1
|
Yang AY, Kim JY, Gwon MG, Kim K, Kwon HH, Leem J, Kim SW. Protective effects and mechanisms of cynaroside on renal fibrosis in mice with unilateral ureteral obstruction. Redox Rep 2025; 30:2500271. [PMID: 40322965 PMCID: PMC12054570 DOI: 10.1080/13510002.2025.2500271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Renal fibrosis is a key factor in the progression of chronic kidney disease (CKD), and current treatments remain inadequate. In this study, we investigated the therapeutic effects of cynaroside (Cyn), a natural flavonoid, in a mouse model of renal fibrosis induced by unilateral ureteral obstruction. Cyn treatment significantly ameliorated tubular injury and interstitial fibrosis while improving renal function. Mechanistically, Cyn inhibited the expression of fibrosis-related proteins and suppressed Smad2/3 phosphorylation. Additionally, Cyn reduced myofibroblast accumulation by inhibiting epithelial-mesenchymal transition, as indicated by increased E-cadherin expression and decreased levels of mesenchymal markers. Cyn also reduced oxidative stress by downregulating the prooxidant enzyme NADPH oxidase 4 and restoring antioxidant enzymes. Furthermore, Cyn attenuated ferroptosis by regulating key proteins, including acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and glutathione peroxidase 4, while also restoring glutathione levels. Cyn alleviated endoplasmic reticulum stress, as evidenced by the downregulation of key markers such as glucose-regulated protein 78 and activating transcription factor 6, and reduced inflammation, as confirmed by decreased macrophage infiltration and lower cytokine production. Overall, Cyn demonstrated broad protective effects against renal fibrosis by modulating oxidative stress, ferroptosis, ER stress, and inflammation, positioning it as a potential therapeutic agent for CKD management.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Owusu FB, Wu H, Zhang X, Li R, Liu Z, Zhang S, Leng L, Wang Q. Mitochondria as therapeutic targets for Natural Products in the treatment of Cardiovascular Diseases. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119588. [PMID: 40057144 DOI: 10.1016/j.jep.2025.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products represent a unique medical approach to treating disease and have been used in clinical practice for thousands of years in cardiovascular disease (CVDs). In recent years, natural products have received increasing attention for their high efficiency, safety, and low toxicity, and their targeted regulation of mitochondria offers promising strategies for the treatment of CVDs. However, the potential mechanisms by which natural products target mitochondria for cardiovascular treatment have not been fully elucidated. AIM OF THE STUDY Literature from the past decade is reviewed to emphasize the therapeutic efficacy and potential mechanisms of natural products targeting mitochondria in the treatment of CVDs. MATERIALS AND METHODS In the NCBI PubMed database, relevant literature was searched using 'natural products', 'mitochondria' and 'cardiovascular disease' as search terms, and review papers were excluded. The remaining articles were screened for relevance. Priority was given to articles using rat models, in vivo, ex vivo or in vitro assays. The resulting articles were categorized into natural product categories, including saponins, alkaloids, plant extracts and preparations. This article reviews the research progress on mitochondria as potential therapeutic targets for CVDs and summarizes the application of mitochondria-targeted natural products in the treatment of CVDs. RESULTS Mitochondrial damage may be attributed to impairment of biogenesis (mitochondrial number and mitochondrial DNA damage), dynamics disruption (mitophagy inhibition and overpromotion, fusion and fission),disruption of optimal function including Adenosine triphosphate generation, Reactive oxygen species (ROS) production, fatty acid β oxidation, mitochondrial membrane permeability, calcium homeostasis imbalance, and membrane potential depolarization. Mitochondrial dysfunction or damage leads to cardiomyocyte dysfunction, ion disorders, cell death, and ultimately CVDs, such as myocardial infarction, heart failure, ischemia reperfusion, and diabetic heart disease. Natural products, which include flavonoids, saponins, phenolic acids, alkaloids, polysaccharides, extracts, and formulations, are seen to have significant clinical efficacy in the treatment of CVDs. Mechanistically, natural products regulate mitophagy, mitochondrial fusion and fission, while improving mitochondrial respiratory function, reducing ROS production, and inhibiting mitochondria-dependent apoptosis in cardiomyocytes, thereby protecting myocardial cells and heart function. CONCLUSIONS This paper reviews the potential and mechanism of natural products to regulate mitochondria for the treatment of CVDs, creating more opportunities for understanding their therapeutic targets and derivatization of lead compounds, and providing a scientific basis for advancing CVDs drug research.
Collapse
Affiliation(s)
- Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Zhanbiao Liu
- Laboratory Animal Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China; Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
3
|
Sutar RR, Mapari SV, Gaikwad SB, Khare R, Behera BC. An investigation on the cardioprotective potential of lichen compound protocetraric acid by H 2O 2-induced toxicity in H9c2 rat heart cells through in vitro and in silico analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1747-1764. [PMID: 39172149 DOI: 10.1007/s00210-024-03390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) are the leading cause of death and require treatment and prevention. Lichens are symbiotic organisms that are known to produce unique secondary metabolites and have been used as folk medicines. The aim of the study is to emphasize the importance of lichens in improving heart health, with the objective of investigating protocetraric acid, a lichen metabolite, for its antioxidant and cardioprotective potential by using in vitro and in silico techniques. Protocetraric acid (PRC) was isolated, characterized, and tested for antioxidant properties using six assays. In cardiovascular investigations, hydroxymethylglutaryl-coenzymeA reductase (HMGCR), angiotensin-converting enzyme inhibitory, and fibrinolytic capacities, along with enzyme inhibitory kinetics studies, were carried out. In silico toxicology and molecular docking analysis were done to determine the binding sites on target proteins. The cytoprotective ability of PRC was evaluated by H2O2-induced toxicity in H9c2 rat heart cells. Out of six lichens, the extract of F. caperata showed comparatively stronger antioxidant activity in terms of 1,1-diphenyl-2-picryl hydrazil (DPPH), scavenging of nitric oxide (SNO), and ferric reducing potential (FRAP) equivalent values. PRC showed significant antioxidant properties, and with respect to cardiovascular studies, PRC exhibited 86% HMGCR and 82% ACE inhibition, while 57% fibrinolysis at 320 µM concentration. Inhibitory kinetic tests of PRC showed competitive and uncompetitive HMGCR and ACE inhibition types respectively. PRC showed minimum binding energies of - 7.9, - 8.9, and - 9.0 kcal/mol with 1HWK, 1O8A, and 4BZS. The H9c2 cell line pre-treated with PRC was found to reduce H2O2 toxicity as well as increase cell viability. Protocetraric acid is a potent compound that has been experimentally shown to have hypocholesterolemic, hypotensive, and cardioprotective properties for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Ruchira R Sutar
- Biodiversity-Lichen, Agharkar Research Institute, Pune, Maharashtra, India
- Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sachin V Mapari
- Biodiversity-Lichen, Agharkar Research Institute, Pune, Maharashtra, India
- Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Subhash B Gaikwad
- Biodiversity-Lichen, Agharkar Research Institute, Pune, Maharashtra, India
- Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Roshni Khare
- Biodiversity-Lichen, Agharkar Research Institute, Pune, Maharashtra, India
| | - Bhaskar C Behera
- Biodiversity-Lichen, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Huang J, Li J, Geng Z, Yin L, Niu M, Li Q, Liu X, Cheng X, Zhang X, Song X, Wang Y, Wang L, Zuo L, Hu J. Cynaroside ameliorates TNBS-induced colitis by inhibiting intestinal epithelial cell apoptosis via the PI3K/AKT signalling pathway. Front Pharmacol 2025; 15:1496068. [PMID: 39902073 PMCID: PMC11788346 DOI: 10.3389/fphar.2024.1496068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Background and aims Patients with Crohn's disease (CD) exhibit excessive apoptosis of intestinal epithelial cells (IECs), which contributes to damage to the intestinal barrier structure and function, thereby playing a role in the progression of colitis. Preventing IEC apoptosis and protecting the intestinal barrier are critical to alleviating colitis. Natural plant monomers have been reported to possess multiple pharmacological properties, particularly with the potential to treat CD. This study focuses on Cynaroside (Cyn) to explore its effect on IEC apoptosis and evaluate its pharmacological impact on the intestinal barrier and colitis. Methods The 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis mice model was employed in this study. We assessed the therapeutic effect of Cyn on CD-like colitis by evaluating the disease activity index (DAI), body weight changes, intestinal tissue pathological damage, and inflammatory factor levels. Immunofluorescence and Western blotting were used to detect the expression and localization of tight junction (TJ) proteins, allowing us to analyze the intestinal barrier structure. The function of the intestinal barrier was examined using FITC-dextran (FD4), TEER values, and bacterial translocation. Network pharmacology enrichment analysis revealed that Cyn could inhibit cell apoptosis. We also explored the effect and underlying mechanism of Cyn in inhibiting IEC apoptosis on intestinal barrier function and colitis using both the TNF-α-induced colonic organoid model and the TNBS-induced mouse model. Results Our findings show that Cyn significantly alleviates TNBS-induced colitis symptoms in mice, as evidenced by reduced body weight loss, colon shortening, DAI score, colon histopathology score, and lower levels of inflammatory factors (IL-1β, TNF-α, and IL-6) compared to the model group. Additionally, the Cyn intervention group showed significant improvements in both the intestinal barrier structure (elevated tight junction protein levels and proper localization) and function (reduced serum FD4 levels, increased intestinal TEER, and decreased bacterial translocation rates in mesenteric lymph nodes [MLNs] and livers). Combining network pharmacology prediction analysis with our validation data from animal models and colonic organoids, we demonstrated that Cyn significantly inhibits IEC apoptosis, as indicated by a decrease in the proportion of TUNEL-positive cells and changes in apoptosis-related protein levels. KEGG enrichment analysis and signaling pathway intervention experiments confirmed that Cyn inhibits the activation of PI3K/AKT signaling. Conclusion Cyn inhibits IEC apoptosis by blocking the PI3K/AKT signaling pathway, which is the primary mechanism underlying its protective effects on the intestinal barrier and its ability to improve CD-like colitis. This study also supports the potential of the Chinese medicine monomer Cyn as a promising therapeutic agent for the treatment of CD.
