1
|
Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon 2024; 10:e23543. [PMID: 38173501 PMCID: PMC10761784 DOI: 10.1016/j.heliyon.2023.e23543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| |
Collapse
|
2
|
La Russa D, Barberio L, Marrone A, Perri A, Pellegrino D. Caloric Restriction Mitigates Kidney Fibrosis in an Aged and Obese Rat Model. Antioxidants (Basel) 2023; 12:1778. [PMID: 37760081 PMCID: PMC10525959 DOI: 10.3390/antiox12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction is an effective intervention to protract healthspan and lifespan in several animal models from yeast to primates, including humans. Caloric restriction has been found to induce cardiometabolic adaptations associated with improved health and to delay the onset and progression of kidney disease in different species, particularly in rodent models. In both aging and obesity, fibrosis is a hallmark of kidney disease, and epithelial-mesenchymal transition is a key process that leads to fibrosis and renal dysfunction during aging. In this study, we used an aged and obese rat model to evaluate the effect of long-term (6 months) caloric restriction (-40%) on renal damage both from a structural and functional point of view. Renal interstitial fibrosis was analyzed by histological techniques, whereas effects on mesenchymal (N-cadherin, Vimentin, Desmin and α-SMA), antioxidant (SOD1, SOD2, Catalase and GSTP1) inflammatory (YM1 and iNOS) markers and apoptotic/cell cycle (BAX, BCL2, pJNK, Caspase 3 and p27) pathways were investigated using Western blot analysis. Our results clearly showed that caloric restriction promotes cell cycle division and reduces apoptotic injury and fibrosis phenotype through inflammation attenuation and leukocyte infiltration. In conclusion, we highlight the beneficial effects of caloric restriction to preserve elderly kidney function.
Collapse
Affiliation(s)
- Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Kuzekova AA, Novoselova TV, Sharapov MG, Mubarakshina EK, Goncharov RG, Khrenov MO. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch Biochem Biophys 2023; 746:109729. [PMID: 37633587 DOI: 10.1016/j.abb.2023.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia.
| | - E G Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - O V Glushkova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - A A Kuzekova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - E K Mubarakshina
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - R G Goncharov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| |
Collapse
|
4
|
Petrone O, Serafini S, Yu BYK, Filonenko V, Gout I, O’Flaherty C. Changes of the Protein CoAlation Pattern in Response to Oxidative Stress and Capacitation in Human Spermatozoa. Int J Mol Sci 2023; 24:12526. [PMID: 37569900 PMCID: PMC10419913 DOI: 10.3390/ijms241512526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The spermatozoa have limited antioxidant defences, a high polyunsaturated fatty acids content and the impossibility of synthesizing proteins, thus being susceptible to oxidative stress. High levels of reactive oxygen species (ROS) harm human spermatozoa, promoting oxidative damage to sperm lipids, proteins and DNA, leading to infertility. Coenzyme A (CoA) is a key metabolic integrator in all living cells. Recently, CoA was shown to function as a major cellular antioxidant mediated by a covalent modification of surface-exposed cysteines by CoA (protein CoAlation) under oxidative or metabolic stresses. Here, the profile of protein CoAlation was examined in sperm capacitation and in human spermatozoa treated with different oxidizing agents (hydrogen peroxide, (H2O2), diamide and tert-butyl hydroperoxide (t-BHP). Sperm viability and motility were also investigated. We found that H2O2 and diamide produced the highest levels of protein CoAlation and the greatest reduction of sperm motility without impairing viability. Protein CoAlation levels are regulated by 2-Cys peroxiredoxins (PRDXs). Capacitated spermatozoa showed lower levels of protein CoAlation than non-capacitation cells. This study is the first to demonstrate that PRDXs regulate protein CoAlation, which is part of the antioxidant response of human spermatozoa and participates in the redox regulation associated with sperm capacitation.
Collapse
Affiliation(s)
- Olivia Petrone
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
| | - Steven Serafini
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 7JE, UK; (B.Y.K.Y.); (I.G.)
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 03680 Kyiv, Ukraine;
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 7JE, UK; (B.Y.K.Y.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 03680 Kyiv, Ukraine;
| | - Cristian O’Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Surgery, Urology Division, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada;
- The Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
5
|
Chen X, Tzekov R, Su M, Zhu Y, Han A, Li W. Hydrogen peroxide-induced oxidative damage and protective role of peroxiredoxin 6 protein via EGFR/ERK signaling pathway in RPE cells. Front Aging Neurosci 2023; 15:1169211. [PMID: 37529008 PMCID: PMC10388243 DOI: 10.3389/fnagi.2023.1169211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, United States
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yusheng Zhu
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Wensheng Li
- Shanghai Aier Eye Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023; 12:cells12010181. [PMID: 36611974 PMCID: PMC9818991 DOI: 10.3390/cells12010181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.
Collapse
|
7
|
Cantu A, Gutierrez MC, Dong X, Leek C, Sajti E, Lingappan K. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L5-L31. [PMID: 36283964 PMCID: PMC9799156 DOI: 10.1152/ajplung.00269.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) predisposes to bronchopulmonary dysplasia (BPD), which is characterized by abnormal alveolarization and pulmonary vascular development, in preterm neonates. Neonatal hyperoxia exposure is used to recapitulate the phenotype of human BPD in murine models. Male sex is considered an independent predictor for the development of BPD, but the main mechanisms underlying sexually dimorphic outcomes are unknown. Our objective was to investigate sex-specific and cell-type specific transcriptional changes that drive injury in the neonatal lung exposed to hyperoxia at single-cell resolution and delineate the changes in cell-cell communication networks in the developing lung. We used single-cell RNA sequencing (scRNAseq) to generate transcriptional profiles of >35,000 cells isolated from the lungs of neonatal male and female C57BL/6 mice exposed to 95% [Formula: see text] between PND1-5 (saccular stage of lung development) or normoxia and euthanized at PND7 (alveolar stage of lung development). ScRNAseq identified 22 cell clusters with distinct populations of endothelial, epithelial, mesenchymal, and immune cells. Our data identified that the distal lung vascular endothelium (composed of aerocytes and general capillary endothelial cells) is exquisitely sensitive to hyperoxia exposure with the emergence of an intermediate capillary endothelial population with both general capillaries (gCap) and aerocytes or alveolar capillaries (aCap) markers. We also identified a myeloid-derived suppressor cell population from the lung neutrophils. Sex-specific differences were evident in all lung cell subpopulations but were striking among the lung immune cells. Finally, we identified that the specific intercellular communication networks and the ligand-receptor pairs that are impacted by neonatal hyperoxia exposure.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manuel C Gutierrez
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eniko Sajti
- Department of Pediatrics, University of California, La Jolla, California
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Wang D, Li Y, Liu Y, Cheng S, Liu F, Zuo R, Ding C, Shi S, Liu G. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol 2022; 147:106233. [PMID: 35659568 DOI: 10.1016/j.biocel.2022.106233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is a malignant tumor that begins in the colorectal mucosal epithelium. NPM1 is a nucleolar phosphoprotein that has been linked to tumor progression in humans. NPM1 is significantly overexpressed in a variety of tumors, including colorectal cancer, but its role and mechanism in colorectal cancer remain unknown. Therefore, the purpose of this study was to discover the role of NPM1 in promoting colorectal cancer proliferation via PRDX6 and its molecular mechanism. NPM1 knockdown or overexpression inhibited or promoted the proliferation and cell cycle progression of HCT-116 and HT-29 colorectal cancer cells, respectively, according to our findings. Furthermore, NPM1 knockdown or overexpression increased or decreased intracellular ROS levels. Animal experiments revealed that NPM1 knockdown or overexpression inhibited or promoted the growth of colorectal cancer cells transplanted subcutaneously. NPM1 knockdown or overexpression reduced or increased PRDX6 expression and related enzyme activities, respectively, according to our findings. NPM1 formed a complex with CBX3 as evidenced by immunoprecipitation, and the double luciferase reporter gene assay confirmed that the CBX3-NPM1 complex promoted PRDX6 transcription. Our data support the role of NPM1 in promoting the proliferation of colorectal cancer, which may be accomplished by CBX3 promoting the expression of the antioxidant protein PRDX6 and thus inhibiting intracellular ROS levels. NPM1 and PRDX6 are potential colorectal cancer therapeutic targets.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Li
- Department of Medical Examination, Xiamen International Travel Healthcare Center, Xiamen 361000, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China
| | - Renjie Zuo
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchun Ding
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China.
