1
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Gulej R, Nyúl-Tóth Á, Csik B, Patai R, Petersen B, Negri S, Chandragiri SS, Shanmugarama S, Mukli P, Yabluchanskiy A, Conley S, Huffman D, Tarantini S, Csiszar A, Ungvari Z. Young blood-mediated cerebromicrovascular rejuvenation through heterochronic parabiosis: enhancing blood-brain barrier integrity and capillarization in the aged mouse brain. GeroScience 2024; 46:4415-4442. [PMID: 38727872 PMCID: PMC11336025 DOI: 10.1007/s11357-024-01154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Takafuji Y, Kawao N, Ohira T, Mizukami Y, Okada K, Jo JI, Tabata Y, Kaji H. Extracellular vesicles secreted from mouse muscle cells improve delayed bone repair in diabetic mice. Endocr J 2023; 70:161-171. [PMID: 36198617 DOI: 10.1507/endocrj.ej22-0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humoral factors that are secreted from skeletal muscles can regulate bone metabolism and contribute to muscle-bone relationships. Although extracellular vesicles (EVs) play important roles in physiological and pathophysiological processes, the roles of EVs that are secreted from skeletal muscles in bone repair have remained unclear. In the present study, we investigated the effects of the local administration of muscle cell-derived EVs on bone repair in control and streptozotocin-treated diabetic female mice. Muscle cell-derived EVs (Myo-EVs) were isolated from the conditioned medium from mouse muscle C2C12 cells by ultracentrifugation, after which Myo-EVs and gelatin hydrogel sheets were transplanted on femoral bone defect sites. The local administration of Myo-EVs significantly improved delayed bone repair that was induced by the diabetic state in mice 9 days after surgery. Moreover, this administration significantly enhanced the ratio of bone volume to tissue volume at the damaged sites 9 days after surgery in the control mice. Moreover, the local administration of Myo-EVs significantly blunted the number of Osterix-positive cells that were suppressed by the diabetic state at the damage sites after bone injury in mice. Additionally, Myo-EVs significantly blunted the mRNA levels of Osterix and alkaline phosphatase (ALP), and ALP activity was suppressed by advanced glycation end product 3 in ST2 cells that were treated with bone morphogenetic protein-2. In conclusion, we have shown for the first time that the local administration of Myo-EVs improves delayed bone repair that is induced by the diabetic state through an enhancement of osteoblastic differentiation in female mice.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Biomaterials, Osaka Dental University, Osaka 573-1121, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
6
|
Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li J, Wang H, Zhang J. Inflammation produced by senescent osteocytes mediates age-related bone loss. Front Immunol 2023; 14:1114006. [PMID: 36814916 PMCID: PMC9940315 DOI: 10.3389/fimmu.2023.1114006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose The molecular mechanisms of age-related bone loss are unclear and without valid drugs yet. The aims of this study were to explore the molecular changes that occur in bone tissue during age-related bone loss, to further clarify the changes in function, and to predict potential therapeutic drugs. Methods We collected bone tissues from children, middle-aged individuals, and elderly people for protein sequencing and compared the three groups of proteins pairwise, and the differentially expressed proteins (DEPs) in each group were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). K-means cluster analysis was then used to screen out proteins that continuously increased/decreased with age. Canonical signaling pathways that were activated or inhibited in bone tissue along with increasing age were identified by Ingenuity Pathway Analysis (IPA). Prediction of potential drugs was performed using the Connectivity Map (CMap). Finally, DEPs from sequencing were verified by Western blot, and the drug treatment effect was verified by quantitative real-time PCR. Results The GO and KEGG analyses show that the DEPs were associated with inflammation and bone formation with aging, and the IPA analysis shows that pathways such as IL-8 signaling and acute-phase response signaling were activated, while glycolysis I and EIF2 signaling were inhibited. A total of nine potential drugs were predicted, with rapamycin ranking the highest. In cellular experiments, rapamycin reduced the senescence phenotype produced by the H2O2-stimulated osteocyte-like cell MLO-Y4. Conclusion With age, inflammatory pathways are activated in bone tissue, and signals that promote bone formation are inhibited. This study contributes to the understanding of the molecular changes that occur in bone tissue during age-related bone loss and provides evidence that rapamycin is a drug of potential clinical value for this disease. The therapeutic effects of the drug are to be further studied in animals.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianxing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| |
Collapse
|
7
|
Chen S, Xiao Z, Jiang W. SOX2 suppresses osteoblast differentiation of MC3T3-E1 cells through activating the transcription of LGR4. In Vitro Cell Dev Biol Anim 2023; 59:1-9. [PMID: 36547788 DOI: 10.1007/s11626-022-00740-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
Osteogenic differentiation is a crucial process of new bone formation. This study aimed to explore the roles and mechanism of SRY-Box Transcription Factor 2 (SOX2) on proliferation and osteogenic differentiation of MC3T3-E1 cells. Bone morphogenetic protein 2 (BMP2) was used to induce the osteogenic differentiation of MC3T3-E1 cells. The expression of SOX2 was determined by quantitative real-time PCR (RT-PCR) at different time points after induction. The SOX2 overexpression plasmids were constructed and transfected into MC3T3-E1 cells. Osteogenic differentiation was evaluated by Alizarin Red S staining and alkaline phosphatase (ALP) assay. The expressions of osteogenic differentiation markers including runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) were detected by western blot assay. Luciferase reporter and CHIP assays were used to confirm that SOX2 regulated the transcriptional activation of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). We found that SOX2 was down-regulated upon BMP2-induced osteogenic differentiation in MC3T3-E1 cells. Overexpression of SOX2 effectively inhibited osteogenic differentiation with decreased ALP activity, calcification, and osteogenic differentiation markers' expression including Runx2, OPN, and OCN. LGR4 was identified as a target of SOX2, and the inhibitory effect of SOX2 on osteogenic differentiation was reversed by knockdown of LGR4. The present study confirmed that SOX2 suppressed osteogenic differentiation of MC3T3-E1 cells through targeting LGR4, which possesses a therapeutic strategy for bone formation and generation.