Collapse
Affiliation(s)
- Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Minzhu Niu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Clinical Laboratory, The Third the People’s Hospital of Bengbu, Bengbu, Anhui, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xinke Cheng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
5
|
Zou H, Zhang M, Yang X, Shou H, Chen Z, Zhu Q, Luo T, Mou X, Chen X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J Zhejiang Univ Sci B 2024; 25:756-772. [PMID: 39308066 PMCID: PMC11422794 DOI: 10.1631/jzus.b2300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 09/25/2024]
Abstract
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | - Xue Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Zhenglin Chen
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quanfeng Zhu
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozhou Mou
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaoyi Chen
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
| |
Collapse
|
6
|
Moradikhah F, Shabani I, Tafazzoli Shadpour M. Fabrication of a tailor-made conductive polyaniline/ascorbic acid-coated nanofibrous mat as a conductive and antioxidant cell-free cardiac patch. Biofabrication 2024; 16:035004. [PMID: 38507809 DOI: 10.1088/1758-5090/ad35e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Polyaniline (PANI) wasin-situpolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction. The polymerization parameters were considered as aniline (60 mM, 90 mM, and 120 mM), ascorbic acid concentrations ([aniline]:[ascorbic acid] = 3:0, 3:0.5, 3:1, 3:3), and polymerization time (1 h and 3 h). Mainly, the more aniline concentrations and polymerization time, the less sheet resistance was obtained. 1,1 diphenyl-2-picrylhydrazyl (DPPH) assay confirmed the dual antioxidant properties of prepared samples. The advantage of the employedin-situpolymerization was confirmed by the de-doping/re-doping process. Non-desirable groups were excluded based on their electrical conductivity, antioxidant properties, and biocompatibility. The remained groups protected H9c2 cells against oxidative stress and hypoxia conditions. Selected CPs reduced the intracellular reactive oxygen species content and mRNA level of caspase-3 while the Bcl-2 mRNA level was improved. Also, the selected cardiac patch could attenuate the hypertrophic impact of hydrogen peroxide on H9c2 cells. Thein vivoresults of the skin flap model confirmed the CP potency to attenuate the harmful impact of I/R.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | | |
Collapse
|
7
|
Maciuk A, Mazier D, Duval R. Future antimalarials from Artemisia? A rationale for natural product mining against drug-refractory Plasmodium stages. Nat Prod Rep 2023; 40:1130-1144. [PMID: 37021639 DOI: 10.1039/d3np00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Covering: up to 2023Infusions of the plants Artemisia annua and A. afra are gaining broad popularity to prevent or treat malaria. There is an urgent need to address this controversial public health question by providing solid scientific evidence in relation to these uses. Infusions of either species were shown to inhibit the asexual blood stages, the liver stages including the hypnozoites, but also the sexual stages, the gametocytes, of Plasmodium parasites. Elimination of hypnozoites and sterilization of mature gametocytes remain pivotal elements of the radical cure of P. vivax, and the blockage of P. vivax and P. falciparum transmission, respectively. Drugs active against these stages are restricted to the 8-aminoquinolines primaquine and tafenoquine, a paucity worsened by their double dependence on the host genetic to elicit clinical activity without severe toxicity. Besides artemisinin, these Artemisia spp. contain many natural products effective against Plasmodium asexual blood stages, but their activity against hypnozoites and gametocytes was never investigated. In the context of important therapeutic issues, we provide a review addressing (i) the role of artemisinin in the bioactivity of these Artemisia infusions against specific parasite stages, i.e., alone or in association with other phytochemicals; (ii) the mechanisms of action and biological targets in Plasmodium of ca. 60 infusion-specific Artemisia phytochemicals, with an emphasis on drug-refractory parasite stages (i.e., hypnozoites and gametocytes). Our objective is to guide the strategic prospecting of antiplasmodial natural products from these Artemisia spp., paving the way toward novel antimalarial "hit" compounds either naturally occurring or Artemisia-inspired.
Collapse
Affiliation(s)
| | - Dominique Mazier
- CIMI, CNRS, Inserm, Faculté de Médecine Sorbonne Université, 75013 Paris, France
| | - Romain Duval
- MERIT, IRD, Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
8
|
Bouyahya A, Taha D, Benali T, Zengin G, El Omari N, El Hachlafi N, Khalid A, Abdalla AN, Ardianto C, Tan CS, Ming LC, Sahib N. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed Pharmacother 2023; 161:114337. [PMID: 36812715 DOI: 10.1016/j.biopha.2023.114337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi 46030, Morocco.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco.
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fez B.P. 2626, Morocco.
| | - Asaad Khalid
- 7 Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, 71800 Nilai, Malaysia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Narjis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco.
| |
Collapse
|
9
|
Zhang X, Li M, Yue Y, Zhang Y, Wu A. Luteoloside Prevents Sevoflurane-induced Cognitive Dysfunction in Aged Rats via Maintaining Mitochondrial Function and Dynamics in Hippocampal Neurons. Neuroscience 2023; 516:42-53. [PMID: 36764603 DOI: 10.1016/j.neuroscience.2023.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by impaired cognitive function, such as decreased learning and memory after anesthesia and surgery. This study aimed to explore the effect of luteoloside, a flavonoid extracted from natural herbs, on sevoflurane-induced cognitive dysfunction. Aged Sprague-Dawley male rats (20 months old) were treated with luteoloside for 7 days prior to sevoflurane exposure. After evaluation using an open field, novel object recognition, and Y-maze tests, it was determined that luteoloside effectively prevented sevoflurane-induced cognitive dysfunction. Sevoflurane exposure led to hippocampal neuron apoptosis in vivo (n = 6) and in vitro (n = 3), while this injury was prevented by luteoloside in a dose-dependent manner. Mechanistically, luteoloside maintained mitochondrial function and dynamics, as evidenced by the restored adenosine triphosphate (ATP) production and mitochondrial membrane potential as well as the upregulated levels of mitochondrial fission (optic atrophy protein 1 (Opa1) and mitofusin1 (Mfn1)) and downregulated mitochondrial fusion (mitochondrial fission 1 (Fisl) and dynamin-related protein 1 (Drp1)) factors. Notably, silencing Opa1 blocked the protective effect of luteoloside on hippocampal neurons and mitochondrial function. In summary, luteoloside prevented sevoflurane-induced cognitive dysfunction in aged rats, which may be achieved by regulating mitochondrial dynamics. Our study reveals the potential of luteoloside in preventing POCD in aged patients.
