1
|
Alsobaie S, Alsobaie T, Alshammary AF, Abudawood M, Mantalaris A. Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System. Stem Cells Cloning 2023; 16:61-73. [PMID: 37790697 PMCID: PMC10544263 DOI: 10.2147/sccaa.s409139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Two-dimensional (2D)-based cell culture systems, limited by their inherent heterogeneity and scalability, are a bottleneck in the production of high-quality cells for downstream biomedical applications. Finding the optimal conditions for large-scale stem cell culture while maintaining good cellular status is challenging. The aim of this study was to assess the effects of three-dimensional (3D) culture on the viability, proliferation, self-renewal, and differentiation of human induced pluripotent stem cells (IPSCs). Patients and Methods Various culture conditions were evaluated to determine the optimal conditions to maintain the viability and proliferation of human IPSCs in a 3D environment: static versus dynamic culture, type of adhesion protein added to alginate (Matrigel™ versus gelatin), and the addition of Y-27632t on long-term 3D culture. The proliferation ability of the cells was evaluated via the MTS proliferation assay; the expression levels of the pluripotency markers Nanog and Oct3/4, PAX6 as an ectoderm marker, and laminin-5 and fibronectin as markers of extracellular matrix synthesis were assessed; and HIF1α and HIF2α levels were measured using quantitative reverse transcription polymerase chain reaction. Results Using a high-aspect-ratio vessel bioreactor with a gentle, low-sheer, and low-turbulence environment with sufficient oxygenation and effective mass transfer of nutrients and waste, we verified its ability to promote cell proliferation and self-renewal. The findings showed that human IPSCs have the ability to maintain pluripotency in a feeder-free system and by inhibiting ROCK signaling and using hypoxia to improve single-cell viability in 3D culture. Furthermore, these cells demonstrated increased self-renewal and proliferation when inoculated as single cells in 3D alginate beads by adding RI during the culture period. Conclusion Dynamic 3D culture is desirable for the large-scale expansion of undifferentiated human IPSCs.
Collapse
Affiliation(s)
- Sarah Alsobaie
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Tamador Alsobaie
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Amal F Alshammary
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Ferreira JA, Kantorski KZ, Dubey N, Daghrery A, Fenno JC, Mishina Y, Chan HL, Mendonça G, Bottino MC. Personalized and Defect-Specific Antibiotic-Laden Scaffolds for Periodontal Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49642-49657. [PMID: 34637255 DOI: 10.1021/acsami.1c11787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periodontitis compromises the integrity and function of tooth-supporting structures. Although therapeutic approaches have been offered, predictable regeneration of periodontal tissues remains intangible, particularly in anatomically complex defects. In this work, personalized and defect-specific antibiotic-laden polymeric scaffolds containing metronidazole (MET), tetracycline (TCH), or their combination (MET/TCH) were created via electrospinning. An initial screening of the synthesized fibers comprising chemo-morphological analyses, cytocompatibility assessment, and antimicrobial validation against periodontopathogens was accomplished to determine the cell-friendly and anti-infective nature of the scaffolds. According to the cytocompatibility and antimicrobial data, the 1:3 MET/TCH formulation was used to obtain three-dimensional defect-specific scaffolds to treat periodontally compromised three-wall osseous defects in rats. Inflammatory cell response and new bone formation were assessed by histology. Micro-computerized tomography was performed to assess bone loss in the furcation area at 2 and 6 weeks post implantation. Chemo-morphological and cell compatibility analyses confirmed the synthesis of cytocompatible antibiotic-laden fibers with antimicrobial action. Importantly, the 1:3 MET/TCH defect-specific scaffolds led to increased new bone formation, lower bone loss, and reduced inflammatory response when compared to antibiotic-free scaffolds. Altogether, our results suggest that the fabrication of defect-specific antibiotic-laden scaffolds holds great potential toward the development of personalized (i.e., patient-specific medication) scaffolds to ablate infection while affording regenerative properties.
Collapse
Affiliation(s)
- Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Post-Graduate Program in Oral Sciences (Periodontology Unit), School of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Hsun-Liang Chan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| |
Collapse
|
3
|
Suzuki H, Kasai K, Kimura Y, Miyata S. UV/ozone surface modification combined with atmospheric pressure plasma irradiation for cell culture plastics to improve pluripotent stem cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112012. [PMID: 33812631 DOI: 10.1016/j.msec.2021.112012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Culturing pluripotent stem cells effectively requires substrates coated with feeder cell layers or cell-adhesive matrices. It is difficult to employ pluripotent stem cells as resources for regenerative medicine due to risks of culture system contamination by animal-derived factors, or the large costs associated with the use of adhesive matrices. To enable a coating-free culture system, we focused on UV/ozone surface modification and atmospheric pressure plasma treatment for polystyrene substrates, to improve adhesion and proliferation of pluripotent stem cells. In this study, to develop a feeder- and matrix coating-free culture system for embryonic stem cells (ESCs), mouse ESCs were cultured on polystyrene substrates that were surface-modified using UV/ozone-plasma combined treatment. mESCs could be successfully cultured under feeder-free conditions upon UV/ozone-plasma combined treatment of culture substrates, without any further chemical treatments, and showed similar proliferation rates to those of cells grown on the feeder cell layer or matrix-coated substrates.
