1
|
Dong X, Liu H, Yuan D, Gulati K, Liu Y. Re-engineering bone: pathogenesis, diagnosis and emerging therapies for osteoporosis. J Mater Chem B 2025; 13:4938-4963. [PMID: 40192254 DOI: 10.1039/d4tb02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Osteoporosis, a multifaceted metabolic bone disease, is becoming increasingly prevalent and poses a significant burden on global healthcare systems. Given the limitations of traditional treatments such as pharmacotherapy, tissue engineering has emerged as a promising alternative for osteoporosis management. This review begins by exploring the pathogenesis of osteoporosis, with a focus on the abnormal metabolic, cellular, and molecular signalling microenvironments that drive the disease. We also examine commonly used clinical diagnostic techniques, discussing their strengths and limitations. Notably, this review evaluates various advanced tissue engineering strategies for osteoporosis treatment. Delivery systems, including injectable hydrogels and nanomaterials, are detailed alongside bone tissue engineering materials such as bioactive ceramics, bone cements, and polymers. Additionally, biologically active substances, including exosomes and cytokines, and emerging therapies that leverage small-molecule drugs are explored. Through a comprehensive analysis of the advantages and limitations of current biomaterials and therapeutic approaches, this review provides insights into future directions for tissue engineering-based solutions. By synthesizing current advancements, it aims to inspire innovative perspectives for the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Xinyi Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center for Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & Translational Research Center for Oro-craniofacial Stem Cells and Systemic Health, Beijing 100081, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center for Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & Translational Research Center for Oro-craniofacial Stem Cells and Systemic Health, Beijing 100081, China
| | - Dian Yuan
- Hubei University of Science and Technology, School of Dentistry and Optometry, Xianning 430030, China
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Li Y, Yuan J, Deng W, Li H, Lin Y, Yang J, Chen K, Qiu H, Wang Z, Kuek V, Wang D, Zhang Z, Mai B, Shao Y, Kang P, Qin Q, Li J, Guo H, Ma Y, Guo D, Mo G, Fang Y, Tan R, Zhan C, Liu T, Gu G, Yuan K, Tang Y, Liang D, Xu L, Xu J, Zhang S. Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling. Chin J Nat Med 2025; 23:90-101. [PMID: 39855834 DOI: 10.1016/s1875-5364(25)60810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 01/30/2025]
Abstract
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Collapse
Affiliation(s)
- Yongxian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haishan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuewei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiamin Yang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia; Curtin Medical School, Curtin University, Western Australia 6102, Australia
| | - Dongping Wang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Mai
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Pan Kang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiuli Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinglan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huizhi Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanhuai Ma
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Danqing Guo
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Guoye Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yijing Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210008, China
| | - Chenguang Zhan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guoning Gu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Yuan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yongchao Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liangliang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia.
| | - Shuncong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
3
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
4
|
Tsamesidis I, Papadimitriou-Tsantarliotou A, Christodoulou A, Amanatidou D, Avgeros C, Stalika E, Bousnaki M, Michailidou G, Beketova A, Eleftheriou P, Bikiaris DN, Vizirianakis IS, Kontonasaki E. Investigating the Cytotoxic Effects of Artemisia absinthium Extract on Oral Carcinoma Cell Line. Biomedicines 2024; 12:2674. [PMID: 39767582 PMCID: PMC11726897 DOI: 10.3390/biomedicines12122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background:Artemisia absinthium (A. absinthium), commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and as the primary ingredient in the alcoholic beverage absinthe has recently seen a resurgence following a period of prohibition. This study investigates the biological effects of A. absinthium extract on healthy human periodontal ligament stem cells (hPDLSCs) and the human tongue squamous carcinoma cell line (HSC-3). Methods:A. absinthium element characterization was performed using High-Performance Liquid Chromatography (HPLC) and the Folin method. Alizarin assays evaluated the osteogenic capacity of human periodontal ligament cells (hPDLSCs) while CCK-8 and MTT determined the cytotoxicity of the extract against HSC-3 and hPDLSCs. Results: High artemisinin levels were detected, revealing a concentration of 89 μM (25 μg/mL). The total phenolic concentration of the extract was 1.07 mM +/- 0.11. The in vitro cytotoxicity assays revealed the biocompatible profile of the Artemisia extract in hPDLSCs without exhibiting any osteogenic potential. After 24 h of incubation with HSC-3, Artemisia extract (10 µM) decreased cancer cell viability by 99% and artemisinin by 64%, and increased the expression of Caspase 3 and 9 almost six and two times, respectively. Conclusions: In summary, our preliminary findings suggest that A. absinthium extract exhibits a toxic effect against carcinoma cell lines without affecting healthy human periodontal ligament stem cells.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
| | - Athanasios Christodoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Dionysia Amanatidou
- Department of Biomedical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece; (D.A.); (P.E.)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
| | - Evangelia Stalika
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (D.N.B.)
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece; (D.A.); (P.E.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (D.N.B.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| |
Collapse
|
5
|
de Oliveira HD, Batista CN, Lima MN, Lima AC, Dos Passos BABR, Freitas RJRX, Silva JD, Xisto DG, Rangel-Ferreira MV, Pelajo M, Rocco PRM, Ribeiro-Gomes FL, de Castro Faria-Neto HC, Maron-Gutierrez T. Acetylsalicylic acid and dihydroartemisinin combined therapy on experimental malaria-associated acute lung injury: analysis of lung function and the inflammatory process. Malar J 2024; 23:285. [PMID: 39300444 DOI: 10.1186/s12936-024-05017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Severe malaria can cause respiratory symptoms, which may lead to malaria-acute lung injury (MA-ALI) due to inflammation and damage to the blood-gas barrier. Patients with severe malaria also often present thrombocytopenia, and the use of acetylsalicylic acid (ASA), a commonly used non-steroidal anti-inflammatory drug with immunomodulatory and antiplatelet effects, may pose a risk in regions where malaria is endemic. Thus, this study aimed to investigate the systemic impact of ASA and dihydroartemisinin (DHA) on ALI induced in mice by Plasmodium berghei NK65 (PbNK65). METHODS C57BL/6 mice were randomly divided into control (C) and PbNK65 infected groups and were inoculated with uninfected or 104 infected erythrocytes, respectively. Then, the animals were treated with DHA (3 mg/kg) or vehicle (DMSO) at the 8-day post-infection (dpi) for 7 days and with ASA (100 mg/kg, single dose), and analyses were performed at 9 or 15 dpi. Lung mechanics were performed, and lungs were collected for oedema evaluation and histological analyses. RESULTS PbNK65 infection led to lung oedema, as well as increased lung static elastance (Est, L), resistive (ΔP1, L) and viscoelastic (ΔP2, L) pressures, percentage of mononuclear cells, inflammatory infiltrate, hemorrhage, alveolar oedema, and alveolar thickening septum at 9 dpi. Mice that received DHA or DHA + ASA had an increase in Est, L, and CD36 expression on inflammatory monocytes and higher protein content on bronchoalveolar fluid (BALF). However, only the DHA-treated group presented a percentage of inflammatory monocytes similar to the control group and a decrease in ΔP1, L and ΔP2, L compared to Pb + DMSO. Also, combined treatment with DHA + ASA led to an impairment in diffuse alveolar damage score and lung function at 9 dpi. CONCLUSIONS Therapy with ASA maintained lung morpho-functional impairment triggered by PbNK65 infection, leading to a large influx of inflammatory monocytes to the lung tissue. Based on its deleterious effects in experimental MA-ALI, ASA administration or its treatment maintenance might be carefully reconsidered and further investigated in human malaria cases.
Collapse
Affiliation(s)
- Helena D'Anunciação de Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Camila Nunes Batista
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Maiara Nascimento Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Ana Carolina Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | | | - Rodrigo Jose Rocha Xavier Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Gonçalves Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo
- Laboratory of Pathology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hugo Caire de Castro Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4036 - Bloco 2. Manguinhos, Rio de Janeiro, RJ, 21040-361, Brazil.