Collapse
Affiliation(s)
- Xuena Zhang
- Department of Anesthesiology Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingying Li
- Department of Anesthesiology Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Yue
- Department of Anesthesiology Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- College of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Zhao H, Zhang Y, Zhang Y, Chen C, Liu H, Yang Y, Wang H. The role of NLRP3 inflammasome in hepatocellular carcinoma. Front Pharmacol 2023; 14:1150325. [PMID: 37153780 PMCID: PMC10157400 DOI: 10.3389/fphar.2023.1150325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Inflammasomes play an important role in innate immunity. As a signal platform, they deal with the excessive pathogenic products and cellular products related to stress and injury. So far, the best studied and most characteristic inflammasome is the NLR-family pyrin domain-containing protein 3(NLRP3) inflammasome, which is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. The formation of NLRP3 inflammasome complexes results in the activation of caspase-1, the maturation of interleukin (IL)-1β and IL-18, and pyroptosis. Many studies have demonstrated that NLRP3 inflammasome not only participates in tumorigenesis, but also plays a protective role in some cancers. Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Currently, due to the lack of effective treatment methods for HCC, the therapeutic effect of HCC has not been ideal. Therefore, it is particularly urgent to explore the pathogenesis of HCC and find its effective treatment methods. The increasing evidences indicate that NLRP3 inflammasome plays a vital role in HCC, however, the related mechanisms are not fully understood. Hence, we focused on the recent progress about the role of NLRP3 inflammasome in HCC, and analyzed the relevant mechanisms in detail to provide reference for the future in-depth researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yiming Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| | - Huiyang Liu
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yihan Yang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
- *Correspondence: Honggang Wang, ; Chaoran Chen,
| |
Collapse
|
11
|
β-Cyfluthrin-Mediated Cytotoxicity of Cultured Rat Primary Hepatocytes Ameliorated by Cotreatment with Luteolin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3647988. [PMID: 36065273 PMCID: PMC9440783 DOI: 10.1155/2022/3647988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
The current study was designed to evaluate the possible protective effects of luteolin against β-cyfluthrin-mediated toxicity on the primary culture of rat hepatocytes (RHs). In the first step, the exposure of RHs to β-cyfluthrin (10, 20, 40, and 80 μM) was assessed by MTT. Second, redox condition was evaluated in cotreatment of cells with luteolin (20, 40, and 60 μM) and β-cyfluthrin (40 μM) at both medium and intra levels. In comparison to control, viability was lower in 40 and 80 μM β-cyfluthrin-treated groups at 24 h and all β-cyfluthrin-treated groups at 48 h (P < 0.05). Cotreatment with 20 or 40 μM luteolin + 40 μM β-cyfluthrin resulted in a higher viability value compared to β-cyfluthrin alone at 24 and 48 h of incubation (P < 0.05). Administration of 20 or 40 μM luteolin with β-cyfluthrin led to the decrease of malondialdehyde and total nitrate/nitrite and the increase of total antioxidant capacity (TAC) values in both medium and intrahepatocyte levels compared to the β-cyfluthrin-treated group at 48 h (P < 0.05). It seems that low and medium doses of luteolin possess the potential to reduce β-cyfluthrin-mediated hepatotoxicity via attenuation of peroxidative/nitrosative reactions and augmentation of TAC levels.
Collapse
|
12
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
13
|
CHEN SP, HU TH, ZHOU Q, CHEN TP, YIN D, HE H, HUANG Q, HE M. Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. Chin J Nat Med 2022; 20:22-32. [DOI: 10.1016/s1875-5364(21)60110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/03/2022]
|
14
|
Soriano-Castell D, Liang Z, Maher P, Currais A. Profiling the chemical nature of anti-oxytotic/ferroptotic compounds with phenotypic screening. Free Radic Biol Med 2021; 177:313-325. [PMID: 34748909 PMCID: PMC8639737 DOI: 10.1016/j.freeradbiomed.2021.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Because old age is the greatest risk factor for Alzheimer's disease (AD), it is critical to target the pathological events that link aging to AD in order to develop an efficient treatment that acts upon the primary causes of the disease. One such event might be the activation of oxytosis/ferroptosis, a unique cell death mechanism characterized by mitochondrial dysfunction and lethal lipid peroxidation. Here, a comprehensive library of >900 natural compounds was screened for protection against oxytosis/ferroptosis in nerve cells with the goal of better understanding the chemical nature of inhibitors of oxytosis/ferroptosis. Although the compounds tested spanned structurally diverse chemical classes from animal, microbial, plant and synthetic origins, a small set of very potent anti-oxytotic/ferroptotic compounds was identified that was highly enriched in plant quinones. The ability of these compounds to protect against oxytosis/ferroptosis strongly correlated with their ability to protect against in vitro ischemia and intracellular amyloid-beta toxicity in nerve cells, indicating that aspects of oxytosis/ferroptosis also underly other toxicities that are relevant to AD. Importantly, the anti-oxytotic/ferroptotic character of the quinone compounds relied on their capacity to target and directly prevent lipid peroxidation in a manner that required the reducing activity of cellular redox enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1). Because some of the compounds increased the production of total reactive oxygen species while decreasing lipid peroxidation, it appears that the pro-oxidant character of a compound can coexist with an inhibitory effect on lipid peroxidation and, consequently, still prevent oxytosis/ferroptosis. These findings have significant implications for the understanding of oxytosis/ferroptosis and open new approaches to the development of future neurotherapies.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Effects of Cynaroside on Cell Proliferation, Apoptosis, Migration and Invasion though the MET/AKT/mTOR Axis in Gastric Cancer. Int J Mol Sci 2021; 22:ijms222212125. [PMID: 34830011 PMCID: PMC8618935 DOI: 10.3390/ijms222212125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
The Chinese medicine monomer cynaroside (Cy) is a flavonoid glycoside compound that widely exists in plants and has a variety of pharmacological effects, such as its important role in the respiratory system, cardiovascular system and central nervous system. Studies have reported that Cy has varying degrees of anticancer activity in non-small cell lung cancer, cervical cancer, liver cancer, esophageal cancer and other cancers. However, there are no relevant reports about its role in gastric cancer. The MET/AKT/mTOR signaling pathway plays important roles in regulating various biological processes, including cell proliferation, apoptosis, autophagy, invasion and tumorigenesis. In this study, we confirmed that Cy can inhibit the cell growth, migration and invasion and tumorigenesis in gastric cancer. Our finding shows that Cy can block the MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR and P70S6K. Therefore, the MET/AKT/mTOR axis may be an important target for Cy. In summary, Cy has anti-cancer properties and is expected to be a potential drug for the treatment of gastric cancer.
Collapse
|
16
|
Jeong YH, Kim TI, Oh YC, Ma JY. Chrysanthemum indicum Prevents Hydrogen Peroxide-Induced Neurotoxicity by Activating the TrkB/Akt Signaling Pathway in Hippocampal Neuronal Cells. Nutrients 2021; 13:nu13113690. [PMID: 34835946 PMCID: PMC8618340 DOI: 10.3390/nu13113690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - You-Chang Oh
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| | - Jin Yeul Ma
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| |
Collapse
|
17
|
Reveals of candidate active ingredients in Justicia and its anti-thrombotic action of mechanism based on network pharmacology approach and experimental validation. Sci Rep 2021; 11:17187. [PMID: 34433871 PMCID: PMC8387432 DOI: 10.1038/s41598-021-96683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Thrombotic diseases seriously threaten human life. Justicia, as a common Chinese medicine, is usually used for anti-inflammatory treatment, and further studies have found that it has an inhibitory effect on platelet aggregation. Therefore, it can be inferred that Justicia can be used as a therapeutic drug for thrombosis. This work aims to reveal the pharmacological mechanism of the anti-thrombotic effect of Justicia through network pharmacology combined with wet experimental verification. During the analysis, 461 compound targets were predicted from various databases and 881 thrombus-related targets were collected. Then, herb-compound-target network and protein-protein interaction network of disease and prediction targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, Gene Ontology (GO) and pathway (KEGG) enrichment were used to further determine the association between target proteins and diseases. Finally, the expression of hub target proteins of the core component and the anti-thrombotic effect of Justicia's core compounds were verified by experiments. In conclusion, the core bioactive components, especially justicidin D, can reduce thrombosis by regulating F2, MMP9, CXCL12, MET, RAC1, PDE5A, and ABCB1. The combination of network pharmacology and the experimental research strategies proposed in this paper provides a comprehensive method for systematically exploring the therapeutic mechanism of multi-component medicine.