Collapse
Affiliation(s)
- Hayato Suzuki
- School of Integrated Design Engineering, Graduate School of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kohei Kasai
- School of Integrated Design Engineering, Graduate School of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuka Kimura
- Department of Mechanical Engineering, Faculty of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science & Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
4
|
Abdel Fattah AR, Ranga A. Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Front Bioeng Biotechnol 2020; 8:240. [PMID: 32363177 PMCID: PMC7180186 DOI: 10.3389/fbioe.2020.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Organoids are 3D multicellular constructs that rely on self-organized cell differentiation, patterning and morphogenesis to recapitulate key features of the form and function of tissues and organs of interest. Dynamic changes in these systems are orchestrated by biochemical and mechanical microenvironments, which can be engineered and manipulated to probe their role in developmental and disease mechanisms. In particular, the in vitro investigation of mechanical cues has been the focus of recent research, where mechanical manipulations imparting local as well as large-scale mechanical stresses aim to mimic in vivo tissue deformations which occur through proliferation, folding, invagination, and elongation. However, current in vitro approaches largely impose homogeneous mechanical changes via a host matrix and lack the required positional and directional specificity to mimic the diversity of in vivo scenarios. Thus, while organoids exhibit limited aspects of in vivo morphogenetic events, how local forces are coordinated to enable large-scale changes in tissue architecture remains a difficult question to address using current techniques. Nanoparticles, through their efficient internalization by cells and dispersion through extracellular matrices, have the ability to provide local or global, as well as passive or active modulation of mechanical stresses on organoids and tissues. In this review, we explore how nanoparticles can be used to manipulate matrix and tissue mechanics, and highlight their potential as tools for fate regulation through mechanotransduction in multicellular model systems.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Browne S, Healy KE. Matrix-assisted cell transplantation for tissue vascularization. Adv Drug Deliv Rev 2019; 146:155-169. [PMID: 30605738 DOI: 10.1016/j.addr.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Cell therapy offers much promise for the treatment of ischemic diseases by augmenting tissue vasculogenesis. Matrix-assisted cell transplantation (MACT) has been proposed as a solution to enhance cell survival and integration with host tissue following transplantation. By designing semi synthetic matrices (sECM) with the correct physical and biochemical signals, encapsulated cells are directed towards a more angiogenic phenotype. In this review, we describe the choice of cells suitable for pro-angiogenic therapies, the properties that should be considered when designing sECM for transplantation and their relative importance. Pre-clinical models where MACT has been successfully applied to promote angiogenesis are reviewed to show the great potential of this strategy to treat ischemic conditions.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Taylor AC, González CH, Ferretti P, Jackman RB. Spontaneous Differentiation of Human Neural Stem Cells on Nanodiamonds. ACTA ACUST UNITED AC 2019; 3:e1800299. [PMID: 32627432 DOI: 10.1002/adbi.201800299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Indexed: 12/17/2022]
Abstract
The potential use of stem cells in regenerative medicine requires the ability to be able to control stem cell fate as cellular networks are developed. Here, nanodiamonds (≈10 nm) are supported on glass and shown to be an excellent host for the attachment and proliferation of human neural stem cells. Moreover, it is shown that spontaneous differentiation into neurons occurs on nanodiamonds. The use of variously oxygen terminated and hydrogen terminated nanodiamonds has been explored. It is shown that O-ND monolayers promote the differentiation of human neural stem cells into neurons with increased total neurite length, degree of branching, and density of neurites when compared with H-NDs or the glass control. The total number of neurites and total neurite length expressing MAP2, a protein enriched in dendrites, is over five times higher for spontaneously differentiated neurones on the O-NDs compared to the control. The fact that inexpensive nanodiamonds can be attached through simple sonication from water on 2D and 3D shapes indicates significant promise for their potential as biomaterials in which neuro-regenerative diseases can be studied.
Collapse
Affiliation(s)
- Alice C Taylor
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard B Jackman
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
7
|
Singh A, Yadav CB, Tabassum N, Bajpeyee AK, Verma V. Stem cell niche: Dynamic neighbor of stem cells. Eur J Cell Biol 2018; 98:65-73. [PMID: 30563738 DOI: 10.1016/j.ejcb.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cell niche is a specialized and dynamic microenvironment around the stem cells which plays a critical role in maintaining the stemness properties of stem cells. Over the years, advancement in the research activity has revealed the various important aspects of stem cell niche including cell-cell interaction, cell-extracellular matrix interaction, a large number of soluble signaling factors and various biochemical and biophysical cues (such as oxygen tension, flow, and shear and pore size). Stem cells have the potential to be a powerful tool in regenerative medicine due to their self-renewal property and immense differentiation potential. Recent progresses in in vitro culture conditions of embryonic stem cells, adult stem cells and induced pluripotent stem cells have enabled the researchers to investigate and understand the role of the microenvironment in stem cell properties. The engineered artificial stem cell niche has led to a better execution of stem cells in regenerative medicine. Here we elucidate the key components of stem cell niche and their role in niche engineering and stem cell therapeutics.
Collapse
Affiliation(s)
- Anshuman Singh
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - C B Yadav
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - N Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - A K Bajpeyee
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - V Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India.
| |
Collapse
|
8
|
Dong Y, Rodrigues M, Kwon SH, Li X, A S, Brett EA, Elvassore N, Wang W, Gurtner GC. Acceleration of Diabetic Wound Regeneration using an In Situ-Formed Stem-Cell-Based Skin Substitute. Adv Healthc Mater 2018; 7:e1800432. [PMID: 30004192 DOI: 10.1002/adhm.201800432] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic ulcers are a common complication in patients with diabetes, often leading to lower limb amputations and even mortality. Stem cells have shown promise in promoting cutaneous wound healing by modulating inflammation, angiogenesis, and re-epithelialization. However, more effective delivery and engraftment strategies are needed to prolong transplanted stem cell lifespan and their pro-healing functions in a chronic wound environment to improve skin regeneration. In this study, an injectable poly(ethylene glycol) (PEG)-gelatin-based hydrogel system is examined to create a functional stem cell niche for the delivery of adipose-derived stem cells (ASCs) into diabetic wounds. Human ASCs are encapsulated into the in situ crosslinked hydrogels and cultured in a 3D topography. The encapsulated cells are well attached and spread inside the hydrogels, retaining viability, proliferation, and metabolic activity up to three weeks in vitro. Allogeneic ASCs are delivered to diabetic wounds by this hydrogel vehicle. It is found that stem cell retention is significantly improved in vivo with vehicle-mediated delivery. The ASC-hydrogel-based treatment decreases inflammatory cell infiltration, enhances neovascularization, and remarkably accelerates wound closure in diabetic mice. Together, these findings suggest this conveniently-applicable ASC-hydrogel-based skin substitute provides a promising potential for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies; ShanghaiTech University; Shanghai 201210 China
| | - Melanie Rodrigues
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sun Hyung Kwon
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Xiaolin Li
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Elizabeth Anne Brett
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies; ShanghaiTech University; Shanghai 201210 China
| | - Wenxin Wang
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Dublin 4 Ireland
| | - Geoffrey C. Gurtner
- Department of Surgery; Stanford University School of Medicine; Stanford CA 94305 USA
| |
Collapse
|
9
|
Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
The interaction of biological cells with artificial biomaterials is one of the most important issues in tissue engineering and regenerative medicine. The interaction is strongly governed by physical and chemical properties of the materials and displayed with differentiated cellular behaviors, including cell self-renewal, differentiation, reprogramming, dedifferentiation, or transdifferentiation as a result. A number of engineered biomaterials with micro- or nano-structures have been developed to mimic structural components of cell niche and specific function of extra cellular matrix (ECM) over past two decades. In this review article, we briefly introduce the fabrication of biomaterials and their classification into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) ones. More importantly, the influence of different biomaterials on inducing cell self-renewal, differentiation, reprogramming, dedifferentiation, and transdifferentiation was discussed based on the progress at 0D, 1D, 2D and 3D levels, following which the current research limitations and research perspectives were provided.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Bei Xie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujian Zou
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Lei Lei
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
| | - Dapeng Zhao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, China.