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Tiszlavicz Á, Gombos I, Péter M, Hegedűs Z, Hunya Á, Dukic B, Nagy I, Peksel B, Balogh G, Horváth I, Vígh L, Török Z. Distinct Cellular Tools of Mild Hyperthermia-Induced Acquired Stress Tolerance in Chinese Hamster Ovary Cells. Biomedicines 2022; 10:1172. [PMID: 35625909 PMCID: PMC9138356 DOI: 10.3390/biomedicines10051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Mild stress could help cells to survive more severe environmental or pathophysiological conditions. In the current study, we investigated the cellular mechanisms which contribute to the development of stress tolerance upon a prolonged (0-12 h) fever-like (40 °C) or a moderate (42.5 °C) hyperthermia in mammalian Chinese Hamster Ovary (CHO) cells. Our results indicate that mild heat triggers a distinct, dose-dependent remodeling of the cellular lipidome followed by the expression of heat shock proteins only at higher heat dosages. A significant elevation in the relative concentration of saturated membrane lipid species and specific lysophosphatidylinositol and sphingolipid species suggests prompt membrane microdomain reorganization and an overall membrane rigidification in response to the fluidizing heat in a time-dependent manner. RNAseq experiments reveal that mild heat initiates endoplasmic reticulum stress-related signaling cascades resulting in lipid rearrangement and ultimately in an elevated resistance against membrane fluidization by benzyl alcohol. To protect cells against lethal, protein-denaturing high temperatures, the classical heat shock protein response was required. The different layers of stress response elicited by different heat dosages highlight the capability of cells to utilize multiple tools to gain resistance against or to survive lethal stress conditions.
Collapse
Affiliation(s)
- Ádám Tiszlavicz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zoltán Hegedűs
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - István Nagy
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Seqomics Biotechnology Ltd., 6782 Mórahalom, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| |
Collapse
|
10
|
Sun Y, Kinsela AS, Cen X, Sun S, Collins RN, Cliff DI, Wu Y, Waite TD. Impact of reactive iron in coal mine dust on oxidant generation and epithelial lung cell viability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152277. [PMID: 34902414 DOI: 10.1016/j.scitotenv.2021.152277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Coal workers' pneumoconiosis (CWP) is a preventable occupational lung disease caused by the chronic inhalation of coal mine dust. The inhalation of coal mine dusts can result in the development of a range of lung diseases termed coal mine dust lung diseases, which is not limited to CWP and includes silicosis, bronchitis, emphysema and cancer. For decades, the presence of elemental Fe, C and Si has been proposed to be the causal factors underlying CWP. The recent resurgence of CWP globally with examination of cases in the United States suggesting a potential but inconclusive role of Fe(II)-sulfide minerals. To obtain a better understanding of Australian coals, the existence and potential adverse impacts of iron minerals were examined using 24 representative Australian coal samples. The results of this work revealed that reduced iron minerals were widely distributed within samples obtained from Australian coal mines with pyrite and siderite being particularly abundant. Compared with carbon and crystalline silica, the presence of these specific iron minerals were negatively correlated to the viability of both alveolar macrophages (NR8383) and human lung epithelial cells (A549) (R2 = 0.689) under scenarios reflecting biologically-relevant inflammatory response conditions. Further analysis using Welch's unpaired t-test indicated that the presence of reduced iron minerals statistically enhanced acellular oxidant production (90% CI [0.74 to 2.55]) and inflammatory response (90% CI [0.15 to 36.96]). Compared with Fe(II)-hydroxide, Fe(II)- and Fe(III)-(phyllo)silicate and Fe(II)-sulfate mineralogies, pyrite and siderite bearing dusts are likely to have greater adverse impacts on epithelial lung cells under inflammatory response conditions in view of both their iron content and reactivity.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaotong Cen
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Siqi Sun
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard N Collins
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David I Cliff
- Minerals Industry Safety and Health Centre, Sustainable Minerals Institute, University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Yuxuan Wu
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Peroxiredoxin 6 Knockout Mice Demonstrate Anxiety Behavior and Attenuated Contextual Fear Memory after Receiving Acute Immobilization Stress. Antioxidants (Basel) 2021; 10:antiox10091416. [PMID: 34573048 PMCID: PMC8466988 DOI: 10.3390/antiox10091416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Stress can elicit glucocorticoid release to promote coping mechanisms and influence learning and memory performance. Individual memory performance varies in response to stress, and the underlying mechanism is not clear yet. Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme participating in both physiological and pathological conditions. Several studies have demonstrated the correlation between PRDX6 expression level and stress-related disorders. Our recent finding indicates that lack of the Prdx6 gene leads to enhanced fear memory. However, it is unknown whether PRDX6 is involved in changes in anxiety response and memory performance upon stress. The present study reveals that hippocampal PRDX6 level is downregulated 30 min after acute immobilization stress (AIS) and trace fear conditioning (TFC). In human retinal pigment epithelium (ARPE-19) cells, the PRDX6 expression level decreases after being treated with stress hormone corticosterone. Lack of PRDX6 caused elevated basal H2O2 levels in the hippocampus, basolateral amygdala, and medial prefrontal cortex, brain regions involved in anxiety response and fear memory formation. Additionally, this H2O2 level was still high in the medial prefrontal cortex of the knockout mice under AIS. Anxiety behavior of Prdx6-/- mice was enhanced after immobilization for 30 min. After exposure to AIS before a contextual test, Prdx6-/- mice displayed a contextual fear memory deficit. Our results showed that the memory performance of Prdx6-/- mice was impaired when responding to AIS, accompanied by dysregulated H2O2 levels. The present study helps better understand the function of PRDX6 in memory performance after acute stress.
Collapse
|
12
|
Liao J, Zhang Y, Chen X, Zhang J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol Neurobiol 2021; 58:4348-4364. [PMID: 34013449 DOI: 10.1007/s12035-021-02427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxins (PRDXs) family, has multiple functions of glutathione peroxidase (Gpx) activity, acidic calcium-independent phospholipase (aiPLA2) activity, and lysophosphatidylcholine acyl transferase (LPCAT) activity. It has been documented to be involved in redox homeostasis, phospholipid turnover, glycolipid metabolism, and cellular signaling. Here, we reviewed the characteristics of the available Prdx6 genetic mouse models and the research progresses made with regard to PRDX6 in neuropsychiatric disorders, including neurodegenerative diseases, brain aging, stroke, neurotrauma, gliomas, major depressive disorder, drug addiction, post-traumatic stress disorder, and schizophrenia. The present review highlights the important roles of PRDX6 in neuropsychiatric disorders and may provide novel insights for the development of effective pharmacological treatments and genetic therapies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Yusi Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
13
|
miR-21-5p Suppresses Mitophagy to Alleviate Hyperoxia-Induced Acute Lung Injury by Directly Targeting PGAM5. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4807254. [PMID: 33681349 PMCID: PMC7907750 DOI: 10.1155/2020/4807254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
Hyperoxia-induced acute lung injury (HALI) is a severe side effect of refractory hypoxemia treatment, for which no effective therapeutic strategy is available. Here, we found that the lung miR-21-5p level was significantly decreased in the rats subjected to hyperoxia. Further, we presented evidence that miR-21-5p was a crucial regulator of mitophagy and mitochondrial dysfunction. Moreover, it proved that miR-21-5p regulated hyperoxia-induced mitophagy and mitochondrial dysfunction by directly binding to the target gene PGAM5. In conclusion, for the first time, we found that miR-21-5p could directly suppress mitophagy and mitochondrial damage during HALI formation.