Collapse
|
18
|
Hashim M, Ahmad B, Drouet S, Hano C, Abbasi BH, Anjum S. Comparative Effects of Different Light Sources on the Production of Key Secondary Metabolites in Plants In Vitro Cultures. PLANTS (BASEL, SWITZERLAND) 2021; 10:1521. [PMID: 34451566 PMCID: PMC8398697 DOI: 10.3390/plants10081521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 05/13/2023]
Abstract
Plant secondary metabolites are known to have a variety of biological activities beneficial to human health. They are becoming more popular as a result of their unique features and account for a major portion of the pharmacological industry. However, obtaining secondary metabolites directly from wild plants has substantial drawbacks, such as taking a long time, posing a risk of species extinction owing to over-exploitation, and producing a limited quantity. Thus, there is a paradigm shift towards the employment of plant tissue culture techniques for the production of key secondary metabolites in vitro. Elicitation appears to be a viable method for increasing phytochemical content and improving the quality of medicinal plants and fruits and vegetables. In vitro culture elicitation activates the plant's defense response and increases the synthesis of secondary metabolites in larger proportions, which are helpful for therapeutic purposes. In this respect, light has emerged as a unique and efficient elicitor for enhancing the in vitro production of pharmacologically important secondary metabolites. Various types of light (UV, fluorescent, and LEDs) have been found as elicitors of secondary metabolites, which are described in this review.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| | - Bushra Ahmad
- Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| |
Collapse
|
19
|
Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183:114296. [PMID: 33191206 PMCID: PMC7581400 DOI: 10.1016/j.bcp.2020.114296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ∼3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. These drugs include fingolimod, colchicine, N4-hydroxycytidine, remdesivir, methylprednisone, oseltamivir, icatibant, perphanizine, viracept, emetine, homoharringtonine, aloxistatin, ribavirin, valrubicin, famotidine, almitrine, amprenavir, hesperidin, biorobin, cromolyn sodium, and antibodies- tocilzumab and sarilumab. Also, we provide a list of 31 drugs that are predicted to function against SARS-CoV-2 infection. In summary, we provide succinct overview of various therapeutic modalities. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. SIGNIFICANCE: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI's goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Ladan Mashouri
- Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
| | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Nikhilesh Alahari
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA; Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
20
|
Lee SA, Park BR, Moon SM, Shin SH, Kim JS, Kim DK, Kim CS. Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation. Arch Oral Biol 2020; 120:104944. [PMID: 33099251 DOI: 10.1016/j.archoralbio.2020.104944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate whether cynaroside protects human periodontal ligament (hPDL) cells from lipopolysaccharide (LPS)-induced damage and inflammation and to analyze the underlying mechanism. METHODS LPS was used to stimulate hPDL and RAW264.7 cells. MTT assay was used to detect cell viability, and protein expression levels were measured via western blot analysis. Nitrite oxide and prostaglandin E2 were used to quantify the inflammatory response. Alizarin Red S staining was used to detect mineralized nodules. RESULTS Cynaroside inhibited the expression of iNOS, COX-2, TNF-α, and IL-6 in LPS-stimulated hPDL and RAW264.7 cells without cytotoxicity. Furthermore, cynaroside significantly suppressed LPS-induced protein expression of matrix metalloproteinase 3. Additionally, cynaroside prevented LPS-induced NF-κB p65 subunit translocation to the nucleus by inhibiting the phosphorylation and degradation of IκB-α. Moreover, cynaroside could restore the mineralization ability of hPDL cells reduced by LPS. CONCLUSION Cynaroside protected hPDL cells from LPS-induced damage and inflammation via inhibition of NF-κB activation. These results suggest that cynaroside may be a potential therapeutic agent for the alleviation of periodontitis.
Collapse
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, College of Health and Welfare, Kyungwoon University, 730, Gangdong-ro, Gyeongsangbuk-do, 39160, Republic of Korea
| | - Sung-Min Moon
- CStech Research Institute, 38 Chumdanventuresoro, Gwangju, 61007, Republic of Korea
| | - Sang Hun Shin
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae-Sung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
21
|
Lv X, Zhu Y, Deng Y, Zhang S, Zhang Q, Zhao B, Li G. Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology 2020; 441:152508. [DOI: 10.1016/j.tox.2020.152508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
|
22
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Ye JX, Wang M, Wang RY, Liu HT, Qi YD, Fu JH, Zhang Q, Zhang BG, Sun XB. Hydroxysafflor yellow A inhibits hypoxia/reoxygenation-induced cardiomyocyte injury via regulating the AMPK/NLRP3 inflammasome pathway. Int Immunopharmacol 2020; 82:106316. [PMID: 32088642 DOI: 10.1016/j.intimp.2020.106316] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent that alleviates myocardial ischaemia/reperfusion injury (MIRI), but the exact mechanisms remain elusive. The aim of this study was to investigate the potential protective effect of HSYA against MIRI through mechanisms related to NLRP3 inflammasome regulation. In this study, hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocytes were treated with HSYA or the AMPK inhibitor, compound C (CC). Our results showed that HSYA pretreatment improved cardiomyocyte viability, maintained mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased caspase-3 activity, and inhibited NOD-like receptor 3 (NLRP3) inflammasome activation during H/R injury. Moreover, the inhibition of AMPK activation by the CC inhibitor partially abolished the effects of HSYA treatment, including suppressing the upregulation of NLRP3 inflammasome components (NLRP3, caspase-1 and interleukin-1β) and promoting autophagy (LC3-II/LC3-I and p62). In conclusion, the protective mechanism of HSYA in H/R-induced cardiomyocyte injury is associated with inhibiting NLRP3 inflammasome activation through the AMPK signalling pathway.
Collapse
Affiliation(s)
- Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Ying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Hai-Tao Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yao-Dong Qi
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Jian-Hua Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| | - Ben-Gang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
24
|
Shu Z, Yang Y, Ding Z, Wang W, Zhong R, Xia T, Li W, Kuang H, Wang Y, Sun X. Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantii. Int J Biol Macromol 2020; 144:847-856. [DOI: 10.1016/j.ijbiomac.2019.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
|
25
|
Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The green biomass of horticultural plants contains valuable secondary metabolites (SM), which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4–5 W/m2; UVB 10–14 W/m2 for 3 h per day), or a combination of both stressors. Plant age during the trials was 32–48 days. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents of secondary metabolites were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on above ground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights into the ontogenetical effects at the leaf level and temporal development of SM contents. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: r2 = 0.46–0.66; Graveobioside A: r2 = 0.51–0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress should be considered as a tool for enriching plant leaves with valuable SM. Effects on the performance of plants throughout a complete production cycle should be evaluated in future trials. All data is available online.
Collapse
|
26
|
Protective effect of Nelumbo nucifera (Gaertn.) against H 2O 2-induced oxidative stress on H9c2 cardiomyocytes. Mol Biol Rep 2019; 47:1117-1128. [PMID: 31823124 DOI: 10.1007/s11033-019-05208-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Ischemic heart disease (IHD), a severe condition of myocardium facing impediment in the supply of basic needs for cellular metabolism is caused by atherosclerosis. Though statin drugs could control the use of surgery on IHD patients, the complete rehabilitation or prophylaxis can be achieved through herbal-based medicines viz. either in the form of crude extract or pure phytocompounds. In the present study, pretreatment with leaf extract of Nelumbo nucifera Gaertn. was investigated for cardioprotective activity-in vitro by mitigating H2O2-induced oxidative stress. Analysis such as estimation of antioxidants, lipid peroxidation, and DNA fragmentation assay revealed significant protective effect of plant extract on cardiomyocytes. Reactive oxygen species detection was done by using 2',7'-dichlorofluorescein diacetate, apoptosis detection with Acridine Orange/Ethidium Bromide and nuclear damage detection by diamidino-2-phenylindole which confirmed the protective effect of N. nucifera extract. In addition, gene expression studies of apoptotic regulatory genes (Bcl2 and Cas-9) resulted in significant protection of nucifera extract pretreated and maintained cells. To conclude, in vitro cardioprotective activity of N. nucifera against H2O2 induced oxidative stress was achieved at the concentration of 50 µg/ml. Therefore, major phytocompounds present in extract could be beneficial in managing cardiac complications in the future.
