hydrophobic nanoparticles. In vitro, nanoparticles associated with Aedes aegypti Aag2 cells within two hours of exposure, and particles were evident in the cytoplasm. Further studies demonstrated that particle uptake is dependent on caveolae-mediated endocytosis. The propensity of these nanoparticles to cross biological barriers including the cuticle, to localize in target tissue sites of interest, and to reach the cytoplasm of cells, provides great promise for targeted delivery of insecticidal candidates that cannot otherwise reach these cellular and subcellular locations.
Collapse
|
23
|
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, Wannemuehler M. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 + T Cell Memory and Delayed Tumor Progression. Int J Nanomedicine 2020; 15:6579-6592. [PMID: 32982219 PMCID: PMC7490050 DOI: 10.2147/ijn.s261041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8+ T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation. Methods Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8+ T cell memory in a model system where antigen-specific protection is restricted to CD8+ T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and phenotype of APC activation. Primary DCs, particularly those with described ability to activate CD8+ T cells, are also evaluated for their in vitro responses to polyanhydride nanoparticles. Results Herein, polyanhydride nanoparticles are shown to induce potent in vitro upregulation of costimulatory molecules on the cell surface of BMDCs. In contrast to the classically used TLR agonists, nanoparticles did not induce large amounts of pro-inflammatory cytokines, did not induce characteristic metabolic response of DCs, nor produce innate antimicrobial effector molecules, such as nitric oxide (NO). The polyanhydride nanovaccine results in protective CD8+ T cell responses as measured by inhibition of tumor progression and survival. Discussion Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Collapse
Affiliation(s)
- Ross Darling
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
24
|
Mullis AS, Jacobson SJ, Narasimhan B. High-Throughput Synthesis and Screening of Rapidly Degrading Polyanhydride Nanoparticles. ACS COMBINATORIAL SCIENCE 2020; 22:172-183. [PMID: 32125826 DOI: 10.1021/acscombsci.9b00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Combinatorial techniques can accelerate the discovery and development of polymeric nanodelivery devices by pairing high-throughput synthesis with rapid materials characterization. Biodegradable polyanhydrides demonstrate tunable release, high cellular internalization, and dose sparing properties when used as nanodelivery devices. This nanoparticle platform shows promising potential for small molecule drug delivery, but the pace of understanding and rational design of these nanomedicines is limited by the low throughput of conventional characterization. This study reports the use of a high-throughput method to synthesize libraries of a newly synthesized, rapidly eroding polyanhydride copolymer based on 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and sebacic acid (SA) monomers. The high-throughput method enabled efficient screening of copolymer microstructure, revealing weak block-type and alternating architectures. The high-throughput method was adapted to synthesize nanoparticle libraries encapsulating hydrophobic model drugs. Drug release from these nanoparticles was rapid, with a majority of the payload released within 3 days. Drug release was dramatically slowed at acidic pH, which could be useful for oral drug delivery. Rhodamine B (RhoB) release kinetics generally followed patterns of polymer erosion kinetics, while Coomassie brilliant blue (CBB) released the fastest from the slowest degrading polymer chemistry and vice versa. These differences in trends between copolymer chemistry and release kinetics were hypothesized to arise from differences in mixing thermodynamics. A high-throughput method was developed to synthesize polymer-drug film libraries and characterize mixing thermodynamics by melting point depression. Rhodamine B had a negative χ for all copolymers with <30 mol % CPTEG tested, indicating a tendency toward miscibility. By contrast, CBB χ increased, eventually becoming positive near 15:85 CPTEG:SA, with increasing CPTEG content. This indicates an increasing tendency toward phase separation in CPTEG-rich copolymers. These in vitro results screening polymer-drug interactions showed good agreement with in silico predictions from Hansen solubility parameter estimation and were able to explain the observed differences in model drug release trends.
Collapse
Affiliation(s)
- Adam S. Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Sarah J. Jacobson
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
25
|
A single dose polyanhydride-based nanovaccine against paratuberculosis infection. NPJ Vaccines 2020; 5:15. [PMID: 32128256 PMCID: PMC7021715 DOI: 10.1038/s41541-020-0164-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) causes Johne’s disease in ruminants and is characterized by chronic gastroenteritis leading to heavy economic losses to the dairy industry worldwide. The currently available vaccine (inactivated bacterin in oil base) is not effective in preventing pathogen shedding and is rarely used to control Johne’s disease in dairy herds. To develop a better vaccine that can prevent the spread of Johne’s disease, we utilized polyanhydride nanoparticles (PAN) to encapsulate mycobacterial antigens composed of whole cell lysate (PAN-Lysate) and culture filtrate (PAN-Cf) of M. paratuberculosis. These nanoparticle-based vaccines (i.e., nanovaccines) were well tolerated in mice causing no inflammatory lesions at the site of injection. Immunological assays demonstrated a substantial increase in the levels of antigen-specific T cell responses post-vaccination in the PAN-Cf vaccinated group as indicated by high percentages of triple cytokine (IFN-γ, IL-2, TNF-α) producing CD8+ T cells. Following challenge, animals vaccinated with PAN-Cf continued to produce significant levels of double (IFN-γ, TNF-α) and single cytokine (IFN-γ) secreting CD8+ T cells compared with animals vaccinated with an inactivated vaccine. A significant reduction in bacterial load was observed in multiple organs of animals vaccinated with PAN-Cf, which is a clear indication of protection. Overall, the use of polyanhydride nanovaccines resulted in development of protective and sustained immunity against Johne’s disease, an approach that could be applied to counter other intracellular pathogens.