Collapse
|
14
|
Jung HJ, Kim SM, Kim DH, Bang E, Kang D, Lee S, Chun P, Moon HR, Chung HY. 2,4-Dihydroxyphenyl-benzo[d]thiazole (MHY553), a synthetic PPARα agonist, decreases age-associated inflammatory responses through PPARα activation and RS scavenging in the skin. Exp Gerontol 2020; 143:111153. [PMID: 33189833 DOI: 10.1016/j.exger.2020.111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
We previously reported that 2,4-dihydroxyphenyl-benzo[d]thiazole (MHY553) is a PPARα agonist, which has been shown to inhibit tyrosinase activity in murine melanocyte and alleviate hepatic steatosis in aged rats. This study investigated the effects of MHY553 on the age-related occurrence of inflammatory responses via the molecular modulation of the nuclear factor-κB (NF-κB) signaling pathway in the skin of aged rats and skin fibroblast cells. Moreover, we investigated the antioxidant effect of MHY553 via in vitro assays of reactive oxygen species (ROS) and peroxynitrite (ONOO-) scavenging activities. We also scrutinized the ability of MHY553 as a PPARα activator in aged rat skin and H2O2-induced Hs27 fibroblast cells. In vivo experiments were performed in young, aged, and MHY553-fed aged rats (3 mg or 5 mg∙kg -1∙day -1 for 4 weeks). MHY553 dose-dependently scavenged ROS and ONOO-. Furthermore, we found that MHY553 suppressed the NF-κB transcription factor and downregulated mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling. MHY553 also inhibited the expression of pro-inflammatory cytokines including COX-2, iNOS, IL-1β, and IL-6. Our findings indicate the MHY553 scavenges ROS/reactive nitrogen species and inhibits inflammatory cytokines through PPARα activation in the skin. Thus, these results suggest that MHY553 may be of therapeutic interest for protecting skin from oxidative stress-induced damage and intrinsic aging.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Seong Min Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsang 52828, Republic of Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sanggwon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 47392, Republic of Korea
| | - Hyung Ryong Moon
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
15
|
Lee YJ. Knockout Mouse Models for Peroxiredoxins. Antioxidants (Basel) 2020; 9:antiox9020182. [PMID: 32098329 PMCID: PMC7070531 DOI: 10.3390/antiox9020182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (PRDXs) are members of a highly conserved peroxidase family and maintain intracellular reactive oxygen species (ROS) homeostasis. The family members are expressed in most organisms and involved in various biological processes, such as cellular protection against ROS, inflammation, carcinogenesis, atherosclerosis, heart diseases, and metabolism. In mammals, six PRDX members have been identified and are subdivided into three subfamilies: typical 2-Cys (PRDX1, PRDX2, PRDX3, and PRDX4), atypical 2-Cys (PRDX5), and 1-Cys (PRDX6) subfamilies. Knockout mouse models of PRDXs have been developed to investigate their in vivo roles. This review presents an overview of the knockout mouse models of PRDXs with emphases on the biological and physiological changes of these model mice.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
16
|
Shim HJ, Park SY, Kwon HS, Song WJ, Kim TB, Moon KA, Choi JP, Kim SJ, Cho YS. Oxidative Stress Modulates the Expression Pattern of Peroxiredoxin-6 in Peripheral Blood Mononuclear Cells of Asthmatic Patients and Bronchial Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:523-536. [PMID: 32141264 PMCID: PMC7061160 DOI: 10.4168/aair.2020.12.3.523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Purpose Reduction-oxidation reaction homeostasis is vital for regulating inflammatory conditions and its dysregulation may affect the pathogenesis of chronic airway inflammatory diseases such as asthma. Peroxiredoxin-6, an important intracellular anti-oxidant molecule, is reported to be highly expressed in the airways and lungs. The aim of this study was to analyze the expression pattern of peroxiredoxin-6 in the peripheral blood mononuclear cells (PBMCs) of asthmatic patients and in bronchial epithelial cells (BECs). Methods The expression levels and modifications of peroxiredoxin-6 were evaluated in PBMCs from 22 asthmatic patients. Phosphorylated and acetylated peroxiredoxin-6 in hydrogen peroxide-treated human BECs was detected using immunoprecipitation analysis. The expression level of peroxiredoxin-6 was also investigated in BECs treated with hydrogen peroxide. Cycloheximide and proteasome inhibitors were used to determine whether peroxiredoxin-6 is degraded by proteasomes. Results Peroxiredoxin-6 expression was significantly reduced in the PBMCs of asthmatic patients compared to control subjects. Distinct modification patterns for peroxiredoxin-6 were observed in the PBMCs of asthmatic patients using 2-dimensional-electrophoresis. The levels of phosphorylated serine and acetylated lysine in peroxiredoxin-6 were significantly increased in the BECs following hydrogen peroxide treatment. The level of peroxiredoxin-6 expression was reduced in hydrogen peroxide-stimulated BECs, presumably due to proteasomes. Conclusions The expression of peroxiredoxin-6, which is down-regulated in the immune cells of asthmatic patients and BECs, can be modified by oxidative stress. This phenomenon may have an effect on asthmatic airway inflammation.
Collapse
Affiliation(s)
- Hyun Jae Shim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Hyouk Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Jung Song
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Pyo Choi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sin Jeong Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Zhang L, Zhang Y, Wang Z, Chen Y, Li R. Intermittent hyperbaric oxygen exposure mobilizing peroxiredoxin 6 to prevent oxygen toxicity. J Physiol Sci 2019; 69:779-790. [PMID: 31286450 PMCID: PMC10716995 DOI: 10.1007/s12576-019-00694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Intermittent hyperbaric oxygen exposure (IE-HBO) can protect the body against oxygen toxicity, but the underlying mechanisms are not very clear. Peroxiredoxin 6 (Prdx6) is a special endogenous antioxidative protein. We explored if the protective effects of IE-HBO are related to Prdx6. Mice were exposed to 280 kPa O2 for 60 min, followed by 30-min exposure to 20% O2/N2 mixture with equal pressure, repeated for six cycles. The Prdx6 protein level and non-selenium glutathione peroxidase (NSGPx) activity in the brain and lungs were then measured and the injury degree of lung and the oxidation level of brain and lung were evaluated. On this basis, the relationship between Prdx6 and IE-HBO's protection was explored. Generally, both IE-HBO and continuous exposure to HBO (CE-HBO) could increase the protein and mRNA levels of Prdx6, and such increases were more significant 24 h after cessation of exposure; moreover, the Prdx6 level of IE-HBO was higher than that of CE-HBO in both brain and lung, also more significantly 24 h after cessation of exposure. In addition, IE-HBO exposure could more effectively potentiate the activity of NSGPx and increase GSH content in brain and lung tissues. At the same time, it could reduce oxidation products in these tissues. IE-HBO could also provide protection for the lungs against injuries resulting from prolonged HBO exposure. These data showed that IE-HBO can potentiate the production and the activity of Prdx6 and consequently mitigate oxidative damages in brain and lungs. The influences of IE-HBO on Prdx6 may form an important basis for its protection against oxygen toxicity.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Pharmacy, Shanghai Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Zhang
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhongzhuang Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuliang Chen
- Department of Nautical and Aviation Medicine Center, Navy General Hospital, Beijing, China
| | - Runping Li
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney. Cell Tissue Res 2019; 378:319-332. [DOI: 10.1007/s00441-019-03073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
19
|
Park KR, Yun HM, Yeo IJ, Cho S, Hong JT, Jeong YS. Peroxiredoxin 6 Inhibits Osteogenic Differentiation and Bone Formation Through Human Dental Pulp Stem Cells and Induces Delayed Bone Development. Antioxid Redox Signal 2019; 30:1969-1982. [PMID: 29792351 DOI: 10.1089/ars.2018.7530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Peroxiredoxins (PRDXs) are thiol-specific antioxidant enzymes that regulate redox balance that are critical for maintaining the cellular potential for self-renewal and stemness. Stem cell-based regenerative medicine is a promising approach in tissue reconstruction. However, to obtain functional cells for use in clinical applications, stem cell technology still requires improvements. Results: In this study, we found that PRDX6 levels were decreased during osteogenic differentiation in human dental pulp stem cells (hDPSCs). hDPSCs stably expressing Myc-PRDX6 (hDPSC/myc-PRDX6) inhibited cell growth in hDPSCs during osteogenic differentiation and impaired osteogenic phenotypes such as alkaline phosphatase (ALP) activity, mineralized nodule formation, and osteogenic marker genes [ALP and osteocalcin (OCN)]. hDPSC cell lines stably expressing mutant glutathione peroxidase (PRDX6(C47S)) and independent phospholipase A2 (PRDX6(S32A)) were also generated. Each mutant form of PRDX6 abolished the impaired osteogenic phenotypes, the transforming growth factor-β-mediated Smad2 and p38 pathways, and RUNX2 expression. Furthermore, in vivo experiments revealed that hDPSC/myc-PRDX6 suppressed hDPSC-based bone regeneration in calvarial defect mice, and newborn PRDX6 transgenic mice exhibited delayed bone development and reduced RUNX2 expression. Innovation and Conclusion: These findings illuminate the effects of PRDX6 during osteogenic differentiation of hDPSCs, and also suggest that regulating PRDX6 may improve the clinical utility of stem cell-based regenerative medicine for the treatment of bone diseases. Antioxid. Redox Signal. 30, 1969-1982.