Collapse
|
27
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|
28
|
Wang M, Wang R, Xie X, Sun G, Sun X. Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function. Biomed Pharmacother 2019; 117:109143. [PMID: 31387189 DOI: 10.1016/j.biopha.2019.109143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Araloside C (AsC) has potential cardioprotective properties. However, the underlying mechanism of AsC-mediated cardioprotection, especially the role of mitochondrial function, remains largely unknown. Here, we used H9c2 cardiomyocytes to study the cardioprotective mechanisms of AsC through H2O2-induced oxidative stress. Cell viability, lactate dehydrogenase release, mitochondrial functions and bioenergetics were evaluated. Western blot analysis was used to measure the protein expression levels of apoptosis and the phosphorylation of AMP-activated protein kinase (AMPK). Results revealed that AsC increased cell viability, improved mitochondrial membrane potential disruption, decreased mitochondrial reactive oxygen species level, elevated cellular ATP levels and alleviated impaired mitochondrial respiration in H2O2-induced H9c2 cardiomyoblasts injury. Furthermore, AsC modulated apoptosis-associated protein expression and AMPK pathway in H9c2 cells under oxidative stress. In conclusion, AsC potentially protects H9c2 cardiomyoblasts against oxidative stress by regulating mitochondrial function and AMPK activation. AsC may be an effective therapeutic agent for the prevention of oxidative stress in cardiac injury.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Ruiying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Xueheng Xie
- Harbin University of Commerce, Harbin, 150076, Heilongjiang, PR China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
29
|
Yu H, Li J, Hu X, Feng J, Wang H, Xiong F. Protective effects of cynaroside on oxidative stress in retinal pigment epithelial cells. J Biochem Mol Toxicol 2019; 33:e22352. [DOI: 10.1002/jbt.22352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Haoli Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Junyan Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing China
| | - Jiahao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
30
|
Wang M, Liu Y, Pan RL, Wang RY, Ding SL, Dong WR, Sun GB, Ye JX, Sun XB. Protective effects of Myrica rubra flavonoids against hypoxia/reoxygenation-induced cardiomyocyte injury via the regulation of the PI3K/Akt/GSK3β pathway. Int J Mol Med 2019; 43:2133-2143. [PMID: 30864694 PMCID: PMC6443338 DOI: 10.3892/ijmm.2019.4131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Myrica rubra is well known for its delicious taste and high nutritional value. The present study investigated the potential protective effects and mechanisms of M. rubra flavonoids (MRF) extract on isoproterenol (ISO)-induced myocardial injury in rats and hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. An in vivo study revealed that MRF decreased serum cardiac enzyme levels, ameliorated pathological heart alterations and increased the antioxidant potential. The in vitro investigation demonstrated that MRF inhibited cell death, reactive oxygen species (ROS) accumulation, mitochondrial membrane depolarization, apoptosis rate and caspase-3 activation and enhanced the Bcl-2/Bax ratio during H/R injury. These effects were accompanied by the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase (GSK)-3β. Further mechanism studies demonstrated that LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), abolished the MRF-mediated cardioprotection against H/R-induced apoptosis and ROS overproduction. Collectively, these results suggested that MRF exerts cardioprotective effects by attenuating oxidative damage and cardiomyocyte apoptosis most likely via a PI3K/Akt/GSK3β-dependent mechanism.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Ying Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Rui-Le Pan
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Rui-Ying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Shi-Lan Ding
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Wan-Rui Dong
- Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| |
Collapse
|
31
|
Zhou SS, Hu JW, Kong M, Xu JD, Shen H, Chen HB, Shen MQ, Xu J, Li SL. Less SO 2 residue may not indicate higher quality, better efficacy and weaker toxicity of sulfur-fumigated herbs: Ginseng, a pilot study. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:376-387. [PMID: 30384248 DOI: 10.1016/j.jhazmat.2018.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfur dioxide (SO2) is a hazardous residue in sulfur-fumigated herbs. Standards limiting SO2 content have been adopted worldwide for quality control of sulfur-fumigated herbs, and herbs with less SO2 are believed to be better. However, the standards are based only on the safe dose of SO2 and may not characterize changes in herbal quality, thereby the efficacy and toxicity, resulting from sulfur fumigation. To confirm this, here the correlation of residual SO2 content with the quality/efficacy/toxicity of sulfur-fumigated herb was investigated, and ginseng was selected as a pilot study object. Four sulfur-fumigated ginseng samples with different SO2 contents were systemically compared regarding their quality, anti-inflammatory, anti-shock and anti-stress efficacies, as well as acute and chronic toxicities. The results demonstrated that the SO2 content did not correlate with the quality, efficacy and toxicity changes of ginseng; more specifically, less SO2 residue did not indicate higher quality, better efficacy nor weaker toxicity. This fact suggests that SO2 content cannot characterize the variations in quality, efficacy and toxicity of sulfur-fumigated herbs. Therefore, the standard limiting SO2 content alone may be inadequate for quality control of sulfur-fumigated herbs, and new standards including other indicators that can exactly reflect herbal efficacy and safety are necessary.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Jia-Wei Hu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Ming-Qin Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int Immunopharmacol 2018; 66:309-316. [PMID: 30502652 DOI: 10.1016/j.intimp.2018.11.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
Luteoloside, a flavonoid compound, has been reported to have anti-inflammatory, anti-oxidative, antibacterial, antiviral, anticancer, and cardioprotective effects, among others, but its neuroprotective effects have rarely been studied. The purpose of this study was to investigate the protective effect of luteoloside on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of luteoloside on cerebral ischemia-reperfusion (I/R). Male Sprague-Dawley rats were randomly divided into six groups: sham, MCAO, luteoloside (20 mg/kg, 40 mg/kg, 80 mg/kg) and nimodipine (4 mg/kg). The results showed that luteoloside alleviated neurologic deficits and cerebral edema as well as improved cerebral infarction and histopathological changes in MCAO rats. Luteoloside significantly inhibited I/R-induced neuroinflammation, as demonstrated by reduced levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the brain tissues of MCAO rats. Furthermore, our results demonstrated that luteoloside significantly suppressed the activation of nuclear factor-kappa B (NF-κB) signaling, upregulated the protein expression of peroxisome proliferator activated receptor gamma (PPARγ) and increased NF-E2-related factor (Nrf2) nuclear accumulation in MCAO rats. Collectively, our findings suggested that luteoloside played a crucial neuroprotective role by inhibiting NF-κB signaling in focal cerebral ischemia in rats. Furthermore, PPARγ and Nrf2 were also important for the anti-inflammatory effect of luteoloside. In addition, our data suggested that luteoloside might be an effective treatment for cerebral ischemia and other neurological disorders.
Collapse
|
33
|
Luteoloside Protects the Uterus from Staphylococcus aureus-Induced Inflammation, Apoptosis, and Injury. Inflammation 2018; 41:1702-1716. [DOI: 10.1007/s10753-018-0814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Yang K, Luo Y, Lu S, Hu R, Du Y, Liao P, Sun G, Sun X. Salvianolic Acid B and Ginsenoside Re Synergistically Protect Against Ox-LDL-Induced Endothelial Apoptosis Through the Antioxidative and Antiinflammatory Mechanisms. Front Pharmacol 2018; 9:662. [PMID: 29973885 PMCID: PMC6019702 DOI: 10.3389/fphar.2018.00662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Salvianolic acid B (SalB) and ginsenoside Re (Re) protect endotheliocytes against apoptosis through different mechanisms. However, whether both compounds could synergistically protect endothelial cells against oxidized low-density lipoprotein (Ox-LDL)-induced apoptosis is unclear. This study aimed to assess the protective effect of combined SalB and Re (SR) treatment on Ox-LDL-induced endothelial apoptosis and to explore the mechanism underlying this effect. Results showed that SalB, Re, or SR could protect against Ox-LDL-induced endothelial apoptosis. Furthermore, the composition of SR was optimized through central composite design with response surface methodology. SR with a composition of 60 μg/mL of SalB and 120 μg/mL of Re exerted the optimal protective effect. Network pharmacology research revealed that SalB and Re in SR synergistically protect against Ox-LDL-induced endothelial apoptosis by regulating oxidative stress and phlogistic pathways. In vitro experiments confirmed these results. Compared with the same dose of SalB or Re alone, SR significantly decreased the contents of inflammatory mediators and increased the activities of antioxidant enzymes. SR could synergistically restore the balanced redox state of the cells and inhibit the activation of nuclear transcription factor kappa B and the caspase cascade by activating the phosphatidylinositol 3 kinase/protein kinase B pathway and inhibiting the phosphorylation of p38 mitogen-activated protein kinase. These pathways are regulated by down-regulating the expression of lectin-like Ox-LDL receptor-1 and NADPH oxidase and up-regulating the expression of estrogen receptor alpha. Therefore, SR effectively prevents Ox-LDL-induced endothelial apoptosis through antioxidative and antiinflammatory mechanisms.