Collapse
|
26
|
Kelly SM, Mitra A, Mathur S, Narasimhan B. Synthesis and Characterization of Rapidly Degrading Polyanhydrides as Vaccine Adjuvants. ACS Biomater Sci Eng 2020; 6:265-276. [PMID: 33463223 DOI: 10.1021/acsbiomaterials.9b01427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a currently a need to develop adjuvants that are best suited to simultaneously enhance immune responses, induce immunologic memory, improve patient compliance (i.e., reduce doses and inflammation), and provide vaccine shelf stability for stockpiling and global deployment to challenging environments. Biodegradable polyanhydrides have been investigated extensively to overcome such challenges. It has been shown that controlling copolymer composition can result in chemistry-dependent immunomodulatory capabilities. These studies have revealed that copolymers rich in sebacic acid (SA) are highly internalized by antigen presenting cells and confer improved shelf stability of encapsulated proteins, while copolymers rich in 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) also exhibit enhanced internalization by and activation of antigen presenting cells (APCs), in addition to providing superior retention of protein stability following encapsulation and release. However, to date, CPTEG:SA copolymers have not been synthesized and described. In this work, we hypothesized that new copolymers composed of CPTEG and SA would combine the advantages of both monomers in terms of enhanced thermal properties, maintaining antigenicity of encapsulated proteins following nanoparticle synthesis, and superior cellular internalization and activation by APCs, demonstrated by the upregulation of costimulatory markers CD80, CD86, and CD40, as well as the secretion of proinflammatory cytokines IL-6, IL-1β, and TNF-α. Herein, we describe the synthesis and design of novel CPTEG:SA nanoparticles with improved thermal properties, payload stability, and internalization by antigen presenting cells for applications in vaccine delivery. The performance of these new CPTEG:SA formulations was compared to that of traditional polyanhydride copolymers.
Collapse
Affiliation(s)
- Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Akash Mitra
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Srishti Mathur
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Iowa State University, Ames, Iowa 50011-1098, United States
| |
Collapse
|
27
|
Wagner DA, Kelly SM, Petersen AC, Peroutka-Bigus N, Darling RJ, Bellaire BH, Wannemuehler MJ, Narasimhan B. Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomater 2019; 100:326-337. [PMID: 31610342 PMCID: PMC7012387 DOI: 10.1016/j.actbio.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023]
Abstract
Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this pathogen; however, USAMRIID has developed a recombinant fusion protein, F1-V, that has been shown to induce protection against pneumonic plague. Many F1-V-based vaccine formulations require prime-boost immunization to achieve protective immunity, and there are limited reports of rapid induction of protective immunity (≤ 14 days post-immunization (DPI)). The STimulator of INterferon Genes agonists cyclic dinucleotides (CDNs) have been shown to be promising vaccine adjuvants. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have also shown to enhance immune responses due to their dual functionality as adjuvants and delivery vehicles. In this work, a combination nanovaccine was designed that comprised F1-V-loaded nanoparticles combined with the CDN, dithio-RP,RP-cyclic di-guanosine monophosphate, to induce rapid and long-lived protective immunity against pneumonic plague. All mice immunized with a single dose combination nanovaccine were protected from Y. pestis lethal challenge within 14 DPI and demonstrated enhanced protection over F1-V adjuvanted with CDNs alone at challenge doses ≥7000 CFU Y. pestis CO92. In addition, 75% of mice receiving the single dose of the combination nanovaccine were protected from challenge at 182 DPI, while maintaining high levels of antigen-specific serum IgG. ELISPOT analysis of vaccinated animals at 218 DPI revealed F1-V-specific long-lived plasma cells in bone marrow in mice vaccinated with CDN adjuvanted F1-V or the combination nanovaccine. Microarray analysis of serum from these vaccinated mice revealed the presence of serum antibody that bound to a broad range of F1 and V linear epitopes. These results demonstrate that combining the adjuvanticity of CDNs with a nanovaccine delivery system enables induction of both rapid and long-lived protective immunity against Y. pestis. STATEMENT OF SIGNIFICANCE: • Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this biodefense pathogen. • We designed a combination nanovaccine comprising of F1-V antigen-loaded polyanhydride nanoparticles and a cyclic dinucleotide adjuvant to induce both rapid and long-lived protective immunity against pneumonic plague. • Animals immunized with the combination nanovaccine maintained high levels of antigen-specific serum IgG and long-lived plasma cells in bone marrow and the serum antibody showed a high affinity for a broad range of F1 and V linear epitopes. • The combination nanovaccine is a promising next-generation vaccine platform against weaponized Y. pestis based on its ability to induce both rapid and long-lived protective immunity.
Collapse
Affiliation(s)
- Danielle A Wagner
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Andrew C Petersen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States
| | - Ross J Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| |
Collapse
|
28
|
Wafa EI, Geary SM, Ross KA, Goodman JT, Narasimhan B, Salem AK. Single Dose of a Polyanhydride Particle-Based Vaccine Generates Potent Antigen-Specific Antitumor Immune Responses. J Pharmacol Exp Ther 2019; 370:855-863. [PMID: 30361239 PMCID: PMC6806631 DOI: 10.1124/jpet.118.252809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023] Open
Abstract
Many factors affect vaccine efficacy. One of the most salient is the frequency and intervals of vaccine administration. In this study, we assessed the vaccine administration modality for a recently reported polyanhydride-based vaccine formulation, shown to generate antitumor activity. Polyanhydride particles encapsulating ovalbumin (OVA) were prepared using a double-emulsion technique and subcutaneously delivered to mice either as a single-dose or as prime-boost vaccine regimens in which two different time intervals between prime and boost were assessed (7 or 21 days). This was followed by measurement of cellular and humoral immune responses, and subsequent challenge of the mice with a lethal dose of E.G7-OVA cells to evaluate tumor protection. Interestingly, a single dose of the polyanhydride particle-based formulation induced sustained OVA-specific cellular immune responses just as effectively as the prime-boost regimens. In addition, mice receiving single-dose vaccine had similar levels of protection against tumor challenge compared with mice administered prime-boosts. In contrast, measurements of OVA-specific IgG antibody titers indicated that a booster dose was required to stimulate strong humoral immune responses, since it was observed that mice administered a prime-boost vaccine had significantly higher OVA-specific IgG1 serum titers than mice administered a single dose. These findings indicate that the requirement for a booster dose using these particles appears unnecessary for the generation of effective cellular immunity.