Collapse
Affiliation(s)
- Kyung-Ran Park
- 1 Department of Oral and Maxillofacial Regeneration, Kyung Hee University, Seoul, Republic of Korea.,2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyung-Mun Yun
- 3 Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - In Jun Yeo
- 2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sehyung Cho
- 4 Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Tae Hong
- 2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong Seok Jeong
- 5 Department of Biology and Research Institute of Basic Sciences, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Liu G, Mei H, Chen M, Qin S, Li K, Zhang W, Chen T. Protective effect of agmatine against hyperoxia-induced acute lung injury via regulating lncRNA gadd7. Biochem Biophys Res Commun 2019; 516:68-74. [PMID: 31196629 DOI: 10.1016/j.bbrc.2019.04.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Hyperoxia-induced acute lung injury (HALI) is a kind of iatrogenic pulmonary dysfunction caused by the prolonged exposure to high concentrations of oxygen, which is commonly seen in the treatment of refractory hypoxemia. Agmatine (AGM), a biogenic amine metabolite of l-arginine, induces a variety of physiological and pharmacological effects in the body. In this study, we investigated the protective effect of AGM on hyperoxia-induced lung injury and explored the underlying mechanism. A series of methods were used including flow cytometry, tunnel assay, dual-luciferase reporter assay, qRT-PCR and Western blotting. The results indicate that AGM can protect hyperoxia-induced lung injury. Further studies suggest that AGM decreased the upregulated expression of lncRNA gadd7 caused by hyperoxia and due to the presence of the competitive binding of lncRNA gadd7 and MFN1 to miR-125a, AGM indirectly decreased MFN1 protein expression to inhibit the cells apoptosis. In conclusion, AGM protects hyperoxia-induced lung injury by decreasing the expression of lncRNA gadd7 to regulate MFN1 expression.
Collapse
Affiliation(s)
- Guoyue Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| |
Collapse
|
21
|
Mukhopadhyay P, Seelan RS, Greene RM, Pisano MM. Impact of prenatal arsenate exposure on gene expression in a pure population of migratory cranial neural crest cells. Reprod Toxicol 2019; 86:76-85. [PMID: 30953684 DOI: 10.1016/j.reprotox.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
22
|
Feinstein SI. Mouse Models of Genetically Altered Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E77. [PMID: 30934692 PMCID: PMC6523285 DOI: 10.3390/antiox8040077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) has been shown to have three enzymatic activities: peroxidase, phospholipase A₂ (PLA₂) and acyl transferase. The peroxidase activity is unusual, as it is capable of reducing phospholipid hydroperoxides (as well as hydrogen peroxide and short chain organic peroxides). Knockout and overexpressing mice have been produced that demonstrate the effect that eliminating or overproducing Prdx6 has on the animals' physiology. In addition, mutations in various amino acids of Prdx6 have been identified that interfere with different enzymatic functions as well as protein transport. These mutations were originally characterized biochemically; subsequently, several knock-in mouse strains have been produced, each containing one mutation. These mice include the S32T knock-in that affects protein transport, the C47S knock-in that inactivates the peroxidase enzymatic activity, the D140A knock-in that inactivates the PLA₂ enzymatic activity and the H26A knock-in that inactivates the peroxidase and blocks binding to phospholipids. This review summarizes the properties of these mice based upon studies conducted with the knockout, overexpressing and knock-in mice and the effect of the genetic changes on the biochemistry and physiology of these mice. The availability of these mice is also briefly discussed.
Collapse
Affiliation(s)
- Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Peroxitech, Ltd., Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
24
|
Single-lung ventilation and oxidative stress: a different perspective on a common practice. Curr Opin Anaesthesiol 2018; 30:42-49. [PMID: 27783023 DOI: 10.1097/aco.0000000000000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To summarize what is currently known about the relationship between single-lung ventilation (SLV), oxidative stress, and postoperative disruption of organ function. RECENT FINDINGS SLV produces progressive alelectasis that is associated with hypoxic pulmonary vasoconstriction and redistribution of blood flow away from the nonventilated lung. This local tissue hypoxia induces the generation of reactive oxygen and reactive nitrogen species, an effect subsequently amplified by lung re-expansion consistent with well described hypoxia/reperfusion responses. Both experimental and clinical data indicate that the magnitude of oxidative and nitrosative stress is related to the duration of SLV and that these stresses affect not only the collapsed/re-expanded lung, but other organs as well. SUMMARY SLV and subsequent re-expansion of atelectatic lung are associated with the generation of reactive oxygen and nitrogen species that may modulate persistent systemic effects.
Collapse
|
25
|
Sharapov MG, Gordeeva AE, Goncharov RG, Tikhonova IV, Ravin VK, Temnov AA, Fesenko EE, Novoselov VI. The Effect of Exogenous Peroxiredoxin 6 on the State of Mesenteric Vessels and the Small Intestine in Ischemia–Reperfusion Injury. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350917060239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Haque S, Sinha N, Ranjit S, Midde NM, Kashanchi F, Kumar S. Monocyte-derived exosomes upon exposure to cigarette smoke condensate alter their characteristics and show protective effect against cytotoxicity and HIV-1 replication. Sci Rep 2017; 7:16120. [PMID: 29170447 PMCID: PMC5701054 DOI: 10.1038/s41598-017-16301-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023] Open
Abstract
Smoking is known to exacerbate HIV-1 pathogenesis, especially in monocytes, through the oxidative stress pathway. Exosomes are known to alter HIV-1 pathogenesis through inter-cellular communication. However, the role of exosomes in smoking-mediated HIV-1 pathogenesis is unknown. In this study, we investigated the effect of cigarette smoke condensate (CSC) on the characteristics of monocyte-derived exosomes and their influence on HIV-1 replication. Initially, we demonstrated that CSC reduced total protein and antioxidant capacity in exosomes derived from HIV-1-infected and uninfected macrophages. The exosomes from CSC-treated uninfected cells showed a protective effect against cytotoxicity and viral replication in HIV-1-infected macrophages. However, exosomes derived from HIV-1-infected cells lost their protective capacity. The results suggest that the exosomal defense is likely to be more effective during the early phase of HIV-1 infection and diminishes at the latter phase. Furthermore, we showed CSC-mediated upregulation of catalase in exosomes from uninfected cells, with a decrease in the levels of catalase and PRDX6 in exosomes derived from HIV-1-infected cells. These results suggest a potential role of antioxidant enzymes, which are differentially packaged into CSC-exposed HIV-1-infected and uninfected cell-derived exosomes, on HIV-1 replication of recipient cells. Overall, our study suggests a novel role of exosomes in tobacco-mediated HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
27
|
Chhunchha B, Singh P, Stamer WD, Singh DP. Prdx6 retards senescence and restores trabecular meshwork cell health by regulating reactive oxygen species. Cell Death Discov 2017; 3:17060. [PMID: 28904819 PMCID: PMC5592691 DOI: 10.1038/cddiscovery.2017.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
A progressive decline in antioxidant potential and accumulation of reactive oxygen species (ROS) are major causes of pathogenesis of several diseases, including glaucoma. Trabecular meshwork (TM) dysfunction resulting in higher intraocular pressure (IOP) is a hallmark of glaucoma, but its causes are unclear. Using human (h) TM cells derived from glaucomatous and normal subjects of different ages and cells facing oxidative-stress, we showed that specific loss of moonlighting antioxidant protein Peroxiredoxin (Prdx) 6 in aging or in glaucomatous TM cells caused ROS accumulation and pathobiological changes in TM cells. Prdx6 limits the levels of ROS, thus preventing overstimulation of genes and resultant deleterious effects. We found that Prdx6 levels declined in aging and were reduced dramatically in glaucomatous and aged TM cells. Biochemical assays revealed enhanced levels of ROS, and high expression/activation of TGFβs and its responsive extracellular matrix genes α-SM, fibronectin, TGase2 and Tsp1 in aged or glaucomatous cells. Furthermore, hTM cells displayed typical features of the combined effects of TGFβs and oxidative-stress-induced cellular changes, showing increased levels of lipid peroxidation, oxidative DNA damage, and senescence markers p16, p21 and SA-βgal activity, along with reduced levels of telomerase expression and activity. Exposure to oxidative-stress (H2O2) or knocking down of Prdx6 (with antisense) accelerated this process. Importantly, Prdx6 delivery to sick or aged TM cells reversed the process. We propose Prdx6 as a potential therapeutic target to guard the TM from oxidative-stress and age-dependent accumulation of ROS by balancing redox-homeostasis to prevent ocular disorders, like glaucoma.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha,NE, USA
