1
|
Santander N, Figueroa EG, González-Candia A, Maliqueo M, Echiburú B, Crisosto N, Salas-Pérez F. Oxidative Stress in Polycystic Ovary Syndrome: Impact of Combined Oral Contraceptives. Antioxidants (Basel) 2024; 13:1168. [PMID: 39456422 PMCID: PMC11505064 DOI: 10.3390/antiox13101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex hormonal disorder that is associated with heightened metabolic risks. While oxidative stress (OS) is known to play a role in PCOS, the precise nature of the relationship between PCOS and increased OS remains not entirely understood. Combined oral contraceptives (COCs) are the first-line treatment to regulate menstrual cycles and androgen levels, but their impact on oxidative stress requires further study. We conducted a transcriptomic analysis using RNAseq and assessed the levels of various oxidative stress (OS) markers in serum samples from women with PCOS and controls and whether they were using combined oral contraceptives (COCs), including enzymatic activities, FRAP, and 8-isoprostane (8-iso). A total of 359 genes were differentially expressed in women with PCOS compared to control women. Genes differentially expressed were enriched in functions related to inflammation and, interestingly, oxidative stress response. In controls, 8-iso levels were increased in women using COCs, whereas in women with PCOS, 8-iso levels were reduced in those using oral contraceptives (191.1 ± 97 vs. 26.4 ± 21 pg/mL, p: <0.0001). Correlation analyses showed a trend for a negative correlation between 8-iso and Ferriman score in women with PCOS consuming COCs (r = -0.86, p = 0.06) and a negative correlation between GSH and hyperandrogenism in women with PCOS (r = -0.89, p = 0.01). These results reveal the presence of lipid peroxidation in women with PCOS, which was modified by the use of COCs, providing new insights into the pathophysiology of PCOS in the Chilean population.
Collapse
Affiliation(s)
- Nicolás Santander
- Health Sciences Institute, Universidad de O’Higgins, Rancagua 282000, Chile; (N.S.); (E.G.F.); (A.G.-C.)
| | - Esteban G. Figueroa
- Health Sciences Institute, Universidad de O’Higgins, Rancagua 282000, Chile; (N.S.); (E.G.F.); (A.G.-C.)
| | - Alejandro González-Candia
- Health Sciences Institute, Universidad de O’Higgins, Rancagua 282000, Chile; (N.S.); (E.G.F.); (A.G.-C.)
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile; (M.M.); (B.E.); (N.C.)
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile; (M.M.); (B.E.); (N.C.)
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, West Division, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile; (M.M.); (B.E.); (N.C.)
- Endocrinology Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Francisca Salas-Pérez
- Health Sciences Institute, Universidad de O’Higgins, Rancagua 282000, Chile; (N.S.); (E.G.F.); (A.G.-C.)
| |
Collapse
|
2
|
Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, Eberting AL, Hansen JM. Real-time analysis of dynamic compartmentalized GSH redox shifts and H 2O 2 availability in undifferentiated and differentiated cells. Biochim Biophys Acta Gen Subj 2023; 1867:130321. [PMID: 36870547 DOI: 10.1016/j.bbagen.2023.130321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 μM) in both differentiated and undifferentiated cells. RESULTS Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.