Collapse
Affiliation(s)
- Sunyu Chen
- The Third Clinical Medical College, Fujian Medical University, No. 88, Jiaotong Road, Fuzhou, Fujian Province, 350004, People's Republic of China. .,Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China. .,Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, People's Republic of China.
| | - Zhanhao Xiao
- Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China
| | - Wenjin Jiang
- Department of Orthopedics, Fuzhou Second Hospital, Cangshan District, No. 47, Shangteng Road, Fuzhou, Fujian Province, 350007, People's Republic of China
| |
Collapse
|
8
|
Zhou Z, Chen S, Wu T, Chen Y, Cao Y, Huang Y, Liu D. IGF2BP2, an RNA-binding protein regulates cell proliferation and osteogenic differentiation by stabilizing SRF mRNA. J Cell Physiol 2023; 238:195-209. [PMID: 36436184 DOI: 10.1002/jcp.30919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Osteoblast proliferation and osteogenic differentiation (OGD) are regulated by complex mechanisms. The roles in cell proliferation and OGD of RNA-binding proteins in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family remain unclear. To elucidate this, we examined the differential expression of IGF2BP2 in OGD and osteoporosis, and the expression profile of IGF2BP2-binding RNA in vitro. We screened the GEO database for differential expression of IGF2BP in OGD and osteoporosis, and verified the RNAs interacting with IGF2BP2 via RNA immunoprecipitation sequencing assays. The proliferation and OGD of IGF2BP2- and serum response factor (SRF)-treated cells, and their regulatory mechanisms, were examined. IGF2BP2 was differentially expressed in OGD and osteoporosis. The RNA immunoprecipitation sequencing assay identified all of the RNAs that bind with IGF2BP2, and revealed SRF as a target of IGF2BP2. IGF2BP2 and SRF inhibition impaired MC3T3-E1 cell growth but promoted OGD. The mRNA stability analysis revealed that IGF2BP2 enhanced SRF mRNA stability against degradation. In summary, IGF2BP2 is a potential biomarker and therapeutic target for osteoporosis and OGD.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tong Wu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifeng Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiao Cao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Li XL, Wang L, He MC, Li WX, Zhang JL, Fu YF, Zhang Y. A clinical herbal prescription Gu-Shu-Kang capsule exerted beneficial effects on the musculoskeletal system of dexamethasone-treated mice by acting on tissue IGF-1 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2098-2109. [PMID: 36269032 PMCID: PMC9590446 DOI: 10.1080/13880209.2022.2132029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Wang
- Department of Geriatric, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ming-Chao He
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Xiong Li
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Trauma, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia-Li Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Key Laboratory of Theory and Therapy of Muscles and Bones, Shanghai, China
| |
Collapse
|
10
|
Huang HB, Luo HT, Wei NN, Liu ML, He F, Yang W, Dong J, Yang XF, Li FR. Integrative analysis reveals a lineage-specific circular RNA landscape for adipo-osteogenesis of human mesenchymal stem cells. Stem Cell Res Ther 2022; 13:106. [PMID: 35279206 PMCID: PMC8917624 DOI: 10.1186/s13287-022-02792-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background The balance between osteogenesis and adipogenesis of mesenchymal stem cells (MSCs) is critical to skeletal development and diseases. As a research hotspot, circular RNAs (circRNAs) have expanded our understanding of a hidden layer of the transcriptome. Yet, their roles during adipo-osteogenesis remain poorly described. Methods The identity of human MSCs derived from bone marrow and adipose were first determined by flow cytometry, cellular staining, and quantitative polymerase chain reaction (qPCR). Multi-strategic RNA-sequencing was performed using Poly A, RiboMinus and RiboMinus/RNase R methods. Integrative analysis was performed to identify lineage-specific expressed circRNAs. The structural and expressional characteristics were identified by Sanger sequencing and qPCR, respectively. The regulatory effects of adipogenesis-specific circ-CRLF1 were confirmed using siRNA transcfection and qPCR. Results We generated a whole transcriptome map during adipo-osteogenesis based on 10 Poly A, 20 RiboMinus and 20 RiboMinus/ RNase R datasets. A total of 31,326 circRNAs were identified and quantified from ~ 3.4 billion paired-end reads. Furthermore, the integrative analysis revealed that 1166 circRNA genes exhibited strong lineage-specific expression patterns. Their host genes were enriched in distinct biological functions, such as cell adhesion, cytokine signaling, and cell division. We randomly selected and validated the back-spliced junction sites and expression patterns of 12 lineage-specific circRNAs. Functional analysis indicated that circ-CRLF1 negatively regulated adipogenesis. Conclusions Our integrative analysis reveals an accurate and generally applicable lineage-specific circRNA landscape for adipo-osteogenesis of MSCs and provides a potential therapeutic target, circ-CRLF1, for the treatment of skeleton-related disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02792-5.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na-Na Wei
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Miao-Ling Liu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China. .,Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdong, 518020, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, Guangdong, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
11
|
