1
|
Wu X, Hu JJ, Chen L, Chen Z, Wang T, Wu F, Dai J, Xia F, Lou X. Targeting Proteins in Nucleus through Dual-Regulatory Pathways Acting in Cytoplasm. NANO LETTERS 2023. [PMID: 37289977 DOI: 10.1021/acs.nanolett.3c01815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.
Collapse
Affiliation(s)
- Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lulu Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Feng Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Wang B, Ji L, Bian Q. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites. Cell Rep 2023; 42:112323. [PMID: 37000624 DOI: 10.1016/j.celrep.2023.112323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Special AT-rich sequence binding protein 1 (SATB1) has long been proposed to act as a global chromatin loop organizer in T cells. However, the exact functions of SATB1 in spatial genome organization remain elusive. Here we show that the depletion of SATB1 in human and murine T cells leads to transcriptional dysregulation for genes involved in T cell activation, as well as alterations of 3D genome architecture at multiple levels, including compartments, topologically associating domains, and loops. Importantly, SATB1 extensively colocalizes with CTCF throughout the genome. Depletion of SATB1 leads to increased chromatin contacts among and across the SATB1/CTCF co-occupied sites, thereby affecting the transcription of critical regulators of T cell activation. The loss of SATB1 does not affect CTCF occupancy but significantly reduces the retention of CTCF in the nuclear matrix. Collectively, our data show that SATB1 contributes to 3D genome organization by constraining chromatin topology surrounding CTCF-binding sites.
Collapse
Affiliation(s)
- Bao Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Luzhang Ji
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Tang X, Cao Y, Liu J, Wang S, Yang Y, Du P. The diagnostic and prognostic value of nuclear matrix protein 22 in bladder cancer. Transl Cancer Res 2020; 9:7174-7182. [PMID: 35117321 PMCID: PMC8797374 DOI: 10.21037/tcr-20-1824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/17/2020] [Indexed: 11/23/2022]
Abstract
Backgrounds This study aimed to evaluate the diagnostic and prognostic value of urine nuclear matrix protein 22 (NMP22) for bladder cancer. Methods A retrospective analysis was performed on 229 patients with bladder cancer who underwent transurethral resection of bladder tumor between 2015 and 2018 in our hospital. The sensitivity of NMP22 was calculated to evaluate the diagnostic value of NMP22. Logistic regression analyses were applied to investigate the prognostic value of NMP22 for pathologic features in bladder cancer. Results The sensitivity of NMP22 for the detection of bladder cancer was 28.82%, and the false negative rate was 71.18%. The sensitivity of NMP22 for the detection of low-grade disease and high-grade disease were 11.11% and 38.51%. NMP22 had significantly higher sensitivity for the detection of high-grade bladder cancer (P<0.001). The sensitivity of NMP22 for the detection of Ta, T1 and T2 disease were 20.78%, 50.85% and 25.00% respectively (Ta refers to noninvasive papillary carcinoma, T1 refers to tumor invades subepithelial connective tissue, T2 refers to tumor invades muscularis propria). NMP22 had significantly higher sensitivity for detection of T1 disease (P<0.001). Univariate and multivariate logistic regression analysis suggested NMP22 might be an independent prognostic factor for high-grade (P<0.001) and T1 disease (P<0.001) in patients with bladder cancer. Conclusions Although the sensitivity of NMP22 was significantly higher in the detection of T1 and high-grade bladder cancer, the false negative rate was high. Besides, the NMP22 might be a prognostic factor for high-grade and T1 bladder cancer, but considering the limitations of this study, further studies are needed.
Collapse
Affiliation(s)
- Xingxing Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yudong Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jia Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuo Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Peng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Liu Q, Li E, Huang L, Cheng M, Li L. Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells. J Cancer 2018; 9:424-432. [PMID: 29344289 PMCID: PMC5771350 DOI: 10.7150/jca.21375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
Background: The limb-bud and heart gene (LBH) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions: Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might be a therapeutic target and potential diagnostic marker in PCa.