| |
Collapse
|
6
|
Chen Y, Tao T, Liang Z, Chen X, Xu Y, Zhang T, Zhou D. Prednisone combined with Dihydroartemisinin attenuates systemic lupus erythematosus by regulating M1/M2 balance through the MAPK signaling pathway. Mol Immunol 2024; 170:144-155. [PMID: 38669759 DOI: 10.1016/j.molimm.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Dihydroartemisinin (DHA) plays a very important role in various diseases. However, the precise involvement of DHA in systemic lupus erythematosus (SLE), relation to the equilibrium between M1 and M2 cells, remains uncertain. Therefore, we aimed to investigate the role of DHA in SLE and its effect on the M1/M2 cells balance. METHODS SLE mice model was established by pristane induction. Flow cytometry was employed to measure the abundance of M1 and M2 cells within the peripheral blood of individuals diagnosed with SLE. The concentrations of various cytokines, namely TNF-α, IL-1β, IL-4, IL-6, and IL-10, within the serum of SLE patients or SLE mice were assessed via ELISA. Immunofluorescence staining was utilized to detect the deposition of IgG and complement C3 in renal tissues of the mice. We conducted immunohistochemistry analysis to assess the expression levels of Collagen-I, a collagen protein, and α-SMA, a fibrosis marker protein, in the renal tissues of mice. Hematoxylin-eosin staining, Masson's trichrome staining, and Periodic acid Schiff staining were used to examine histological alterations. In this study, we employed qPCR and western blot techniques to assess the expression levels of key molecular markers, namely CD80 and CD86 for M1 cells, as well as CD206 and Arg-1 for M2 cells, within kidney tissue. Additionally, we investigated the involvement of the MAPK signaling pathway. The Venny 2.1 online software tool was employed to identify shared drug-disease targets, and subsequently, the Cytoscape 3.9.2 software was utilized to construct the "disease-target-ingredient" network diagram. Protein-protein interactions of the target proteins were analyzed using the String database, and the network proteins underwent enrichment analysis for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS The results showed that an increase in M1 cells and a decrease in M2 cells within the peripheral blood of individuals diagnosed with SLE. Further analysis revealed that prednisone (PDN) combined with DHA can alleviate kidney damage and regulate the balance of M1 and M2 cells in both glomerular mesangial cells (GMC) and kidney. The MAPK signaling pathway was found to be involved in SLE kidney damage and M1/M2 balance in the kidney. Furthermore, PDN and/or DHA were found to inhibit the MAPK signaling pathway in GMC and kidney. CONCLUSION We demonstrated that PDN combined with DHA attenuates SLE by regulating M1/M2 balance through MAPK signaling pathway. These findings propose that the combination of PDN and DHA could serve as a promising therapeutic strategy for SLE, as it has the potential to mitigate kidney damage and reinstate the equilibrium of M1 and M2 cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China.
| | - Tingjun Tao
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| | - Zhaoxin Liang
- The First Clinical Medical School, Southern Medical University, 1838 North of Guangzhou Avenue, Baiyun, Guangzhou 510515, Guangdong, China
| | - Xiangnong Chen
- Department of hematopathology, The First Affiliated Hospital of Sun Yat-sen University, 58 ZhongshanEr Road, Yuexiu District, Guangzhou, China
| | - Ya'nan Xu
- Department of Dermatology, Yan'an People's Hospital, 16 Qilipu Street, Baota District, Yan'an, Shanxi, China
| | - Tangtang Zhang
- Department of Dermatology, The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dunrong Zhou
- Department of Intensive Care Unit, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| |
Collapse
|
7
|
Li S, Yan W, Sun K, Miao J, Liu Z, Xu J, Wang X, Li B, Zhang Q. Norisoboldine, a Natural Alkaloid from Lindera aggregata (Sims) Kosterm, Promotes Osteogenic Differentiation via S6K1 Signaling Pathway and Prevents Bone Loss in OVX Mice. Mol Nutr Food Res 2024; 68:e2400193. [PMID: 38813717 DOI: 10.1002/mnfr.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
SCOPE Norisoboldine (NOR) is a major isoquinoline alkaloid component in the traditional Chinese herbal plant Lindera aggregata (Sims) Kosterm, with previously reported anti-osteoclast differentiation and antiarthritis properties. However, the roles of NOR on osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoporosis in vivo have never been well established. METHODS AND RESULTS This study investigates the ability of NOR to improve bone formation in vitro and in vivo. Osteoblasts and BMSCs are used to study the effect of NOR on osteogenic and adipogenic differentiation. It finds that NOR promotes osteogenic differentiation of osteoblasts and BMSCs, while inhibiting adipogenic differentiation of BMSCs by reducing the relative expression of peroxisome proliferator-activated receptor γ (Ppar-γ) and adiponectin, C1Q and collagen domain containing (Adipoq). Mechanistic studies show that NOR increases osteoblast differentiation through the mechanistic target of rapamycin kinase (mTOR)/ribosomal protein S6 kinase; polypeptide 1 (S6K1) pathway, and treatment with an mTOR inhibitor rapamycin blocked the NOR-induced increase in mineral accumulation. Finally, the study evaluates the therapeutic potential of NOR in a mouse model of ovariectomy (OVX)-induced bone loss. NOR prevents bone loss in both trabecular and cortical bone by increasing osteoblast number and phospho-S6K1 (p-S6K1) expression in osteoblasts. CONCLUSION NOR effects in enhancing osteoblast-induced bone formation via S6K1 pathway, suggesting the potential of NOR in osteoporosis treatment by increasing bone formation.
Collapse
Affiliation(s)
- Shiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wenliang Yan
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kainong Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyuan Miao
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Ding ZB, Chen Y, Zheng YR, Wang YY, Deng WD, Zheng JH, Yang Q, Chen ZY, Li LH, Jiang H, Li XJ. Inhibition of PPP1R15A alleviates osteoporosis via suppressing RANKL-induced osteoclastogenesis. Acta Pharmacol Sin 2024; 45:790-802. [PMID: 38191913 PMCID: PMC10943029 DOI: 10.1038/s41401-023-01209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis results from overactivation of osteoclasts. There are currently few drug options for treatment of this disease. Since the successful development of allosteric inhibitors, phosphatases have become attractive therapeutic targets. Protein phosphatase 1, regulatory subunit 15 A (PPP1R15A), is a stress-responsive protein, which promotes the UPR (unfolded protein response) and restores protein homeostasis. In this study we investigated the role of PPP1R15A in osteoporosis and osteoclastogenesis. Ovariectomy (OVX)-induced osteoporosis mouse model was established, osteoporosis was evaluated in the left femurs using micro-CT. RANKL-stimulated osteoclastogenesis was used as in vitro models. We showed that PPP1R15A expression was markedly increased in BMMs derived from OVX mice and during RANKL-induced osteoclastogenesis in vitro. Knockdown of PPP1R15A or application of Sephin1 (a PPP1R15A allosteric inhibitor in a phase II clinical trial) significantly inhibited osteoclastogenesis in vitro. Sephin1 (0.78, 3.125 and 12.5 μM) dose-dependently mitigated the changes in NF-κB, MAPK, and c-FOS and the subsequent nuclear factor of activated T cells 1 (NFATc1) translocation in RANKL-stimulated BMMs. Both Sephin1 and PPP1R15A knockdown increased the phosphorylated form of eukaryotic initiation factor 2α (eIF2α); knockdown of eIF2α reduced the inhibitory effects of Sephin1 on NFATc1-luc transcription and osteoclast formation. Furthermore, Sephin1 or PPP1R15A knockdown suppressed osteoclastogenesis in CD14+ monocytes from osteoporosis patients. In OVX mice, injection of Sephin1 (4, 8 mg/kg, i.p.) every two days for 6 weeks significantly inhibited bone loss, and restored bone destruction and decreased TRAP-positive cells. This study has identified PPP1R15A as a novel target for osteoclast differentiation, and genetic inhibition or allosteric inhibitors of PPP1R15A, such as Sephin1, can be used to treat osteoporosis. This study revealed that PPP1R15A expression was increased in osteoporosis in both human and mice. Inhibition of PPP1R15A by specific knockdown or an allosteric inhibitor Sephin1 mitigated murine osteoclast formation in vitro and attenuated ovariectomy-induced osteoporosis in vivo. PPP1R15A inhibition also suppressed pathogenic osteoclastogenesis in CD14+ monocytes from osteoporosis patients. These results identify PPP1R15A as a novel regulator of osteoclastogenesis and a valuable therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Zong-Bao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Rong Zheng
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Yuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-de Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie-Huang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Hong Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiao-Juan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Cao X, Wang Z, Jiao Y, Diao W, Geng Q, Zhao L, Wang Z, Wang X, Zhang M, Xu J, Wang B, Deng T, Xiao C. Dihydroartemisinin alleviates erosive bone destruction by modifying local Treg cells in inflamed joints: A novel role in the treatment of rheumatoid arthritis. Int Immunopharmacol 2024; 130:111795. [PMID: 38447418 DOI: 10.1016/j.intimp.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Zhaoran Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Yi Jiao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenya Diao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zihan Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Jiahe Xu
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
10
|
Miao J, Yao H, Liu J, Huang Z, Shi C, Lu X, Jiang J, Ren R, Wang C, Pan Y, Wang T, Jin H. Inhibition of KIF11 ameliorates osteoclastogenesis via regulating mTORC1-mediated NF-κB signaling. Biochem Pharmacol 2023; 217:115817. [PMID: 37757917 DOI: 10.1016/j.bcp.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Osteoporosis, characterized by over-production and activation of osteoclasts, has become a major health problem especially in elderly women. In our study, we first tested the effect of Caudatin (Cau) in osteoclastogenesis, which is separated from Cynanchum auriculatum as a species of C-21 steroidal glyosides. The results indicated that Cau suppressed osteoclastogenesis in a time- and dose-dependent manner in vitro. Mechanistically, Cau was identified to inhibit NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity. In vivo, by establishing an ovariectomized (OVX) mouse model to mimic osteoporosis, we confirmed that Cau treatment prevented OVX-induced bone loss in mice. In conclusion, we demonstrated that Cau inhibited NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity to suppress osteoclast differentiation in vitro as well as OVX-induced bone loss in vivo. This provides the possibility of a novel prospective drug for osteoporosis remedies.