Dessay M, Couture E, Maaroufi H, Fournier F, Gagnon E, Droit A, Brown JP, Michou L. Attenuated clinical and osteoclastic phenotypes of Paget's disease of bone linked to the p.Pro392Leu/SQSTM1 mutation by a rare variant in the DOCK6 gene. BMC Med Genomics 2022; 15:41. [PMID: 35241069 PMCID: PMC8895793 DOI: 10.1186/s12920-022-01198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background We identified two families with Paget's disease of bone (PDB) linked to the p.Pro392Leu mutation within the SQSTM1 gene displaying a possible digenism. This study aimed at identifying this second genetic variant cosegregating with the p.Pro392Leu mutation and at characterizing its impact on the clinical and cellular phenotypes of PDB. Methods Whole exome sequencing was performed in one patient per family and two healthy controls. We compared clinical characteristics of PDB in 14 relatives from the two families. The osteoclastic phenotype was compared in in vitro differentiated osteoclasts from 31 participants carrying the DOCK6 and/or SQSTM1 variants. Tridimensional models of SQSTM1 and DOCK6 proteins were generated to evaluate the impact of these variants on their stability and flexibility. Statistical analyses were performed with Graphpad prism. Results Whole-exome sequencing allowed us to identify the p.Val45Ile missense variant in the DOCK6 gene in patients. In both families, the mean age at PDB diagnosis was delayed in pagetic patients carrier of the p.Val45Ile variant alone compared to those carrying the p.Pro392Leu mutation alone (67 vs. 44 years, P = 0.03). Although both p.Val45Ile and p.Pro392Leu variants gave rise to a pagetic phenotype of osteoclast versus healthy controls, the p.Val45Ile variant was found to attenuate the severity of the osteoclastic phenotype of PDB caused by the p.Pro392Leu mutation when both variants were present. The DOCK6 mRNA expression was higher in carriers of the p.Val45Ile variant than in pagetic patients without any mutations and healthy controls. Structural bioinformatics analyses suggested that the p.Pro392Leu mutation might rigidify the UBA domain and thus decrease its possible intramolecular interaction with a novel domain, the serum response factor–transcription factor (SRF-TF)-like domain, whereas the p.Val45Ile variant may decrease SRF-TF-like activity. Conclusion The p.Val45Ile variant may attenuate the severity of the clinical phenotype of PDB in patient carriers of both variants. In vitro, the rare variant of the DOCK6 may have a modifier effect on the p.Pro392Leu mutation, possibly via its effect on the SRF-TF-like. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01198-9.
Collapse
Affiliation(s)
- Mariam Dessay
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Emile Couture
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Frédéric Fournier
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Edith Gagnon
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Jacques P Brown
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.,Department of Medicine, Université Laval, Quebec, QC, Canada
| | - Laëtitia Michou
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada. .,Department of Medicine, Université Laval, Quebec, QC, Canada. .,Department of Rheumatology-R4774, CHU de Québec-Université Laval, 2705 boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
12
|
Zhang H, Li X, Li J, Zhong L, Chen X, Chen S. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect. J Bone Miner Metab 2021; 39:126-138. [PMID: 33079278 DOI: 10.1007/s00774-020-01122-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/27/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Recent studies have indicated the potential of stem cell therapy in combination with cytokines to restore the bone repair via migration and homing of stem cells to the defected area. The present study aimed to investigate the mobilization and recruitment of mesenchymal stem cells (MSCs) in response to SDF-1. MATERIALS AND METHODS Herein, the knockout rat model of the bone defect (BD) was treated with the induced membrane technique. Then, wild type Wistar rats and SDF-1-knockout rats were selected for the establishment of BD-induced membrane (BD-IM) models and bone-graft (BG) models. The number of MSCs was evaluated by flow cytometry, along with the expression pattern of the SDF-1/CXCR4 axis as well as osteogenic factors was identified by RT-qPCR and Western blot analyses. Finally, the MSC migration ability was assessed by the Transwell assay. RESULTS Our data illustrated that in the induced membrane tissues, the number of MSCs among the BD-IM modeled rats was increased, whereas, a lower number was documented among BG modeled rats. Besides, we found that lentivirus-mediated over-expression of SDF-1 in BG modeled rats could activate the SDF-1/CXCR4 axis, mobilize MSCs into the defect area, and up-regulate the osteogenic proteins. CONCLUSIONS Collectively, our study speculated that up-regulation of SDF-1 promotes the mobilization and migration of MSCs through the activation of the SDF-1/CXCR4 signal pathway.
Collapse
Affiliation(s)
- Heli Zhang
- Department of Outpatient, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Xijing Li
- Department of Emergency, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Zhong
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Xue Chen
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| | - Si Chen
- Department of Geriatric Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
13
|
Tekola-Ayele F, Ouidir M, Shrestha D, Workalemahu T, Rahman ML, Mendola P, Grantz KL, Hinkle SN, Wu J, Zhang C. Admixture mapping identifies African and Amerindigenous local ancestry loci associated with fetal growth. Hum Genet 2021; 140:985-997. [PMID: 33590300 DOI: 10.1007/s00439-021-02265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Fetal growth is an important determinant of cardiometabolic disease risk during childhood and adulthood. The genetic architecture of fetal growth remains largely understudied in ancestrally diverse populations. We conducted genome-wide admixture mapping scan and analysis of genetic ancestry among Hispanic American, African American, European American, and Asian American pregnant women to identify genetic loci associated with fetal growth measures across 13-40 weeks gestation. Fetal growth measures were associated with genome-wide average African, European, Amerindigenous and East Asian ancestry proportions (P ranged from10-3 to 4.8 × 10-2). Admixture mapping analysis identified ten African ancestry loci and three Amerindigenous ancestry loci significantly associated with fetal growth measures at Bonferroni-corrected levels of significance (P ranged from 2.18 × 10-8 to 3.71 × 10-6). At the chr2q23.3-24.2 locus in which higher African ancestry was associated with long bone (femur and humerus) lengths, the T allele of rs13030825 (GALNT13) was associated with longer humerus length in African Americans (β = 0.44, P = 6.25 × 10-6 at week 27; β = 0.39, P = 7.72 × 10-5 at week 40). The rs13030825 SNP accounted for most of the admixture association at the chr2q23.3-24.2 locus and has substantial allele frequency difference between African and European reference samples (FST = 0.55, P = 0.03). Regulatory annotation shows that rs13030825 overlaps with the serum response factor (SRF) transcription factor previously implicated in postnatal bone development of mice. Overall, we identified ancestry-related maternal genetic loci that influence fetal growth, shedding light on molecular pathways that regulate fetal growth and potential effects on health across the lifespan.Clinical trials registration ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA.