Collapse
Affiliation(s)
- Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| | - Kathleen A Ross
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| | - Jonathan T Goodman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| | - Balaji Narasimhan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy (E.I.W., S.M.G., A.K.S.), University of Iowa, Iowa City, Iowa; and Department of Chemical and Biological Engineering, College of Engineering (K.A.R., J.T.G., B.N.) and Nanovaccine Institute (K.A.R., B.N., A.K.S.), Iowa State University, Ames, Iowa
| |
Collapse
|
29
|
Boggiatto PM, Schaut RG, Kanipe C, Kelly SM, Narasimhan B, Jones DE, Olsen SC. Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis. Heliyon 2019; 5:e02370. [PMID: 31517098 PMCID: PMC6728543 DOI: 10.1016/j.heliyon.2019.e02370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is a bacterial zoonosis and a significant source of economic loss and a major public health concern, worldwide. Bovine brucellosis, as caused primarily by Brucella abortus, is an important cause of reproductive loss in cattle. Vaccination has been the most effective way to reduce disease prevalence contributing to the success of control and eradication programs. Currently, there are no human vaccines available, and despite the success of commercial vaccines for livestock, such as B. abortus strain RB51 (RB51), there is need for development of novel and safer vaccines against brucellosis. In the current study, we report the fabrication of and immune responses to an implantable single dose polyanhydride-based, methanol-killed RB51 antigen containing delivery platform (VPEAR) in cattle. In contrast to animals vaccinated with RB51, we did not observe measurable RB51-specific IFN-γ or IgG responses in the peripheral blood, following initial vaccination with VPEAR. However, following a subsequent booster vaccination with RB51, we observed an anamnestic response in both vaccination treatments (VPEAR and live RB51). The magnitude and kinetics of CD4+ IFN-γ-mediated responses and circulating memory T cell subpopulations were comparable between the two vaccination treatments. Additionally, IgG titers were significantly increased in animals vaccinated with VPEAR as compared to live RB51- vaccinated animals. These data demonstrate that killed antigen may be utilized to generate and sustain memory, IFN-γ-mediated, CD4+ T cell and humoral responses against Brucella in a natural host. To our knowledge, this novel approach to vaccination against intracellular bacteria, such as Brucella, has not been reported before.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Carly Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, Iowa State University, 1800 Christensen Drive, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| |
Collapse
|
30
|
Boateng F, Ngwa W. Novel bioerodable eluting-spacers for radiotherapy applications with in situ dose painting. Br J Radiol 2019; 92:20180745. [PMID: 31084497 DOI: 10.1259/bjr.20180745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate feasibility of using bioerodable/bioerodible spacers (BES) over biodegradable spacers (BDS) loaded with gold nanoparticles for radiotherapy applications with in situ dose-painting, and to explore dosimetric impact on dose enhancement ratio of different radioisotopes. METHODS Analytical models proposed were based on experimentally reported erosion rate constant (k 0 = 5. 5E-7 kgm- 2s- 1 ) for bioerodible polymeric matrix. An in vivo determined diffusion coefficient (2.2E-8 cm2/s) of 10 nm gold nanoparticles (AuNP) of concentration 7 mg/g was used to estimate diffusion coefficient of other AuNP sizes (2, 5, 14 nm) using the Stoke-Einstein diffusion equation. The corresponding dose enhancement factors (DEF) were used to study dosimetric feasibility of employing AuNP-eluting BPS for radiotherapy applications. RESULTS The results showed AuNP release period from BES was significantly shorter (116 h) compared to BDS (more than a month) reported previously. The results also agree with reported Hopfenberg equation for a cylindrical matrix undergoing surface erosion. The DEF at tumour distance 5 mm for Cs-131 (DEF > 2.2) greater than that of I-125 (DEF > 2) and Pd-103 (DEF ≥ 2) could be achieved for AuNP sizes (2, 5, 10, and 14 nm) respectively. CONCLUSION Our findings suggested that BES could be used for short-lived radioisotopes like Pd-103 and Cs-131 in comparison to eluting BDS which is feasible for long-lived radioisotopes like I-125. ADVANCES IN KNOWLEDGE The study provides scientific basis for development of new generation eluting spacers viable for enhancing localized tumour dose. It concludes that BES gives higher DEF for Cs-131, and good candidate for replacing conventional fiducials/spacers.