| |
Collapse
|
10
|
Zhang Y, Pan X, Shi Z, Cai H, Gao Y, Zhang W. Sustained release of stem cell factor in a double network hydrogel for ex vivo culture of cord blood-derived CD34 + cells. Cell Prolif 2018; 51:e12407. [PMID: 29143396 PMCID: PMC6528907 DOI: 10.1111/cpr.12407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. MATERIALS AND METHODS Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34+ cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. RESULTS The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34+ cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). CONCLUSION The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs.
Collapse
Affiliation(s)
- Yuanhao Zhang
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Xiuwei Pan
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Zhen Shi
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Haibo Cai
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Yun Gao
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Weian Zhang
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
11
|
Long-Term Maintenance of Human Pluripotent Stem Cells on cRGDfK-Presenting Synthetic Surfaces. Sci Rep 2018; 8:701. [PMID: 29335618 PMCID: PMC5768753 DOI: 10.1038/s41598-018-19209-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
Synthetic human pluripotent stem cell (hPSC) culture surfaces with defined physical and chemical properties will facilitate improved research and therapeutic applications of hPSCs. In this study, synthetic surfaces for hPSC culture in E8 medium were produced for screening by modifying two polymer brush coatings [poly(acrylamide-co-acrylic acid) (PAAA) and poly(acrylamide-co-propargyl acrylamide) (PAPA)] to present single peptides. Adhesion of hPSC colonies was more consistently observed on surfaces modified with cRGDfK compared to surfaces modified with other peptide sequences tested. PAPA-coated polystyrene flasks with coupled cRGDfK (cRGDfK-PAPA) were then used for long-term studies of three hPSC lines (H9, hiPS-NHF1.3, Genea-02). Cell lines maintained for ten passages on cRGDfK-PAPA were assessed for colony morphology, proliferation rate, maintenance of OCT4 expression, cell viability at harvest, teratoma formation potential, and global gene expression as assessed by the PluriTest™ assay. cRGDfK-PAPA and control cultures maintained on Geltrex™ produced comparable results in most assays. No karyotypic abnormalities were detected in cultures maintained on cRGDfK-PAPA, while abnormalities were detected in cultures maintained on Geltrex™, StemAdhere™ or Synthemax™. This is the first report of long term maintenance of hPSC cultures on the scalable, stable, and cost-effective cRGDfK-PAPA coating.
Collapse
|
12
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
13
|
Gupta P, Hourigan K, Jadhav S, Bellare J, Verma P. Effect of lactate and pH on mouse pluripotent stem cells: Importance of media analysis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Deng Y, Yang Y, Wei S. Peptide-Decorated Nanofibrous Niche Augments In Vitro Directed Osteogenic Conversion of Human Pluripotent Stem Cells. Biomacromolecules 2017; 18:587-598. [DOI: 10.1021/acs.biomac.6b01748] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yi Deng
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanyi Yang
- Department
of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | | |
Collapse
|
15
|
Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E267. [PMID: 28773392 PMCID: PMC5502931 DOI: 10.3390/ma9040267] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels' mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications.
Collapse
Affiliation(s)
- Gianluca Tozzi
- School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK.
| | - Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Antero Oliveira
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
16
|
Regalado-Santiago C, Juárez-Aguilar E, Olivares-Hernández JD, Tamariz E. Mimicking Neural Stem Cell Niche by Biocompatible Substrates. Stem Cells Int 2016; 2016:1513285. [PMID: 26880934 PMCID: PMC4736764 DOI: 10.1155/2016/1513285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions.
Collapse
Affiliation(s)
- Citlalli Regalado-Santiago
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Enrique Juárez-Aguilar
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Juan David Olivares-Hernández
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenida Luis Castelazo Ayala, s/n, 91190 Xalapa, VER, Mexico
| |
Collapse
|
17
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
18
|
|
19
|
McKee C, Perez-Cruet M, Chavez F, Chaudhry GR. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells. World J Stem Cells 2015; 7:1064-1077. [PMID: 26328022 PMCID: PMC4550630 DOI: 10.4252/wjsc.v7.i7.1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.
METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.
RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.
CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.
Collapse
|
20
|
Abstract
The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.
Collapse
Affiliation(s)
- A.M. Ross
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - J. Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Biointerfaces Institute,
- Department of Chemical Engineering,
- Department of Materials Science and Engineering, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Chandra P, Lee SJ. Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors. Biomark Insights 2015; 10:105-16. [PMID: 26106260 PMCID: PMC4472032 DOI: 10.4137/bmi.s20057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022] Open
Abstract
The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and adult stem cells are potentially useful for cell-based approaches; however, regulating stem cell behavior remains a major challenge in their clinical use. Most of the current approaches for controlling stem cell fate do not fully address all of the complex signaling pathways that drive stem cell behaviors in their natural microenvironments. To overcome this limitation, a new generation of biomaterials is being developed for use as three-dimensional synthetic microenvironments that can mimic the regulatory characteristics of natural extracellular matrix (ECM) proteins and ECM-bound growth factors. These synthetic microenvironments are currently being investigated as a substrate with surface immobilization and controlled release of bioactive molecules to direct the stem cell fate in vitro, as a tissue template to guide and improve the neo-tissue formation both in vitro and in vivo, and as a delivery vehicle for cell therapy in vivo. The continued advancement of such an intelligent biomaterial system as the synthetic extracellular microenvironment holds the promise of improved therapies for numerous debilitating medical conditions for which no satisfactory cure exists today.