Collapse
Affiliation(s)
- Brandon M Davies
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jenna K Katayama
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua E Monsivais
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - James R Adams
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Miriam E Dilts
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Arielle L Eberting
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine 2019; 14:2809-2828. [PMID: 31114196 PMCID: PMC6488162 DOI: 10.2147/ijn.s197499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provided.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| |
Collapse
|
4
|
Lin M, Lv D, Zheng Y, Wu M, Xu C, Zhang Q, Wu L. Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma. Onco Targets Ther 2018; 11:3101-3110. [PMID: 29872321 PMCID: PMC5975610 DOI: 10.2147/ott.s163266] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Cancer cells often have characteristic changes in metabolism. Besides Warburg effect, abnormal lipid metabolism is also considered as one of the most typical metabolic symbols of cancer. Thus, understanding the mechanisms of cell metabolic reprogramming may provide a potential avenue for cancer treatment. Materials and methods In total, 41 pairs of matched samples of primary hepatocellular carcinoma (HCC) and adjacent non-cancerous liver tissues were collected. Afterward, we performed quantitative reverse transcriptase polymerase chain reaction to investigate carnitine palmitoyltransferase-2 (CPT2) expression and then systematically analyzed its relationship with clinicopathologic features. We further performed proliferation, colony formation, migration and invasion, drug resistance, and lipogenesis assays to determine the function of CPT2 in HCC. Results In this study, we have identified CPT2 which is the rate-limiting enzyme of fatty acid oxidation, downregulated in HCC and was significantly associated with tumor histological differentiation and venous invasion. In vitro studies demonstrated that knockdown of CPT2 remarkably enhanced the tumorigenic activity and metastatic potential of hepatoma cells. In addition, CPT2 silencing induced chemoresistance to cisplatin. Mechanistically, low expression of CPT2 promoted cancer cell lipogenesis via upregulation of stearoyl-CoA desaturase-1, the key enzyme involved in the synthesis of monounsaturated fatty acids, at both mRNA and protein levels in hepatoma cell line. Conclusion Altogether, our findings demonstrate that CPT2 has a critical role in HCC progression and chemoresistance and may potentially serve as a novel prognostic marker and therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Meihua Lin
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Duo Lv
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yunliang Zheng
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Minglan Wu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chang Xu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qiao Zhang
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lihua Wu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Falcão ADO, Speranza P, Ueta T, Mateus Martins I, Alves Macedo G, Alves Macedo J. Antioxidant Potential and Modulatory Effects of Restructured Lipids from the Amazonian Palms on
Liver Cells. Food Technol Biotechnol 2018. [PMID: 29540989 DOI: 10.17113/ftb.55.04.17.5157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enzymatic interesterification is used to manipulate oil and fat in order to obtain improved restructured lipids with desired technological properties. However, with raw materials containing significant amounts of bioactive compounds, the influence of this enzymatic process on the bioactivity of the final product is still not clear. Thus, the aim of this study is to evaluate the antioxidant potential and modulatory effects of two raw materials from the Amazonian area, buriti oil and murumuru fat, before and after lipase interesterification, on human hepatoma cells (HepG2). The results indicate that minor bioactive compounds naturally found in the raw materials and their antioxidant capacity are preserved after enzymatic interesterification, and that the restructured lipids modulate HepG2 endogenous antioxidant enzyme.
Collapse
Affiliation(s)
- Andrea de Oliveira Falcão
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| | - Paula Speranza
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| | - Tatiane Ueta
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| | - Isabela Mateus Martins
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas,
Rua Monteiro Lobato 80, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
6
|
Cheng SB, Liu HT, Chen SY, Lin PT, Lai CY, Huang YC. Changes of Oxidative Stress, Glutathione, and Its Dependent Antioxidant Enzyme Activities in Patients with Hepatocellular Carcinoma before and after Tumor Resection. PLoS One 2017; 12:e0170016. [PMID: 28081247 PMCID: PMC5231264 DOI: 10.1371/journal.pone.0170016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/25/2016] [Indexed: 11/19/2022] Open
Abstract
The changes in and relationship between oxidative stress and the glutathione (GSH) antioxidant system in the plasma and tissues of patients with hepatocellular carcinoma (HCC) before and after tumor resection have not been clearly determined. We investigated the changes in oxidative stress, GSH status and its dependent antioxidant enzyme activities in HCC patients before and after tumor resection, and to determine the association of oxidative stress with GSH and its dependent antioxidant enzyme activities in plasma and tissues. This study employed a cross-sectional design. Forty-four men and 16 women with HCC were recruited. Fasting blood was drawn on the day before the tumor resection and one month after the tumor resection. HCC tissue and adjacent normal liver tissue were obtained at the time of surgical resection. Patients had significantly increased plasma malondialdehyde (MDA) and oxidized-low density lipoprotein levels but decreased GSH and oxidized GSH levels before tumor resection compared with the corresponding post-resection values. GSH and trolox equivalent antioxidant capacity (TEAC) levels and activities of GSH peroxidase were significantly increased while MDA level was significantly lower in HCC tissue when compared with the adjacent normal tissue. The pre-resection plasma MDA level was significantly correlated with pre-resection plasma GSH concentration, and MDA level in HCC and adjacent normal tissues. Pre-resection plasma GSH concentration was significantly correlated with GSH and TEAC level in HCC tissue. HCC patients had increased oxidative stress, decreased GSH, and lower dependent antioxidant capacities before tumor resection. However, hepatocellular tumor had increased GSH and TEAC levels as well as GSH peroxidase activities which might protect itself against increased oxidative stress.