Collapse
Affiliation(s)
- Qicai Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Department of Cardiology; Heart Center, Zhujiang Hospital, Southern Medical University
| | - Ermao Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou 510660, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Long Huang
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou 510660, China
| | - Minsheng Cheng
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Department of Cardiology; Heart Center, Zhujiang Hospital, Southern Medical University
| | - Li Li
- State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou 510660, China
| |
Collapse
|
5
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
6
|
Affiliation(s)
- Jennifer Pfizenmaier
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| | - Ralf Takors
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
7
|
Hu F, Liu B. Organelle-specific bioprobes based on fluorogens with aggregation-induced emission (AIE) characteristics. Org Biomol Chem 2016; 14:9931-9944. [DOI: 10.1039/c6ob01414c] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A number of aggregation-induced emission (AIE) probes with high photostability and specificity have been developed for organelle imaging and image-guided cancer cell ablation.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Nanoscience and Nanotechnology Institute
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of Materials Research and Engineering (IMRE)
| |
Collapse
|
8
|
Mitchell TRH, Zhu XD. Methylated TRF2 associates with the nuclear matrix and serves as a potential biomarker for cellular senescence. Aging (Albany NY) 2014; 6:248-63. [PMID: 24721747 PMCID: PMC4032793 DOI: 10.18632/aging.100650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Methylation of N-terminal arginines of the shelterin component TRF2 is important for cellular proliferation. While TRF2 is found at telomeres, where it plays an essential role in maintaining telomere integrity, little is known about the cellular localization of methylated TRF2. Here we report that the majority of methylated TRF2 is resistant to extraction by high salt buffer and DNase I treatment, indicating that methylated TRF2 is tightly associated with the nuclear matrix. We show that methylated TRF2 drastically alters its nuclear staining as normal human primary fibroblast cells approach and enter replicative senescence. This altered nuclear staining, which is found to be overwhelmingly associated with misshapen nuclei and abnormal nuclear matrix folds, can be suppressed by hTERT and it is barely detectable in transformed and cancer cell lines. We find that dysfunctional telomeres and DNA damage, both of which are potent inducers of cellular senescence, promote the altered nuclear staining of methylated TRF2, which is dependent upon the ATM-mediated DNA damage response. Collectively, these results suggest that the altered nuclear staining of methylated TRF2 may represent ATM-mediated nuclear structural alteration associated with cellular senescence. Our data further imply that methylated TRF2 can serve as a potential biomarker for cellular senescence.
Collapse
Affiliation(s)
- Taylor R H Mitchell
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
9
|
Tomera KM. NMP22® BladderChek® Test: point-of-care technology with life- and money-saving potential. Expert Rev Mol Diagn 2014; 4:783-94. [PMID: 15525221 DOI: 10.1586/14737159.4.6.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new, relatively obscure tumor marker assay, the NMP22 BladderChek Test (Matritech, Inc.), represents a paradigm shift in the diagnosis and management of urinary bladder cancer (transitional cell carcinoma). Specifically, BladderChek should be employed every time a cystoscopy is performed, with corresponding changes in the diagnostic protocol and the guidelines of the American Urological Association for the diagnosis and management of bladder cancer. Currently, cystoscopy is the reference standard and NMP22 BladderChek Test in combination with cystoscopy improves the performance of cystoscopy. At every stage of disease, BladderChek provides a higher sensitivity for the detection of bladder cancer than cytology, which now represents the adjunctive standard of care. Moreover, BladderChek is four-times more sensitive than cytology and is available at half the cost. Early detection of bladder cancer improves prognosis, quality of life and survival. BladderChek may be analogous to the prostate-specific antigen test and eventually expand beyond the urologic setting into the primary care setting for the testing of high-risk patients characterized by smoking history, occupational exposures or age.
Collapse
Affiliation(s)
- Kevin M Tomera
- Alaska Regional Medical Plaza, 1200 Airport Heights Drive, Suite 101, Anchorage, Alaska 99508, USA.
| |
Collapse
|
10
|
Abstract
X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI.