Collapse
Affiliation(s)
- Prafulla Chandra
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
22
|
Scott CM, Forster CL, Kokkoli E. Three-Dimensional Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6122-9. [PMID: 25970351 PMCID: PMC4632991 DOI: 10.1021/acs.langmuir.5b00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The design of scaffolds which mimic the stiffness, nanofiber structure, and biochemistry of the native extracellular matrix (ECM) has been a major objective for the tissue engineering field. Furthermore, mimicking the innate three-dimensional (3D) environment of the ECM has been shown to significantly altered cellular response compared to that of traditional two-dimensional (2D) culture. We report the development of a self-assembling, fibronectin-mimetic, peptide-amphiphile nanofiber scaffold for 3D cell culture. To form such a scaffold, 5 mol % of a bioactive PR_g fibronectin-mimetic peptide-amphiphile was mixed with 95 mol % of a diluent peptide-amphiphile (E2) whose purpose was to neutralize electrostatic interactions, increase the gelation kinetics, and promote cell survival. Atomic force microscopy verified the fibrilar structure of the gels, and the mechanical properties were characterized for various weight percent (wt %) formulations of the 5 mol % PR_g-95 mol % E2 peptide-amphiphile mixture. The 0.5 wt % formulations had an elastic modulus of 429.0 ± 21.3 Pa whereas the 1.0 wt % peptide-amphiphile hydrogels had an elastic modulus of 808.6 ± 38.1 Pa. The presence of entrapped cells in the gels decreased the elastic modulus, and the decrease was a function of cell loading. Although both formulations supported cell proliferation, the 0.5 wt % gels supported significantly greater NIH3T3/GFP fibroblast cell proliferation throughout the gels than the 1.0 wt % gels. However, compared to the 0.5 wt % formulations, the 1.0 wt % hydrogels promoted greater increases in mRNA expression and the production of fibronectin and type IV collagen ECM proteins. This study suggests that this fibronectin-mimetic scaffold holds great promise in the advancement of 3D culture applications and cell therapies.
Collapse
Affiliation(s)
- Carolyn M. Scott
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Colleen L. Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, United States
| |
Collapse
|
23
|
Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS, Ratliff BB. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia. Stem Cells Transl Med 2015; 4:852-61. [PMID: 25947337 DOI: 10.5966/sctm.2014-0111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/16/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED : We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation). Cytokine/chemokine release from embedded stem cells was examined, including effects on macrophage polarization and release of proinflammatory molecules. EPC-MSC coculturing improved stem cell viability during LPS exposure, an effect augmented by MSC hypoxic preconditioning. The delivery of coembedded EPCs with hypoxic preconditioned MSCs to AKI mice demonstrated additive improvement (compared with EPC delivery alone) in medullary RBF and proteinuria, with comparable effects on serum creatinine, MAP, and angiogenesis. Exposure of proinflammatory M1 macrophages to EPC-MSC conditioned medium changed their polarization to anti-inflammatory M2. Incubation of coembedded EPCs-MSCs with macrophages altered their release of cytokines/chemokines, including enhanced release of anti-inflammatory interleukin (IL)-4 and IL-10. EPC-MSC delivery to endotoxemic mice elevated the levels of circulating M2 macrophages and reduced the circulating cytokines/chemokines. In conclusion, coembedding EPCs-MSCs improved their resistance to stress, impelled macrophage polarization from M1 to M2 while altering their cytokine/chemokines release, reduced circulating cytokines/chemokines, and improved renal and vascular function when MSCs were hypoxically preconditioned. SIGNIFICANCE This report provides insight into a new therapeutic approach for treatment of sepsis and provides a new and improved strategy using hydrogels for the delivery of stem cells to treat sepsis and, potentially, other injuries and/or diseases. The delivery of two different stem cell lines (endothelial progenitor cells and mesenchymal stem cells; delivered alone and together) embedded in a protective bioengineered scaffolding (hydrogel) offers many therapeutic benefits for the treatment of sepsis. This study shows how hydrogel-delivered stem cells elicit their effects and how hydrogel embedding enhances the therapeutic efficacy of delivered stem cells. Hydrogel-delivered stem cells influence the components of the overactive immune system during sepsis and work to counterbalance the release of many proinflammatory and prodamage substances from immune cells, thereby improving the associated vascular and kidney damage.
Collapse
Affiliation(s)
- Joseph A Zullo
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Ellen P Nadel
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - May M Rabadi
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Matthew J Baskind
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Maharshi A Rajdev
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Cameron M Demaree
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Radovan Vasko
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Savneek S Chugh
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Rajat Lamba
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
24
|
Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T, Johnson JK, Nam J. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials 2015; 50:10-9. [PMID: 25736491 DOI: 10.1016/j.biomaterials.2015.01.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal.
Collapse
Affiliation(s)
- Maricela Maldonado
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Lauren Y Wong
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Cristina Echeverria
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Gerardo Ico
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Karen Low
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Taylor Fujimoto
- Department of Bioengineering, University of California-Riverside, CA 92521, USA
| | - Jed K Johnson
- Nanofiber Solutions LLC, 1275 Kinnear Rd., Columbus, OH 43212, USA
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Prestwich GD, Healy KE. Why regenerative medicine needs an extracellular matrix. Expert Opin Biol Ther 2014; 15:3-7. [DOI: 10.1517/14712598.2015.975200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Fonseca KB, Granja PL, Barrias CC. Engineering proteolytically-degradable artificial extracellular matrices. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, Mooney DJ. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. NATURE MATERIALS 2014; 13:970-8. [PMID: 24930031 DOI: 10.1038/nmat4009] [Citation(s) in RCA: 621] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 05/13/2014] [Indexed: 05/24/2023]
Abstract
In vitro models of normal mammary epithelium have correlated increased extracellular matrix (ECM) stiffness with malignant phenotypes. However, the role of increased stiffness in this transformation remains unclear because of difficulties in controlling ECM stiffness, composition and architecture independently. Here we demonstrate that interpenetrating networks of reconstituted basement membrane matrix and alginate can be used to modulate ECM stiffness independently of composition and architecture. We find that, in normal mammary epithelial cells, increasing ECM stiffness alone induces malignant phenotypes but that the effect is completely abrogated when accompanied by an increase in basement-membrane ligands. We also find that the combination of stiffness and composition is sensed through β4 integrin, Rac1, and the PI3K pathway, and suggest a mechanism in which an increase in ECM stiffness, without an increase in basement membrane ligands, prevents normal α6β4 integrin clustering into hemidesmosomes.