Collapse
Affiliation(s)
- Shao-Bin Cheng
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiao-Tien Liu
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sin-Yuan Chen
- Graduate Program in Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ping-Ting Lin
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shann Medical University Hospital, Taichung, Taiwan
| | - Chia-Yu Lai
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chia Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shann Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Moss LR, Mulik RS, Van Treuren T, Kim SY, Corbin IR. Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta Gen Subj 2016; 1860:2363-2376. [PMID: 27418237 DOI: 10.1016/j.bbagen.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies have shown that low density lipoproteins reconstituted with the natural omega 3 fatty acid docosahexaenoic acid (LDL-DHA) is selectively cytotoxic to liver cancer cells over normal hepatocytes. To date, little is known about the subcellular events which transpire following LDL-DHA treatment. METHODS Herein, murine noncancer and cancer liver cells, TIB-73 and TIB-75 respectively, were investigated utilizing confocal microscopy, flow cytometry and viability assays to demonstrate differential actions of LDL-DHA nanoparticles in normal versus malignant cells. RESULTS Our studies first showed that basal levels of oxidative stress are significantly higher in the malignant TIB-75 cells compared to the normal TIB-73 cells. As such, upon entry of LDL-DHA into the malignant TIB-75 cells, DHA is rapidly oxidized precipitating global and lysosomal lipid peroxidation along with increased lysosomal permeability. This leakage of lysosomal contents and lipid peroxidation products trigger subsequent mitochondrial dysfunction and nuclear injury. The cascade of LDL-DHA mediated lipid peroxidation and organelle damage was partially reversed by the administration of the antioxidant, N-acetylcysteine, or the iron-chelator, deferoxamine. LDL-DHA treatment in the normal TIB-73 cells was well tolerated and did not elicit any cell or organelle injury. CONCLUSION These studies have shown that LDL-DHA is selectively cytotoxic to liver cancer cells and that increased levels of ROS and iron catalyzed reactions promote the peroxidation of DHA which lead to organelle dysfunction and ultimately the demise of the cancer cell. GENERAL SIGNIFICANCE LDL-DHA selectively disrupts lysosomal, mitochondrial and nuclear function in cancer cells as a novel pathway for eliminating cancer cells.
Collapse
Affiliation(s)
- Lacy R Moss
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rohit S Mulik
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tim Van Treuren
- Department of Molecular and Medical Genetics, University of North Texas, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Soo Young Kim
- Cardiology Division of the Internal Medicine Department, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Liver and Digestive Diseases Division of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Abraham JA, Yeghiazaryan K, Golubnitschaja O. Selective internal radiation therapy in treatment of hepatocellular carcinoma: new concepts of personalization. Per Med 2016; 13:347-360. [PMID: 29749819 DOI: 10.2217/pme-2016-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem, with more than half a million new cases diagnosed annually and mortality rates at similar level. The majority of HCC is diagnosed at intermediate-advanced stages being, therefore, an issue for palliative rather than curative care. Selective internal radiation therapy (SIRT) is one of the best appropriate palliative treatment modalities in HCC management. Although delivering satisfactory results, SIRT application comes along with frequent complications and tumor recurrence. Recent studies suggest treatment algorithm tailored to the person as improving individual outcomes and reducing treatment-related complications. This review provides insights to implicate innovative concepts of predictive, preventive and personalized medicine in SIRT application to HCC cohorts.
Collapse
|
9
|
Kung ML, Hsieh SL, Wu CC, Chu TH, Lin YC, Yeh BW, Hsieh S. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. NANOSCALE 2015; 7:1820-1829. [PMID: 25521936 DOI: 10.1039/c4nr05843g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml(-1) and 85 μg ml(-1), respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ∼0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
11
|
Ghosh MK, Patra F, Ghosh S, Hossain CM, Mukherjee B. Antisense oligonucleotides directed against insulin-like growth factor-II messenger ribonucleic acids delay the progress of rat hepatocarcinogenesis. J Carcinog 2014; 13:2. [PMID: 24737950 PMCID: PMC3986617 DOI: 10.4103/1477-3163.126761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/17/2013] [Indexed: 02/05/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a multistep complex process, caused by many of genetic alteration. Insulin-like growth factors and their receptor have been widely implicated to HCC. Insulin-like growth factor-II (IGF-II) is a mitogenic polypeptide, found in various fetal and neonatal tissues of humans and rats and expresses in HCC. Here we investigated anticancer potential of phosphorothioate antisense oligonucleotides (ASOs) against three coding exons (exon-1/exon-2/exon-3) of IGF-II messenger ribonucleic acid in rat hepatocarcinogenesis model. Materials and Methods: During diethylnitrosamine and 2-acetylaminofluorene induced hepatocarcinogenesis, rats were treated with ASOs. Various biochemical and histological studies were conducted. Results: About 40% of carcinogen treated rats, which received two oligomers (against exon-1 or-3) did not show any hepatic lesion, hyperplastic nodule or tumor and remaining 60% of those rats showed lesion incidence and had about 59% and 55% reductions in the numbers of hepatic altered foci, respectively. Reductions in the total lesion-area when compared with carcinogen control rats were 64% and 53%, respectively for the animals treated with carcinogen and received the ASOs against exon-1/-3. Fluorescein isothiocyanate-labeled ASO reached in the hepatocytes in 2 h. No predominant IGF-II overexpression was observed in case of rats treated with the two ASOs. Treatment of the antisense IGF-II oligomers in carcinogen treated rats show better hepatocellular integrity along with several preneoplastic/neoplastic marker isoenzyme/enzyme modulations. Conclusions: Two of the three antisense oligomer-types effectively controlled IGF-II overexpression, causing the delay of the development and/or progress of hepatic cancer in rats.