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| | - Mohammad L Rahman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA.,Department of Population Medicine and Harvard Pilgrim Healthcare Institute, Harvard Medical School, Boston, MA, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA.,Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| | - Stefanie N Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| | - Jing Wu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, 6710B-3204, Bethesda, MD, 20892-7004, USA
| |
Collapse
|
14
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
15
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
16
|
Tong Z, Liu Y, Xia R, Chang Y, Hu Y, Liu P, Zhai Z, Zhang J, Li H. F-actin Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO 2 Nanotubes Through MKL1 and YAP/TAZ. NANOSCALE RESEARCH LETTERS 2020; 15:183. [PMID: 32965618 PMCID: PMC7511505 DOI: 10.1186/s11671-020-03415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/14/2020] [Indexed: 05/02/2023]
Abstract
Titanium and titanium alloys are widely used in orthopedic implants. Modifying the nanotopography provides a new strategy to improve osseointegration of titanium substrates. Filamentous actin (F-actin) polymerization, as a mechanical loading structure, is generally considered to be involved in cell migration, endocytosis, cell division, and cell shape maintenance. Whether F-actin is involved and how it functions in nanotube-induced osteogenic differentiation of mesenchymal stem cells (MSCs) remain to be elucidated. In this study, we fabricated TiO2 nanotubes on the surface of a titanium substrate by anodic oxidation and characterized their features by scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and atomic force microscopy (AFM). Alkaline phosphatase (ALP) staining, Western blotting, qRT-PCR, and immunofluorescence staining were performed to explore the osteogenic potential, the level of F-actin, and the expression of MKL1 and YAP/TAZ. Our results showed that the inner diameter and roughness of TiO2 nanotubes increased with the increase of the anodic oxidation voltage from 30 to 70 V, while their height was 2 μm consistently. Further, the larger the tube diameter, the stronger the ability of TiO2 nanotubes to promote osteogenic differentiation of MSCs. Inhibiting F-actin polymerization by Cyto D inhibited osteogenic differentiation of MSCs as well as the expression of proteins contained in focal adhesion complexes such as vinculin (VCL) and focal adhesion kinase (FAK). In contrast, after Jasp treatment, polymerization of F-actin enhanced the expression of RhoA and transcription factors YAP/TAZ. Based on these data, we concluded that TiO2 nanotubes facilitated the osteogenic differentiation of MSCs, and this ability was enhanced with the increasing diameter of the nanotubes within a certain range (30-70 V). F-actin mediated this process through MKL1 and YAP/TAZ.
Collapse
Affiliation(s)
- Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yanchang Liu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Runzhi Xia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yi Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Pengcheng Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
17
|
Myocardin-Related Transcription Factor A (MRTF-A) Regulates the Balance between Adipogenesis and Osteogenesis of Human Adipose Stem Cells. Stem Cells Int 2020; 2020:8853541. [PMID: 33029150 PMCID: PMC7527895 DOI: 10.1155/2020/8853541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have demonstrated that myocardin-related transcription factor A (MRTF-A) generates a link between the dynamics of the actin cytoskeleton and gene expression with its coregulator, serum response factor (SRF). MRTF-A has also been suggested as a regulator of stem cell differentiation. However, the role of MRTF-A in human mesenchymal stem cell differentiation remains understudied. We aimed to elucidate whether MRTF-A is a potential regulator of human adipose stem cell (hASC) differentiation towards adipogenic and osteogenic lineages. To study the role of MRTF-A activity in the differentiation process, hASCs were cultured in adipogenic and osteogenic media supplemented with inhibitor molecules CCG-1423 or CCG-100602 that have been shown to block the expression of MRTF-A/SRF-activated genes. Our results of image-based quantification of Oil Red O stained lipid droplets and perilipin 1 staining denote that MRTF-A inhibition enhanced the adipogenic differentiation. On the contrary, MRTF-A inhibition led to diminished activity of an early osteogenic marker alkaline phosphatase, and export of extracellular matrix (ECM) proteins collagen type I and osteopontin. Also, quantitative Alizarin Red staining representing ECM mineralization was significantly decreased under MRTF-A inhibition. Image-based analysis of Phalloidin staining revealed that MRTF-A inhibition reduced the F-actin formation and parallel orientation of the actin filaments. Additionally, MRTF-A inhibition affected the protein amounts of α-smooth muscle actin (α-SMA), myosin light chain (MLC), and phosphorylated MLC suggesting that MRTF-A would regulate differentiation through SRF activity. Our results strongly indicate that MRTF-A is an important regulator of the balance between osteogenesis and adipogenesis of hASCs through its role in mediating the cytoskeletal dynamics. These results provide MRTF-A as a new interesting target for guiding the stem cell differentiation in tissue engineering applications for regenerative medicine.