Collapse
Affiliation(s)
- Ke Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ruifeng Hu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yuyang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ping Liao
- Department of Cardiovascular Medicine, The Hospital of Ningxiang County People, Changsha, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Zhu YD, Chen RC, Wang H, Jiang H, Huang XL, Zhang ML, Li LY, Hu Z, Xu XD, Wang CJ, Ye XX, Yang JS. Two new flavonoid-triterpene saponin meroterpenoids from Clinopodium chinense and their protective effects against anoxia/reoxygenation-induced apoptosis in H9c2 cells. Fitoterapia 2018; 128:180-186. [PMID: 29782903 DOI: 10.1016/j.fitote.2018.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Two new flavonoid-triterpene saponin meroterpenoids, clinoposides G (1) and H (2) were isolated from the aerial parts of Clinopodium chinense (Benth.) O. Kuntze. Their structures were elucidated through spectroscopic and electronic circular dichroism (ECD) analyses. Compounds 1 and 2 were evaluated for their protective effects against anoxia/reoxygenation(A/R)-induced injury in H9c2 cells. A/R treatment severely injured the H9c2 cells, which was accompanied by apoptosis. Both 1 and 2 pretreatment significantly inhibited cell injury and apoptosis, improved mitochondrial membrane potential, increased activities of antioxidant enzymes, and reduced the levels of the inflammatory cytokines. In addition, the presence of 1 and 2 significantly decreased the protein level of p65 and increased the level of Nrf2 in cell nucleus. Unique chemical structure and good biological activity of 1 and 2 elucidated the potential of meroterpenoids as a promising reagent for treating heart disease.
Collapse
Affiliation(s)
- Yin-Di Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Rong-Chang Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Hong Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xue-Li Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Mei-Ling Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Ling-Yu Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhen Hu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325027, China
| | - Xu-Dong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Chao-Jie Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiao-Xia Ye
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jun-Shan Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
36
|
Zhang JY, Wang M, Wang RY, Sun X, Du YY, Ye JX, Sun GB, Sun XB. Salvianolic Acid A Ameliorates Arsenic Trioxide-Induced Cardiotoxicity Through Decreasing Cardiac Mitochondrial Injury and Promotes Its Anticancer Activity. Front Pharmacol 2018; 9:487. [PMID: 29867492 PMCID: PMC5954107 DOI: 10.3389/fphar.2018.00487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Arsenic trioxide (ATO) is used as a therapeutic agent in the treatment of acute promyelocytic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. The cardio-protective effect of salvianolic acid A (Sal A) against ATO cardiotoxicity has been reported. However, the distinct role of the mitochondria in the cardio-protection of Sal A is not understood. The aim of this study was to determine whether Sal A preconditioning protects against ATO-induced heart injury by maintaining cardiac mitochondrial function and biogenesis. For the in vivo study, BALB/c mice were treated with ATO and/or Sal A. For the in vitro study, we determined the effects of ATO and/or Sal A in H9c2 cardiomyocytes. Our results showed that ATO induced mitochondrial structural damage, abnormal mitochondrial permeability transition pore (mPTP) opening, overproduction of mitochondrial reactive oxygen species (ROS), and decreased the ATP content. Sal A pretreatment alleviated the ATO-induced mitochondrial structural and functional damage. In this study, ATO decreased the expression level of the peroxisome proliferator activator receptor gamma-coactivator 1 (PGC-1α) and disrupted the normal division and fusion of mitochondria. Sal A pretreatment improved the dynamic balance of the damaged mitochondrial biogenesis. Moreover, the combination treatment of Sal A and ATO significantly enhanced the ATO-induced cytotoxicity of SGC7901, HepaRG, K562 and HL60 cells in vitro. These results indicated that Sal A protects the heart from ATO-induced injury, which correlates with the modulation of mitochondrial function, and the maintenance of normal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Rui-Ying Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Yu-Yang Du
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Jing-Xue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| |
Collapse
|
37
|
Nho JH, Jung HK, Lee MJ, Jang JH, Sim MO, Jeong DE, Cho HW, Kim JC. Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo. Toxicol Res 2018; 34:133-141. [PMID: 29686775 PMCID: PMC5903139 DOI: 10.5487/tr.2018.34.2.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
Anti-cancer drugs such as cisplatin and doxorubicin are effectively used more than radiotherapy. Cisplatin is a chemotherapeutic drug, used for treatment of various forms of cancer. However, it has side effects such as ototoxicity and nephrotoxicity. Cisplatin-induced nephrotoxicity increases tubular damage and renal dysfunction. Consequently, we investigated the beneficial effect of cynaroside on cisplatin-induced kidney injury using HK-2 cell (human proximal tubule cell line) and an animal model. Results indicated that 10 μM cynaroside diminished cisplatin-induced apoptosis, mitochondrial dysfunction and caspase-3 activation, cisplatin-induced upregulation of caspase-3/MST-1 pathway decreased by treatment of cynaroside in HK-2 cells. To confirm the effect of cynaroside on cisplatin-induced kidney injury in vivo, we used cisplatin exposure animal model (20 mg/kg, balb/c mice, i.p., once a day for 3 days). Renal dysfunction, tubular damage and neutrophilia induced by cisplatin injection were decreased by cynaroside (10 mg/kg, i.p., once a day for 3 days). Results indicated that cynaroside decreased cisplatin-induced kidney injury in vitro and in vivo, and it could be used for improving cisplatin-induced side effects. However, further experiments are required regarding toxicity by high dose cynaroside and caspase-3/MST-1-linked signal transduction in the animal model.
Collapse
Affiliation(s)
- Jong-Hyun Nho
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Ho-Kyung Jung
- National Development Institute of Korean Medicine, Jangheung, Korea.,College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Mu-Jin Lee
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Ji-Hun Jang
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Mi-Ok Sim
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Da-Eun Jeong
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Hyun-Woo Cho
- National Development Institute of Korean Medicine, Jangheung, Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
38
|
Liu Z, Yang L, Huang J, Xu P, Zhang Z, Yin D, Liu J, He H, He M. Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3η protein. Phytother Res 2018; 32:1126-1134. [PMID: 29464855 DOI: 10.1002/ptr.6053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/14/2023]
Abstract
Ischemia/reperfusion (I/R) injury is the major cause of acute cardiovascular disease worldwide. 14-3-3η protein has been demonstrated to protect myocardium against I/R injury. Luteoloside (Lut), a flavonoid found in many Chinese herbs, exerts myocardial protection effects. However, the mechanism remains unclear. We hypothesize that the cardioprotective role of Lut is exerted by regulating the 14-3-3η signal pathway. To investigate our hypothesis, an in vitro I/R model was generated in H9C2 cardiomyocytes by anoxia/reoxygenation (A/R) treatment. The effects of Lut on cardiomyocytes with A/R injury were assessed by determining the cell viability, lactate dehydrogenase levels, intracellular reactive oxygen species levels, mitochondrial permeability transition pores (mPTP) openness, caspase-3 activity, and apoptosis rate. The effects on protein expression were tested using western blot analysis. Lut attenuated A/R-induced injury to cardiomyocytes by increasing the expression of 14-3-3η protein and cell viability; decreasing levels of lactate dehydrogenase, reactive oxygen species, mPTP openness, caspase-3 activity, and low apoptosis rate were observed. However, the cardioprotective effects of Lut were blocked by AD14-3-3ηRNAi, an adenovirus knocking down the intracellular 14-3-3η expression. In conclusion, to our knowledge, this is the first study to demonstrate that Lut protected cardiomyocytes from A/R-induced injury via the regulation of 14-3-3η signaling pathway.
Collapse
Affiliation(s)
- Zhantu Liu
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Lili Yang
- Department of Pharmacy, Nanchang School of Hygiene, Nanchang, 330006, China
| | - Jiyi Huang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Ping Xu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Zeyu Zhang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Jichun Liu
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, 330006, China
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
39
|
Qin M, Luo Y, Lu S, Sun J, Yang K, Sun G, Sun X. Ginsenoside F1 Ameliorates Endothelial Cell Inflammatory Injury and Prevents Atherosclerosis in Mice through A20-Mediated Suppression of NF-kB Signaling. Front Pharmacol 2017; 8:953. [PMID: 29311947 PMCID: PMC5744080 DOI: 10.3389/fphar.2017.00953] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and endothelial cell injury is the initial event. In this study, we investigated the protective effects of ginsenoside F1 (GF1) on AS and the potential molecular mechanisms of ox-LDL induced endothelial injury. ApoE-/- mice were fed a high fat diet and orally treated with GF1 (50 mg/kg/day) for 8 weeks. Atherosclerotic plaque and LOX-1, TLR4, NF-κB expression levels in the aortic root and inflammatory factor MPO in whole body were measured. The treatment with GF1 induced a remarkable reduction in the atherosclerotic lesion area, LOX-1, TLR4 expression and decreased the MPO distribution. Meanwhile, in vitro study, we confirmed that GF1 treatment greatly increased ox-LDL-injured endothelial cell viability, ameliorated LOX-1, TLR4 expression levels and reduced monocytes adhesion. Protein microarray demonstrated that GF1 significantly inhibited G-CSF, ICAM-1, MIP-1δ, IL-1α, IL-15, IL-16 levels. Mechanistically, the GF1 treatment suppressed the NF-κB nuclear translocation. Furthermore, our data indicated that GF1 significantly increased A20 expression level and A20 siRNA markedly abolished the attenuation of GF1 on NF-κB nuclear translocation and inflammatory factors expression. Our results suggest that the GF1 may be a potential drug for anti-atherosclerosis.