Collapse
Affiliation(s)
- Miltu Kumar Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India ; Georg-August-Universität Göttingen, Department of Human Genetics, Heinrich-Düker Weg 12, 37073 Göttingen, Germany
| | - Falguni Patra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Shampa Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | | | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Morita R, Yafune A, Shiraki A, Itahashi M, Akane H, Nakane F, Suzuki K, Shibutani M, Mitsumori K. Suppressive effect of liver tumor-promoting activities in rats subjected to combined administration of phenobarbital and piperonyl butoxide. J Toxicol Sci 2013; 38:679-88. [PMID: 24025784 DOI: 10.2131/jts.38.679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phenobarbital (PB) is a cytochrome P450 (CYP) 2B inducer, and piperonyl butoxide (PBO) is a CYP1A/2B inducer. These inducers have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of PB and PBO co-administration. Male rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) for initiation. Two weeks after DEN administration, rats were given PB (60 or 120 ppm in drinking water), PBO (1,250 or 2,500 ppm in diet) or 60 ppm PB+1,250 ppm PBO for 6 weeks. One week after the PB/PBO treatment, all rats were subjected to a two-thirds partial hepatectomy. To evaluate the effect of the combined administration, we used two statistical additive models. In the isoadditive model, the average values of the area of GST-P positive foci in the PB+PBO group were significantly lower than those in the High PB or High PBO groups. In the heteroadditive model, the net values of Cyp1a1 mRNA level and microsomal reactive oxygen species (ROS) production in the PB+PBO group were significantly lower than the sum of those in the Low PB or Low PBO groups. On the contrary, there was no interactive effect in the PCNA-positive hepatocyte ratio, mRNA levels of Cyp2b1/2, Gstm3, Gpx2 and Nqo1, and the level of thiobarbituric acid-reactive substances in the PB+PBO group. These results suggest that PB and PBO co-administration causes suppressive effects in liver tumor-promoting activity in rats resulting from inhibited microsomal ROS production because of suppression of CYP1A induction.
Collapse
Affiliation(s)
- Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao YH, Li CX, Shen SM, Li H, Chen GQ, Wei Q, Wang LS. Hypoxia-inducible factor 1α mediates the down-regulation of superoxide dismutase 2 in von Hippel-Lindau deficient renal clear cell carcinoma. Biochem Biophys Res Commun 2013; 435:46-51. [PMID: 23611775 DOI: 10.1016/j.bbrc.2013.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is an oxygen-sensitive subunit of HIF-1, the master transcription factor for cellular response to hypoxia. Down-regulation of the mitochondrial enzyme superoxide dismutase 2 (SOD2) contributes to the stabilization of HIF-1α under hypoxia due to the decreased dismutation of superoxide radical. Here we report that HIF-1α could also regulate the expression of SOD2. We found that both stabilization of HIF-1α expression under nomoxia caused by pVHL deficiency and hypoxia treatment significantly reduced SOD2 expression, and shRNAs specifically against HIF-1α restored SOD2 expression in both circumstances. Further analyses with luciferase reporter assay and chromatin immunoprecipitation assay revealed that HIF-1α inhibited and directly bound to the hypoxia-responsive element in SOD2 promoter. These findings indicated the existence of a positive feedback between HIF-1α and SOD2 and provided new clues for understanding the molecular mechanisms of hypoxia adaptation.