Collapse
Affiliation(s)
| | - Wilfred Ngwa
- 2 University of Massachusetts Lowell , Massachusetts , USA.,3 Brigham and Women's Hospital , Massachusetts , USA.,4 Harvard Medical School , Massachusetts , USA
| |
Collapse
|
31
|
Mullis AS, Broderick SR, Binnebose AM, Peroutka-Bigus N, Bellaire BH, Rajan K, Narasimhan B. Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release. Mol Pharm 2019; 16:1917-1928. [PMID: 30973741 DOI: 10.1021/acs.molpharmaceut.8b01272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Drug delivery vehicles can improve the functional efficacy of existing antimicrobial therapies by improving biodistribution and targeting. A critical property of such nanomedicine formulations is their ability to control the release kinetics of their payloads. The combination of (and interactions among) polymer, drug, and nanoparticle properties gives rise to nonlinear behavioral relationships and large data space. These factors complicate both first-principles modeling and screening of nanomedicine formulations. Predictive analytics may offer a more efficient approach toward the rational design of nanomedicines by identifying key descriptors and correlating them to nanoparticle release behavior. In this work, antibiotic release kinetics data were generated from polyanhydride nanoparticle formulations with varying copolymer compositions, encapsulated drug type, and drug loading. Four antibiotics, doxycycline, rifampicin, chloramphenicol, and pyrazinamide, were used. Linear manifold learning methods were used to relate drug release properties with polymer, drug, and nanoparticle properties, and key descriptors were identified that are highly correlated with release properties. However, these linear methods could not predict release behavior. Nonlinear multivariate modeling based on graph theory was then used to deconvolute the governing relationships between these properties, and predictive models were generated to rapidly screen lead nanomedicine formulations with desirable release properties with minimal nanoparticle characterization. Release kinetics predictions of two drugs containing atoms not included in the model showed good agreement with experimental results, validating the model and indicating its potential to virtually explore new polymer and drug pairs not included in the training data set. The models were shown to be robust after the inclusion of these new formulations, in that the new inclusions did not significantly change model regression. This approach provides the first step toward the development of a framework that can be used to rationally design nanomedicine formulations by selecting the appropriate carrier for a drug payload to program desirable release kinetics.
Collapse
Affiliation(s)
| | - Scott R Broderick
- Department of Materials Design and Innovation , University at Buffalo , Buffalo , New York 14260 , United States
| | | | | | | | - Krishna Rajan
- Department of Materials Design and Innovation , University at Buffalo , Buffalo , New York 14260 , United States
| | | |
Collapse
|
32
|
Espinosa-Cotton M, Rodman Iii SN, Ross KA, Jensen IJ, Sangodeyi-Miller K, McLaren AJ, Dahl RA, Gibson-Corley KN, Koch AT, Fu YX, Badovinac VP, Laux D, Narasimhan B, Simons AL. Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma. J Immunother Cancer 2019; 7:79. [PMID: 30890189 PMCID: PMC6425573 DOI: 10.1186/s40425-019-0550-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the high prevalence of epidermal growth factor receptor (EGFR) overexpression in head and neck squamous cell carcinomas (HNSCCs), incorporation of the EGFR inhibitor cetuximab into the clinical management of HNSCC has not led to significant changes in long-term survival outcomes. Therefore, the identification of novel therapeutic approaches to enhance the clinical efficacy of cetuximab could lead to improved long-term survival for HNSCC patients. Our previous work suggests that EGFR inhibition activates the interleukin-1 (IL-1) pathway via tumor release of IL-1 alpha (IL-1α), although the clinical implications of activating this pathway are unclear in the context of cetuximab therapy. Given the role of IL-1 signaling in anti-tumor immune response, we hypothesized that increases in IL-1α levels would enhance tumor response to cetuximab. METHODS Parental and stable myeloid differentiation primary response gene 88 (MyD88) and IL-1 receptor 1 (IL-1R1) knockdown HNSCC cell lines, an IL-1R antagonist (IL-1RA), neutralizing antibodies to IL-1α and IL-1β, and recombinant IL-1α and IL-1β were used to determine cytokine production (using ELISA) in response to cetuximab in vitro. IL-1 pathway modulation in mouse models was accomplished by administration of IL-1RA, stable overexpression of IL-1α in SQ20B cells, administration of rIL-1α, and administration of a polyanhydride nanoparticle formulation of IL-1α. CD4+ and CD8+ T cell-depleting antibodies were used to understand the contribution of T cell-dependent anti-tumor immune responses. Baseline serum levels of IL-1α were measured using ELISA from HNSCC patients treated with cetuximab-based therapy and analyzed for association with progression free survival (PFS). RESULTS Cetuximab induced pro-inflammatory cytokine secretion from HNSCC cells in vitro which was mediated by an IL-1α/IL-1R1/MyD88-dependent signaling pathway. IL-1 signaling blockade did not affect the anti-tumor efficacy of cetuximab, while increased IL-1α expression using polyanhydride nanoparticles in combination with cetuximab safely and effectively induced a T cell-dependent anti-tumor immune response. Detectable baseline serum levels of IL-1α were associated with a favorable PFS in cetuximab-based therapy-treated HNSCC patients compared to HNSCC patients with undetectable levels. CONCLUSIONS Altogether, these results suggest that IL-1α in combination with cetuximab can induce a T cell-dependent anti-tumor immune response and may represent a novel immunotherapeutic strategy for EGFR-positive HNSCCs.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Samuel N Rodman Iii
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Isaac J Jensen
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | | | | | - Rachel A Dahl
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Katherine N Gibson-Corley
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Adam T Koch
- Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vladimir P Badovinac
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas Laux
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Internal Medicine - Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Andrean L Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA. .,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA. .,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.