Collapse
Affiliation(s)
- Ovijit Chaudhuri
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [3] Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Sandeep T Koshy
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [3] Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Cristiana Branco da Cunha
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [3] Institute of Molecular Pathology and Immunology, Instituto de Engenharia Biomédica, and Faculty of Medicine of the University of Porto, Porto 4150-180, Portugal
| | - Jae-Won Shin
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Catia S Verbeke
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Kimberly H Allison
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305, USA
| | - David J Mooney
- 1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Wang H, Cai L, Paul A, Enejder A, Heilshorn SC. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules 2014; 15:3421-8. [PMID: 25111283 PMCID: PMC4157761 DOI: 10.1021/bm500969d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/08/2014] [Indexed: 01/18/2023]
Abstract
Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Lei Cai
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Alexandra Paul
- Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
| | - Annika Enejder
- Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
| | - Sarah C. Heilshorn
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
29
|
Qian X, Villa-Diaz LG, Kumar R, Lahann J, Krebsbach PH. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials 2014; 35:9581-90. [PMID: 25189518 DOI: 10.1016/j.biomaterials.2014.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Abstract
Well-defined culture conditions are essential for realizing the full potential of human embryonic stem cells (hESCs) in regenerative medicine where large numbers of cells are required. Synthetic polymers such as poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), offer multiple advantages over mouse embryonic fibroblasts (MEFs) and Matrigel™ for hESC culture and expansion. However, there is limited understanding of the mechanisms by which hESCs are propagated on synthetic polymers coatings. Here, the effects of PMEDSAH gel architecture on hESC self-renewal were determined. By increasing the atom transfer radical polymerization (ATRP) reaction time, the thickness of PMEDSAH was increased and its internal hydrogel architecture was modified, while maintaining its overall chemical structure. A 105 nm thick ATRP PMEDSAH coating showed a significant increase in the expansion rate of hESCs. Theoretical calculations suggested that 20,000 hESCs cultured on this substrate could be expanded up to 4.7 × 10(9) undifferentiated cells in five weeks. In addition, hESCs grown on ATRP PMEDSAH coatings retained pluripotency and displayed a normal karyotype after long-term culture. These data demonstrate the importance of polymer physical properties in hESC expansion. This modification of PMEDSAH coatings may be used to obtain large populations of hESCs required for many applications in regenerative medicine.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ramya Kumar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Hansen A, Mjoseng HK, Zhang R, Kalloudis M, Koutsos V, de Sousa PA, Bradley M. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. Adv Healthc Mater 2014; 3:848-53. [PMID: 24353271 DOI: 10.1002/adhm.201300489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/21/2013] [Indexed: 01/22/2023]
Abstract
The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance.
Collapse
Affiliation(s)
- Anne Hansen
- School of Chemistry; University of Edinburgh, King's Buildings; West Mains Road Edinburgh EH9 3JJ UK
| | - Heidi K. Mjoseng
- MRC Centre for Regenerative Medicine; SCRM Building, The University of Edinburgh, Edinburgh bioQuarter; 5 Little France Drive Edinburgh EH16 4UU UK
| | - Rong Zhang
- School of Materials Science and Engineering; Changzhou University; Jiangsu Province 213164 China
| | - Michail Kalloudis
- School of Engineering; University of Edinburgh; King's Buildings Edinburgh EH9 3JL UK
| | - Vasileios Koutsos
- School of Engineering; University of Edinburgh; King's Buildings Edinburgh EH9 3JL UK
| | - Paul A. de Sousa
- MRC Centre for Regenerative Medicine; SCRM Building, The University of Edinburgh, Edinburgh bioQuarter; 5 Little France Drive Edinburgh EH16 4UU UK
| | - Mark Bradley
- School of Chemistry; University of Edinburgh, King's Buildings; West Mains Road Edinburgh EH9 3JJ UK
| |
Collapse
|
31
|
Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proc Natl Acad Sci U S A 2014; 111:5580-5. [PMID: 24706900 DOI: 10.1073/pnas.1319685111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of materials to define the architecture and microenvironment experienced by cells provides new opportunities to direct the fate of human pluripotent stem cells (HPSCs) [Robinton DA, Daley GQ (2012) Nature 481(7381):295-305]. However, the conditions required for self-renewal vs. differentiation of HPSCs are different, and a single system that efficiently achieves both outcomes is not available [Giobbe GG, et al. (2012) Biotechnol Bioeng 109(12):3119-3132]. We have addressed this dual need by developing a hydrogel-based material that uses ionic de-cross-linking to remove a self-renewal permissive hydrogel (alginate) and switch to a differentiation-permissive microenvironment (collagen). Adjusting the timing of this switch can preferentially steer the HPSC differentiation to mimic lineage commitment during gastrulation to ectoderm (early switch) or mesoderm/endoderm (late switch). As an exemplar differentiated cell type, we showed that directing early lineage specification using this single system can promote cardiogenesis with increased gene expression in high-density cell populations. This work will facilitate regenerative medicine by allowing in situ HPSC expansion to be coupled with early lineage specification within defined tissue geometries.