Collapse
|
18
|
Wu S, Zhao F, Zhao J, Li H, Chen J, Xia Y, Wang J, Zhao B, Zhao S, Li N. Dioscin improves postmenopausal osteoporosis through inducing bone formation and inhibiting apoptosis in ovariectomized rats. Biosci Trends 2019; 13:394-401. [PMID: 31611520 DOI: 10.5582/bst.2019.01186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Wu
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Fan Zhao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin province, China
| | - Jing Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, Jilin province, China
| | - Junyu Chen
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Yang Xia
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Junwei Wang
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Benzheng Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Shuhua Zhao
- The Second Hospital of Jilin University, Changchun, Jilin province, China
| | - Na Li
- Jilin Ginseng Academic, Changchun University of Chinese Medicine, Changchun, Jilin province, China
| |
Collapse
|
19
|
|
20
|
Liu Y, Guan J, Chen X. Identification of Differentially Expressed Genes under the Regulation of Transcription Factors in Osteosarcoma. Pathol Oncol Res 2018; 25:1091-1102. [PMID: 30411296 DOI: 10.1007/s12253-018-0519-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
The present study was to investigate and identify the differentially expressed genes (DEGs) in the transcriptional regulatory network of osteosarcoma (OS). The gene expression dataset from Gene Expression Omnibus (GEO) datasets was downloaded. DEGs were identified and their functional annotation was also conducted. In addition, differentially expressed transcription factors (TFs) and the regulatory genes were identified. The electronic validation was used to verify the expression of selected genes. The integrated analysis led to 932 DEGs. The results of functional annotation indicated that these DEGs significantly enriched in the p53 signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. ZNF354C, NFIC, NFATC2, SP2, FOXO3, EGR1, ZEB1, RREB1, EGR2 and SRF were covered by most TFs. The expression levels of NFIC and EGR2 in electronic validation were compatible with our bio-informatics result. In conclusion, the deregulation of these genes may provide valuable information in understanding the underlying molecular mechanism in the OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China.
| | - Xiaotian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| |
Collapse
|
21
|
Yu C, Xuan M, Zhang M, Yao Q, Zhang K, Zhang X, Guo J, Song L. Postnatal deletion of β-catenin in osterix-expressing cells is necessary for bone growth and intermittent PTH-induced bone gain. J Bone Miner Metab 2018; 36:560-572. [PMID: 29124436 DOI: 10.1007/s00774-017-0873-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022]
Abstract
wnt/β-catenin signaling has been shown to influence bone homeostasis and is important for parathyroid hormone (PTH)-induced bone gain. To further understand the role of β-catenin in the early stages of osteoblastic lineage cells for postnatal bone homeostasis and the anabolic actions of PTH on bone, we examined mice with postnatal disruption of β-catenin in osterix-expressing cells (β-catenin KO mice) by mating floxed β-catenin mice with transgenic mice expressing cre under the control of the osterix promoter suppressible by doxycycline. After withdrawal of doxycycline, β-catenin KO mice developed progressive bone loss, ectopic cartilage formation, accumulation of mesenchymal stromal cells, and bone marrow adiposity. The β-catenin-defective osteoblasts sorted by flow cytometry from β-catenin KO mice exhibited decreased EdU incorporation, increased annexin V activity, and profound alterations in gene expression including wnt target genes, osteoclast regulators, and osteoblast markers. A dramatic increase in osteoclasts was observed in both neonatal and postnatal β-catenin KO mice. Intermittent administration of PTH for 4 weeks significantly increased bone mass in control mice; however, this anabolic effect of PTH was substantially blunted in β-catenin KO mice. Our data indicate that β-catenin in osterix-expressing cells is required for postnatal osteoblast differentiation, osteoblast proliferation, and bone resorption, and is essential for the anabolic actions of PTH in bone.
Collapse
Affiliation(s)
- Caixia Yu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Miao Xuan
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Mingzhu Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qianqian Yao
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Keqin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Xiuzhen Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Lige Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Rd, Shanghai, 200065, China.
| |
Collapse
|
22
|
Yang Y, Sun Y, Chen J, Bradley WE, Dell'Italia LJ, Wu H, Chen Y. AKT-independent activation of p38 MAP kinase promotes vascular calcification. Redox Biol 2018; 16:97-103. [PMID: 29495001 PMCID: PMC5952999 DOI: 10.1016/j.redox.2018.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification is prevalent in patients with atherosclerosis, and oxidative stress promotes pathogenesis of atherosclerosis. We have previously reported that activation of AKT by oxidative stress induces vascular calcification. Using sodium dichloroacetate (DCA), a previously reported small molecule inhibitor of AKT, the present studies uncovered an AKT-independent mechanism in regulating vascular calcification. We found that DCA dose-dependently induced calcification of vascular smooth muscle cells (VSMC) in vitro and aortic rings ex vivo. Furthermore, DCA markedly enhanced vascular calcification in atherosclerotic ApoE knockout mice in vivo. DCA-induced VSMC calcification was associated with increased Runx2, but not via activation of AKT, a key upstream signal that upregulates Runx2 during VSMC calcification. In contrast, DCA inhibited AKT activation and induced activation of p38 MAPK in calcified atherosclerotic lesions in vivo and calcified VSMC in vitro. Using a pharmacological inhibitor and shRNA for p38 MAPK, we demonstrated that inhibition of p38 MAPK blocked DCA-induced Runx2 upregulation and VSMC calcification. Furthermore, Runx2 deletion attenuated DCA-induced VSMC calcification. Immunoprecipitation analysis revealed association of p38 MAPK with Runx2, which was enhanced by DCA treatment. Knockdown p38 MAPK inhibited DCA-induced Runx2 transactivity, supporting the function of p38 MAPK in regulating Runx2 transactivity. Our studies have uncovered a new function of DCA in regulating vascular calcification, via AKT-independent activation of p38 MAPK. Furthermore, we have identified novel interaction between p38 MAPK and Runx2 enhances Runx2 transactivity, thus promoting VSMC calcification. These results revealed a novel signaling mechanism underlying DCA-induced vascular calcification, and offer opportunities to identify new therapeutic targets. Vascular calcification is prevalent in patients with atherosclerosis, and oxidative stress promotes pathogenesis of atherosclerosis. We reported that oxidative stress-activated AKT and Runx2 promote VSMC calcification, leading to vascular calcification in atherosclerosis. DCA has been shown to inhibit AKT activation, but its effects on vascular calcification have not been investigated. The present studies have uncovered a new function of DCA in promoting vascular calcification via AKT-independent activation of p38 MAP kinase. We have also elucidated that the interaction of p38 MAPK with Runx2 enhances Runx2 transactivity, and thus promoting VSMC calcification.