Collapse
MESH Headings
- Base Sequence
- Blotting, Western
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Down-Regulation
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Yao-Hui Gao
- Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine (SJTU-SM), Shanghai 200025, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
15
|
Mechanistic study on liver tumor promoting effects of flutamide in rats. Arch Toxicol 2011; 86:497-507. [DOI: 10.1007/s00204-011-0776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022]
|
16
|
Chiang HS, Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med 2011; 51:688-99. [PMID: 21640818 DOI: 10.1016/j.freeradbiomed.2011.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/29/2011] [Accepted: 05/14/2011] [Indexed: 12/19/2022]
Abstract
Redox regulation is critical for a number of cellular functions and has been implicated in the etiology and progression of several diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. It has been shown that, in the absence of gamma-interferon inducible lysosomal thiol reductase (GILT), cells are under increased oxidative stress with higher superoxide levels and decreased stability, expression, and function of mitochondrial manganese superoxide dismutase (SOD2). Here, we further elucidate the role of GILT in the homeostatic regulation of oxidative stress. We show that GILT-deficient fibroblasts exhibit reduced glutathione levels, shift in GSSG/GSH ratio toward the oxidized form, and accumulate dysfunctional mitochondria. Redox-sensitive pathways involving Erk1/2 activation and nuclear high mobility group box 1 (HMGB1) protein cytosolic translocation are both activated and associated with increased autophagy in GILT-/- fibroblasts. We hypothesize that these events are responsible for degrading the damaged mitochondria and mitochondrial SOD2 in the absence of GILT. This is the first time to our knowledge that a lysosomal enzyme has been implicated in global effects within the cell.
Collapse
Affiliation(s)
- Hao-Sen Chiang
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
17
|
Geetha A, Saranya P, Annie Jeyachristy S, Surendran R, Sundaram A. Relevance of non-ceruloplasmin copper to oxidative stress in patients with hepatocellular carcinoma. Biol Trace Elem Res 2009; 130:229-40. [PMID: 19229483 DOI: 10.1007/s12011-009-8338-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 02/03/2009] [Indexed: 01/21/2023]
Abstract
Altered copper homeostasis and oxidative stress have been observed in patients with hepatocellular carcinoma. Non-ceruloplasmin copper, the free form, is a potent pro-oxidant than the protein bound copper. The aim of the present study was to evaluate which form of copper can be correlated with the oxidative stress in the circulation and in the malignant liver tissues of hepatocellular carcinoma patients. Hepatocellular carcinoma patients (grades II and III, n = 18) were enrolled in this study. Serum levels of total, free and bound copper, ceruloplasmin, iron, iron-binding capacity, lipid peroxidation products, and enzymatic and non-enzymatic antioxidants were quantified in serum and in malignant liver tissues and compared with those of normal samples (n = 20). A significant positive correlation between the serum non-ceruloplasmin copper and lipid peroxidation products and negative correlation with antioxidants were observed in hepatocellular carcinoma patients. In liver tissue, glutathione peroxidase, superoxide dismutase, and catalase activity were significantly decreased with concomitant elevation in oxidative stress markers. Our experiment revealed that the elevation in non-ceruloplasmin copper has high relevance with the oxidative stress than the bound copper.
Collapse
Affiliation(s)
- Arumugam Geetha
- Department of Biochemistry, Bharathi Women's College, Chennai, 600 108, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
18
|
Tsai SM, Lin SK, Lee KT, Hsiao JK, Huang JC, Wu SH, Ma H, Wu SH, Tsai LY. Evaluation of redox statuses in patients with hepatitis B virus-associated hepatocellular carcinoma. Ann Clin Biochem 2009; 46:394-400. [PMID: 19641006 DOI: 10.1258/acb.2009.009029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Excess reactive oxygen species related to neoplasia of liver has been established. Essentially, the human body has developed different antioxidant systems for defence against these attacks. To evaluate the redox status in hepatocellular carcinoma (HCC) induced by hepatitis B virus (HBV), the most important aetiological factor in Taiwan, changes in O2(.) generation, lipid peroxidation as well as antioxidant status in the blood of HCC patients with HBV carriers for more than 20 years were measured. METHODS Superoxide anion radical (O2(.-)) generation and the levels of malondialdehyde (MDA) served as an index of lipid peroxidation along with the analyses of activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRx); also, glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), and the levels of vitamins A, C and E were determined. RESULTS In 54 patients, the levels of O2(.-), MDA and GSSG, and the activities of SOD and GRx of blood were significantly higher than those of 57 controls. Conversely, the levels of GSH and total GSH, and GSH/GSSG ratio, and vitamins A and C were significantly decreased. Additionally, there were no significant changes in the activity of GPx and the levels of vitamin E. CONCLUSIONS Our data suggest that the redox statuses in patients with HBV-associated HCC were elevated or decreased in certain parameters. However, the increased activities of antioxidant enzymes may be a compensatory up-regulation and the decrease antioxidant statuses were responses to the enhanced oxidative stress in those patients.