Collapse
Affiliation(s)
- Daphne B. Pontier
- Department of Reproduction and Development, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
11
|
Chavali PL, Funa K, Chavali S. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions. Nucleic Acids Res 2011; 39:6908-18. [PMID: 21586588 PMCID: PMC3167628 DOI: 10.1093/nar/gkr303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) spatio-temporally modulate gene expression; however, very little is known about the regulation of their expression. Here, we hypothesized that the well-known cis-regulatory elements of gene expression, scaffold/matrix-attachment regions (MARs) could modulate miRNA expression. Accordingly, we found MARs to be enriched in the upstream regions of miRNA genes. To determine their role in cell type-specific expression of miRNAs, we examined four individual miRNAs (let-7b, miR-17, miR-93 and miR-221) and the miR-17-92 cluster, known to be overexpressed in neuroblastoma. Our results show that MARs indeed define the cell-specific expression of these miRNAs by tethering the chromatin to nuclear matrix. This is brought about by cell type-specific binding of HMG I/Y protein to MARs that then promotes the local acetylation of histones, serving as boundary elements for gene activation. The binding, chromatin tethering and gene activation by HMG I/Y was not observed in fibroblast control cells but were restricted to neuroblastoma cells. This study implies that the association of MAR binding proteins to MARs could dictate the tissue/context specific regulation of miRNA genes by serving as a boundary element signaling the transcriptional activation.
Collapse
|
12
|
Nakagawa S, Prasanth KV. eXIST with matrix-associated proteins. Trends Cell Biol 2011; 21:321-7. [PMID: 21392997 DOI: 10.1016/j.tcb.2011.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 12/14/2022]
Abstract
X-chromosome inactivation has long served as an experimental model system for understanding the epigenetic regulation of gene expression. Central to this phenomenon is the long, non-coding RNA Xist that is specifically expressed from the inactive X chromosome and spreads along the entire length of the chromosome in cis. Recently, two of the proteins originally identified as components of the nuclear scaffold/matrix (S/MAR-associated proteins) have been shown to control the principal features of X-chromosome inactivation; specifically, context-dependent competency and the chromosome-wide association of Xist RNA. These findings implicate the involvement of nuclear S/MAR-associated proteins in the organization of epigenetic machinery. Here, we describe a model for the functional role of S/MAR-associated proteins in the regulation of key epigenetic processes.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
13
|
Hashim AAA, Youns M, Soltan AAAR, Ali SAEM. Nuclear Matrix Protein-22 and Telomerase Reverse Transcriptase Are Diagnostic Markers for Bladder Carcinoma in Egypt. JOURNAL OF CANCER THERAPY 2011; 02:646-653. [DOI: 10.4236/jct.2011.25086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Age-related association of rDNA and telomeres with the nuclear matrix in mouse hepatocytes. Cell Biol Int 2010; 34:925-31. [PMID: 20518743 DOI: 10.1042/cbi20090457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcribed sequences have been suggested to be associated with the nuclear matrix, differing from non-transcribing sequences, which have been reported to be contained in DNA loops. However, although a dozen of genes have their expression level affected by aging, data on chromatin-nuclear matrix interactions under this physiological condition are still scarce. In the present study, liver imprints from young, adult and old mice were subjected to FISH (fluorescence in situ hybridization) for 45S rDNA and telomeric sequences, with or without a lysis treatment to produce extended chromatin fibres. There was an increased amount of 45S rDNA sequences located in DNA loops as the animals grow older, while telomeric sequences were always observed in DNA loops irrespective of the animal age. We assume that active rRNA genes associate with the nuclear matrix, while DNA loops contain silent sequences. Transcription of each 45S rDNA repeat unit is suggested to be dependent on its interaction with the nuclear matrix.
Collapse
|
15
|
Toumpanaki A, Baltatzis GE, Gaitanarou E, Seretis E, Toumpanakis C, Aroni K, Kittas C, Voloudakis-Baltatzis IE. Two-Dimensional Electrophoretic Analysis of Nuclear Matrix Proteins in Human Colon Adenocarcinoma. Ultrastruct Pathol 2009; 33:83-91. [DOI: 10.1080/01913120802454355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66:1858-67. [PMID: 19387548 PMCID: PMC4385580 DOI: 10.1007/s00018-009-9154-y] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- J. H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - G. Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - J. Slaton
- Urology Service, Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - K. Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
17
|
Karpati G, O'Ferrall EK. Sporadic inclusion body myositis: pathogenic considerations. Ann Neurol 2009; 65:7-11. [PMID: 19194875 DOI: 10.1002/ana.21622] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sporadic inclusion body myositis is the commonest acquired disease of skeletal muscles after 50 years of age, and as such it has commanded a great deal of attention of investigators over the past 25 years. As a result, a large amount of information has accumulated concerning its clinical profile, myopathology, and immunopathology. In the myopathology and immunopathology, there is general agreement that the characteristic features could be divided into a degenerative and an inflammatory group. However, there has been controversy about the possible role of these changes in the pathogenesis of muscle fiber damage. In particular, there is no agreement whether a cause-and-effect relationship exists between these two groups of changes, and if so, which is the primary one. In this brief overview, we examine the validity of the various controversial observations and critically review the justification for the two major hypotheses for the primary role of inflammation versus degeneration.