Collapse
Affiliation(s)
- Youfeng Yang
- Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, 614 Shelby Biomedical Research Building, Birmingham, AL 35294, USA
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, 614 Shelby Biomedical Research Building, Birmingham, AL 35294, USA
| | - Jianye Chen
- Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, 614 Shelby Biomedical Research Building, Birmingham, AL 35294, USA
| | - Wayne E Bradley
- Department of Medicine, University of Alabama at Birmingham, USA
| | | | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd, 614 Shelby Biomedical Research Building, Birmingham, AL 35294, USA; Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA.
| |
Collapse
|
23
|
Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells. Stem Cells Int 2017; 2017:7108458. [PMID: 29138638 PMCID: PMC5613713 DOI: 10.1155/2017/7108458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023] Open
Abstract
Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95–99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.
Collapse
|
24
|
Yang SZ, Xu F, Zhou T, Zhao X, McDonald JM, Chen Y. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. J Biol Chem 2017; 292:10390-10397. [PMID: 28476883 PMCID: PMC5481552 DOI: 10.1074/jbc.m117.786830] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/21/2017] [Indexed: 08/11/2023] Open
Abstract
Pancreatic cancer is a malignant neoplasm with a high mortality rate. Therapeutic agents that activate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis have shown promising efficacy, but many pancreatic cancers are resistant to TRAIL therapy. Epigenetic regulation plays important roles in tumor pathogenesis and resistance, and a recent study indicated that the long non-coding RNA HOX transcript antisense RNA (HOTAIR) is overexpressed in pancreatic cancer. However, the role of HOTAIR in pancreatic cancer resistance to anticancer agents is unknown. The present study determined the role of HOTAIR in pancreatic cancer TRAIL resistance and investigated the underlying molecular mechanisms. We observed that TRAIL-resistant pancreatic cancer cells had higher levels of HOTAIR expression, whereas TRAIL-sensitive pancreatic cancer cells had lower HOTAIR levels. Overexpressing HOTAIR in TRAIL-sensitive cells attenuated TRAIL-induced apoptosis, and shRNA-mediated HOTAIR knockdown in TRAIL-resistant PANC-1 cells sensitized them to TRAIL-induced apoptosis. These results support a causative effect of HOTAIR on TRAIL sensitivity. Mechanistically, we found that increased HOTAIR expression inhibited the expression of the TRAIL receptor death receptor 5 (DR5), whereas HOTAIR knockdown increased DR5 expression. We further demonstrated that HOTAIR regulates DR5 expression via the epigenetic regulator enhancer of zeste homolog 2 (EZH2) and that EZH2 controls histone H3 lysine 27 trimethylation on the DR5 gene. Taken together, these results demonstrate that high HOTAIR levels increase the resistance of pancreatic cancer cells to TRAIL-induced apoptosis via epigenetic regulation of DR5 expression. Our study therefore supports the notion that targeting HOTAIR function may represent a strategy to overcome TRAIL resistance in pancreatic cancer.
Collapse
Affiliation(s)
| | - Fei Xu
- From the Departments of Pathology
| | | | - Xinyang Zhao
- Biochemistry, University of Alabama at Birmingham and
| | - Jay M McDonald
- From the Departments of Pathology
- the Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Yabing Chen
- From the Departments of Pathology,
- the Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
25
|
Bian H, Lin JZ, Li C, Farmer SR. Myocardin-related transcription factor A (MRTFA) regulates the fate of bone marrow mesenchymal stem cells and its absence in mice leads to osteopenia. Mol Metab 2016; 5:970-979. [PMID: 27689009 PMCID: PMC5034694 DOI: 10.1016/j.molmet.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
Objective Arising from common progenitors in the bone marrow, adipogenesis and osteogenesis are closely associated yet mutually exclusive during bone marrow mesenchymal stem cell (BMSC) development. Previous studies have shown that morphological changes can affect the early commitment of pluripotent BMSCs to the adipose versus osteoblastic lineage via modulation of RhoA activity. The RhoA pathway regulates actin polymerization to promote the incorporation of globular actin (G-actin) into filamentous actin (F-actin). In doing so, myocardin-related transcription factors (MRTFs) dissociate from bound G-actin and enter the nucleus to co-activate serum response factor (SRF) target gene expression. In this study, we investigated whether MRTFA/SRF is acting downstream of the RhoA pathway to regulate BMSC commitment in mice. Methods The effects of knocking out MRTFA on skeletal homeostasis was studied in MRTFA KO mice using micro-CT, QPCR and western blot assays. To determine how MRTFA affects the mechanisms regulating BMSC fate decisions, primary bone marrow stromal cells from WT and MRTFA KO mice as well as C3H10T1/2 cell lines were analyzed in vitro. Results Global MRTFA KO mice have lower whole body weight, shorter femoral and tibial lengths as well as significantly decreased bone mass in their femurs. BMSCs isolated from the KO mice show increased adipogenesis and reduced osteogenesis when compared to WT littermates. KO mice, particularly females, develop osteopenia with age, and this was enhanced by a high fat diet. Over-expression of MRTFA or SRF enhances osteogenesis in CH310T1/2 cell lines. Sca1+, CD45− cells from KO marrow express lower amounts of smooth muscle actin (SMA) and TAZ/YAP target genes compared to WT counterparts. Conclusion This study identified MRTFA as a novel regulator of skeletal homeostasis by regulating the balance between adipogenic and osteogenic differentiation of BMSCs. We propose that MRTFA promotes the osteogenic activity of TAZ/YAP by maintaining SMA production in BMSCs.
Collapse
Affiliation(s)
- Hejiao Bian
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Jean Z Lin
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA.
| |
Collapse
|
26
|
Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet 2016; 98:473-489. [PMID: 26924529 DOI: 10.1016/j.ajhg.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.