Collapse
Affiliation(s)
- Shih-Meng Tsai
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cui W, Gu F, Hu KQ. Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World J Gastroenterol 2009; 15:1943-1950. [PMID: 19399925 PMCID: PMC2675083 DOI: 10.3748/wjg.15.1943] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/16/2009] [Accepted: 03/23/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the in vivo effects and mechanisms of silibinin on the growth of hepatocellular carcinoma (HCC) xenografts in nude mice. METHODS Nude mice bearing HuH7 xenografts were used to assess the anti-HCC effects and mechanisms of silibinin. RESULTS Silibinin resulted in a potent dose-dependent reduction of HuH7 xenografts in association with a significant decrease in Ki-67 and alpha-fetoprotein production, nuclear NF-kappaB content, polo-like kinase 1, Rb phosphorylation, and E2F1/DP1 complex, but increased p27/CDK4 complex and checkpoint kinase 1 expression, suggesting that the in vivo effects of silibinin are mediated by inhibiting G1-S transition of the cell cycle. Silibinin-induced apoptosis of HuH7 xenografts was associated with inhibited survivin phosphorylation. Silibinin-reduced growth of HuH7 xenografts was associated with decreased p-ERK, increased PTEN expression and the activity of silibinin was correlated with decreased p-Akt production, indicating involvement of PTEN/PI(3)K/Akt and ERK pathways in its in vivo anti-HCC effects. Silibinin-reduced growth of HuH7 xenografts was also associated with a significant increase in AC-H3 and AC-H4 expression and the production of superoxide dismutase (SOD)-1. CONCLUSION Silibinin reduces HCC xenograft growth through the inhibition of cell proliferation, cell cycle progression and PTEN/P-Akt and ERK signaling, inducing cell apoptosis, and increasing histone acetylation and SOD-1 expression.
Collapse
|
20
|
Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:36-44. [DOI: 10.1016/j.mrgentox.2008.09.017] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 12/17/2022]
|
21
|
Threshold dose of piperonyl butoxide that induces reactive oxygen species-mediated hepatocarcinogenesis in rats. Arch Toxicol 2008; 83:183-93. [DOI: 10.1007/s00204-008-0340-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 07/03/2008] [Indexed: 01/30/2023]
|
22
|
Chaerkady R, Thuluvath PJ, Kim MS, Nalli A, Vivekanandan P, Simmers J, Torbenson M, Pandey A. O Labeling for a Quantitative Proteomic Analysis of Glycoproteins in Hepatocellular Carcinoma. Clin Proteomics 2008; 4:137-155. [PMID: 20357908 DOI: 10.1007/s12014-008-9013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION: Quantitative proteomics using tandem mass spectrometry is an attractive approach for identification of potential cancer biomarkers. Fractionation of complex tissue samples into subproteomes prior to mass spectrometric analyses increases the likelihood of identifying cancer-specific proteins that might be present in low abundance. In this regard, glycosylated proteins are an interesting class of proteins that are already established as biomarkers for several cancers. MATERIALS AND METHODS: In this study, we carried out proteomic profiling of tumor and adjacent non-cancer liver tissues from hepatocellular carcinoma (HCC) patients. Glycoprotein enrichment from liver samples using lectin affinity chromatography and subsequent (18)O/(16)O labeling of peptides allowed us to obtain relative abundance levels of lectin-bound proteins. As a complementary approach, we also examined the relative expression of proteins in HCC without glycoprotein enrichment. Lectin affinity enrichment was found to be advantageous to quantitate several interesting proteins, which were not detected in the whole proteome screening approach. We identified and quantitated over 200 proteins from the lectin-based approach. Interesting among these were fetuin, cysteine-rich protein 1, serpin peptidase inhibitor, leucine-rich alpha-2-glycoprotein 1, melanoma cell adhesion molecule, and heparan sulfate proteoglycan-2. Using lectin affinity followed by PNGase F digestion coupled to (18)O labeling, we identified 34 glycosylation sites with consensus sequence N-X-T/S. Western blotting and immunohistochemical staining were carried out for several proteins to confirm mass spectrometry results. CONCLUSION: This study indicates that quantitative proteomic profiling of tumor tissue versus non-cancerous tissue is a promising approach for the identification of potential biomarkers for HCC.