| | - Prerna Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha,NE, USA
| | - W Daniel Stamer
- Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha,NE, USA
| |
Collapse
|
28
|
Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao JQ, Feinstein SI. Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol 2017; 14:41-46. [PMID: 28865296 PMCID: PMC5581854 DOI: 10.1016/j.redox.2017.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Although lipid peroxidation associated with oxidative stress can result in cellular death, sub-lethal lipid peroxidation can gradually resolve with return to the pre-exposure state. We have shown that resolution of lipid peroxidation is greatly delayed in lungs or cells that are null for peroxiredoxin 6 (Prdx6) and that both the phospholipase A2 and the GSH peroxidase activities of Prdx6 are required for a maximal rate of recovery. Like other peroxiredoxins, Prdx6 can reduce H2O2 and short chain hydroperoxides, but in addition can directly reduce phospholipid hydroperoxides. This study evaluated the relative role of these two different peroxidase activities of Prdx6 in the repair of peroxidized cell membranes. The His26 residue in Prdx6 is an important component of the binding site for phospholipids. Thus, we evaluated the lungs from H26A-Prdx6 expressing mice and generated H26A-Prdx6 expressing pulmonary microvascular endothelial cells (PMVEC) by lentiviral infection of Prdx6 null cells to compare with wild type in the repair of lipid peroxidation. Isolated lungs and PMVEC were exposed to tert-butyl hydroperoxide and mice were exposed to hyperoxia (> 95% O2). Assays for lipid peroxidation in wild type control and mutant lungs and cells showed ~4-fold increase at end-exposure. Control lungs and cells showed gradual resolution during a post-exposure recovery period. However, there was no recovery from lipid peroxidation by H26A-Prdx6 lungs or PMVEC. These studies confirm an important role for Prdx6 in recovery from membrane lipid peroxidation and indicate that reduction of H2O2 or short chain hydroperoxides does not play a role in the recovery process. Repair of peroxidized lipids did not occur with H26A-Prdx6 Delete semicolons;mutation. Repair reflects the phospholipid hydroperoxidase and PLA2 activities of Prdx6;Move to next with "bullet mark" "P"eroxidase activity with small hydroperoxides and H2O2 does not play a role in repair.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jose P Vasquez-Medina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra Dodia
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena M Sorokina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Qin Tao
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Tasaki E, Matsumoto S, Tada H, Kurahashi T, Zhang X, Fujii J, Utsumi T, Iuchi Y. Protective role of testis-specific peroxiredoxin 4 against cellular oxidative stress. J Clin Biochem Nutr 2017; 60:156-161. [PMID: 28584396 PMCID: PMC5453025 DOI: 10.3164/jcbn.16-96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxin (PRDX), a newly discovered antioxidant enzyme, has an important role in hydrogen peroxide reduction. Among six PRDX genes (PRDX1–6) in mammals, PRDX4 gene is alternatively spliced to produce the somatic cell form (PRDX4) and the testis specific form (PRDX4t). In our previous study, PRDX4 knockout mice displayed testicular atrophy with an increase in cell death due to oxidative stress. However, the antioxidant function of PRDX4t is unknown. In this study, we demonstrate that PRDX4t plays a protective role against oxidative stress in the mammalian cell line HEK293T. The PRDX4t-EGFP plasmid was transferred into HEK293T cells; protein expression was confirmed in the cytoplasm. To determine the protective role of PRDX4t in cells, we performed image-based analysis of PRDX4t-EGFP expressed cells exposed to UV irradiation and hydrogen peroxide using fluorescent probe CellROX. Our results suggested that PRDX4t-EGFP expressed cells had reduced levels of oxidative stress compared with cells that express only EGFP. This study highlights that PRDX4t plays an important role in cellular antioxidant defense.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Shotaro Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hisashi Tada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Toshihiro Kurahashi
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Xuhong Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiko Utsumi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yoshihito Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
30
|
Peroxiredoxin 6 overexpression attenuates lipopolysaccharide-induced acute kidney injury. Oncotarget 2017; 8:51096-51107. [PMID: 28881633 PMCID: PMC5584234 DOI: 10.18632/oncotarget.17002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/20/2017] [Indexed: 01/04/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is a member of the PRDX family of antioxidant enzymes and correlated with inflammatory response. Therefore, we investigated the role of PRDX6 during lipopolysaccharide (LPS)-induced acute kidney injury. Both 3 months aged PRDX6-overexpressing transgenic mice (PRDX6 mice) and wild type (WT) mice had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg)., PRDX6 mice showed decreased mortality and renal injury following LPS challenge compared to WT mice. Furthermore, infiltration of macrophages, T-cells and neutrophils, and the number of apoptotic cells were more decreased by LPS treatment in PRDX6 mice than in WT mice. Because LPS induces reactive oxygen species (ROS) production which induces inflammation through c-Jun N-terminal Kinase (JNK) and p38 MAPK activation, we investigated ROS concentration and MAPK signaling pathway in the kidney of PRDX6 mice. As expected, LPS-induced oxidative stress was attenuated, and p38 MAPK and JNK activation was decreased in the kidney of PRDX6 mice. Inhibitory effect of PRDX6 on LPS-induced apoptosis and MAPK activation in the primary renal proximal tubular cells were overcome by treatment with PRDX6 inhibitor or hydrogen peroxide. These results suggest that PRDX6 overexpression inactivates p38 MAPK and JNK pathway through decrease LPS-induced ROS concentration in the kidney, resulting in inhibition of renal apoptosis and leukocyte infiltration and led to attenuation of LPS-induced acute kidney injury.
Collapse
|
31
|
Fisher AB. Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 2017; 617:68-83. [PMID: 27932289 PMCID: PMC5810417 DOI: 10.1016/j.abb.2016.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 6 represents a widely distributed group of peroxiredoxins that contain a single conserved cysteine in the protein monomer (1-cys Prdx). The cys when oxidized to the sulfenic form is reduced with glutathione (GSH) catalyzed by the π isoform of GSH-S-transferase. Three enzymatic activities of the protein have been described:1) peroxidase with H2O2, short chain hydroperoxides, and phospholipid hydroperoxides as substrates; 2) phospholipase A2 (PLA2); and 3) lysophosphatidylcholine acyl transferase (LPCAT). These activities have important physiological roles in antioxidant defense, turnover of cellular phospholipids, and the generation of superoxide anion via initiation of the signaling cascade for activation of NADPH oxidase (type 2). The ability of Prdx6 to reduce peroxidized cell membrane phospholipids (peroxidase activity) and also to replace the oxidized sn-2 fatty acyl group through hydrolysis/reacylation (PLA2 and LPCAT activities) provides a complete system for the repair of peroxidized cell membranes.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine of the Department of Physiology, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Papiewska-Pająk I, Balcerczyk A, Stec-Martyna E, Koziołkiewicz W, Boncela J. Vascular endothelial growth factor-D modulates oxidant-antioxidant balance of human vascular endothelial cells. J Cell Mol Med 2016; 21:1139-1149. [PMID: 27957793 PMCID: PMC5431135 DOI: 10.1111/jcmm.13045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/24/2016] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor‐D (VEGF‐D) is an angiogenic and lymphangiogenic glycoprotein that facilitates tumour growth and distant organ metastasis. Our previous studies showed that VEGF‐D stimulates the expression of proteins involved in cell–matrix interactions and promoting the migration of endothelial cells. In this study, we focused on the redox homoeostasis of endothelial cells, which is significantly altered in the process of tumour angiogenesis. Our analysis revealed up‐regulated expression of proteins that form the antioxidant barrier of the cell in VEGF‐D‐treated human umbilical endothelial cells and increased production of reactive oxygen and nitrogen species in addition to a transient elevation in the total thiol group content. Despite a lack of changes in the total antioxidant capacity, modification of the antioxidant barrier induced by VEGF‐D was sufficient to protect cells against the oxidative stress caused by hypochlorite and paraquat. These results suggest that exogenous stimulation of endothelial cells with VEGF‐D induces an antioxidant response of cells that maintains the redox balance. Additionally, VEGF‐D‐induced changes in serine/threonine kinase mTOR shuttling between the cytosol and nucleus and its increased phosphorylation at Ser‐2448, lead us to the conclusion that the observed shift in redox balance is regulated via mTOR kinase signalling.