Collapse
Affiliation(s)
- Ellen Knierim
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan; Center for Frontier Research, National Institute of Genetics, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Mishima 411-8540, Japan.
| | - Nicole I Wolf
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Tanaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Sabine Rudnik-Schöneborn
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mickael Orgeur
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Klaus Zerres
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Stefanie Vogt
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, 44137 Dortmund, Germany
| | - Anne van Riesen
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Esther Gill
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Angelika Zwirner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Hans Hilmar Goebel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
27
|
Duan X, Xu H, Wang Y, Wang H, Li G, Jing L. Expression of core-binding factor α1 and osteocalcin in fluoride-treated fibroblasts and osteoblasts. J Trace Elem Med Biol 2014; 28:278-83. [PMID: 24680482 DOI: 10.1016/j.jtemb.2014.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 12/21/2022]
Abstract
To study the effects and importance of fluoride on FBs in the development of extraperiosteal calcification and the ossification of skeletal fluorosis, the presence of the osteogenic phenotype, which is indicated by the expression of core-binding factor α1 (Cbfa1) and osteocalcin (OCN), in an FB cell line (L929) and in osteoblasts (OBs) exposed to fluoride was determined. Fibroblasts and osteoblasts were exposed to different concentrations of fluoride (0, 0.0001, 0.001, 0.1, 1.0, 10.0 and 20.0 mg/L F(-)). By using RT-PCR and ELISA, the mRNA levels of Cbfa1 and OCN were measured at 48 h, and the protein levels of Cbfa1 and OCN were measured at 2, 4, 24, 48 and 72 h. The data demonstrated the following: (1) The Cbfa1 protein level in fluoride-treated fibroblasts clearly increased at 48 h in the groups treated with 0.0001, 0.001, 0.1, 1.0 and 20.0 mg/L F(-). The Cbfa1 protein level of the group treated with 10 mg/L F(-) at 72 h was higher than that of the control group. The level of Cbfa1 mRNA in the fibroblasts was much higher at 48 h in the group treated with 10.0 mg/L F(-) than in the control group. (2) The OCN protein level in fluoride-treated fibroblasts was significantly higher than that of the control group in the 0.0001, 0.1, 1.0, 10.0 and 20.0 mg/L F(-) groups at 2 h, and in the 0.001 and 0.1 F(-) groups at 4 h. A slightly higher level of OCN mRNA in fluoride-treated fibroblasts was also found in the 1.0 and 20.0 mg/L F(-) groups compared to the control group. (3) The expressions of Cbfa1 and OCN in osteoblasts treated with the same experimental conditions as the fibroblasts were up-regulated by fluoride following the same trend as in the fibroblasts. Our results showed an increase in the expression of Cbfa1 and OCN in fibroblasts and osteoblasts exposed to fluoride and suggested that the osteogenic function of fibroblasts induced by fluoride could play an important role in the development of extraperiosteal ossification during skeletal fluorosis.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Department of Rehabilitation Medicine of the Second Hospital Norman Bethune of Jilin University, Changchun 130041, China
| | - Hui Xu
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Ying Wang
- The First Hospital Norman Bethune of Jilin University, Changchun 130021, China
| | - Huan Wang
- Department of Rehabilitation Medicine of the Second Hospital Norman Bethune of Jilin University, Changchun 130041, China
| | - Guangsheng Li
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Ling Jing
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
28
|
Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PLoS One 2014; 9:e96361. [PMID: 24800992 PMCID: PMC4011745 DOI: 10.1371/journal.pone.0096361] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/06/2014] [Indexed: 12/31/2022] Open
Abstract
Objective To detect and compare the bone microstructure and osteoblast and osteoclast activity in different regions of human osteonecrotic femoral heads. Methods Osteonecrotic femoral heads were obtained from 10 patients (6 males, 4 females; Ficat IV) undergoing total hip arthroplasty between 2011 and 2013. The samples were divided into subchondral bone, necrotic, sclerotic, and healthy regions based on micro-computed tomography (CT) images. The bone microstructure, micromechanics, and osteoblast and osteoclast activity were assessed using micro-CT, pathology, immunohistochemistry, nanoindentation, reverse transcription polymerase chain reaction (RT-PCR), tartrate-resistant acid phosphatase staining and Western blotting. Results (1) The spatial structure of the bone trabeculae differed markedly in the various regions of the osteonecrotic femoral heads. (2) The elastic modulus and hardness of the bone trabeculae in the healthy and necrotic regions did not differ significantly (P >0.05). (3) The subchondral bone and necrotic region were positive on TRAP staining, while the other regions were negative. (4) On immunohistochemical staining, RANK and RANKL staining intensities were increased significantly in the subchondral bone and necrotic region compared with the healthy region, while RUNX2 and BMP2 staining intensities were increased significantly in the sclerotic region compared with the necrotic region. (5) OPG, RANK, RANKL, RUNX2, BMP2, and BMP7 protein levels were greater in the necrotic and sclerotic region than in subchondral bone and the healthy region. Conclusion The micromechanical properties of bone trabeculae in the necrotic region did not differ significantly from the healthy region. During the progress of osteonecrosis, the bone structure changed markedly. Osteoclast activity increased in subchondral bone and the necrotic region while osteoblast activity increased in the sclerotic region. We speculate that the altered osteoblast and osteoclast activity leads to a reduction in macroscopic mechanical strength.
Collapse
|
29
|
Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014; 28:943-58. [PMID: 24732378 PMCID: PMC4018493 DOI: 10.1101/gad.239327.114] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
Abstract
The transcription factor SRF (serum response factor) recruits two families of coactivators, the MRTFs (myocardin-related transcription factors) and the TCFs (ternary complex factors), to couple gene transcription to growth factor signaling. Here we investigated the role of the SRF network in the immediate transcriptional response of fibroblasts to serum stimulation. SRF recruited its cofactors in a gene-specific manner, and virtually all MRTF binding was directed by SRF. Much of SRF DNA binding was serum-inducible, reflecting a requirement for MRTF-SRF complex formation in nucleosome displacement. We identified 960 serum-responsive SRF target genes, which were mostly MRTF-controlled, as assessed by MRTF chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) and/or sensitivity to MRTF-linked signals. MRTF activation facilitates RNA polymerase II (Pol II) recruitment or promoter escape according to gene context. MRTF targets encode regulators of the cytoskeleton, transcription, and cell growth, underpinning the role of SRF in cytoskeletal dynamics and mechanosensing. Finally, we show that specific activation of either MRTFs or TCFs can reset the circadian clock.