Collapse
Affiliation(s)
- George Karpati
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada.
| | | |
Collapse
|
18
|
Haddad N, Paulin-Levasseur M. Effects of heat shock on the distribution and expression levels of nuclear proteins in HeLa S3 cells. J Cell Biochem 2009; 105:1485-500. [PMID: 18980230 DOI: 10.1002/jcb.21968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cumulating evidence has led to the idea that nuclear functions such as DNA replication, RNA transcription, RNA splicing and nucleocytoplasmic transport are facilitated by a proteinaceous architectural framework within the nuclear compartment and at the nuclear envelope. In the present study, we have used immunofluorescence microscopy and quantitative Western blotting to compare the distribution and expression levels of several nuclear proteins during the response of HeLa S3 cells to both mild and severe hyperthermia. Cells were exposed to mild (42 degrees C) or severe (45 degrees C) hyperthermia treatment for 90 min and left to recover at 37 degrees C for 1-25 h. The cell response was monitored immediately after the heat stress and at different time intervals during the recovery period. Our observations indicate that inner nuclear membrane proteins, LAP2beta and emerin, as well as major components of the nuclear lamina, lamins A/C and lamin B1, maintain an overall normal distribution at the nuclear periphery throughout the cell response to mild or severe hyperthermia. The response was nevertheless characterized by significant changes in the expression levels of emerin following recovery from a mild stress and of lamin B1 after recovery from a severe stress. Our results also provide evidence that the organization of functional domains within the nuclear interior such as nucleoli and splicing speckles differs between cells responding to a mild or a severe stress. Mild hyperthermia was accompanied by a significant decrease in the expression level of the nucleolar protein 2H12 whereas severe hyperthermia was characterized by a reduction in the expression of the nucleocytoplasmic shuttling protein 2A7. Our data underline the complexity of nuclear function/structure relationships and the needs for a better understanding of protein-protein interactions within the nuclear compartment.
Collapse
Affiliation(s)
- Nisrine Haddad
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
19
|
|
20
|
Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 2007; 120:2498-506. [PMID: 17623775 DOI: 10.1242/jcs.009357] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent transcriptome analyses have revealed that a large body of noncoding regions of mammalian genomes are actually transcribed into RNAs. Our understanding of the molecular features of these noncoding RNAs is far from complete. We have identified a novel mRNA-like noncoding gene, named Gomafu, which is expressed in a distinct set of neurons in the mouse nervous system. Interestingly, spliced mature Gomafu RNA is localized to the nucleus despite its mRNA-like characteristics, which usually act as potent export signals to the cytoplasm. Within the nucleus, Gomafu RNA is detected as numerous spots that do not colocalize with known nuclear domain markers. Gomafu RNA is extremely insoluble and remains intact after nuclear matrix preparation. Furthermore, heterokaryon assays revealed that Gomafu RNA does not shuttle between the nucleus and cytoplasm, but is retained in the nucleus after its transcription. We propose that Gomafu RNA represents a novel family of mRNA-like noncoding RNA that constitutes a cell-type-specific component of the nuclear matrix.
Collapse
Affiliation(s)
- Masamitsu Sone
- Nakagawa Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM. Alterations to nuclear architecture and genome behavior in senescent cells. Ann N Y Acad Sci 2007; 1100:250-63. [PMID: 17460187 DOI: 10.1196/annals.1395.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres.