Collapse
Affiliation(s)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | | | - Wiktor Koziołkiewicz
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| |
Collapse
|
33
|
Chang CH, Lo WY, Lee TH. The Antioxidant Peroxiredoxin 6 (Prdx6) Exhibits Different Profiles in the Livers of Seawater- and Fresh Water-Acclimated Milkfish, Chanos chanos, upon Hypothermal Challenge. Front Physiol 2016; 7:580. [PMID: 27965586 PMCID: PMC5126087 DOI: 10.3389/fphys.2016.00580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
A tropical species, the euryhaline milkfish (Chanos chanos), is a crucial economic species in Southeast Asia and is intolerant of water temperature below 12°C. Large numbers of milkfish die during cold periods in winter. Hypothermal environments usually increase oxidative stress in teleosts, and the liver is the major organ for anti-oxidative responses in the body. Peroxiredoxin-6 (Prdx6) in mammals is a multi-functional enzyme and acts as both glutathione peroxidase, phospholipase A2 and acyl-transferase for maintenance of redox status and prevention of cell membrane peroxidation. Prdx6 can protect cells from oxidant-induced membrane damage by translocating the Prdx6 protein from the cytosol to the membrane. Upon cold stress, Ccprdx6 transcript levels were up-regulated after 24 h and 96 h in livers of fresh water (FW)- and seawater (SW)-acclimated milkfish, respectively. In the hypothermal FW group, the Prdx6 protein was up-regulated in the cytosol of hepatocytes with a similar role as glutathione peroxidase to reduce oxidative stress upon hypothermal challenge. Conversely, in hypothermal SW milkfish, total Prdx6 protein was down-regulated. However, cytosolic Prdx6 protein was translocated to the membrane, using the ability of phospholipase A2 to stabilize the membrane redox state. Moreover, H2O2 content was increased in FW-acclimated milkfish livers upon hypothermal challenge. Ex vivo H2O2 treatment of milkfish livers also induced Ccprdx6 transcriptional expression, which provided more evidence of the antioxidant role of milkfish Prdx6. Taken together, upon hypothermal challenge, greater oxidative stress in livers of FW-acclimated milkfish rather than SW-acclimated individuals led to different profiles of hepatic CcPrdx6 expression between the FW and SW group. The results indicated that CcPrdx6 played the role of antioxidant with different mechanisms, i.e., binding to reactive oxygen species and stabilizing membrane fluidity, in livers of hypothermal FW and SW milkfish, respectively.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Wan-Yu Lo
- Department of Biotechnology, Hung Kuang University Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
34
|
Pak JH, Son WC, Seo SB, Hong SJ, Sohn WM, Na BK, Kim TS. Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation. Free Radic Biol Med 2016; 99:273-285. [PMID: 27554973 DOI: 10.1016/j.freeradbiomed.2016.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Tong-Soo Kim
- Department of Parasitology, Inha University School of Medicine, Incheon 400-103, Republic of Korea
| |
Collapse
|
35
|
Sahu N, Stephan JP, Cruz DD, Merchant M, Haley B, Bourgon R, Classon M, Settleman J. Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat Commun 2016; 7:12351. [PMID: 27484502 PMCID: PMC4976141 DOI: 10.1038/ncomms12351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/23/2016] [Indexed: 01/01/2023] Open
Abstract
Acquired resistance to cancer drug therapies almost always occurs in advanced-stage patients even following a significant response to treatment. In addition to mutational mechanisms, various non-mutational resistance mechanisms have now been recognized. We previously described a chromatin-mediated subpopulation of reversibly drug-tolerant persisters that is dynamically maintained within a wide variety of tumour cell populations. Here we explore a potential role for microRNAs in such transient drug tolerance. Functional screening of 879 human microRNAs reveals miR-371-3p as a potent suppressor of drug tolerance. We identify PRDX6 (peroxiredoxin 6) as a key target of miR-371-3p in establishing drug tolerance by regulating PLA2/PKCα activity and reactive oxygen species. PRDX6 expression is associated with poor prognosis in cancers of multiple tissue origins. These findings implicate miR-371-3p as a suppressor of PRDX6 and suggest that co-targeting of peroxiredoxin 6 or modulating miR-371-3p expression together with targeted cancer therapies may delay or prevent acquired drug resistance. Acquired resistance significantly limits the efficacy of cancer drug therapies. Here, the authors identify miR-371-3p as a suppressor of drug tolerance in cancer cell lines by its target gene PRDX6, which in turn regulates PLA2/PKCα signalling and ROS levels.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jean-Philippe Stephan
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Richard Bourgon
- Department of Bioinformatics and Computational Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Marie Classon
- Department of Cancer Targets, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | - Jeff Settleman
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
36
|
Yun HM, Park KR, Kim EC, Hong JT. PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget 2016; 6:20875-84. [PMID: 26327204 PMCID: PMC4673236 DOI: 10.18632/oncotarget.5205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease with an unknown etiology and has no effective medications despite extensive research. Antioxidants suppress oxidative damages which are implicated in the pathogenesis of MS. In this study, we showed that the expression of an antioxidant protein peroxiredoxin 6 (PRDX6) is markedly increased in spinal cord of mice with experimental autoimmune encephalomyelitis (EAE) compared to other PRDXs. PRDX6 transgenic (Tg) mice displayed a significant decrease in clinical severity and attenuated demyelination in EAE compared to wide type mice. The increased PRDX6 expression in astrocytes of EAE mice and MS patients reduced MMP9 expression, fibrinogen leakage, chemokines, and free radical stress, leading to reduction in blood-brain-barrier (BBB) disruption, peripheral immune cell infiltration, and neuroinflammation. Together, these findings suggest that PRDX6 expression may represent a therapeutic way to restrict inflammation in the central nervous system and potentiate oligodendrocyte survival, and suggest a new molecule for neuroprotective therapies in MS.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Kyung-Ran Park
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
37
|
Zhou S, Sorokina EM, Harper S, Li H, Ralat L, Dodia C, Speicher DW, Feinstein SI, Fisher AB. Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity. Free Radic Biol Med 2016; 94:145-56. [PMID: 26891882 PMCID: PMC4844822 DOI: 10.1016/j.freeradbiomed.2016.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
Peroxiredoxin 6 (Prdx6) is a unique 1-Cys member of the peroxiredoxin family with both GSH peroxidase and phospholipase A2 (PLA2) activities. It is highly expressed in the lung where it plays an important role in antioxidant defense and lung surfactant metabolism. Glutathionylation of Prdx6 mediated by its heterodimerization with GSH S-transferase π (πGST) is required for its peroxidatic catalytic cycle. Recombinant human Prdx6 crystallizes as a homodimer and sedimentation equilibrium analysis confirmed that this protein exists as a high affinity dimer in solution. Based on measurement of molecular mass, dimeric Prdx6 that was oxidized to the sulfenic acid formed a sulfenylamide during storage. After examination of the dimer interface in the crystal structure, we postulated that the hydrophobic amino acids L145 and L148 play an important role in homodimerization of Prdx6 as well as in its heterodimerization with πGST. Oxidation of Prdx6 also was required for its heterodimerization. Sedimentation equilibrium analysis and the Duolink proximity ligation assay following mutation of the L145 and L148 residues of Prdx6 to Glu indicated greatly decreased dimerization propensity reflecting the loss of hydrophobic interactions between the protein monomers. Peroxidase activity was markedly reduced by mutation at either of the Leu sites and was essentially abolished by the double mutation, while PLA2 activity was unaffected. Decreased peroxidase activity following mutation of the interfacial leucines presumably is mediated via impaired heterodimerization of Prdx6 with πGST that is required for reduction and re-activation of the oxidized enzyme.