Collapse
Affiliation(s)
| | | | | | - Phil East
- Bioinformatics and Biostatistics Group
| | | | - Nik Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
30
|
Kennedy OD, Sun H, Wu Y, Courtland HW, Williams GA, Cardoso L, Basta-Pljakic J, Schaffler MB, Yakar S. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene. Endocrinology 2014; 155:987-99. [PMID: 24424061 PMCID: PMC3929729 DOI: 10.1210/en.2013-1819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.
Collapse
Affiliation(s)
- Oran D Kennedy
- Department of Biomedical Engineering (O.D.K., L.C., J.B.-P., M.B.S.), City College of New York, New York 10031; David B. Kriser Dental Center (H.S., Y.W., G.A.W., S.Y.), Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010-4086; and Division of Endocrinology (H.-W.C., S.Y.), Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York 10029-6547
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lu C, Chen J, Xu HG, Zhou X, He Q, Li YL, Jiang G, Shan Y, Xue B, Zhao RX, Wang Y, Werle KD, Cui R, Liang J, Xu ZX. MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology 2014; 146:188-99. [PMID: 24036151 PMCID: PMC3870037 DOI: 10.1053/j.gastro.2013.09.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 08/14/2013] [Accepted: 09/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Variants in genes that regulate autophagy have been associated with Crohn's disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to the pathogenesis of CD. We investigated the role of the microRNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD. METHODS We studied the ability of MIR106B and MIR93 to regulate ATG transcripts in human cancer cell lines (HCT116, SW480, HeLa, and U2OS) using luciferase report assays and bioinformatics analyses; MIR106B and MIR93 mimics and antagonists were transfected into cells to modify levels of miRs. Cells were infected with LF82, a CD-associated adherent-invasive strain of Escherichia coli, and monitored by confocal microscopy and for colony-forming units. Colon tissues from 41 healthy subjects (controls), 22 patients with active CD, 16 patients with inactive CD, and 7 patients with chronic inflammation were assessed for levels of MIR106B and ATG16L1 by in situ hybridization and immunohistochemistry. RESULTS Silencing Dicer1, an essential processor of miRs, increased levels of ATG protein and formation of autophagosomes in cells, indicating that miRs regulate autophagy. Luciferase reporter assays indicated that MIR106B and MIR93 targeted ATG16L1 messenger RNA. MIR106B and MIR93 reduced levels of ATG16L1 and autophagy; these increased after expression of ectopic ATG16L1. In contrast, MIR106B and MIR93 antagonists increased formation of autophagosomes. Levels of MIR106B were increased in intestinal epithelia from patients with active CD, whereas levels of ATG16L1 were reduced compared with controls. Levels of c-Myc were also increased in intestinal epithelia of patients with active CD compared with controls. These alterations could impair removal of CD-associated bacteria by autophagy. CONCLUSIONS In human cell lines, MIR106B and MIR93 reduce levels of ATG16L1 and autophagy and prevent autophagy-dependent eradication of intracellular bacteria. This process also appears to be altered in colon tissues from patients with active CD.
Collapse
Affiliation(s)
- Changming Lu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianfeng Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hua-Guo Xu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xianzheng Zhou
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Departments of Pediatrics, Microbiology and Immunology, and Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Qiongqiong He
- Department of Pathology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Lin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guoqing Jiang
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yuxi Shan
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Boxin Xue
- Department of Surgery, 2nd Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Rui-Xun Zhao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaitlin D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rutao Cui
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jiyong Liang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Xiang Xu
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
32
|
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013; 341:1240104. [PMID: 23990565 DOI: 10.1126/science.1240104] [Citation(s) in RCA: 1375] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.
Collapse
Affiliation(s)
- Joe Swift
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:254-263. [PMID: 23150948 PMCID: PMC3627420 DOI: 10.1089/ten.teb.2012.0527] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022]
Abstract
The development of the musculoskeletal system is a complex process that involves very precise control of bone formation and growth as well as remodeling during postnatal life. Although the understanding of the transcriptional mechanisms of osteogenesis has increased considerably, the molecular regulatory basis, especially the gene regulatory network of osteogenic differentiation, is still poorly understood. This review provides the reader with an overview of the key transcription factors that govern bone formation, highlighting their function and regulation linked to Runt-related transcription factor 2 (Runx2). Runx2 as the master transcription factor of osteoblast differentiation, Twist, Msh homeobox 2 (Msx2), and promyelocytic leukemia zinc-finger protein (PLZF) acting upstream of Runx2, Osterix (Osx) acting downstream of Runx2, and activating transcription factor 4 (ATF4) and zinc-finger protein 521 (ZFP521) acting as cofactors of Runx2 are discussed, and their relevance for tissue engineering is presented. References are provided for more in-depth personal study.
Collapse
Affiliation(s)
- Tong Ming Liu
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, Singapore, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|
35
|
McGonnell IM, Grigoriadis AE, Lam EWF, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne) 2012; 3:88. [PMID: 22833734 PMCID: PMC3400941 DOI: 10.3389/fendo.2012.00088] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Collapse
Affiliation(s)
- Imelda M. McGonnell
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
| | - Agamemnon E. Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital,London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital,London, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol,Bristol, UK
| | - Andrew Sunters
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
- *Correspondence: Andrew Sunters, Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, Camden, London NW1 0TU, UK. e-mail:
| |
Collapse
|