| |
Collapse
|
33
|
Banerjee K, Gautam SK, Kshirsagar P, Ross KA, Spagnol G, Sorgen P, Wannemuehler MJ, Narasimhan B, Solheim JC, Kumar S, Batra SK, Jain M. Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells. Genes Cancer 2019; 10:52-62. [PMID: 31258832 PMCID: PMC6584211 DOI: 10.18632/genesandcancer.189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4β) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4β-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity. Immature dendritic cells when pulsed with MUC4β-nanovaccine exhibited significant increase in the surface expressions of MHC I and MHC II and costimulatory molecules (CD80 and CD86), as well as, secretion of pro-inflammatory cytokines (IFN-γ, IL-6, and IL-12) as compared to cells exposed to MUC4β alone or MUC4β mixed with blank nanoparticles (MUC4β+NP). Following immunization, as compared to the other formulations, MUC4β-nanovaccine elicited higher IgG2b to IgG1 ratio of anti-MUC4β-antibodies suggesting a predominantly Th1-like class switching. Thus, our findings demonstrate MUC4β-nanovaccine as a novel platform for PC immunotherapy.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Balaji Narasimhan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Joyce C Solheim
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| |
Collapse
|
34
|
Ross K, Senapati S, Alley J, Darling R, Goodman J, Jefferson M, Uz M, Guo B, Yoon KJ, Verhoeven D, Kohut M, Mallapragada S, Wannemuehler M, Narasimhan B. Single dose combination nanovaccine provides protection against influenza A virus in young and aged mice. Biomater Sci 2019; 7:809-821. [DOI: 10.1039/c8bm01443d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combined polyanhydride nanoparticles and pentablock copolymer micelles provide protection against homologous challenge in aged mice.
Collapse
|
35
|
Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. J Control Release 2019; 294:288-297. [DOI: 10.1016/j.jconrel.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
|
36
|
Singh R, Geetanjali. Nanoneuromedicines for Neurodegenerative Diseases. NANOSCIENCE &NANOTECHNOLOGY-ASIA 2018; 9:58-63. [DOI: 10.2174/2210681208666171211160433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 06/15/2023]
Abstract
Introduction:
Neurodegenerative disease is a collective term for a number of diseases
that affect the neurons in the human brain. The location of the neuronal loss in the brain leads to the
specified disease based on the progression of the clinical symptoms. No drugs are available for
complete cure of these diseases. Most of the drugs only slow down the progression of neuronal
damage. The combination of drugs with nanotechnology gave a new promising hope for the treatment
of neurological disorders. Nanomedicines are extremely useful for safe, effective, target oriented
and sustained delivery. Due to their size in nanometer, they possess distinct and improved
properties in comparison to their bulk counterpart. The utility of nanomedicines in neurological
disorders including neurodegenerative diseases constitutes nanoneuromedicines.
Conclusion:
In this article, a comprehensive overview of the application of nanoneuromedicines in
neurodegenerative diseases such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and
Amyotrophic Lateral Sclerosis (ALS) is provided.
Collapse
Affiliation(s)
- Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi-110 042, India
| | - Geetanjali
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110 007, India
| |
Collapse
|
37
|
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12:3117-3145. [PMID: 30288019 PMCID: PMC6161720 DOI: 10.2147/dddt.s165440] [Citation(s) in RCA: 422] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the last half-century, the development of biodegradable polymeric materials for biomedical applications has advanced significantly. Biodegradable polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering. Further advancements have occurred in the utilization of biodegradable polymeric materials for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These applications require particular physicochemical, biological, and degradation properties of the materials to deliver effective therapy. As a result, a wide range of natural or synthetic polymers able to undergo hydrolytic or enzymatic degradation is being studied for biomedical applications. This review outlines the current development of biodegradable natural and synthetic polymeric materials for various biomedical applications, including tissue engineering, temporary implants, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Richard Song
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Maxwell Murphy
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
- UCLA Department of Surgery and Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA,
- UCLA Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- UCLA Department of Surgery and Department of Orthopaedic Surgery and The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA,
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA,
| |
Collapse
|
38
|
Zacharias ZR, Ross KA, Hornick EE, Goodman JT, Narasimhan B, Waldschmidt TJ, Legge KL. Polyanhydride Nanovaccine Induces Robust Pulmonary B and T Cell Immunity and Confers Protection Against Homologous and Heterologous Influenza A Virus Infections. Front Immunol 2018; 9:1953. [PMID: 30233573 PMCID: PMC6127617 DOI: 10.3389/fimmu.2018.01953] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is a major cause of respiratory illness. Given the disease severity, associated economic costs, and recent appearance of novel IAV strains, there is a renewed interest in developing novel and efficacious "universal" IAV vaccination strategies. Recent studies have highlighted that immunizations capable of generating local (i.e., nasal mucosa and lung) tissue-resident memory T and B cells in addition to systemic immunity offer the greatest protection against future IAV encounters. Current IAV vaccines are designed to largely stimulate IAV-specific antibodies, but do not generate the lung-resident memory T and B cells induced during IAV infections. Herein, we report on an intranasally administered biocompatible polyanhydride nanoparticle-based IAV vaccine (IAV-nanovax) capable of providing protection against subsequent homologous and heterologous IAV infections in both inbred and outbred populations. Our findings also demonstrate that vaccination with IAV-nanovax promotes the induction of germinal center B cells within the lungs, both systemic and lung local IAV-specific antibodies, and IAV-specific lung-resident memory CD4 and CD8 T cells. Altogether our findings show that an intranasally administered nanovaccine can induce immunity within the lungs, similar to what occurs during IAV infections, and thus could prove useful as a strategy for providing "universal" protection against IAV.