Collapse
Affiliation(s)
- Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chengge Shi
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Lu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Junchen Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Youjin Pan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Te Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
Wang R, Wang Y, Niu Y, He D, Jin S, Li Z, Zhu L, Chen L, Wu X, Ding C, Wu T, Shi X, Zhang H, Li C, Wang X, Xie Z, Li W, Liu Y. Deep Learning-Predicted Dihydroartemisinin Rescues Osteoporosis by Maintaining Mesenchymal Stem Cell Stemness through Activating Histone 3 Lys 9 Acetylation. ACS CENTRAL SCIENCE 2023; 9:1927-1943. [PMID: 37901168 PMCID: PMC10604014 DOI: 10.1021/acscentsci.3c00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 10/31/2023]
Abstract
Maintaining the stemness of bone marrow mesenchymal stem cells (BMMSCs) is crucial for bone homeostasis and regeneration. However, in vitro expansion and bone diseases impair BMMSC stemness, limiting its functionality in bone tissue engineering. Using a deep learning-based efficacy prediction system and bone tissue sequencing, we identify a natural small-molecule compound, dihydroartemisinin (DHA), that maintains BMMSC stemness and enhances bone regeneration. During long-term in vitro expansion, DHA preserves BMMSC stemness characteristics, including its self-renewal ability and unbiased differentiation. In an osteoporosis mouse model, oral administration of DHA restores the femur trabecular structure, bone density, and BMMSC stemness in situ. Mechanistically, DHA maintains BMMSC stemness by promoting histone 3 lysine 9 acetylation via GCN5 activation both in vivo and in vitro. Furthermore, the bone-targeted delivery of DHA by mesoporous silica nanoparticles improves its therapeutic efficacy in osteoporosis. Collectively, DHA could be a promising therapeutic agent for treating osteoporosis by maintaining BMMSC stemness.
Collapse
Affiliation(s)
- Ruoxi Wang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yu Wang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yuting Niu
- Central
Laboratory, National Center for Stomatology & National Clinical
Research Center for Oral Diseases & National Engineering Laboratory
for Digital and Material Technology of Stomatology & Beijing Key
Laboratory of Digital Stomatology & Research Center of Engineering
and Technology for Computerized Dentistry Ministry of Health &
NMPA Key Laboratory for Dental Materials & Translational Research
Center for Orocraniofacial Stem Cells and Systemic Health, Central
Laboratory, Peking University School and
Hospital for Stomatology, Beijing 100081, China
| | - Danqing He
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Shanshan Jin
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Zixin Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Lisha Zhu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Liyuan Chen
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xiaolan Wu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Chengye Ding
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Tianhao Wu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xinmeng Shi
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - He Zhang
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Chang Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Xin Wang
- Peking
University International Cancer Institute, Health Science Center, Peking University, Beijing 100083, China
| | - Zhengwei Xie
- Peking
University International Cancer Institute, Health Science Center, Peking University, Beijing 100083, China
| | - Weiran Li
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| | - Yan Liu
- Laboratory
of Biomimetic Nanomaterials, Department of Orthodontics & National
Center for Stomatology & National Clinical Research Center for
Oral Diseases & National Engineering Laboratory for Digital and
Material Technology of Stomatology & Beijing Key Laboratory of
Digital Stomatology & Research Center of Engineering and Technology
for Computerized Dentistry Ministry of Health & NMPA Key Laboratory
for Dental Materials & Translational Research Center for Orocraniofacial
Stem Cells and Systemic Health, Peking University
School and Hospital for Stomatology, Beijing 100081, China
| |
Collapse
|
12
|
Hu Y, Peng X, Du G, Zhai Y, Xiong X, Luo X. Dihydroartemisinin ameliorates the liver steatosis in metabolic associated fatty liver disease mice by attenuating the inflammation and oxidative stress and promoting autophagy. Acta Cir Bras 2023; 38:e385023. [PMID: 37851788 PMCID: PMC10578105 DOI: 10.1590/acb385023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To explore the effect and potential mechanism of dihydroartemisinin (DHA) on metabolism-related fatty liver disease. METHODS A metabolic associated fatty liver disease (MAFLD) mice model was induced with continuous supplies of high-fat diet. DHA was intraperitoneally injected into mice. The weight of mice was monitored. The concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) in serum were detected by an automatic biochemical analyzer. The liver tissues were stained by hematoxylin and eosin and oil red O. The level of inflammation, oxidative stress, and autophagy was assessed by reverse transcription polymerase chain reaction, biochemical examination, Western blot and transmission electron microscope assays. RESULTS DHA treatment reduced theMAFLD-enhanced the level of weight gain, the concentrations of TC, TG, LDL and malonaldehyde, while increasedthe MAFLD-decreased the concentrations of HDL and superoxide dismutase. DHA ameliorated the MAFLD-aggravated pathological changes and the number of lipid droplets. Low dose of DHA declined the MAFLD-induced the enhancement of the expression of inflammatory factor. DHA treatment increased the MAFLD-enhanced the level of autophagy related protein, while decreased the MAFLD-reduced the protein level of p62. The increased level of autophagy was confirmed by transmission electron microscope. CONCLUSIONS DHA can improve liver steatosis in MAFLD mice by inhibiting inflammation and oxidative stress and promoting autophagy.
Collapse
Affiliation(s)
- Yiyi Hu
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
- Shunde Hospital of Southern Medical University – Department of VIP Medical Center – Foshan – China
| | - Xuetao Peng
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Guoping Du
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Yingji Zhai
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xingbo Xiong
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| | - Xiaoliang Luo
- Shunde Hospital of Southern Medical University – Department of Gestroenterology – Foshan – China
| |
Collapse
|
13
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
14
|
Sheng SR, Wu YH, Dai ZH, Jin C, He GL, Jin SQ, Zhao BY, Zhou X, Xie CL, Zheng G, Tian NF. Safranal inhibits estrogen-deficiency osteoporosis by targeting Sirt1 to interfere with NF-κB acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154739. [PMID: 37004404 DOI: 10.1016/j.phymed.2023.154739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown. PURPOSE This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism. STUDY DESIGN The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo. METHOD The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels. RESULTS Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation. CONCLUSION Our results support the potential application of Saf as a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ren Sheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Hao Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Shu-Qing Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Bi-Yao Zhao
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Xin Zhou
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Cheng-Long Xie
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Nai-Feng Tian
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
15
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Jin Y, Wu S, Zhang L, Yao G, Zhao H, Qiao P, Zhang J. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic Clin Pharmacol Toxicol 2023; 132:144-153. [PMID: 36433916 DOI: 10.1111/bcpt.13817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Artemisinin compounds have been demonstrated to have anti-osteoporosis effects by inhibiting bone resorption. During osteoclast differentiation, osteoclasts take up a large amount of iron through transferrin receptor 1 (TfR1) mediated endocytosis of transferrin (Tf). Since iron-dependent cleavage of endoperoxide bridge is of great importance for the antimalarial effects of artemisinin compounds, we raised a hypothesis that the cytotoxic effects of artemisinin compounds on osteoclasts were associated with enhanced iron uptake. In the present study, we found that Tf aggravated the inhibitory effects of artesunate (ART) on osteoclast viability and differentiation. ART induced the production of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) in a dose-dependent manner and led to the appearance of mitochondrial features of ferroptotic cells. TfR1 knockdown alleviated these cytotoxic effects of ART on osteoclasts. In addition, ART effectively prevented bone loss induced by iron overload. Our results indicate that ART inhibits iron-uptake stimulated osteoclast differentiation by inducing ferroptosis. Artemisinin compounds are potential drugs for treating iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
17
|
Exploring the Potential Mechanism of Artemisinin and Its Derivatives in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3976062. [PMID: 36590764 PMCID: PMC9800086 DOI: 10.1155/2022/3976062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Objective This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA), artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and molecular docking. Methods The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover, molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed. Results A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3, MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common anti-OP mechanisms of five molecules. Conclusion ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling pathways.
Collapse
|
18
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
19
|
Zheng G, Ma HW, Xiang GH, He GL, Cai HC, Dai ZH, Chen YL, Lin Y, Xu HZ, Ni WF, Xu C, Liu HX, Wang XY. Bone-targeting delivery of platelet lysate exosomes ameliorates glucocorticoid-induced osteoporosis by enhancing bone-vessel coupling. J Nanobiotechnology 2022; 20:220. [PMID: 36310171 PMCID: PMC9620632 DOI: 10.1186/s12951-022-01400-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.