Collapse
Affiliation(s)
- Meng Qin
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
40
|
Aimaiti A, Maimaitiyiming A, Boyong X, Aji K, Li C, Cui L. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res Ther 2017; 8:282. [PMID: 29254499 PMCID: PMC5735894 DOI: 10.1186/s13287-017-0726-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022] Open
Abstract
Background Strontium is a widely used anti-osteoporotic agent due to its dual effects on inhibiting bone resorption and stimulating bone formation. Thus, we studied the dose response of strontium on osteo-inductive efficiency in human adipose-derived stem cells (hASCs). Method Qualitative alkaline phosphatase (ALP) staining, quantitative ALP activity, Alizarin Red staining, real-time polymerase chain reaction and Western blot were used to investigate the in vitro effects of a range of strontium concentrations on hASC osteogenesis and associated signaling pathways. Results In vitro work revealed that strontium (25–500 μM) promoted osteogenic differentiation of hASCs according to ALP activity, extracellular calcium deposition, and expression of osteogenic genes such as runt-related transcription factor 2, ALP, collagen-1, and osteocalcin. However, osteogenic differentiation of hASCs was significantly inhibited with higher doses of strontium (1000–3000 μM). These latter doses of strontium promoted apoptosis, and phosphorylation of ERK1/2 signaling was increased and accompanied by the downregulation of Bcl-2 and increased phosphorylation of BAX. The inhibition of ERK1/2 decreased apoptosis in hASCs. Conclusion Lower concentrations of strontium facilitate osteogenic differentiation of hASCs up to a point; higher doses cause apoptosis of hASCs, with activation of the ERK1/2 signaling pathway contributing to this process.
Collapse
Affiliation(s)
- Abudousaimi Aimaiti
- Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, 137 Li Yu Shan Road, Urumqi, Xinjiang, 830054, People's Republic of China
| | - Asihaerjiang Maimaitiyiming
- Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, 137 Li Yu Shan Road, Urumqi, Xinjiang, 830054, People's Republic of China
| | - Xu Boyong
- Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, 137 Li Yu Shan Road, Urumqi, Xinjiang, 830054, People's Republic of China
| | - Kaisaier Aji
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Cao Li
- Department of Joint Surgery, First Affiliated Hospital of Xinjiang Medical University, 137 Li Yu Shan Road, Urumqi, Xinjiang, 830054, People's Republic of China.
| | - Lei Cui
- Department of Plastic Surgery, Institute of Medical Science, Beijing Shijitan Hospital Affiliated to Capital Medical University, 10 Tieyi Road, Beijing, 100038, People's Republic of China.
| |
Collapse
|
41
|
Tian Y, Du YY, Shang H, Wang M, Sun ZH, Wang BQ, Deng D, Wang S, Xu XD, Sun GB, Sun XB. Calenduloside E Analogues Protecting H9c2 Cardiomyocytes Against H 2O 2-Induced Apoptosis: Design, Synthesis and Biological Evaluation. Front Pharmacol 2017; 8:862. [PMID: 29218010 PMCID: PMC5703861 DOI: 10.3389/fphar.2017.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Modulation of apoptosis is therapeutically effective in cardiomyocytes damage. Calenduloside E (CE), a naturally occurring triterpenoid saponin, is a potent anti-apoptotic agent. However, little is known about its synthetic analogues on the protective effects in apoptosis of cardiomyocytes. The present research was performed to investigate the potential protective effect of CE analogues against H2O2-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. Sixteen novel CE anologues have been designed, synthesized and biological evaluation. Among the 16 CE anologues, as well as the positive control CE tested, compound 5d was the most effective in improving cardiomyocytes viability. Pretreatment with anologue 5d inhibited ROS generation, maintained the mitochondrial membrane potential and reduced apoptotic cardiomyocytes. Moreover, exposure to H2O2 significantly increased the levels of Bax, cleaved caspase-3, and cleaved PARP, and decreased the level of Bcl-2, resulting in cell apoptosis. Pretreatment with anologue 5d (0.02-0.5 μg/mL) dose-dependently upregulated antiapoptotic proteins and downregulated proapoptotic proteins mentioned above during H2O2-induced apoptosis. These results suggested that CE analogues provide protection to H9c2 cardiomyocytes against H2O2-induced oxidative stress and apoptosis, most likely via anti-apoptotic mechanism, and provided the basis for the further optimization of the CE analogues.
Collapse
Affiliation(s)
- Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Shang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhong-Hao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao-Qi Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Di Deng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Research and Development on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhong Guan Cun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Zhang JY, Guo Y, Si JP, Sun XB, Sun GB, Liu JJ. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways. Int J Biol Macromol 2017; 104:1-10. [DOI: 10.1016/j.ijbiomac.2017.05.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
43
|
Jana S, Patel D, Patel S, Upadhyay K, Thadani J, Mandal R, Das S, Devkar R. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. PLoS One 2017; 12:e0182137. [PMID: 28763488 PMCID: PMC5538674 DOI: 10.1371/journal.pone.0182137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Cardioprotective potential of anthocyanin rich red cabbage extract (ARCE) was assessed in H2O2 treated rat neonatal cardiomyoblasts (H9c2 cells) and isoproterenol (ISO) induced rodent model of myocardial infarction. H2O2 treated H9c2 cells recorded cytotoxicity (48–50%) and apoptosis (57.3%), the same were reduced in presence of ARCE (7–10% & 12.3% respectively). Rats pretreated with ARCE for 30 days followed by ISO treatment recorded favourable heart: body weight ratio as compared to ISO treated group. Also, the mRNA levels of enzymatic antioxidants (sod and catalase) and apoptotic genes (bax and bcl-2) in ARCE+ISO treated group were similar to the control group suggesting that ARCE pretreatment prevents ISO induced depletion of enzymatic antioxidants and apoptosis. Histoarchitecture of ventricular tissue of ISO treated group was marked by infracted areas (10%) and derangement of myocardium whereas, ARCE+ISO treated group (4.5%) recorded results comparable to control (0%). ARCE+ISO treated group accounted for upregulation of caveolin-3 and SERCA2a expression as compared to the ISO treated group implying towards ARCE mediated reduction in membrane damage and calcium imbalance. Molecular docking scores and LigPlot analysis of cyanidin-3-glucoside (-8.7 Kcal/mol) and delphinidin-3-glucoside (-8.5 Kcal/mol) showed stable hydrophobic and electrostatic interactions with β1 adrenergic receptor. Overall this study elucidates the mechanism of ARCE mediated prevention of experimentally induced myocardial damage.
Collapse
Affiliation(s)
- Sarmita Jana
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Dipak Patel
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
- Ecotoxicology lab, Jai Research Foundation, Vapi, India
| | - Shweta Patel
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Kapil Upadhyay
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Jaymesh Thadani
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Rahul Mandal
- Biomedical Informatics centre, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Biomedical Informatics centre, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ranjitsinh Devkar
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
- * E-mail:
| |
Collapse
|
44
|
Song Y, Zhou J, Wang X, Xie X, Zhao Y, Ni F, Huang W, Wang Z, Xiao W. A new ferulic acid ester from Rhodiola wallichiana var. cholaensis (Crassulaceae). Nat Prod Res 2017; 32:77-84. [PMID: 28610437 DOI: 10.1080/14786419.2017.1335724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new ferulic acid ester, 6-feruloyloxyhexanoic acid (1), was isolated along with 10 known ones (2-11), from the concentrated water extract of Rhodiola wallichiana var. cholaensis. Their chemical structures were elucidated on the basis of extensive spectroscopic methods including Two-dimensional nuclear magnetic resonance (2D NMR) experiments. Compound 3 was isolated from this plant for the first time. The protective effects against H2O2-induced myocardial cell injury in cultured H9c2 cells were also evaluated. Compounds 1, 5 and 7-11 provided significant protective effects on H2O2-induced H9c2 cells injury at the concentration of 25 μg/mL. And the protective effects of compound 1 was also investigated by the oxygen-glucose deprivation/reperfusion (OGD/R) tests.