Collapse
Affiliation(s)
- Ishita S Mehta
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Biosciences, School of Health Sciences and Social Care, Brunel University, West London, UB8 3PH, UK
| | | | | | | | | |
Collapse
|
22
|
Campos-Fernandes JL, Descotes F, André J, Perrin P, Devonec M, Ruffion A. Intérêt des marqueurs urinaires dans le diagnostic et le suivi des tumeurs urothéliales de vessie. Prog Urol 2007; 17:23-34. [PMID: 17373233 DOI: 10.1016/s1166-7087(07)92221-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Urothelial bladder tumours require regular surveillance: cystoscopy associated with urine cytology are reference examinations. Several new markers currently under evaluation or already validated have recently been proposed to replace cytology and potentially reduce or even replace unnecessary cystoscopies. The biological fluid studied for all of these markers is the same as that of urine cytology, i.e. urine. The authors review the results of recent studies on these new urinary markers. The results of these markers demonstrate a better global sensitivity than urine cytology, but often a lower specificity. In the majority of cases, these tests are performed during patient follow-up (NMP22, BTA, CYFRA 21-l., etc.), but do not replace cystoscopy, due to a large number of false-positives. Other techniques, such as FISH, uCyt+ or microsatellites appear to be more promising, especially for the diagnosis of low-grade tumours. The best solution in practice may consist of a combination of several markers to further improve sensitivity and to decrease the false-positive rate responsible for unnecessary cystoscopies.
Collapse
|
23
|
Fiorini A, Gouveia FDS, Fernandez MA. Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. BIOCHEMISTRY (MOSCOW) 2006; 71:481-8. [PMID: 16732725 DOI: 10.1134/s0006297906050038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá Maringá, Paraná 87020-900, Brazil
| | | | | |
Collapse
|
24
|
Kaya K, Ayan S, Gokce G, Kilicarslan H, Yildiz E, Gultekin EY. Urinary nuclear matrix protein 22 for diagnosis of renal cell carcinoma. ACTA ACUST UNITED AC 2005; 39:25-9. [PMID: 15764267 DOI: 10.1080/00365590410002500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the incidence of positive urinary nuclear matrix protein 22 (NMP22) values, which are currently used to detect transitional cell carcinoma of the bladder, in renal cell carcinoma (RCC). MATERIAL AND METHODS Urinary NMP22 values were determined preoperatively in 41 patients in whom a solid renal mass had been detected using CT and who were scheduled for radical nephrectomy; 38 of these patients were diagnosed with RCC. Two patients had xanthogranulomatous pyelonephritis and one had metastasis of a small cell adenocarcinoma to the kidney; these patients were excluded from the study. A total of 30 patients with kidney stones and simple renal cysts were used as controls. RESULTS The urinary NMP22 values of the RCC patients were significantly higher than those of the controls. Of the 38 patients with RCC, 23 (60.5%) had positive urinary NMP22 values > or =10 U/ml. There were four measurements above this cut-off level in the control group. Urinary NMP22 values increased with an increase in pathologic tumor stage, but the correlation was not statistically significant. There was no correlation between grade and urinary NMP22 or between tumor burden and urinary NMP22. CONCLUSIONS The urinary NMP22 test may help to diagnose RCC and may also result in an increase in the incidental discovery of RCC. As elevated urinary NMP22 levels have also been found to occur in RCC, patients with suspected bladder cancer and positive urinary NMP22 levels should be more broadly evaluated. Specific NMP assays for renal tumor cells may increase the utility of the test for RCC.
Collapse
Affiliation(s)
- K Kaya
- Department of Urology, Cumhuriyet University, 58140 Sivas, Turkey.
| | | | | | | | | | | |
Collapse
|
25
|
Berezney R, Malyavantham KS, Pliss A, Bhattacharya S, Acharya R. Spatio-temporal dynamics of genomic organization and function in the mammalian cell nucleus. ACTA ACUST UNITED AC 2005; 45:17-26. [PMID: 16139341 DOI: 10.1016/j.advenzreg.2005.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
26
|
Rampalli S, Kulkarni A, Kumar P, Mogare D, Galande S, Mitra D, Chattopadhyay S. Stimulation of Tat-independent transcriptional processivity from the HIV-1 LTR promoter by matrix attachment regions. Nucleic Acids Res 2003; 31:3248-56. [PMID: 12799452 PMCID: PMC162244 DOI: 10.1093/nar/gkg410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chromatin environment and the sites of integration in the host genome are critical determinants of human immunodeficiency virus (HIV) transcription and replication. Depending on the chromosomal location of provirus integration within the genome, HIV-1 long terminal repeat (LTR)-mediated transcription may vary from 0- to 70-fold. Cis-elements such as topoisomerase II cleavage sites, Alu repeats and matrix attachment regions (MARs) are thought to be targets for retroviral integration. Here we show that a novel MAR sequence from the T-cell receptor beta locus (MARbeta) and the IgH MAR mediate transcriptional augmentation when placed upstream of the HIV-1 LTR promoter. The effect of transcriptional augmentation is seen in both transient and stable transfection, indicating its effect even upon integration in the genome. MAR-mediated transcriptional elevation is independent of Tat, and occurs synergistically in the presence of Tat. Further, we show that MAR-mediated transcriptional elevation is specific to the HIV-1 LTR and the Moloney murine leukemia virus LTR promoter. In a transient transfection assay using over-expressed IkappaB, the inhibitor of NF-kappaB, we show that MAR-induced processive transcription is NF-kappaB dependent, signifying the role of local enhancers within the LTR promoter. Furthermore, by RNase protection experiments using proximal and distal probes, we show that MAR-mediated transcriptional upregulation is more prominent at the distal rather than the proximal end, thus indicating the potential role of MARs in promoting elongation.