Collapse
Affiliation(s)
- Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaewpila S, Venkataraman S, Buettner GR, Oberley LW. Manganese superoxide dismutase modulates hypoxia-inducible factor-1 alpha induction via superoxide. Cancer Res 2008; 68:2781-8. [PMID: 18413745 DOI: 10.1158/0008-5472.can-07-2635] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays an important role in O(2) homeostasis. Numerous observations suggest that changes in reactive oxygen species affect HIF-1 alpha stabilization and HIF-1 alpha transcriptional activation in many cell types. The antioxidant enzyme manganese superoxide dismutase (MnSOD) modulates the cellular redox environment by converting superoxide (O(2)(*-)) to hydrogen peroxide and dioxygen. Previous results from our group have shown that overexpression of MnSOD in MCF-7 cells alters stabilization of HIF-1 alpha under hypoxic conditions; however, the underlying mechanism(s) is not known. Here, we tested the hypothesis that MnSOD regulates the expression of HIF-1 alpha by modulating the steady-state level of O(2)(*-). We found that decreasing MnSOD with small interfering RNA in MCF-7 cells resulted in (a) an associated increase in the hypoxic accumulation of HIF-1 alpha immunoreactive protein, (b) a significant increase in the levels of O(2)(*-) (P < 0.01), but (c) no significant change in the steady-state level of H(2)O(2). Removal of O(2)(*-) using spin traps (alpha-4-pyridyl-1-oxide-N-tert-butylnitrone and 5,5-dimethyl-1-pyrroline N-oxide) or the O(2)(*-) scavenger Tempol or an SOD mimic (AEOL10113) resulted in a decrease in HIF-1 alpha protein, consistent with the hypothesis that O(2)(*-) is an important molecular effector responsible for hypoxic stabilization of HIF-1 alpha. The evidence from both genetic and pharmaceutical manipulation is consistent with our hypothesis that O(2)(*-) can contribute to the stabilization of HIF-1 alpha.
Collapse
Affiliation(s)
- Suwimol Kaewpila
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242-1181, USA
| | | | | | | |
Collapse
|
24
|
Jellicoe MM, Nichols SJ, Callus BA, Baker MV, Barnard PJ, Berners-Price SJ, Whelan J, Yeoh GC, Filipovska A. Bioenergetic differences selectively sensitize tumorigenic liver progenitor cells to a new gold(I) compound. Carcinogenesis 2008; 29:1124-33. [PMID: 18413365 DOI: 10.1093/carcin/bgn093] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A hallmark of cancer cells is their ability to evade apoptosis and mitochondria play a critical role in this process. Delineating mitochondrial differences between normal and cancer cells has proven challenging due to the lack of matched cell lines. Here, we compare two matched liver progenitor cell (LPC) lines, one non-tumorigenic [p53-immortalized liver (PIL) 4] and the other tumorigenic (PIL2). Analysis of these cell lines and a p53 wild-type non-tumorigenic cell line [bipotential murine oval liver (BMOL)] revealed an increase in expression of genes encoding the antiapoptotic proteins cellular inhibitor of apoptosis protein (cIAP) 1 and yes associate protein in the PIL2 cells, which resulted in an increase in the protein encoded by these genes. PIL2 cells have higher mitochondrial membrane potential (Deltapsi(m)) compared with PIL4 and BMOL and had greater levels of reactive oxygen species, despite the fact that the mitochondrial antioxidant enzyme, manganese superoxide disumutase, was elevated at transcript and protein levels. Taken together, these results may account for the observed resistance of PIL2 cells to apoptotic stimuli compared with PIL4. We tested a new gold compound to show that hyperpolarized Deltapsi(m) led to its increased accumulation in mitochondria of PIL2 cells. This compound selectively induces apoptosis in PIL2 cells but not in PIL4 or BMOL. The gold compound depolarized the Deltapsi(m), depleted the adenosine triphosphate pool and activated caspase-3 and caspase-9, suggesting that apoptosis was mediated via mitochondria. This investigation shows that the non-tumorigenic and tumorigenic LPCs are useful models to delineate the role of mitochondrial dysfunction in tumorigenesis and for the future development of mitochondria-targeted chemotherapeutics that selectively target tumor cells.