Collapse
Affiliation(s)
- Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hai-Wei Ma
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Guang-Heng Xiang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Han-Chen Cai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yan-Lin Chen
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang Province, China
| | - Yan Lin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hua-Zi Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Wen-Fei Ni
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Cong Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Hai-Xiao Liu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Xiang-Yang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
20
|
Ye C, Zhang W, Zhao Y, Zhang K, Hou W, Chen M, Lu J, Wu J, He R, Gao W, Zheng Y, Cai X. Prussian Blue Nanozyme Normalizes Microenvironment to Delay Osteoporosis. Adv Healthc Mater 2022; 11:e2200787. [PMID: 35851764 DOI: 10.1002/adhm.202200787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Indexed: 01/27/2023]
Abstract
Osteoporosis (OP) is the most common orthopedic disease in the elderly and the main cause of age-related mortality and disability. However, no satisfactory intervention is currently available in clinical practice. Thus, an effective therapy to prevent or delay the development of OP should be devised. Osteoclastogenesis overactivation and excessive bone resorption are the main characteristics of OP. Accordingly, a paradigm for nanozyme-mediated normalization of the disease microenvironment to regulate osteoclast differentiation and delay OP is proposed. Hollow Prussian blue nanozymes (HPBZs) are prepared via template-free hydrothermal synthesis and selected as representative nanozymes. The intrinsic osteoclast activity-remodeling bioactivities of the HPBZs are explored in vitro and in vivo, focusing on their impact on osteogenesis and specific molecular mechanisms using an OP murine model. The HPBZs significantly normalize the OP microenvironment, thereby inhibiting osteoclast formation and osteoclast resorption, possibly owing to the suppression of intracellular reactive oxygen species generation, the mitogen-activated protein kinase, and nuclear factor κB signaling pathways. Consistently, in an ovariectomy-induced OP murine model, HPBZ treatment significantly attenuates osteoporotic bone loss in vivo. The findings confirm the HPBZ-mediated normalization of the disease microenvironment for the treatment of OP and suggest its application to other inflammation-related diseases.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongzheng Zhao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kai Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mo Chen
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Wei Gao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
21
|
Ye X, Jiang J, Yang J, Yan W, Jiang L, Chen Y. Specnuezhenide suppresses diabetes-induced bone loss by inhibiting RANKL-induced osteoclastogenesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1080-1089. [PMID: 35929595 PMCID: PMC9827798 DOI: 10.3724/abbs.2022094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes osteoporosis is a chronic complication of diabetes mellitus (DM) and is associated with osteoclast formation and enhanced bone resorption. Specnuezhenide (SPN) is an active compound with anti-inflammatory and immunomodulatory properties. However, the roles of SPN in diabetic osteoporosis remain unknown. In this study, primary bone marrow macrophages (BMMs) were pretreated with SPN and were stimulated with receptor activator of nuclear factor kappa B ligand (RANKL; 50 ng/mL) to induce osteoclastogenesis. The number of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. The protein levels of cellular oncogene fos/nuclear factor of activated T cells c1 (c-Fos/NFATc1), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinases (MAPKs) were evaluated by western blot analysis. NF-κB luciferase assays were used to examine the role of SPN in NF-κB activation. The DM model group received a high-glucose, high-fat diet and was then intraperitoneally injected with streptozotocin (STZ). Micro-CT scanning, serum biochemical analysis, histological analysis were used to assess bone loss. We found that SPN suppressed RANKL-induced osteoclast formation and that SPN inhibited the expression of osteoclast-related genes and c-Fos/ NFATc1. SPN inhibited RANKL-induced activation of NF-κB and MAPKs. In vivo experiments revealed that SPN suppressed diabetes-induced bone loss and the number of osteoclasts. Furthermore, SPN decreased the levels of bone turnover markers and increased the levels of runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), calcium (Ca) and phosphorus (P). SPN also regulated diabetes-related markers. This study suggests that SPN suppresses diabetes-induced bone loss by inhibiting RANKL-induced osteoclastogenesis, and provides an experimental basis for the treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
| | | | - Juan Yang
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Wenyan Yan
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Luyue Jiang
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| | - Yan Chen
- />Department of Nephrologythe Affiliated Geriatric Hospital of Nanjing Medical UniversityNanjing210024China
| |
Collapse
|
22
|
Li J, Jiang M, Yu Z, Xiong C, Pan J, Cai Z, Xu N, Zhou X, Huang Y, Yang Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol Biol Lett 2022; 27:62. [PMID: 35902802 PMCID: PMC9331798 DOI: 10.1186/s11658-022-00365-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a widespread chronic degenerative joint disease characterized by the degeneration of articular cartilage or inflamed joints. Our findings indicated that treatment with artemisinin (AT) downregulates the protein levels of MMP3, MMP13, and ADAMTS5, which are cartilage degradation-related proteins in OA, and inhibits the expression of inflammatory factors in interleukin-1β (IL-1β)-stimulated chondrocytes. However, the mechanism of the role of AT in OA remains unclear. Here, we performed gene sequencing and bioinformatics analysis in control, OA, and OA + AT groups to demonstrate that several mRNA candidates were enriched in the PI3K/AKT/mTOR signaling pathway, and TNFSF11 was significantly downregulated after AT treatment. TNFSF11 was downregulated in the OA + AT group, whereas it was upregulated in rat OA tissues and OA chondrocytes. Therefore, we confirmed that TNFSF11 was the target gene of AT. In addition, our study revealed that AT relieved cartilage degradation and defection by activating mitochondrial autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in IL-1β-induced chondrocytes. Furthermore, an OA model was established in rats with medial meniscus destabilization. Injecting AT into the knee joints of OA rat alleviated surgical resection-induced cartilage destruction. Thus, these findings revealed that AT relieves OA by activating mitochondrial autophagy by reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Jin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Mengqing Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Jieen Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zhenhai Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhicheng Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
23
|
Liu H, Gu R, Huang Q, Liu Y, Liu C, Liao S, Feng W, Xie T, Zhao J, Xu J, Liu Q, Zhan X. Isoliensinine Suppresses Osteoclast Formation Through NF-κB Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front Pharmacol 2022; 13:870553. [PMID: 35935862 PMCID: PMC9353689 DOI: 10.3389/fphar.2022.870553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is among the major contributors of pathologic fracture in postmenopausal women, which is caused by the bone metabolic disorder owing to the over-activation of osteoclasts. Inhibition of osteoclast differentiation and maturation has become a mainstream research interest in the prevention of osteoporosis. Isoliensinine (Iso) is a dibenzyl isoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-cancer activities. However, whether it can be used as a potential treatment for osteoporosis remains undiscovered. Here, we investigated whether Iso might suppress the differentiation of osteoclasts in vitro and in vivo to play an anti-osteoporosis role. Our results showed that Iso inhibits the formation of mature multinuclear osteoclasts induced by RANKL, the bone resorption, and the osteoclast-specific genes expression by blocking the nuclear translocation of NF-κB p65, and the effect was in a dosage-dependent way. Furthermore, we investigated the therapeutic effect of Iso on osteoporosis in ovariectomized (OVX) mice. We found that Iso attenuated bone loss in the OVX mice and significantly promoted BS, Conn. DN, Tb.Th, TB.N, and BV/TV Index. All in all, Iso showed a prominent effect of osteoclast inhibition, with great promise for treating osteoporosis.
Collapse
Affiliation(s)
- Huijiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ronghe Gu
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Qian Huang
- Department of Orthopedics, The First People’s Hospital of Nanning, Nanning, China
| | - Yun Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Xie
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| | - Xinli Zhan
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiake Xu, ; Qian Liu, ; Xinli Zhan,
| |
Collapse
|
24
|
Fu X, Sun X, Zhang C, Lv N, Guo H, Xing C, Lv J, Wu J, Zhu X, Liu M, Su L. Genkwanin Prevents Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Nutr 2022; 9:921037. [PMID: 35811983 PMCID: PMC9260391 DOI: 10.3389/fnut.2022.921037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The first objective of this study was to probe the effects of genkwanin (GKA) on osteoclast. The second goal of this study was to study whether GKA can protect lipopolysaccharide (LPS) and ovariectomized (OVX) induced bone loss. Materials and Methods Various concentrations of GKA (1 and 10 mg/kg) were injected into mice. Different concentrations of GKA (1 and 5 μM) were used to detect the effects of GKA on osteoclast and osteoblast. Key Findings GKA attenuated the osteoclast differentiation promoted by RANKL and expression of marker genes containing c-fos, ctsk as well as bone resorption related gene Trap and to the suppression of MAPK signaling pathway. In addition, GKA induced BMMs cell apoptosis in vitro. Moreover, GKA prevented LPS-induced and ovariectomized-induced bone loss in mice. Conclusion Our research revealed that GKA had a potential to be an effective therapeutic agent for osteoclast-mediated osteoporosis.
Collapse
Affiliation(s)
- Xin Fu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaochen Sun
- School of Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiwen Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Xiaoli Zhu,
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
- Mingming Liu,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Li Su,
| |
Collapse
|
25
|
Long F, Chen R, Su Y, Liang J, Xian Y, Yang F, Lian H, Xu J, Zhao J, Liu Q. Epoxymicheliolide inhibits osteoclastogenesis and resists OVX-induced osteoporosis by suppressing ERK1/2 and NFATc1 signaling. Int Immunopharmacol 2022; 107:108632. [DOI: 10.1016/j.intimp.2022.108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 02/02/2023]
|
26
|
Effects of Artemisia annua L. Essential Oil on Osteoclast Differentiation and Function Induced by RANKL. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322957. [PMID: 35432559 PMCID: PMC9010179 DOI: 10.1155/2022/1322957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aimed to assess the main components of Artemisia annua L. essential oil (AEO) and determine their effect on the proliferation and differentiation of RAW264.7 cells induced by receptor activator for nuclear factor-ligand (RANKL) in vitro. Then, we tried to explain part of the function of its possible mechanisms. Materials and Methods Essential oil was extracted from Artemisia annua L. Osteoclasts were induced in vitro by RANKL in mouse RAW264.7 cells. The experimental group was treated with different concentrations of AEO, while the control group was not treated with AEO. CCK8 was used to detect osteoclast proliferation. The osteoclasts were stained with TRAP. Western blot was used to detect protein in the MAPK pathway and the NF-κB pathway after treatment with different concentrations of AEO. RT-PCR was used to determine the expression of osteoclast-related mRNA in cells. Results The GC-MS analysis was used to obtain the main components of AEO, including camphor, borneol, camphor, borneol, terpinen-4-ol, p-cymene, eucalyptol, deoxyartemisinin, and artemisia ketone. The CCK8 results showed that the AEO volume ratio of 1 : 4000, 1 : 5000, and 1 : 6000 did not affect the proliferation of RAW264.7 cells. However, TRAP staining showed that AEO decreased osteoclast formation. Western blot results showed that the expression of protein TRAF6, p-p38, p-ERK, p-p65, and NFATc1 decreased in the MAPK pathway and the NF-κB pathway affected by AEO. Furthermore, RT-PCR results showed that the expression of osteoclast resorption-related mRNAs (MMP-9, DC-STAMP, TRAP, and CTSK) and osteoclast differentiation-related mRNAs (OSCAR, NFATc1, c-Src, and c-Fos) also decreased in the experimental group. Conclusions AEO inhibits osteoclast differentiation in vitro, probably by reducing TRAF6 activation, acting on the MAPK pathway and NF-κB pathway, and inhibiting the expression of osteoclast-related genes.