Collapse
Affiliation(s)
- Yaling Song
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Jianming Zhou
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Xuejing Wang
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Xue Xie
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Yiwu Zhao
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Fuyong Ni
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Wenzhe Huang
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Zhenzhong Wang
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| | - Wei Xiao
- a Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang , People's Republic of China.,b State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process , Lianyungang , People's Republic of China
| |
Collapse
|
45
|
Wang M, Sun GB, Du YY, Tian Y, Liao P, Liu XS, Ye JX, Sun XB. Myricitrin Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury: Involvement of Heat Shock Protein 90. Front Pharmacol 2017. [PMID: 28642708 PMCID: PMC5462924 DOI: 10.3389/fphar.2017.00353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Modulation of oxidative stress is therapeutically effective in ischemia/reperfusion (I/R) injury. Myricitrin, a naturally occurring phenolic compound, is a potent antioxidant. However, little is known about its effect on I/R injury to cardiac myocytes. The present study was performed to investigate the potential protective effect of myricitrin against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. Myricitrin pretreatment improved cardiomyocyte viability, inhibited ROS generation, maintained the mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased the caspase-3 activity, upregulated antiapoptotic proteins and downregulated proapoptotic proteins during H/R injury. Moreover, the potential targets of myricitrin was predicted using Discovery Studio software, and heat shock protein 90 (Hsp90) was identified as the main disease-related target. Further mechanistic investigation revealed that 17-AAG, a pharmacologic inhibitor of Hsp90, significantly blocked the myricitrin-induced cardioprotective effect demonstrated by increased apoptosis and ROS generation. These results suggested that myricitrin provides protection to H9c2 cardiomyocytes against H/R-induced oxidative stress and apoptosis, most likely via increased expression of Hsp90.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Ping Liao
- College of Pharmacy, Guilin Medical UniversityGuilin, China
| | - Xue-Song Liu
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of CommerceHarbin, China
| | - Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences-Peking Union Medical CollegeBeijing, China
| |
Collapse
|
46
|
Yu X, Wang Z, Shu Z, Li Z, Ning Y, Yun K, Bai H, Liu R, Liu W. Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl. flavonoids protect against arsenic trioxide-induced cardiotoxicity. Biomed Pharmacother 2017; 88:1-10. [DOI: 10.1016/j.biopha.2016.12.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/26/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
|
47
|
Wang M, Tian Y, Du YY, Sun GB, Xu XD, Jiang H, Xu HB, Meng XB, Zhang JY, Ding SL, Zhang MD, Yang MH, Sun XB. Protective effects of Araloside C against myocardial ischaemia/reperfusion injury: potential involvement of heat shock protein 90. J Cell Mol Med 2017; 21:1870-1880. [PMID: 28225183 PMCID: PMC5571541 DOI: 10.1111/jcmm.13107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/28/2016] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate whether Araloside C, one of the major triterpenoid compounds isolated from Aralia elata known to be cardioprotective, can improve heart function following ischaemia/reperfusion (I/R) injury and elucidate its underlying mechanisms. We observed that Araloside C concentration‐dependently improved cardiac function and depressed oxidative stress induced by I/R. Similar protection was confirmed in isolated cardiomyocytes characterized by maintaining Ca2+ transients and cell shortening against I/R. Moreover, the potential targets of Araloside C were predicted using the DDI‐CPI server and Discovery Studio software. Molecular docking analysis revealed that Araloside C could be stably docked into the ATP/ADP‐binding domain of the heat shock protein 90 (Hsp90) protein via the formation of hydrogen bonds. The binding affinity of Hsp90 to Araloside C was detected using nanopore optical interferometry and yielded KD values of 29 μM. Araloside C also up‐regulated the expression levels of Hsp90 and improved cell viability in hypoxia/reoxygenation‐treated H9c2 cardiomyocytes, whereas the addition of 17‐AAG, a pharmacologic inhibitor of Hsp90, attenuated Araloside C‐induced cardioprotective effect. These findings reveal that Araloside C can efficiently attenuate myocardial I/R injury by reducing I/R‐induced oxidative stress and [Ca2+]i overload, which was possibly related to its binding to the Hsp90 protein.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Yang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai Jiang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjang, China
| | - Hui-Bo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Xiang-Bao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing-Yi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi-Lan Ding
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Miao-di Zhang
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Ming-Hua Yang
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Liu C, Huang Y. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action. Front Pharmacol 2016; 7:469. [PMID: 27990122 PMCID: PMC5130975 DOI: 10.3389/fphar.2016.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the principal cause of death worldwide. The potentially serious adverse effects of therapeutic drugs lead to growing awareness of the role of Chinese herbal medicine in the treatment of cardiovascular diseases. Chinese herbal medicine has been widely used in many countries especially in China from antiquity; however, the mechanisms by which herbal medicine acts in the prevention and treatment of cardiovascular diseases are far from clear. In this review, we briefly describe the characteristics of Chinese herbal medicine by comparing with western medicine. Then we summarize the formulae and herbs/natural products applied in the clinic and animal studies being sorted according to the specific cardiovascular diseases. Most importantly, we elaborate the existing investigations into mechanisms by which herbal compounds act at the cellular levels, including vascular smooth muscle cells, endothelial cells, cardiomyocytes and immune cells. Future research should focus on well-designed clinic trial, in-depth mechanic study, investigations on side effects of herbs and drug interactions. Studies on developing new agents with effectiveness and safety from traditional Chinese medicine is a promising way for prevention and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Cuiqing Liu
- Department of Preventive Medicine, Basic Medical College, Zhejiang Chinese Medical University Hangzhou, China
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
49
|
Myricitrin Protects against Doxorubicin-Induced Cardiotoxicity by Counteracting Oxidative Stress and Inhibiting Mitochondrial Apoptosis via ERK/P53 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6093783. [PMID: 27703489 PMCID: PMC5039279 DOI: 10.1155/2016/6093783] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/08/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022]
Abstract
Doxorubicin (Dox) is one of the most effective and widely used anthracycline antineoplastic antibiotics. Unfortunately, the use of Dox is limited by its cumulative and dose-dependent cardiac toxicity. Myricitrin, a natural flavonoid which is isolated from the ground bark of Myrica rubra, has recently been found to have a strong antioxidative effect. This study aimed to evaluate the possible protective effect of myricitrin against Dox-induced cardiotoxicity and the underlying mechanisms. An in vivo investigation in SD rats demonstrated that myricitrin significantly reduced the Dox-induced myocardial damage, as indicated by the decreases in the cardiac index, amelioration of heart pathological injuries, and decreases in the serum cardiac enzyme levels. In addition, in vitro studies showed that myricitrin effectively reduced the Dox-induced cell toxicity. Further study showed that myricitrin exerted its function by counteracting oxidative stress and increasing the activities of antioxidant enzymes. Moreover, myricitrin suppressed the myocardial apoptosis induced by Dox, as indicated by decreases in the activation of caspase-3 and the numbers of TUNEL-positive cells, maintenance of the mitochondrial membrane potential, and increase in the Bcl-2/Bax ratio. Further mechanism study revealed that myricitrin-induced suppression of myocardial apoptosis relied on the ERK/p53-mediated mitochondrial apoptosis pathway.
Collapse
|
50
|
Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol Sin 2016; 37:344-53. [PMID: 26775664 DOI: 10.1038/aps.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
AIM Sulforaphane (SFN), a natural dietary isothiocyanate, is found to exert beneficial effects for cardiovascular diseases. This study aimed to investigate the mechanisms underlying the protective effects of SFN in a model of myocardial hypoxia/reoxygenation (H/R) injury in vitro. METHODS Cultured neonatal rat cardiomyocytes pretreated with SFN were subjected to 3-h hypoxia followed by 3-h reoxygenation. Cell viability and apoptosis were detected. Caspase-3 activity and mitochondrial membrane potential (ΔΨm) was measured. The expression of ER stress-related apoptotic proteins were analyzed with Western blot analyses. Silent information regulator 1 (SIRT1) activity was determined with SIRT1 deacetylase fluorometric assay kit. RESULTS SFN (0.1-5 μmol/L) dose-dependently improved the viability of cardiomyocytes, diminished apoptotic cells and suppressed caspase-3 activity. Meanwhile, SFN significantly alleviated the damage of ΔΨm and decreased the expression of ER stress-related apoptosis proteins (GRP78, CHOP and caspase-12), elevating the expression of SIRT1 and Bcl-2/Bax ratio in the cardiomyocytes. Co-treatment of the cardiomyocytes with the SIRT1-specific inhibitor Ex-527 (1 μmol/L) blocked the SFN-induced cardioprotective effects. CONCLUSION SFN prevents cardiomyocytes from H/R injury in vitro most likely via activating SIRT1 pathway and subsequently inhibiting the ER stress-dependent apoptosis.
Collapse
|