Collapse
Affiliation(s)
- Matthew M Jellicoe
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and Center for Medical Research, The University of Western Australia, Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mukherjee B, Das T, Ghosh S, Datta S. Changes in the antioxidant defense and hepatic drug metabolizing enzyme and isoenzyme levels, 8-hydroxydeoxyguanosine formation and expressions of c-raf.1 and insulin-like growth factor II genes during the stages of development of hepatocellular carcinoma in rats. Eur J Cancer Prev 2007; 16:363-71. [PMID: 17554210 DOI: 10.1097/01.cej.0000236254.01608.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This is an extensive study in a defined initiation-promotion hepatocellular carcinoma model of hepatocarcinogenesis (in rats) in which many important marker enzymes and isoenzymes and 8-hydroxydeoxyguanosine formation have been studied together with two very important cellular proliferating genes, insulin-like growth factor II and c-raf.1, known for their role in hepatocellular cancer development. Experiments were carried out on hepatic tissues of male Sprague-Dawley rats. Variations in different enzyme/isoenzyme activities/contents/expression pattern and 8-hydroxydeoxyguanosine-positive cells were studied. Insulin-like growth factor II and c-raf.1 gene expressions were monitored. A direct shift with increase in size and numbers of lesions was found to occur in different experimental groups. In this study, glutathione peroxidase (1.14 and 1.46-fold) and reduced triphosphopyridine nucleotide (TPNH)-cytochrome-c-reductase (1.94 and 2.94-fold) activities, cytochrome b5 (1.57 and 3.28-fold) and P-450 contents (1.45 and 1.22-fold), glutathione content (1.27 and 1.45-fold) and superoxide dismutase and catalase (1.16 and 1.39-fold) activities in group A animals were found to be lower than those in initiation and promotion studies, respectively. 8-Hydroxydeoxyguanosine-positive nuclei count showed that oxidative damage of nuclear DNA enhanced with the progress of the disease. The insulin-like growth factor II expression was found to be predominant in hepatocellular carcinoma and in early preneoplastic lesions. Unlike insulin-like growth factor II, c-raf.1 expression was located in the late basophilic lesions associated with hepatocellular carcinoma. During the various stages of the development of hepatocellular carcinoma, the enzymes played a significant role in metabolizing carcinogens and thereby scavenging various toxic metabolites or free radicals produced. A sequence of cellular changes starting from the appearance of glycogen storage foci to basophilic foci leading to hepatocellular carcinoma via mixed cell foci varied the activity/content or expression pattern of the enzymes and isoenzymes and in 8-hydroxydeoxyguanosine formation. It has been established that c-raf.1-induced signaling pathways activated by insulin-like growth factor II is implicated in the late stage of development of cancer.
Collapse
Affiliation(s)
- Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India.
| | | | | | | |
Collapse
|
26
|
Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K. Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 2007; 236:61-75. [PMID: 17498859 DOI: 10.1016/j.tox.2007.03.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 12/20/2022]
Abstract
To clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by piperonyl butoxide (PBO), male F344 rats were administered an i.p. injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Two weeks later, the rats were administered a PBO-containing (0, 1, or 2%) diet for 6 weeks and subjected to a two-third partial hepatectomy 1 week later. After sacrificing them on week 8, their livers were histopathologically examined and analyzed for gene expression using a microarray and real-time RT-PCR. Reactive oxygen species (ROS) products were also measured using liver microsomes. Hepatocytes exhibited centrilobular hypertrophy and increased glutathione S-transferase placental form (GST-P) positive foci formation. ROS products increased significantly in liver microsomes. In the microarray analysis, the expressions of genes related to metabolism and oxidative stress - NAD(P)H dehydrogenase, quinone 1 (Nqo1), UDP-glucuronosyltransferase (UDPGTR-2), glutathione peroxidase 2 (Gpx2), glutathione reductase (GRx) - multidrug resistance associated protein 3 (Abcc3), and solute carrier family 7 (cationic amino acid transporter, y+ system) member 5 (Slc7a5) were up-regulated in the PBO group in comparison to the 0% PBO group; this was confirmed by real-time RT-PCR. Additionally, a significant up-regulation of stress response related genes such as CYP1A1 was observed in PBO-treated groups in real-time RT-PCR. HPLC analysis revealed that the level of 8-OHdG in the 2% PBO group was significantly higher than that in the 0% PBO group. This suggests that PBO has the potential to generate ROS via metabolic pathways and induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in rats.
Collapse
Affiliation(s)
- Masako Muguruma
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|