Collapse
|
27
|
Deng W, Ding Z, Wang Y, Zou B, Zheng J, Tan Y, Yang Q, Ke M, Chen Y, Wang S, Li X. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/ MMP9 pathway and prevents inflammatory bone destruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153838. [PMID: 34801352 DOI: 10.1016/j.phymed.2021.153838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteolytic diseases share symptoms such as bone loss, fracture and pain, which are caused by over-activated osteoclasts. Targeting osteoclast differentiation has emerged as a therapeutic strategy clinically. Dendrobine is an alkaloid isolated from Chinese herb Dendrobium nobile, with knowing effects of analgesia and anti-inflammation. The roles of dendrobine on osteoclasts and osteolysis remain unclear. PURPOSE Herein, the possible roles of dendrobine in osteoclastogenesis, inflammatory osteolysis and the underlying mechanism were explored. METHODS Bone marrow-derived macrophages (BMMs) and RAW264.7 cells were employed to evaluate the roles of dendrobine on osteoclastogenesis, bone absorption and the underlying mechanism in vitro. LPS injection was used to cause inflammatory osteolysis in vivo. RESULTS Dendrobine repressed osteoclastogenesis, bone resorption induced by receptor activator of nuclear factor kappa B ligand (RANKL) in vitro. Mechanistically, dendrobine inhibited RANKL-upregulated intracellular (ROS), p-p38, c-Fos expression and nuclear factor of activated T cells (NFATc1) nuclear translocation. Osteoclastic genes were reduced, and among them matrix metalloproteinase 9 (MMP9) mRNA was dramatically blocked by dendrobine. Moreover, it substantially suppressed MMP9 protein expression during osteoclastogenesis in vitro. Accordingly, oral 20 mg/kg/day dendrobine was capable of preventing LPS-induced osteolysis with decreased osteoclasts in vivo. CONCLUSION Taken together, dendrobine suppresses osteoclastogenesis through restraining ROS, p38-c-Fos and NFATc1-MMP9 in vitro, thus attenuates inflammatory osteolysis in vivo. This finding supports the discover of dendrobine as a novel osteoclast inhibitor for impeding bone erosion in the future.
Collapse
Affiliation(s)
- Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Song Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Surgery Department, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
29
|
Ding D, Yan J, Feng G, Zhou Y, Ma L, Jin Q. Dihydroartemisinin attenuates osteoclast formation and bone resorption via inhibiting the NF‑κB, MAPK and NFATc1 signaling pathways and alleviates osteoarthritis. Int J Mol Med 2022; 49:4. [PMID: 34738623 PMCID: PMC8589459 DOI: 10.3892/ijmm.2021.5059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive and degenerative disease, and its incidence is increasing on a yearly basis. However, the pathological mechanism of OA at each stage is still unclear. The present study aimed to explore the underlying mechanism of dihydroartemisinin (DHA) in terms of its ability to inhibit osteoclast activation, and to determine its effects on OA in rats. Bone marrow‑derived macrophages were isolated as osteoclast precursors. In the presence or absence of DHA, osteoclast formation was assessed by tartrate‑resistant acid phosphatase (TRAP) staining, cell viability was assessed by Cell Counting Kit‑8 assay, the presence of F‑actin rings was assessed by immunofluorescence, bone resorption was determined by bone slices, luciferase activities of NF‑κB and nuclear factor of activated T cell cytoplasmic 1 (NFATc1) were determined using luciferase assay kits, the protein levels of biomolecules associated with the NF‑κB, MAPK and NFATc1 signaling pathways were determined using western blotting, and the expression of genes involved in osteoclastogenesis were measured using reverse transcription‑quantitative PCR. A knee OA rat model was designed by destabilizing the medial meniscus (DMM). A total of 36 rats were assigned to three groups, namely the sham‑operated, DMM + vehicle and DMM + DHA groups, and the rats were administered DHA or DMSO. At 4 and 8 weeks postoperatively, the microarchitecture of the subchondral bone was analyzed using micro‑CT, the thickness of the cartilage layers was calculated using H&E staining, the extent of cartilage degeneration was scored using Safranin O‑Fast Green staining, TRAP‑stained osteoclasts were counted, and the levels of receptor activator of NF‑κB ligand (RANKL), C‑X‑C‑motif chemokine ligand 12 (CXCL12) and NFATc1 were measured using immunohistochemistry. DHA was found to inhibit osteoclast formation without cytotoxicity, and furthermore, it did not affect bone formation. In addition, DHA suppressed the expression levels of NF‑κB, MAPK, NFATc1 and genes involved in osteoclastogenesis. Progressive cartilage loss was observed at 8 weeks postoperatively. Subchondral bone remodeling was found to be dominated by bone resorption accompanied by increases in the levels of RANKL, CXCL12 and NFATc1 during the first 4 weeks. DHA was found to delay OA progression by inhibiting osteoclast formation and bone resorption during the early phase of OA. Taken together, the results of the present study demonstrated that the mechanism through which DHA could inhibit osteoclast activation may be associated with the NF‑κB, MAPK and NFATc1 signaling pathways, thereby indicating a potential novel strategy for OA treatment.
Collapse
Affiliation(s)
- Dong Ding
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiangbo Yan
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Gangning Feng
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Zhou
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
30
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
31
|
Lu Q, Jiang C, Hou J, Qian H, Chu F, Zhang W, Ye M, Chen Z, Liu J, Yao H, Zhang J, Xu J, Wang T, Fan S, Wang Q. Patchouli Alcohol Modulates the Pregnancy X Receptor/Toll-like Receptor 4/Nuclear Factor Kappa B Axis to Suppress Osteoclastogenesis. Front Pharmacol 2021; 12:684976. [PMID: 34177594 PMCID: PMC8227438 DOI: 10.3389/fphar.2021.684976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
The incidence of osteoporosis, which is primarily characterized by plethoric osteoclast (OC) formation and severe bone loss, has increased in recent years. Millions of people worldwide, especially postmenopausal women, suffer from osteoporosis. The drugs commonly used to treat osteoporosis still exist many disadvantages, but natural extracts provide options for the treatment of osteoporosis. Therefore, the identification of cost-effective natural compounds is important. Patchouli alcohol (PA), a natural compound extracted from Pogostemon cablin that exerts anti-inflammatory effects, is used as a treatment for gastroenteritis. However, no research on the use of Patchouli alcohol in osteoporosis has been reported. We found that PA dose-dependently inhibited the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced formation and function of OCs without cytotoxicity. Furthermore, these inhibitory effects were reflected in the significant effect of PA on the NF-κB signaling pathway, as PA suppressed the transcription factors NFATc1 and c-Fos. We also determined that PA activated expression of the nuclear receptor pregnane X receptor (PXR) and promoted the PXR/Toll-like receptor 4 (TLR4) axis to inhibit the nuclear import of NF-κB (p50 and p65). Additionally, PA exerted therapeutic effects against osteoporosis in ovariectomized (OVX) mice, supporting the use of PA as a treatment for osteoporosis in the future.
Collapse
Affiliation(s)
- Qian Lu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialong Hou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Qian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifan Chu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiqi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengke Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyi Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiake Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Te Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression. Acta Pharmacol Sin 2021; 42:744-754. [PMID: 32753731 PMCID: PMC8115576 DOI: 10.1038/s41401-020-0477-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/06/2020] [Indexed: 02/01/2023]
Abstract
Currently, dendritic cell-specific transmembrane protein (DC-STAMP), a multipass transmembrane protein, is considered as the master regulator of cell-cell fusion, which underlies the formation of functional multinucleated osteoclasts. Thus, DC-STAMP has become a promising target for osteoclast-associated osteolytic diseases. In this study, we investigated the effects of oridonin (ORI), a natural tetracyclic diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, on osteoclastogenesis in vivo and ex vivo. ICR mice were injected with LPS (5 mg/kg, ip, on day 0 and day 4) to induce inflammatory bone destruction. Administration of ORI (2, 10 mg·kg-1·d-1, ig, for 8 days) dose dependently ameliorated inflammatory bone destruction and dramatically decreased DC-STAMP protein expression in BMMs isolated from LPS-treated mice. Treatment of preosteoclast RAW264.7 cells with ORI (0.78-3.125 μM) dose dependently inhibited both mRNA and protein levels of DC-STAMP, and suppressed the following activation of NFATc1 during osteoclastogenesis. Knockdown of DC-STAMP in RAW264.7 cells abolished the inhibitory effects of ORI on RANKL-induced NFATc1 activity and osteoclast formation. In conclusion, we show for the first time that ORI effectively attenuates inflammation-induced bone loss by suppressing DC-STAMP expression, suggesting that ORI is a potential agent against inflammatory bone diseases.