Collapse
Affiliation(s)
- Suiping Zhou
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elena M Sorokina
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sandra Harper
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haitao Li
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luis Ralat
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chandra Dodia
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David W Speicher
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
39
|
Sorokina EM, Dodia C, Zhou S, Tao JQ, Gao L, Raabe T, Feinstein SI, Fisher AB. Mutation of Serine 32 to Threonine in Peroxiredoxin 6 Preserves Its Structure and Enzymatic Function but Abolishes Its Trafficking to Lamellar Bodies. J Biol Chem 2016; 291:9268-80. [PMID: 26921317 DOI: 10.1074/jbc.m115.698894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6), a bifunctional protein with phospholipase A2 (aiPLA2) and GSH peroxidase activities, protects lungs from oxidative stress and participates in lung surfactant phospholipid turnover. Prdx6 has been localized to both cytosol and lamellar bodies (LB) in lung epithelium, and its organellar targeting sequence has been identified. We propose that Prdx6 LB targeting facilitates its role in the metabolism of lung surfactant phosphatidylcholine (PC). Ser-32 has been identified as the active site in Prdx6 for aiPLA2 activity, and this activity was abolished by the mutation of serine 32 to alanine (S32A). However, aiPLA2 activity was unaffected by mutation of serine 32 in Prdx6 to threonine (S32T). Prdx6 protein expression and aiPLA2 activity were normal in the whole lung of a "knock-in" mouse model carrying an S32T mutation in the Prdx6 gene but were absent from isolated LB. Analyses by proximity ligation assay in lung sections demonstrated the inability of S32T Prdx6 to bind to the chaperone protein, 14-3-3ϵ, that is required for LB targeting. The content of total phospholipid, PC, and disaturated PC in lung tissue homogenate, bronchoalveolar lavage fluid, and lung LB was increased significantly in Prdx6-S32T mutant lungs, whereas degradation of internalized [(3)H]dipalmitoyl-PC was significantly decreased. Thus, Thr can substitute for Ser for the enzymatic activities of Prdx6 but not for its targeting to LB. These results confirm an important role for LB Prdx6 in the degradation and remodeling of lung surfactant phosphatidylcholine.
Collapse
Affiliation(s)
- Elena M Sorokina
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Chandra Dodia
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Suiping Zhou
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Jian-Qin Tao
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Ling Gao
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Tobias Raabe
- Penn Gene Targeting Core and Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sheldon I Feinstein
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Aron B Fisher
- From the Institute for Environmental Medicine, Department of Physiology, and
| |
Collapse
|
40
|
Fisher AB, Dodia C, Sorokina EM, Li H, Zhou S, Raabe T, Feinstein SI. A novel lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. J Lipid Res 2016; 57:587-96. [PMID: 26830860 DOI: 10.1194/jlr.m064758] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
The phospholipase A2(PLA2) activity of peroxiredoxin (Prdx)6 has important physiological roles in the synthesis of lung surfactant and in the repair of peroxidized cell membranes. These functions require the activity of a lysophospholipid acyl transferase as a critical component of the phospholipid remodeling pathway. We now describe a lysophosphatidylcholine acyl transferase (LPCAT) activity for Prdx6 that showed a strong preference for lysophosphatidylcholine (LPC) as the head group and for palmitoyl CoA in the acylation reaction. The calculated kinetic constants for acylation wereKm18 μM andVmax30 nmol/min/mg protein; theVmaxwas increased 25-fold by phosphorylation of the protein whileKmwas unchanged. Study of recombinant protein in vitro and in mouse pulmonary microvascular endothelial cells infected with a lentiviral vector construct indicated that amino acid D31 is crucial for LPCAT activity. A linear incorporation of labeled fatty acyl CoA into dipalmitoyl phosphatidylcholine (PC) indicated that LPC generated by Prdx6 PLA2activity remained bound to the enzyme for the reacylation reaction. Prdx6 is the first LPCAT enzyme with demonstrated cytoplasmic localization. Thus, Prdx6 is a complete enzyme comprising both PLA2and LPCAT activities for the remodeling pathway of PC synthesis or for repair of membrane lipid peroxidation.
Collapse
Affiliation(s)
- Aron B Fisher
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Chandra Dodia
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Elena M Sorokina
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Haitao Li
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Suiping Zhou
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Tobias Raabe
- Penn Gene Targeting Core and Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Sheldon I Feinstein
- Institute for Environmental Medicine and the Department of Physiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
41
|
Wang Y, Javed I, Liu Y, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel. J Proteome Res 2015; 15:29-37. [PMID: 26523826 DOI: 10.1021/acs.jproteome.5b00777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.
Collapse
Affiliation(s)
- Yun Wang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Iqbal Javed
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yahui Liu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Song Lu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Guang Peng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yongqian Zhang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hong Qing
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| |
Collapse
|
42
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
43
|
Effects of 4-nonylphenol on oxidant/antioxidant balance system inducing hepatic steatosis in male rat. Toxicol Rep 2015; 2:1423-1433. [PMID: 28962484 PMCID: PMC5598540 DOI: 10.1016/j.toxrep.2015.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/04/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
Intraperitoneal administration of 4-NP induces hepatic steatosis in male Sprague-Dawley rats. Hepatocytes apoptosis is highly implicated in the occurrence and development of NAFLD. Hepatic mitochondrial disturbance promotes deleterious consequences, such as OS and accumulation of triglycerides (steatosis).
An emerging literature suggests that early life exposure to 4-nonylphenol (4-NP), a widespread endocrine disrupting chemical, may increase the risk of metabolic syndrome. In this study, we investigated the hypothesis that intraperitoneal administration of 4-NP induces hepatic steatosis in rat. 24 male Sprague-Dawley rats were administered with 4-NP (0, 2, 10 and 50 mg/kg b.wt) in corn oil for 30 days. Liver histology, biochemical analysis and gene expression profiling were examined. After treatment, abnormal liver morphology and function were observed in the 4-NP-treated rat, and significant changes in gene expression an indicator of hepatic steatosis and apoptosis were observed compared with controls. Up-regulated genes involved in apoptosis, hepatotoxity and oxidative stress, increased ROS and decrease of antioxidant enzyme were observed in the 4-NP exposed rat. Extensive fatty accumulation in liver section and elevated serum GOT, GPT, LDH and γ-GT were also observed. Incidence and severity of liver steatosis was scored and taken into consideration (steatosis, ballooning and lobular inflammation). Hepatocytes apoptosis could promote NAFLD progression; Fas/FasL, TNF-α and Caspase-9 mRNA activation were important contributing factors to hepatic steatosis. These findings provide the first evidence that 4-NP affects the gene expression related to liver hepatotoxicity, which is correlated with hepatic steatosis.
Collapse
Key Words
- 4-NP, 4-nonylphenol
- 4-Nonylphenol
- 4-Nonylphenol (PubChem CID: 1752)
- APNEIs, alkylphenol polyethoxylates
- AhR, aril hydrocarbon receptor
- Apoptosis
- Aprotinin (PubChem CID: 22833874)
- Bouin's fluid (PubChem CID: 124013)
- Collagenase (PubChem CID: 5046512)
- Cyt c, cytochrome c
- Diamninobenzidine Tetrahydrochloride (PubChem CID: 23892)
- FAO, fatty acid oxidation
- FFA, free fatty acid
- GOT, glutamic-oxalacetic transaminase
- GPT, glutamate pyruvate transaminase
- Genes
- HSC, hepatic stellate cell
- Hematoxylin Eosin (PubChem CID: 86598188)
- Hepatic steatosis
- Hydrogen peroxide (PubChem CID: 784)
- IR, insulin resistance
- LDH, lactate dehydrogenase
- Liver
- Malondialdehyde (PubChem CID: 10964)
- NAFLD, nonalcoholic fatty liver disease
- NASH, non-alcoholic hepatic steatosis
- Nitrotetrazolium Blue chloride (PubChem CID: 9281)
- OS, oxidative stress
- Oxidative stress
- PPAR, peroxisome proliferation-activated receptor
- Phenylmethylsulfonyl fluoride (PubChem CID: 4784)
- ROS, reactive oxygen species
- Sodium chloride (PubChem CID: 5234)
- Superoxide (PubChem CID: 5359597)
- TAG, triacylglycerol
- Thiobarbituric Acid (PubChem CID: 2723628)
- Trizol (PubChem CID: 378478)
- Tromethamine (Tris) (PubChem CID: 6503)
- Xylene (PubChem CID: 6850715)
- γ-GT, gamma glutamyltransferase
Collapse
|
44
|
Li H, Benipal B, Zhou S, Dodia C, Chatterjee S, Tao JQ, Sorokina EM, Raabe T, Feinstein SI, Fisher AB. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic Biol Med 2015; 87:356-65. [PMID: 26117327 PMCID: PMC4780751 DOI: 10.1016/j.freeradbiomed.2015.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 11/26/2022]
Abstract
Phospholipids are a major structural component of all cell membranes; their peroxidation represents a severe threat to cellular integrity and their repair is important to prevent cell death. Peroxiredoxin 6 (Prdx6), a protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activity, plays a critical role in antioxidant defense of the lung and other organs. We investigated the role of Prdx6 in the repair of peroxidized cell membranes in pulmonary microvascular endothelial cells (PMVEC) and isolated mouse lungs treated with tert-butyl hydroperoxide and lungs from mice exposed to hyperoxia (100% O(2)). Lipid peroxidation was evaluated by measurement of thiobarbituric acid reactive substances, oxidation of diphenyl-1-pyrenylphosphine, or ferrous xylenol orange assay. The exposure dose was varied to give a similar degree of lipid peroxidation at the end of exposure in the different models. Values for lipid peroxidation returned to control levels within 2 h after oxidant removal in wild-type PMVEC and perfused lungs but were unchanged in Pxdx6 null preparations. An intermediate degree of repair was observed with PMVEC and lungs that expressed only C47S or D140A mutant Prdx6; the former mutant does not have peroxidase activity, while the latter loses its PLA(2) activity. Prdx6 null mice showed markedly delayed recovery from lipid peroxidation during 20 h observation following exposure to hyperoxia. Thus, Prdx6 plays a critical role in the repair of peroxidized phospholipids in cell membranes and the recovery of lung cells from peroxidative stress; the peroxidase and PLA(2) activity each contribute to the recovery process.