Collapse
|
32
|
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014; 2:147-166. [DOI: 10.1039/c3tb21016b] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Yan XZ, van den Beucken JJJP, Both SK, Yang PS, Jansen JA, Yang F. Biomaterial strategies for stem cell maintenance during in vitro expansion. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:340-54. [PMID: 24168361 DOI: 10.1089/ten.teb.2013.0349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells, having the potential for self-renewal and multilineage differentiation, are the building blocks for tissue/organ regeneration. Stem cells can be isolated from various sources but are, in general, available in too small numbers to be used directly for clinical purpose without intermediate expansion procedures in vitro. Although this in vitro expansion of undifferentiated stem cells is necessary, stem cells typically diminish their ability to self-renew and proliferate during passaging. Consequently, maintaining the stemness of stem cells has been recognized as a major challenge in stem cell-based research. This review focuses on the latest developments in maintaining the self-renewal ability of stem cells during in vitro expansion by biomaterial strategies. Further, this review highlights what should be the focus for future studies using stem cells for regenerative applications.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Lambshead JW, Meagher L, O'Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. CELL REGENERATION 2013; 2:7. [PMID: 25408879 PMCID: PMC4230363 DOI: 10.1186/2045-9769-2-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cells (hPSCs) are able to self-renew indefinitely and to differentiate into all adult cell types. hPSCs therefore show potential for application to drug screening, disease modelling and cellular therapies. In order to meet this potential, culture conditions must be developed that are consistent, defined, scalable, free of animal products and that facilitate stable self-renewal of hPSCs. Several culture surfaces have recently been reported to meet many of these criteria although none of them have been widely implemented by the stem cell community due to issues with validation, reliability and expense. Most hPSC culture surfaces have been derived from extracellular matrix proteins (ECMPs) and their cell adhesion molecule (CAM) binding motifs. Elucidating the CAM-mediated cell-surface interactions that are essential for the in vitro maintenance of pluripotency will facilitate the optimisation of hPSC culture surfaces. Reports indicate that hPSC cultures can be supported by cell-surface interactions through certain CAM subtypes but not by others. This review summarises the recent reports of defined surfaces for hPSC culture and focuses on the CAMs and ECMPs involved.
Collapse
Affiliation(s)
- Jack W Lambshead
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Laurence Meagher
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia
| | - Carmel O'Brien
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Andrew L Laslett
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia ; Department of Zoology, University of Melbourne, Parkville, Victoria 3101 Australia
| |
Collapse
|
35
|
Deng Y, Zhang X, Zhao X, Li Q, Ye Z, Li Z, Liu Y, Zhou Y, Ma H, Pan G, Pei D, Fang J, Wei S. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomater 2013; 9:8840-50. [PMID: 23891809 DOI: 10.1016/j.actbio.2013.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free, chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film, using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology, proliferation and expressed high levels of markers of pluripotency, similar to the cells cultured on Matrigel™. Moreover, the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined, xeno-free and safe substrate, which supports long-term proliferation and self-renewal of hiPSC, will not only help to accelerate the translational perspectives of hiPSC, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology.
Collapse
Affiliation(s)
- Y Deng
- Department of Prosthodontics, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Qian X, Villa-Diaz LG, Krebsbach PH. Advances in culture and manipulation of human pluripotent stem cells. J Dent Res 2013; 92:956-62. [PMID: 23934156 DOI: 10.1177/0022034513501286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.
Collapse
Affiliation(s)
- X Qian
- Department of Biologic and Materials Sciences, School of Dentistry
| | | | | |
Collapse
|
37
|
A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 2013; 4:1335. [PMID: 23299885 PMCID: PMC3562446 DOI: 10.1038/ncomms2341] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/28/2012] [Indexed: 01/22/2023] Open
Abstract
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2–6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications. To transfer cultured human embryonic stem cells (hESCs) between culture dishes, cells need to be released using mechanical, enzymatic or chemical means, which can damage cells. Zhang et al. describe a thermomodulatable hydrogel that allows gentle, reagent-free cell passaging for the long-term culture of hESCs.
Collapse
|
38
|
Smith AW, Hoyne JD, Nguyen PK, McCreedy DA, Aly H, Efimov IR, Rentschler S, Elbert DL. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials 2013; 34:6559-71. [PMID: 23773820 DOI: 10.1016/j.biomaterials.2013.05.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.
Collapse
Affiliation(s)
- Amanda W Smith
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University, Campus Box 1097, One Brookings Dr., St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kalaskar DM, Downes JE, Murray P, Edgar DH, Williams RL. Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. J R Soc Interface 2013; 10:20130139. [PMID: 23554347 DOI: 10.1098/rsif.2013.0139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cell-substrate interface plays a key role in the regulation of cell behaviour. Defining the properties of this interface is particularly important for human embryonic stem (hES) cell culture, because changes in this environment can regulate hES cell differentiation. It has been established that fibronectin-coated surfaces can promote the attachment, growth and maintenance of the undifferentiated phenotype of hES cells. We investigated the influence of the surface density of adsorbed fibronectin on hES cell behaviour in defined serum-free culture conditions and demonstrated that only 25 per cent surface saturation was required to maintain attachment, growth and maintenance of the undifferentiated phenotype. The influence of surface-adsorbed fibronectin fragments was compared with whole fibronectin, and it was demonstrated that the 120 kDa fragment central binding domain alone was able to sustain hES cells in an undifferentiated phenotype in a similar fashion to fibronectin. Furthermore, hES cell attachment to both fibronectin and the 120 kDa fragment was mediated by integrin α5β1. However, although a substrate-attached synthetic arginine-glycine-aspartic acid (RGD) peptide alone was able to promote the attachment and spreading of fibroblasts, it was inactive for hES cells, indicating that stem cells have different requirements in order to attach and spread on the central fibronectin RGD-cell-binding domain. This study provides further information on the characteristics of the cell-substrate interface required to control hES cell behaviour in clearly defined serum-free conditions, which are needed for the development of therapeutic applications of hES cells.