Collapse
|
33
|
Sun K, Zhu J, Deng Y, Xu X, Kong F, Sun X, Huan L, Ren C, Sun J, Shi J. Gamabufotalin Inhibits Osteoclastgenesis and Counteracts Estrogen-Deficient Bone Loss in Mice by Suppressing RANKL-Induced NF-κB and ERK/MAPK Pathways. Front Pharmacol 2021; 12:629968. [PMID: 33967763 PMCID: PMC8104077 DOI: 10.3389/fphar.2021.629968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Osteolytic bone disease is a condition of imbalanced bone homeostasis, characterized mainly by excessive bone-resorptive activity, which could predispose these populations, such as the old and postmenopausal women, to developing high risk of skeletal fragility and fracture. The nature of bone homeostasis is the coordination between the osteoblasts (OBs) and osteoclasts (OCs). Abnormal activation of osteoclasts (OCs) could compromise the bone homeostasis, constantly followed by a clutch of osteolytic diseases, including postmenopausal osteoporosis, osteoarthritis, and rheumatoid arthritis. Thus, it is imperatively urgent to explore effective medical interventions for patients. The traditional Chinese medicine (TCM) gamabufotalin (CS-6) is a newly identified natural product from Chansu and has been utilized for oncologic therapies owing to its good clinical efficacy with less adverse events. Previous study suggested that CS-6 could be a novel anti-osteoporotic agent. Nevertheless, whether CS-6 suppresses RANK-(receptor activator of nuclear factor-κ B ligand)/TRAF6 (TNF receptor-associated factor 6)-mediated downstream signaling activation in OCs, as well as the effects of CS-6 on OC differentiation in vivo, remains elusive. Therefore, in this present study, we aimed to explore the biological effects of CS-6 on osteoclastogenesis and RANKL-induced activation of related signaling pathways, and further to examine the potential therapeutic application in estrogen-deficient bone loss in the mice model. The results of in vitro experiment showed that CS-6 can inhibit RANKL-induced OC formation and the ability of bone resorption in a dose-dependent manner at both the early and late stages of osteoclastogenesis. The gene expression of OC-related key genes such as tartrate-resistant acid phosphatase (TRAP), CTSK, DC-STAMP, MMP9, and β3 integrin was evidently reduced. In addition, CS-6 could mitigate the systemic estrogen-dependent bone loss and pro-inframammary cytokines in mice in vivo. The molecular mechanism analysis suggested that CS-6 can suppress RANKL/TRAF6-induced early activation of NF-κB and ERK/MAPK signaling pathways, which consequently suppressed the transcription activity of c-Fos and NFATc1. Taken together, this present study provided ample evidence that CS-6 has the promise to become a therapeutic candidate in treating osteolytic conditions mediated by elevated OC formation and bone resorption.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Le Huan
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
34
|
Li Y, Lin S, Liu P, Huang J, Qiu J, Wen Z, Yuan J, Qiu H, Liu Y, Liu Q, Zhou T, Luo P, Guo H, Ma Y, Guo D, Mo G, Tang Y, Xu L, Liang D, Xu J, Ding Y, Zhang S. Carnosol suppresses RANKL-induced osteoclastogenesis and attenuates titanium particles-induced osteolysis. J Cell Physiol 2021; 236:1950-1966. [PMID: 32722851 DOI: 10.1002/jcp.29978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.
Collapse
Affiliation(s)
- Yongxian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sipeng Lin
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Panjie Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianbin Huang
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junxiong Qiu
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhenkang Wen
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Yuhao Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Tengpeng Zhou
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijie Luo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizhi Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhuai Ma
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danqing Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoye Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongchao Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Yue Ding
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuncong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Zhang F, Huang X, Qi Y, Qian Z, Ni S, Zhong Z, Zhang X, Li D, Yu B. Juglanin Inhibits Osteoclastogenesis in Ovariectomized Mice via the Suppression of NF-κB Signaling Pathways. Front Pharmacol 2021; 11:596230. [PMID: 33708115 PMCID: PMC7941268 DOI: 10.3389/fphar.2020.596230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bone metabolism is a physiological process that involves both osteoblasts and osteoclasts. Pathological changes of osteoclasts are commonly seen in osteoporosis diseases. Juglanin is a natural compound, reported to have an inhibitory effect on inflammation, oxidative stress and cancer progression. The purpose of this study is to explore the role that Juglanin plays on the osteoclast functions and underlying signaling pathways. In vitro study demonstrated that Juglanin had negative influence on osteoclastic differentiation by suppressing the transcription activity of osteoclastogenesis-related genes and proteins. To determine the underlying mechanism, Western blot was employed to show that Juglanin could significantly have negative effect on the phosphorylation of P50, P65, I-κB, ultimately suppressing the expression and transcriptional activity of nuclear factor of activated T cells (NFATc1). In vivo Juglanin treatment attenuate bone reducing in mice with removed ovary through suppressing osteoclast functioning. Taken together, our study demonstrated that in the molecular mechanism, JUG inhibited the expression of receptor activator of nuclear factor-κ B ligand (RANKL) induced NF - κ B signaling pathway, thus may play a vital part in preventing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Fangxue Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaowei Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhan Qi
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
36
|
Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med 2021; 47:22. [PMID: 33448319 PMCID: PMC7846423 DOI: 10.3892/ijmm.2021.4855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate whether dihydroartemisinin (DHA) alleviates osteoarthritis (OA) in a mouse model of OA. Ten-week-old female C57BL/6j mice were used to establish OA models by anterior cruciate ligament transection (ACLT) and ovariectomized (OVX). DHA was then used to treat the OA in the ACLT and OVX mice. Safranin O-fast green staining and Osteoarthritis Research Society International (OARSI)-modified Mankin scores were used to grade articular cartilage degeneration. Expression of metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF) in the articular cartilage and leukemia inhibitory factor (LIF), sclerostin, and β-catenin in the subchondral bone were analyzed by immunohistochemistry. Expression of RANKL and CD31 were detected by immunofluorescence. Micro-computed tomography was used to ascertain alterations in the microarchitecture of the subchondral bone. The results demonstrated that DHA decreased MMP-13 and VEGF expression in the articular cartilage. DHA decreased OARSI scores and reduced articular cartilage degeneration. In addition, DHA reduced abnormal subchondral bone remodeling, as demonstrated by a reduction in trabecular separation (Tb.Sp), increased bone volume fractions (BV/TV), as well as bone mineral densities (BMD) compared with the ACLT+vehicle group and the OVX+vehicle group. Furthermore, DHA decreased the inhibition of sclerostin through reduction of LIF secretion by osteoclasts and, hence, attenuated aberrant bone remodeling and inhibited angiogenesis in subchondral bone, further reducing the progression of OA. The present study demonstrated that DHA attenuated OA by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone, which may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Long Ma
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Zhao
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yibin Liu
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaochun Yang
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
37
|
Zou B, Zheng J, Deng W, Tan Y, Jie L, Qu Y, Yang Q, Ke M, Ding Z, Chen Y, Yu Q, Li X. Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca 2+-NFATc1 and Cav-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153377. [PMID: 33126167 DOI: 10.1016/j.phymed.2020.153377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Osteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear. PURPOSE We explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo. METHODS The in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model. RESULTS We found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2-10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression. CONCLUSIONS Kir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.
Collapse
Affiliation(s)
- Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Ligang Jie
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Qu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Qinghong Yu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China.
| |
Collapse
|
38
|
Zhu M, Xu W, Jiang J, Wang Y, Guo Y, Yang R, Chang Y, Zhao B, Wang Z, Zhang J, Wang T, Shangguan L, Wang S. Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12:736863. [PMID: 34630331 PMCID: PMC8498341 DOI: 10.3389/fendo.2021.736863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoclasts (OCs) play an important role in osteoporosis, a disease that is mainly characterized by bone loss. In our research, we aimed to identify novel approach for regulating osteoclastogenesis and thereby treating osteoporosis. Previous studies have set a precedent for screening traditional Chinese herbal extracts for effective inhibitors. Peiminine is an alkaloid extracted from the bulb of Fritillaria thunbergii Miq that reportedly has anticancer and anti-inflammatory effects. Thus, the potential inhibitory effect of peiminine on OC differentiation was investigated via a series of experiments. According to the results, peiminine downregulated the levels of specific genes and proteins in vitro and consequently suppressed OC differentiation and function. Based on these findings, we further investigated the underlying molecular mechanisms and identified the NF-κB and ERK1/2 signaling pathways as potential targets of peiminine. In vivo, peiminine alleviated bone loss in an ovariectomized mouse model.