Collapse
Affiliation(s)
- Zeb R. Zacharias
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Kathleen A. Ross
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Emma E. Hornick
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Jonathan T. Goodman
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Thomas J. Waldschmidt
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, United States
- Nanovaccine Institute, University of Iowa, Iowa City, IA, United States
| | - Kevin L. Legge
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Nanovaccine Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
39
|
Goodman JT, Mullis AS, Dunshee L, Mitra A, Narasimhan B. Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries. ACS COMBINATORIAL SCIENCE 2018; 20:298-307. [PMID: 29617113 DOI: 10.1021/acscombsci.8b00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of high-throughput techniques and combinatorial libraries can facilitate rapid synthesis and screening of biomaterial-based nanocarriers for drug and vaccine delivery. This study describes a high-throughput method using an automated robot for synthesizing polyanhydride nanoparticles encapsulating proteins. Polyanhydrides are a class of safe and biodegradable polymers that have been widely used as drug and vaccine delivery vehicles. The robot contains a multiplexed homogenizer and has the capacity to handle parallel streams of monomer or polymer solutions to synthesize polymers and/or nanoparticles. Copolymer libraries were synthesized using the monomers sebacic acid, 1,6-bis( p-carboxyphenoxy)hexane, and 1,8-bis( p-carboxyphenoxy)-3,6-dioxactane and compared to conventionally synthesized copolymers. Nanoparticle libraries of varying copolymer compositions encapsulating the model antigen ovalbumin were synthesized using flash nanoprecipitation. The amount of the surfactant Span 80 was varied to test its effect on protein encapsulation efficiency as well as antigen release kinetics. It was observed that, although the amount of surfactant did not significantly affect protein release rate, its presence enhanced protein encapsulation efficiency. Protein burst and release kinetics from conventionally and combinatorially synthesized nanoparticles were similar even though particles synthesized using the high-throughput technique were smaller. Finally, it was demonstrated that the high-throughput method could be adapted to functionalize the surface of particle libraries to aid in the design and screening of targeted drug and vaccine delivery systems. These results suggest that the new high-throughput method is a viable alternative to conventional methods for synthesizing and screening protein and vaccine delivery vehicles.
Collapse
Affiliation(s)
- Jonathan T. Goodman
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Adam S. Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Lucas Dunshee
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Akash Mitra
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
40
|
Dhakal S, Renu S, Ghimire S, Shaan Lakshmanappa Y, Hogshead BT, Feliciano-Ruiz N, Lu F, HogenEsch H, Krakowka S, Lee CW, Renukaradhya GJ. Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs. Front Immunol 2018; 9:934. [PMID: 29770135 PMCID: PMC5940749 DOI: 10.3389/fimmu.2018.00934] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022] Open
Abstract
Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly (p < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to the unvaccinated challenge controls. As well, an increased frequency of T helper memory cells and increased levels of recall IFNγ secretion by tracheobronchial lymph nodes cells were observed. In summary, chitosan SwIAV nanovaccine delivered by IN route elicited strong cross-reactive mucosal IgA and cellular immune responses in the respiratory tract that resulted in a reduced nasal viral shedding and lung virus titers in pigs. Thus, chitosan-based influenza nanovaccine may be an ideal candidate vaccine for use in pigs, and pig is a useful animal model for preclinical testing of particulate IN human influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Shristi Ghimire
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Yashavanth Shaan Lakshmanappa
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Bradley T Hogshead
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Steven Krakowka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Chang Won Lee
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
41
|
Wagner-Muñiz DA, Haughney SL, Kelly SM, Wannemuehler MJ, Narasimhan B. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Front Immunol 2018; 9:325. [PMID: 29599766 PMCID: PMC5863507 DOI: 10.3389/fimmu.2018.00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA), a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine) platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles). Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.
Collapse
Affiliation(s)
- Danielle A. Wagner-Muñiz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Sean M. Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
42
|
Sharpe LA, Vela Ramirez JE, Haddadin OM, Ross KA, Narasimhan B, Peppas NA. pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles. Biomacromolecules 2018; 19:793-802. [PMID: 29443509 DOI: 10.1021/acs.biomac.7b01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multicompartmental polymer carriers, referred to as Polyanhydride-Releasing Oral MicroParticle Technology (PROMPT), were formed by a pH-triggered antisolvent precipitation technique. Polyanhydride nanoparticles were encapsulated into anionic pH-responsive microparticle gels, allowing for nanoparticle encapsulation in acidic conditions and subsequent release in neutral pH conditions. The effects of varying the nanoparticle composition and feed ratio on the encapsulation efficiency were evaluated. Nanoparticle encapsulation was confirmed by confocal microscopy and infrared spectroscopy. pH-triggered protein delivery from PROMPT was explored using ovalbumin (ova) as a model drug. PROMPT microgels released ova in a pH-controlled manner. Increasing the feed ratio of nanoparticles into the microgels increased the total amount of ova delivered, as well as decreased the observed burst release. The cytocompatibility of the polymer materials were assessed using cells representative of the GI tract. Overall, these results suggest that pH-dependent microencapsulation is a viable platform to achieve targeted intestinal delivery of polyanhydride nanoparticles and their payload(s).