Collapse
Affiliation(s)
- Haitao Li
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bavneet Benipal
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Suiping Zhou
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chandra Dodia
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shampa Chatterjee
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jian-Qin Tao
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elena M Sorokina
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tobias Raabe
- Penn Gene Targeting Core and Laboratory of the Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Buonora JE, Mousseau M, Jacobowitz DM, Lazarus RC, Yarnell AM, Olsen CH, Pollard HB, Diaz-Arrastia R, Latour L, Mueller GP. Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. J Neurotrauma 2015; 32:1805-14. [PMID: 25938937 PMCID: PMC4651056 DOI: 10.1089/neu.2014.3736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Autoimmune profiling in rats revealed the antioxidant enzyme, peroxiredoxin 6 (PRDX6), as a target for autoantibodies evoked in response to traumatic brain injury (TBI). Consistent with this proposal, immunohistochemical analysis of rat cerebral cortex demonstrated that PRDX6 is highly expressed in the perivascular space, presumably contained within astrocytic foot processes. Accordingly, an immunosorbent electrochemiluminescence assay was developed for investigating PRDX6 in human samples. PRDX6 was found to be measurable in human blood and highly expressed in human cerebral cortex and platelets. Circulating levels of PRDX6 were elevated fourfold over control values 4 to 24 h following mild-to-moderate TBI. These findings suggest that PRDX6 may serve as a biomarker for TBI and that autoimmune profiling is a viable strategy for the discovery of novel TBI biomarkers.
Collapse
Affiliation(s)
- John E Buonora
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Michael Mousseau
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - David M Jacobowitz
- 2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Rachel C Lazarus
- 2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Angela M Yarnell
- 2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Cara H Olsen
- 4 Biostatistics Consulting Center, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Harvey B Pollard
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Ramon Diaz-Arrastia
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Lawrence Latour
- 6 Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland
| | - Gregory P Mueller
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
46
|
Grosche A, Hauser A, Lepper MF, Mayo R, von Toerne C, Merl-Pham J, Hauck SM. The Proteome of Native Adult Müller Glial Cells From Murine Retina. Mol Cell Proteomics 2015; 15:462-80. [PMID: 26324419 PMCID: PMC4739667 DOI: 10.1074/mcp.m115.052183] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Müller cells in retinal pathologies — a topic still controversially discussed.
Collapse
Affiliation(s)
- Antje Grosche
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany;
| | - Alexandra Hauser
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany
| | - Marlen Franziska Lepper
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Rebecca Mayo
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany
| | - Christine von Toerne
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Stefanie M Hauck
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| |
Collapse
|
47
|
Benipal B, Feinstein SI, Chatterjee S, Dodia C, Fisher AB. Inhibition of the phospholipase A2 activity of peroxiredoxin 6 prevents lung damage with exposure to hyperoxia. Redox Biol 2015; 4:321-7. [PMID: 25637741 PMCID: PMC4803794 DOI: 10.1016/j.redox.2015.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 11/16/2022] Open
Abstract
Lung injury associated with hyperoxia reflects in part the secondary effects of pulmonary inflammation and the associated production of reactive oxygen species due to activation of NADPH oxidase, type 2 (NOX2). Activation of NOX2 requires the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Therefore, we evaluated whether blocking Prdx6 PLA2 activity using the inhibitor MJ33 would be protective in a mouse model of acute lung injury resulting from hyperoxic exposure. Mice were treated with an intraperitoneal injection of MJ33 (2.5nmol/g body weight) at the start of exposure (zero time) and at 48h during continuous exposure to 100% O2 for 80h. Treatment with MJ33 reduced the number of neutrophils and the protein content in the fluid obtained by bronchoalveolar lavage, inhibited the increase in lipid peroxidation products in lung tissue, decreased the number of apoptotic cells in the lung, and decreased the perivascular edema associated with the 80h exposure to hyperoxia. Thus, blocking Prdx6 PLA2 activity by MJ33 significantly protected lungs against damage from hyperoxia, presumably by preventing the activation of NOX2 and the amplification of lung injury associated with inflammation. These findings demonstrate that MJ33, a potent inhibitor of Prdx6 PLA2 activity, can protect mouse lungs against the manifestations of acute lung injury due to oxidative stress.
Collapse
Affiliation(s)
- Bavneet Benipal
- Institute for Environmental Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shampa Chatterjee
- Institute for Environmental Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chandra Dodia
- Institute for Environmental Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aron B Fisher
- Institute for Environmental Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Yun HM, Choi DY, Oh KW, Hong JT. PRDX6 Exacerbates Dopaminergic Neurodegeneration in a MPTP Mouse Model of Parkinson’s Disease. Mol Neurobiol 2014; 52:422-31. [DOI: 10.1007/s12035-014-8885-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022]
|
49
|
Loseva O, Shubbar E, Haghdoost S, Evers B, Helleday T, Harms-Ringdahl M. Chronic Low Dose Rate Ionizing Radiation Exposure Induces Premature Senescence in Human Fibroblasts that Correlates with Up Regulation of Proteins Involved in Protection against Oxidative Stress. Proteomes 2014; 2:341-362. [PMID: 28250385 PMCID: PMC5302754 DOI: 10.3390/proteomes2030341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
The risks of non-cancerous diseases associated with exposure to low doses of radiation are at present not validated by epidemiological data, and pose a great challenge to the scientific community of radiation protection research. Here, we show that premature senescence is induced in human fibroblasts when exposed to chronic low dose rate (LDR) exposure (5 or 15 mGy/h) of gamma rays from a 137Cs source. Using a proteomic approach we determined differentially expressed proteins in cells after chronic LDR radiation compared to control cells. We identified numerous proteins involved in protection against oxidative stress, suggesting that these pathways protect against premature senescence. In order to further study the role of oxidative stress for radiation induced premature senescence, we also used human fibroblasts, isolated from a patient with a congenital deficiency in glutathione synthetase (GS). We found that these GS deficient cells entered premature senescence after a significantly shorter time of chronic LDR exposure as compared to the GS proficient cells. In conclusion, we show that chronic LDR exposure induces premature senescence in human fibroblasts, and propose that a stress induced increase in reactive oxygen species (ROS) is mechanistically involved.
Collapse
Affiliation(s)
- Olga Loseva
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-171 21, Sweden.
| | - Emman Shubbar
- Sahlgrenska Cancer Center, Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-41345, Sweden.
| | - Siamak Haghdoost
- Center for Radiation Protections Research, Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm S-106 91, Sweden.
| | - Bastiaan Evers
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands.
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-171 21, Sweden.
| | - Mats Harms-Ringdahl
- Center for Radiation Protections Research, Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm S-106 91, Sweden.
| |
Collapse
|
50
|
Yun HM, Park KR, Lee HP, Lee DH, Jo M, Shin DH, Yoon DY, Han SB, Hong JT. PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities. Free Radic Biol Med 2014; 69:367-76. [PMID: 24512906 DOI: 10.1016/j.freeradbiomed.2014.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Kyung-Ran Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hee Peum Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Miran Jo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Dea Hwan Shin
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women׳s University, Seoul 140-742, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 150-716, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|