Collapse
Affiliation(s)
- Mengbo Zhu
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jiuzhou Jiang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yining Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanjing Guo
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruijia Yang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqiong Chang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianfeng Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Te Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Liqin Shangguan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Shaowei Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| |
Collapse
|
39
|
Effects of emodin on inflammatory bowel disease-related osteoporosis. Biosci Rep 2020; 40:221874. [PMID: 31934719 PMCID: PMC6992925 DOI: 10.1042/bsr20192317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are related to bone loss. Emodin can influence the activity and differentiation of osteoblasts and osteoclasts. However, few studies have shown the effects of emodin on IBD-induced bone damage. The aim of the present study was to investigate the role of emodin in IBD-induced osteoporosis in an animal model. An IBD model in Sprague Dawley male rats was established by administering 2.5% dextran sulfate sodium (DSS) in the drinking water. Emodin was administered orally (30 mg/kg body weight) every other day starting in the third week for 9 weeks. Blood, colon and bone samples were obtained for biomarker assays and histological analysis. Bone biomechanical properties, microCT, metabolic biomarkers and bone histological changes were analyzed. The bone mass was significantly decreased, and the bone biomechanical properties and bone microstructure parameters of IBD rats were significantly worse than those of control rats (P<0.05). Tartrate resistant acid phosphatase staining also showed that the number of osteoclasts in bone in IBD rats were larger than that in bone in control rats. Emodin intervention abolished the changes in bone microstructure and biomechanical properties (P<0.05) induced by IBD. Osteoclast formation and serum C-terminal cross-linked peptide (CTX) and tumor necrosis factor α (TNF-α) were also inhibited by emodin (P<0.05). Emodin significantly abolished IBD-enhanced Traf6, NFATC1 and c-fos expression. Our data demonstrated that emodin suppresses IBD-induced osteoporosis by inhibiting osteoclast formation.
Collapse
|
40
|
Lin X, Yuan G, Li Z, Zhou M, Hu X, Song F, Shao S, Fu F, Zhao J, Xu J, Liu Q, Feng H. Ellagic acid protects ovariectomy-induced bone loss in mice by inhibiting osteoclast differentiation and bone resorption. J Cell Physiol 2020; 235:5951-5961. [PMID: 32026468 DOI: 10.1002/jcp.29520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.
Collapse
Affiliation(s)
- Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaoning Li
- Department of orthopedics, Dongguan people's hospital, Dongguan, Guangdong, China
| | - Mengyu Zhou
- Department of Dentistry, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianghua Hu
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Siyuan Shao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Fangsheng Fu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
41
|
Tan Y, Deng W, Zhang Y, Ke M, Zou B, Luo X, Su J, Wang Y, Xu J, Nandakumar KS, Liu Y, Zhou X, Li X. A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-κB ligand-induced osteoclastogenesis and inflammatory bone destruction. Br J Pharmacol 2020; 177:4242-4260. [PMID: 32608081 DOI: 10.1111/bph.15179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoclasts are unique cells to absorb bone. Targeting osteoclast differentiation is a therapeutic strategy for osteolytic diseases. Natural marine products have already become important sources of new drugs. The naturally occurring nitrobenzoyl sesquiterpenoids first identified from marine fungi in 1998 are bioactive compounds with a special structure, but their pharmacological functions are largely unknown. Here, we investigated six marine fungus-derived nitrobenzoyl sesquiterpenoids on osteoclastogenesis and elucidated the mechanisms. EXPERIMENTAL APPROACH Compounds were first tested by RANKL-induced NF-κB luciferase activity and osteoclastic TRAP assay, followed by molecular docking to characterize the structure-activity relationship. The effects and mechanisms of the most potent nitrobenzoyl sesquiterpenoid on RANKL-induced osteoclastogenesis and bone resorption were further evaluated in vitro. Micro-CT and histology analysis were used to assess the prevention of bone destruction by nitrobenzoyl sesquiterpenoids in vivo. KEY RESULTS Nitrobenzoyl sesquiterpenoid 4, with a nitrobenzoyl moiety at C-14 and a hydroxyl group at C-9, was the most active compound on NF-κB activity and osteoclastogenesis. Consequently, nitrobenzoyl sesquiterpenoid 4 exhibited suppression of RANKL-induced osteoclastogenesis and bone resorption from 0.5 μM. It blocked RANKL-induced IκBa phosphorylation, NF-κB p65 and RelB nuclear translocation, NFATc1 activation, reduced DC-STAMP but not c-Fos expression during osteoclastogenesis in vitro. Nitrobenzoyl sesquiterpenoid 4 also ameliorated LPS-induced osteolysis in vivo. CONCLUSION AND IMPLICATIONS These results highlighted nitrobenzoyl sesquiterpenoid 4 as a novel inhibitor of osteoclast differentiation. This marine-derived sesquiterpenoid is a promising lead compound for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yueyang Zhang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianbin Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Li T, Zhou Z, Wang H, Lv C, Zhang C, Tao G, Li X, Zou S, Duan P. Effects of estrogen on root repair after orthodontically induced root resorption in ovariectomized rats. Am J Orthod Dentofacial Orthop 2020; 158:247-263.e1. [PMID: 32507529 DOI: 10.1016/j.ajodo.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aimed to investigate the effects of estrogen on root repair after orthodontically induced root resorption. METHODS Seventy-two 6-week-old female Wistar rats were randomly divided into 3 groups: ovariectomy only (OVX), ovariectomy plus estradiol injection (OVX + E2), and sham operation (control). E2 was administrated to all the experimental animals after the establishment of the root repair model. One-way analysis of variance with the Tukey post-hoc test was used to analyze the experimental results. RESULTS Micro-computed tomography and hematoxylin and eosin staining showed that the total volumes of resorption lacunae were significantly smaller in the control and OVX + E2 groups than those in the OVX group. Alkaline phosphatase and tartrate-resistant acid phosphatase stainings suggested that the cementoblastic activities and the amount of new cementum formation were inhibited while the activities of osteoclasts were obvious in the OVX group. The immunohistochemistry stainings revealed that the osteoprotegerin to receptor activator of nuclear factor-кB ligand ratio and the phosphorylated extracellular signal-regulated kinases to extracellular signal-regulated kinases ratio of the control and OVX + E2 groups were significantly greater than those of the OVX group. CONCLUSIONS These findings demonstrated that estrogen administration might be a solution to reduce orthodontically induced root resorption through the activation of extracellular signal-regulated kinase-1/2 pathway and enhancement of cementogenesis.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyuan Zhou
- Department of Orthodontics, West China Dental Hospital of Chongqing, Chongqing, China
| | - Han Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guiyu Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Peipei Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103358. [PMID: 32143118 DOI: 10.1016/j.etap.2020.103358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a progressive systemic disease characterized by low bone mineral density and deterioration of bone microarchitecture. The current therapies are effective to prevent further bone loss and fractures but they are accompanied by undesirable side effects and cost issues. The discovery of Chinese herbal medicines with osteoprotective effects provides alternative treatments to prevent bone loss without causing severe side effects. Artemisinin (ARS) and its related compounds have been clinically used as antimalarial agents. Interestingly, their bioactivity is not limited to antimalarial treatment. Experimental evidences indicate that ARS compounds are a potential type of therapeutic alternative medicine for bone loss induced by accelerated osteoclastic bone resorption. The present review intends to summarize the current understandings of ARS compounds and their molecular mechanisms of actions in preventing bone loss. ARS compounds selectively inhibit osteoclast differentiation by downregulation of pathways involved in receptor activator of nuclear factor kappa-B ligand (RANKL) -induced osteoclastogenesis, and have no effect on osteogenic differentiation of osteoblasts. The exact mechanism of activation and action of these anti-resorption effects are not fully elucidated. Considering the characteristic of high levels of intracellular iron in osteoclasts, ARS compounds may inhibit osteoclast differentiation via mechanisms associated with intracellular iron, including the cleavage of endoperoxide bridge, oxidative damage and ferroptosis. The anti-resorptive effects of ARS compounds need to be further investigated in bone loss models caused by different factors, and to be under clinical development.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
44
|
Comparative Transcriptomic Analysis Uncovers Genes Responsible for the DHA Enhancement in the Mutant Aurantiochytrium sp. Microorganisms 2020; 8:microorganisms8040529. [PMID: 32272666 PMCID: PMC7232246 DOI: 10.3390/microorganisms8040529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022] Open
Abstract
Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.