Collapse
Affiliation(s)
| | | | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | | |
Collapse
|
43
|
Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci Rep 2018; 8:3021. [PMID: 29445124 PMCID: PMC5813012 DOI: 10.1038/s41598-018-21292-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Bovine RSV (BRSV) is closely related to HRSV and a significant cause of morbidity in young cattle. BRSV infection in calves displays many similarities to RSV infection in humans, including similar age dependency and disease pathogenesis. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have shown promise as adjuvants and vaccine delivery vehicles due to their ability to promote enhanced immunogenicity through the route of administration, provide sustained antigen exposure, and induce both antibody- and cell-mediated immunity. Here, we developed a novel, mucosal nanovaccine that encapsulates the post-fusion F and G glycoproteins from BRSV into polyanhydride nanoparticles and determined the efficacy of the vaccine against RSV infection using a neonatal calf model. Calves receiving the BRSV-F/G nanovaccine exhibited reduced pathology in the lungs, reduced viral burden, and decreased virus shedding compared to unvaccinated control calves, which correlated with BRSV-specific immune responses in the respiratory tract and peripheral blood. Our results indicate that the BRSV-F/G nanovaccine is highly immunogenic and, with optimization, has the potential to significantly reduce the disease burden associated with RSV infection in both humans and animals.
Collapse
|
44
|
Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela-Ramirez JE, Kelly SM, Jackman JK, Dell'Anna G, Howard JM, Narasimhan B, Zhou W, Jones DE. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine 2018; 36:1016-1023. [DOI: 10.1016/j.vaccine.2017.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
|
45
|
Development of multifunctional films for peripheral nerve regeneration. Acta Biomater 2017; 56:141-152. [PMID: 27693689 DOI: 10.1016/j.actbio.2016.09.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 02/08/2023]
Abstract
In this study, a poly(lactic acid) (PLLA) porous film with longitudinal surface micropatterns was fabricated by a dry phase inversion technique to be used as potential conduit material for peripheral nerve regeneration applications. The presence of a nerve growth factor (NGF) gradient on the patterned film surface and protein loaded, surface-eroding, biodegradable, and amphiphilic polyanhydride (PA) microparticles within the film matrix, enabled co-delivery of neurotrophic factors with controlled release properties and enhanced neurite outgrowth from PC12 cells. The protein loading capacity of PA particles was increased up to 80% using the spray drying technique, while the surface loading of NGF reached 300ng/cm2 through ester-amine interactions. The NGF surface gradient provided initial fast release from the film surface and facilitated directional neurite outgrowth along with the longitudinal micropatterns. Furthermore, the variable backbone chemistry and surface eroding nature of protein-loaded PA microparticles within the film matrix ensured protein stability and enabled controlled protein release. This novel co-delivery strategy yielded tunable diffusion coefficients varying between 6×10-14 and 1.67×10-10cm2/min and dissolution constants ranging from 1×10-4 to 1×10-3min-1 with released amounts of ∼100-300ng/mL. This strategy promoted guided neurite extension from PC12 cells of up to 10μm total neurite length per cell in 2days. Overall, this unique strategy can potentially be extended for individually programmed delivery of multiple growth factors through the use of PA microparticle cocktails and can further be investigated for in vivo performance as potential conduit material for peripheral nerve regeneration applications. STATEMENT OF SIGNIFICANCE This manuscript focuses on the development of multifunctional degradable polymer films that provide topographic cues for guided growth, surface gradients of growth factors as well as nanoparticles in the films for tunable release of growth factors to enable peripheral nerve regeneration. The combination of cues was designed to overcome limitations of current strategies to facilitate peripheral nerve regeneration. These multifunctional films successfully provided high protein loading capacities while persevering activity, protein gradients on the surface, and tunable release of bioactive nerve growth factor that promoted directional and guided neurite extension of PC12 cells of up to 10μm in 2days. These multifunctional films can be made into conduits for peripheral nerve regeneration.
Collapse
|
46
|
Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomater 2017; 50:417-427. [PMID: 28063991 DOI: 10.1016/j.actbio.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The goal of this research was to study the effect of polyanhydride chemistry on the immune response induced by a prophylactic cancer vaccine based on biodegradable polyanhydride particles. To achieve this goal, different compositions of polyanhydride copolymers based on 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), 1,6-bis-(p-carboxyphenoxy)-hexane (CPH), and sebacic anhydride (SA) were synthesized by melt polycondensation, and polyanhydride copolymer particles encapsulating a model antigen, ovalbumin (OVA), were then synthesized using a double emulsion solvent evaporation technique. The ability of three different compositions of polyanhydride copolymers (50:50 CPTEG:CPH, 20:80 CPTEG:CPH, and 20:80 CPH:SA) encapsulating OVA to elicit immune responses was investigated. In addition, the impact of unmethylated oligodeoxynucleotides containing deoxycytidyl-deoxyguanosine dinucleotides (CpG ODN), an immunological adjuvant, on the immune response was also studied. The immune response to cancer vaccines was measured after treatment of C57BL/6J mice with two subcutaneous injections, seven days apart, of 50μg OVA encapsulated in particles composed of different polyanhydride copolymers with or without 25μg CpG ODN. In vivo studies showed that 20:80 CPTEG:CPH particles encapsulating OVA significantly stimulated the highest level of CD8+ T lymphocytes, generated the highest serum titers of OVA-specific IgG antibodies, and provided longer protection against tumor challenge with an OVA-expressing thymoma cell line in comparison to formulations made from other polyanhydride copolymers. The results also revealed that vaccination with CpG ODN along with polyanhydride particles encapsulating OVA did not enhance the immunogenicity of OVA. These results accentuate the crucial role of the copolymer composition of polyanhydrides in stimulating the immune response and provide important insights on rationally designing efficacious cancer vaccines. STATEMENT OF SIGNIFICANCE Compared to soluble cancer vaccine formulations, tumor antigens encapsulated in biodegradable polymeric particles have been shown to sustain antigen release and provide long-term protection against tumor challenge by improving the immune response towards the antigen. Treatment of mice with cancer vaccines based on different polyanhydride copolymers encapsulating OVA resulted in stimulation of tumor-specific immune responses with different magnitudes. This clearly indicates that polyanhydride chemistry plays a substantial role in stimulating the immune response. Vaccination with 20:80 CPTEG:CPH/OVA, the most hydrophobic formulation, stimulated the strongest cellular and humoral immune responses and provided the longest survival outcome without adding any other adjuvant. The most important finding in this study is that the copolymer composition of polyanhydride particle-based vaccines can have a direct effect on the magnitude of the antitumor immune response and should be selected carefully in order to achieve optimal cancer vaccine efficacy.