Collapse
Affiliation(s)
- Deepak M Kalaskar
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | | | |
Collapse
|
40
|
Smagghe BJ, Stewart AK, Carter MG, Shelton LM, Bernier KJ, Hartman EJ, Calhoun AK, Hatziioannou VM, Lillacci G, Kirk BA, DiNardo BA, Kosik KS, Bamdad C. MUC1* ligand, NM23-H1, is a novel growth factor that maintains human stem cells in a more naïve state. PLoS One 2013; 8:e58601. [PMID: 23505541 PMCID: PMC3591366 DOI: 10.1371/journal.pone.0058601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/07/2013] [Indexed: 12/20/2022] Open
Abstract
We report that a single growth factor, NM23-H1, enables serial passaging of both human ES and iPS cells in the absence of feeder cells, their conditioned media or bFGF in a fully defined xeno-free media on a novel defined, xeno-free surface. Stem cells cultured in this system show a gene expression pattern indicative of a more “naïve” state than stem cells grown in bFGF-based media. NM23-H1 and MUC1* growth factor receptor cooperate to control stem cell self-replication. By manipulating the multimerization state of NM23-H1, we override the stem cell's inherent programming that turns off pluripotency and trick the cells into continuously replicating as pluripotent stem cells. Dimeric NM23-H1 binds to and dimerizes the extra cellular domain of the MUC1* transmembrane receptor which stimulates growth and promotes pluripotency. Inhibition of the NM23-H1/MUC1* interaction accelerates differentiation and causes a spike in miR-145 expression which signals a cell's exit from pluripotency.
Collapse
Affiliation(s)
- Benoit J. Smagghe
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Andrew K. Stewart
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Mark G. Carter
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Laura M. Shelton
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Kyle J. Bernier
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Eric J. Hartman
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Amy K. Calhoun
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | | | - Gabriele Lillacci
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Brian A. Kirk
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Brian A. DiNardo
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
| | - Kenneth S. Kosik
- The Neuroscience Research Institute and the Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Cynthia Bamdad
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Beer MV, Rech C, Gasteier P, Sauerzapfe B, Salber J, Ewald A, Möller M, Elling L, Groll J. The next step in biomimetic material design: poly-LacNAc-mediated reversible exposure of extra cellular matrix components. Adv Healthc Mater 2013. [PMID: 23184377 DOI: 10.1002/adhm.201200080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meike V Beer
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ratliff BB, Goligorsky MS. Delivery of EPC embedded in HA-hydrogels for treatment of acute kidney injury. BIOMATTER 2013; 3:23284. [PMID: 23507925 PMCID: PMC3732320 DOI: 10.4161/biom.23284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adoptive transfer of stem cells has shown potential as an effective treatment for acute kidney injury (AKI). The current strategy for adoptive transfer of stem cells is by intravenous injection. However, this conventional method of stem cell delivery is riddled with problems causing reduced efficacy of the therapeutic potential of delivered stem cells. This review summarizes the recent advancements in an alternative method of stem cell delivery for treatment of AKI, embedding stem cells in hyaluronic acid (HA-) based hydrogels followed by their implantation. Furthermore, one stem cell type in particular, endothelial progenitor cells (EPC), have shown remarkable therapeutic benefits for treatment of AKI when delivered by HA-hydrogels. The review also summarizes the delivery of EPC by HA-hydrogels in the setting of AKI.
Collapse
Affiliation(s)
- Brian B Ratliff
- Departments of Medicine, Pharmacology and Physiology; New York Medical College; Valhalla, NY USA
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology and Physiology; New York Medical College; Valhalla, NY USA
| |
Collapse
|
43
|
Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS NANO 2012; 6:10168-77. [PMID: 23005914 PMCID: PMC3509190 DOI: 10.1021/nn3039148] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata, but their complexity obscures a molecular level analysis of their relevant attributes. Because the properties of hydrogels can be tuned and altered systematically, these materials can reveal the impact of substratum features on cell fate decisions. By tailoring the peptide displayed to cells and the substrate mechanical properties, a hydrogel was generated that binds hES cell surface glycosaminoglycans (GAGs) and functions robustly in a defined culture medium to support long-term hES cell self-renewal. A key attribute of the successful GAG-binding hydrogels is their stiffness. Only stiff substrates maintain hES cell proliferation and pluripotency. These findings indicate that cells can respond to mechanical information transmitted via GAG engagement. Additionally, we found that the stiff matrices afforded activation of the paralogous proteins YAP/TAZ, which are transcriptional coactivators implicated in mechanosensing and hES cell pluripotency. These results indicate that the substratum mechanics can be tuned to activate specific pathways linked to pluripotency. Because several different hES and induced pluripotent stem cell lines respond similarly, we conclude that stiff substrata are more effective for the long-term propagation of human pluripotent stem cells.
Collapse
Affiliation(s)
- Samira Musah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Stephen A. Morin
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Paul J. Wrighton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Daniel B. Zwick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Song Jin
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
44
|
Mohand-Kaci F, Assoul N, Martelly I, Allaire E, Zidi M. Optimized hyaluronic acid-hydrogel design and culture conditions for preservation of mesenchymal stem cell properties. Tissue Eng Part C Methods 2012; 19:288-98. [PMID: 22992013 DOI: 10.1089/ten.tec.2012.0144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel approach that preserved most mesenchymal stem cell (MSC) characteristics was developed using MSC encapsulation in a hydrogel based on hyaluronic acid (HA). An optimized HA-hydrogel composition, whose characteristics were assessed by scanning electron microscopy and viscoelastic property analyses, as well as the more favorable MSC seeding density, was established. These optimal three-dimensional MSC culture conditions allowed morphological cell remodeling, maintained the expression of stem cell markers over 28 days of culture, and preserved MSC differentiation plasticity. In addition, MSCs in HA-hydrogel submitted for 7 days to mechanical constraint that aimed at mimicking in vivo cardiac beat displayed enhanced cell survival by more than 40% compared to static culture conditions. Thus, the optimized HA-based hydrogel provides a niche for MSCs, which preserves their properties and opens ways for cell therapy, in particular in aortic repair medicine.