Collapse
|
45
|
Yuan Y, Chen K, Chen X, Wang C, Qiu H, Cao Z, Song D, Sun Y, Guo J, Tickner J, Xu J, Zou J. Fumitremorgin C Attenuates Osteoclast Formation and Function via Suppressing RANKL-Induced Signaling Pathways. Front Pharmacol 2020; 11:238. [PMID: 32210820 PMCID: PMC7076231 DOI: 10.3389/fphar.2020.00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive bone resorption conducted by osteoclasts is considered as the main cause of osteoclast-related bone diseases such as osteoporosis. Therefore, the suppression of excessive osteoclast formation and function is one of the strategies to treat osteoclast-related bone diseases. Fumitremorgin C (Fum) is a mycotoxin extracted from Aspergillus fumigatus. It has been shown to have extensive pharmacological properties, but its role in the treatment of osteoclast-related bone diseases remains unclear. In this study, we aim to find out whether Fum can inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and function. The results showed that Fum could significantly attenuate osteoclast formation and function at concentrations from 2.5 to 10 µM. The protein expression of bone resorption factors such as NFATc1, cathepsin K, V-ATPase-d2, and c-Fos was suppressed with the treatment of Fum at a concentration of 10 µM. In addition, Fum was also shown to suppress the activity of NF-κB, intracellular reactive oxygen species level, and MAPK pathway. Taken together, the present study showed that Fum could attenuate the formation and function of osteoclast via suppressing RANKL-induced signaling pathways, suggesting that Fum might be a potential novel drug in the treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhen Cao
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Youqiang Sun
- Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
46
|
Zeng XZ, Zhang YY, Yang Q, Wang S, Zou BH, Tan YH, Zou M, Liu SW, Li XJ. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca 2+-NFATc1 signaling pathway. Acta Pharmacol Sin 2020; 41:229-236. [PMID: 31431733 PMCID: PMC7468527 DOI: 10.1038/s41401-019-0289-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
In chronic infectious diseases caused by gram-negative bacteria, such as osteomyelitis, septic arthritis, and periodontitis, osteoclastic activity is enhanced with elevated inflammation, which disturbs the bone homeostasis and results in osteolysis. Lipopolysaccharide (LPS), as a bacteria product, plays an important role in this process. Recent evidence shows that an antimalarial drug artesunate attenuates LPS-induced osteolysis independent of RANKL. In this study we evaluated the effects of artesunate on LPS-induced osteoclastogenesis in vitro and femur osteolysis in vivo, and explored the mechanisms underlying the effects of artesunate on LPS-induced osteoclast differentiation independent of RANKL. In preosteoclastic RAW264.7 cells, we found that artesunate (1.56-12.5 μM) dose dependently inhibited LPS-induced osteoclast formation accompanied by suppressing LPS-stimulated osteoclast-related gene expression (Fra-2, TRAP, Cathepsin K, β3-integrin, DC-STAMP, and Atp6v0d2). We showed that artesunate (3.125-12.5 µM) inhibited LPS-stimulated nuclear factor of activated T cells c1 (NFATc1) but not NF-κB transcriptional activity; artesunate (6.25, 12.5 μM) significantly inhibited LPS-stimulated NFATc1 protein expression. Furthermore, artesunate treatment markedly suppressed LPS-induced Ca2+ influx, and decreased the expression of PP2B-Aα (calcineurin) and pPLCγ1 in the cells. In addition, artesunate treatment significantly decreased the expression of upstream signals TLR4 and TRAF6 during LPS-induced osteoclastogenesis. Administration of artesunate (10 mg/kg, ip) for 8 days effectively inhibited serum TNF-α levels and ameliorated LPS (5 mg/kg, ip)-induced inflammatory bone loss in vivo. Taken together, artesunate attenuates LPS-induced inflammatory osteoclastogenesis by inhibiting the expression of TLR4/TRAF6 and the downstream PLCγ1-Ca2+-NFATc1 signaling pathway. Artesunate is a valuable choice to treat bone loss induced by gram-negative bacteria infection or inflammation in RANKL-independent pathway.
Collapse
Affiliation(s)
- Xiang-Zhou Zeng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacology, Hainan Medical College, Haikou, 571199, China
| | - Yue-Yang Zhang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Song Wang
- Department of Surgery, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Bin-Hua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiao-Juan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Yang M, Xie J, Lei X, Song Z, Gong Y, Liu H, Zhou L. Tubeimoside I suppresses diabetes-induced bone loss in rats, osteoclast formation, and RANKL-induced nuclear factor-κB pathway. Int Immunopharmacol 2020; 80:106202. [PMID: 32004923 DOI: 10.1016/j.intimp.2020.106202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus is often companied with osteoporosis, a process which involves osteoclast activation. In this study, we found tubeimoside I, a natural compound isolated from the Chinese medicinal herb Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), significantly ameliorated the decrease of bone mass in type 2 diabetes-induced osteoporosis in rats. It appears that tubeimoside I exerts this protecting effect through inhibiting osteoclast formation and function. Futhermore, our study showed that tubeimoside I inhibits NF-κB transcriptional activation and degradation of IκBα. Collectively, our results reveal that tubeimoside I attenuates osteoclastogenesis through down-regulating NF-κB signaling pathway, and is a potential candidate for the treatment of bone-destructive diseases like type 2 diabetic osteoporosis.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Jian Xie
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Xiaocan Lei
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Zhifu Song
- Department of Medical Genetics, Zunyi Medical University, Zunyi 563000, China
| | - Yadong Gong
- Central Lab of Guizhou Aerospace Hospital, Zunyi 563000, China
| | - Haiyan Liu
- Endocrinology Department of the Fifth Guangzhou Medical University, The Fifth Clinical School of Guangzhou Medical University, Guangzhou 510700, China.
| | - Lin Zhou
- Endocrinology Department of the Fifth Guangzhou Medical University, The Fifth Clinical School of Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
48
|
Ye C, Hou W, Chen M, Lu J, Chen E, Tang L, Hang K, Ding Q, Li Y, Zhang W, He R. IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss. Cell Prolif 2019; 53:e12752. [PMID: 31889368 PMCID: PMC7046308 DOI: 10.1111/cpr.12752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis. METHODS We used both in vitro and in vivo studies to investigate the effects of IGFBP7 on RANKL-induced osteoclastogenesis and osteoporosis, together with the underlying molecular mechanisms of these processes. RESULTS We show that IGFBP7 inhibited receptor activation of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis, F-actin ring formation and bone resorption, which was confirmed by using recombinant IGFBP7 protein, lentivirus and siRNA. The NF-κB signalling pathway was inhibited during this process. Moreover, in a mouse ovariectomy-induced osteoporosis model, IGFBP7 treatment attenuated osteoporotic bone loss by inhibiting osteoclast activity. CONCLUSIONS Taken together, these findings show that IGFBP7 suppressed osteoclastogenesis in vitro and in vivo and suggest that IGFBP7 is a negative regulator of osteoclastogenesis and plays a protective role in osteoporosis. These novel insights into IGFBP7 may facilitate the development of potential treatment strategies for oestrogen deficiency-induced osteoporosis and other osteoclast-related disorders.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Qianhai Ding
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yan Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Jin H, Wang Q, Chen K, Xu K, Pan H, Chu F, Ye Z, Wang Z, Tickner J, Qiu H, Wang C, Kenny J, Xu H, Wang T, Xu J. Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:8355-8368. [PMID: 31603626 PMCID: PMC6850941 DOI: 10.1111/jcmm.14713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Astilbin, a traditional herb, is known to have anti-inflammatory, antioxidant and antihepatic properties, but its role in osteoporosis treatment has not yet been confirmed. In our study, astilbin was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, V-ATPase-d2 and integrin β3). Furthermore, we examined the underlying mechanisms and found that astilbin repressed osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, astilbin might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Haiming Jin
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Qingqing Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Ke Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Hao Pan
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Feifan Chu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhen Ye
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Heng Qiu
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Chao Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jacob Kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Te Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiake Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
50
|
Chen X, Wang C, Qiu H, Yuan Y, Chen K, Cao Z, Xiang Tan R, Tickner J, Xu J, Zou J. Asperpyrone A attenuates RANKL-induced osteoclast formation through inhibiting NFATc1, Ca 2+ signalling and oxidative stress. J Cell Mol Med 2019; 23:8269-8279. [PMID: 31612613 PMCID: PMC6850946 DOI: 10.1111/jcmm.14700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
Imbalance of osteoblast and osteoclast in adult leads to a variety of bone-related diseases, including osteoporosis. Thus, suppressing the activity of osteoclastic bone resorption becomes the main therapeutic strategy for osteoporosis. Asperpyrone A is a natural compound isolated from Aspergillus niger with various biological activities of antitumour, antimicrobial and antioxidant. The present study was designed to investigate the effects of Asperpyrone A on osteoclastogenesis and to explore its underlining mechanism. We found that Asperpyrone A inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner when the concentration reached 1 µm, and with no cytotoxicity until the concentration reached to 10 µm. In addition, Asperpyrone A down-regulated the mRNA and protein expression of NFATc1, c-fos and V-ATPase-d2, as well as the mRNA expression of TRAcP and Ctsk. Furthermore, Asperpyrone A strongly attenuated the RNAKL-induced intracellular Ca2+ oscillations and ROS (reactive oxygen species) production in the process of osteoclastogenesis and suppressed the activation of MAPK and NF-κB signalling pathways. Collectively, Asperpyrone A attenuates RANKL-induced osteoclast formation via suppressing NFATc1, Ca2+ signalling and oxidative stress, as well as MAPK and NF-κB signalling pathways, indicating that this compound may become a potential candidate drug for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Xi Chen
- School of Sports ScienceWenzhou Medical UniversityWenzhouChina
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Chao Wang
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Heng Qiu
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Yu Yuan
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouChina
| | - Kai Chen
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Zhen Cao
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesNanjing UniversityNanjingChina
| | - Jennifer Tickner
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jiake Xu
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jun Zou
- School of KinesiologyShanghai University of SportShanghaiChina
| |
Collapse
|