Collapse
Affiliation(s)
- Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan T Goodman
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
47
|
Vela Ramirez JE, Boggiatto PM, Wannemuehler MJ, Narasimhan B. Polyanhydride Nanoparticle Interactions with Host Serum Proteins and Their Effects on Bone Marrow Derived Macrophage Activation. ACS Biomater Sci Eng 2016; 3:160-168. [PMID: 33450792 DOI: 10.1021/acsbiomaterials.6b00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An in-depth understanding of the interactions of vaccine delivery vehicles with antigen presenting cells is important for tailoring optimal adjuvant properties. Polymeric nanoparticles have been widely studied as adjuvants and delivery vehicles; however, there is little information regarding the effect of serum protein adsorption onto biomaterials and the effect of this adsorption upon interactions with antigen presenting cells. The current studies analyzed effects of polyanhydride chemistry on serum adsorption to nanoparticles with respect to their uptake by and activation of bone marrow-derived macrophages. Differential effects of serum adsorption based on nanoparticle chemistry were shown to enhance (for 1,6-bis(p-carboxyphenoxy)hexane and sebacic anhydride-based) or reduce (for 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane-based) nanoparticle uptake. The observed complex interdependence between nanoparticle chemistry and serum protein adsorption on macrophage activation provided insights that will facilitate the rational design of single-dose nanovaccines developed to induce robust immune responses.
Collapse
Affiliation(s)
- Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Paola M Boggiatto
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
48
|
Ross K, Adams J, Loyd H, Ahmed S, Sambol A, Broderick S, Rajan K, Kohut M, Bronich T, Wannemuehler MJ, Carpenter S, Mallapragada S, Narasimhan B. Combination Nanovaccine Demonstrates Synergistic Enhancement in Efficacy against Influenza. ACS Biomater Sci Eng 2016; 2:368-374. [PMID: 33429541 DOI: 10.1021/acsbiomaterials.5b00477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H5N1 influenza virus has the potential to become a significant global health threat, and next generation vaccine technologies are needed. In this work, the combined efficacy of two nanoadjuvant platforms (polyanhydride nanoparticles and pentablock copolymer-based hydrogels) to induce protective immunity against H5N1 influenza virus was examined. Mice received two subcutaneous vaccinations (day 0 and 21) containing 10 μg of H5 hemagglutinin trimer alone or in combination with the nanovaccine platforms. Nanovaccine immunization induced high neutralizing antibody titers that were sustained through 70 days postimmunization. Finally, mice were intranasally challenged with A/H5N1 VNH5N1-PR8CDC-RG virus and monitored for 14 days. Animals receiving the combination nanovaccine had lower viral loads in the lung and weight loss after challenge in comparison to animals vaccinated with each platform alone. These data demonstrate the synergy between polyanhydride nanoparticles and pentablock copolymer-based hydrogels as adjuvants in the design of a more efficacious influenza vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Broderick
- Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, New York 14260, United States
| | - Krishna Rajan
- Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, New York 14260, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review focusses on polyanhydrides, a fascinating class of degradable polymers that have been used in and investigated for many bio-related applications because of their degradability and capacity to undergo surface erosion. This latter phenomenon is driven by hydrolysis of the anhydride moieties at the surface and high hydrophobicity of the polymer such that degradation and mass loss (erosion) occur before water can penetrate deep within the bulk of the polymer. As such, when surface-eroding polymers are used as therapeutic delivery vehicles, the rate of delivery is often controlled by the rate of polymer erosion, providing predictable and controlled release rates that are often zero-order. These desirable attributes are heavily influenced by polymer composition and morphology, and therefore also monomer structure and polymerization method. This review examines approaches for polyanhydride synthesis, discusses their general thermomechanical properties, surveys their hydrolysis and degradation processes along with their biocompatibility, and looks at recent developments and uses of polyanhydrides in drug delivery, stimuli-responsive materials, and novel nanotechnologies.
Collapse
|
50
|
Binnebose AM, Haughney SL, Martin R, Imerman PM, Narasimhan B, Bellaire BH. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms. PLoS Negl Trop Dis 2015; 9:e0004173. [PMID: 26496201 PMCID: PMC4619673 DOI: 10.1371/journal.pntd.0004173] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold) when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment. Infection with the filarial endoparasites Brugia malayi and its symbiotic bacteria Wolbachia represent a significant burden to both humans and animals. Current treatment protocols include use of multiple drugs over a course of months to years, resulting in high costs, undesirable side effects, and poor patient compliance. By encapsulating two of these drugs, ivermectin and doxycycline, into biodegradable polyanhydride nanoparticles, we report the ability to effectively kill adult B. malayi with up to a 4,000-fold reduction in the amount of drug used. These results demonstrate a promising role for the use of nanoscale drug carriers to reduce both the course of treatment and the amount of drug needed to increase affordability of lymphatic filariasis treatment and enhance patient compliance.
Collapse
Affiliation(s)
- Andrea M. Binnebose
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Richard Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula M. Imerman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (BN); (BHB)
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (BN); (BHB)
| |
Collapse
|