Collapse
Affiliation(s)
- Faïza Mohand-Kaci
- CNRS EAC 4396, Centre de Recherches Chirurgicales, Faculté de médecine, Université Paris-Est Créteil Val de Marne, Créteil cedex, France
| | | | | | | | | |
Collapse
|
45
|
Tsai HA, Shen CN, Chang YC. Use of surface properties to control the growth and differentiation of mouse fetal liver stem/progenitor cell colonies. Biomacromolecules 2012; 13:3483-93. [PMID: 23004572 DOI: 10.1021/bm301074j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multilayers of poly-l-lysine/poly-l-glutamic acid (PLL/PLGA) were constructed by layer-by-layer deposition on an end-tethered cationic PLL brush film serving as an initial layer. Increasing the number of coupling layers increased the thickness and the hydration of the films, and decreased the films' shear modulus and serum adsorption. These films were used to culture primary mouse fetal liver cells. Fetal liver stem/progenitor cells (FLSPCs) were isolated and maintained on the PLGA-terminal PLL/PLGA surfaces, forming colonies with clear boundaries that were partially attached to the surface, with cross-sectional areas of ~500 to ~2500 μm(2) after 2 days culture. Long-term studies showed that the cluster size of colonies slowly expanded and was correlated with the surface properties. For example, on the thicker films with shear modulus, G, less than 5 kPa, FLSPCs cluster size was constrained within a small distribution with less than 4000 μm(2) of projected area, whereas on the thinner films with G > 30 kPa, clusters were expanded and widely distributed, with projected areas over 4000 um(2). Immunostaining studies suggested that clusters with a small size maintained the self-renewal characteristics of stem cells, while the expanded clusters were clearly the results of spontaneous differentiation, exhibiting hepatocyte-like properties. On PLL-terminal t-(PLL/PLGA) films, which are less favorable for stem cell cultures than PLGA-terminal t-(PLL/PLGA) films, the cluster size distribution was also correlated with the film thickness, with more clusters of small size preserved on the thicker films. We observed that a soft, hydrated, serum-free surface could restrict the FLSPC expansion, resulting in self-maintenance of FLSPC colonies.
Collapse
Affiliation(s)
- Hsuan-Ang Tsai
- Genomics Research Center, Academia Sinica, 128, Sec 2 Academic Road, Taipei 115, Taiwan
| | | | | |
Collapse
|
46
|
Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 2012; 42:225-62. [PMID: 22990473 DOI: 10.1039/c2cs35065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Collapse
Affiliation(s)
- Gloria A A Saracino
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Cà Granda, Milan, 20162, Italy
| | | | | | | | | |
Collapse
|
47
|
Want AJ, Nienow AW, Hewitt CJ, Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med 2012; 7:71-84. [DOI: 10.2217/rme.11.101] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential, culture processes must be standardized, scalable and able to produce clinically relevant cell numbers, whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations, referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture, which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture, which may provide a cost-effective platform for low-dose, low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.
Collapse
Affiliation(s)
- Andrew J Want
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Alvin W Nienow
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
- Centre for Bioprocess Engineering, Department of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | - Christopher J Hewitt
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | | |
Collapse
|
48
|
Brubaker C, Messersmith PB. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 2011; 12:4326-34. [PMID: 22059927 PMCID: PMC3235916 DOI: 10.1021/bm201261d] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/03/2011] [Indexed: 02/03/2023]
Abstract
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.
Collapse
Affiliation(s)
- Carrie
E. Brubaker
- Biomedical
Engineering Department, Materials Science and Engineering Department, Chemical and Biological
Engineering Department, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
60208, United States
- Institute
for BioNanotechnology in Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
60611, United States
| | - Phillip B. Messersmith
- Biomedical
Engineering Department, Materials Science and Engineering Department, Chemical and Biological
Engineering Department, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
60208, United States
- Institute
for BioNanotechnology in Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
60611, United States
| |
Collapse
|
49
|
Hwang Y, Phadke A, Varghese S. Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regen Med 2011; 6:505-24. [PMID: 21749208 DOI: 10.2217/rme.11.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cells hold great promise for therapies aimed at regenerating damaged tissue, drug screening and studying in vitro models of human disease. However, many challenges remain before these applications can become a reality. One such challenge is developing chemically defined and scalable culture conditions for derivation and expansion of clinically viable human pluripotent stem cells, as well as controlling their differentiation with high specificity. Interaction of stem cells with their extracellular microenvironment plays an important role in determining their differentiation commitment and functions. Regenerative medicine approaches integrating cell-matrix and cell-cell interactions, and soluble factors could lead to development of robust microenvironments to control various cellular responses. Indeed, several of these recent developments have provided significant insight into the design of microenvironments that can elicit the targeted cellular response. In this article, we will focus on some of these developments with an emphasis on matrix-mediated expansion of human pluripotent stem cells while maintaining their pluripotency. We will also discuss the role of matrix-based cues and cell-cell interactions in the form of soluble signals in directing stem cell differentiation into musculoskeletal lineages.
Collapse
Affiliation(s)
- Yongsung Hwang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | | | |
Collapse
|
50
|
Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 2011; 33:80-90. [PMID: 21963148 DOI: 10.1016/j.biomaterials.2011.09.041] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/15/2011] [Indexed: 01/09/2023]
Abstract
In this study, we examined the capacity of a biomimetic pullulan-collagen hydrogel to create a functional biomaterial-based stem cell niche for the delivery of mesenchymal stem cells (MSCs) into wounds. Murine bone marrow-derived MSCs were seeded into hydrogels and compared to MSCs grown in standard culture conditions. Hydrogels induced MSC secretion of angiogenic cytokines and expression of transcription factors associated with maintenance of pluripotency and self-renewal (Oct4, Sox2, Klf4) when compared to MSCs grown in standard conditions. An excisonal wound healing model was used to compare the ability of MSC-hydrogel constructs versus MSC injection alone to accelerate wound healing. Injection of MSCs did not significantly improve time to wound closure. In contrast, wounds treated with MSC-seeded hydrogels showed significantly accelerated healing and a return of skin appendages. Bioluminescence imaging and FACS analysis of luciferase+/GFP+ MSCs indicated that stem cells delivered within the hydrogel remained viable longer and demonstrated enhanced engraftment efficiency than those delivered via injection. Engrafted MSCs were found to differentiate into fibroblasts, pericytes and endothelial cells but did not contribute to the epidermis. Wounds treated with MSC-seeded hydrogels demonstrated significantly enhanced angiogenesis, which was associated with increased levels of VEGF and other angiogenic cytokines within the wounds. Our data suggest that biomimetic hydrogels provide a functional niche capable of augmenting MSC regenerative potential and enhancing wound healing.
Collapse
Affiliation(s)
- Kristine C Rustad
- Department of Surgery, Stanford University, GK 201, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|