Collapse
Affiliation(s)
- Shravanti Rampalli
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang H, Yu S, Davis AT, Ahmed K. Cell cycle dependent regulation of protein kinase CK2 signaling to the nuclear matrix. J Cell Biochem 2003; 88:812-22. [PMID: 12577315 DOI: 10.1002/jcb.10438] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein kinase CK2 is a ubiquitous protein serine/threonine kinase that is involved in cell growth and proliferation as well as suppression of apoptosis. Several studies have suggested that the kinase plays a role in cell cycle progression; however, changes in enzyme activity during phases of cell cycle have not been detected. Nuclear matrix is a key locus for CK2 signaling in the nucleus. We therefore examined CK2 signaling to the nuclear matrix in distinct phases of cell cycle by employing synchronized ALVA-41 prostate cancer cells. Removal of serum from the culture medium resulted in G0/G1 arrest, and a reduction in the nuclear matrix-associated CK2 activity which was rapidly reversed on addition of serum. Arresting the cells in G(0)/G(1) phase with hydroxyurea and subsequent release to S phase by serum gave similar results. Cells arrested in the G(2)/M phase by treatment with nocodazole demonstrated an extensive reduction in the nuclear matrix-associated CK2 which was reversed rapidly on addition of serum. Changes in the immunoreactive CK2 protein were concordant with the activity data reflecting a dynamic trafficking of the kinase in distinct phases of cell cycle. Under the same conditions, CK2 activity in total cellular lysate remained essentially unaltered. These results provide the first direct evidence of discrete modulations of CK2 in the nuclear matrix during the cell cycle progression. Inducible overexpression of CK2 in CHO cells yielded only a modest increase in CK2 activity even though a significant increase in expression was apparent at the level of CK2 alpha-specific message. Stably transfected ALVA-41 cells, however, did not show a significant change in CK2 levels despite increased expression at the message level. Not surprisingly, both types of the stably transfected cells failed to show any alteration in cell cycle progression. Distribution of the CK2 activity in the cytosolic versus nuclear matrix fractions in normal cells appears to be different from that in the cancer cells such that the ratio of nuclear matrix to cytosolic activity is much higher in the latter. Considering that nuclear matrix is central to several nuclear functions, this pattern of intracellular distribution of CK2 may have implications for its role in the oncogenic process. Published 2003 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Huamin Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis Veterans Affairs Medical Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55417, USA
| | | | | | | |
Collapse
|
28
|
Berezney R. Regulating the mammalian genome: the role of nuclear architecture. ADVANCES IN ENZYME REGULATION 2002; 42:39-52. [PMID: 12123705 DOI: 10.1016/s0065-2571(01)00041-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, 14260, USA
| |
Collapse
|
29
|
Davis AT, Wang H, Zhang P, Ahmed K. Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix. J Cell Biochem 2002; 85:583-91. [PMID: 11967998 DOI: 10.1002/jcb.10158] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear matrix, a key structure in the nuclear framework, appears to be a particularly responsive target during heat shock treatment of cells. We have previously shown that nuclear matrix is a preferential target for protein kinase CK2 signaling in the nucleus. The levels of CK2 in the nuclear matrix undergo dynamic changes in response to altered growth status in the cell. Here, we have demonstrated that CK2 targeting to the nuclear matrix is profoundly influenced by treatment of the cells to temperatures higher than 37 degrees C. Rapid increase in the nuclear matrix association of CK2 is observed when cells are placed at temperatures of 41 and 45 degrees C. This effect at 45 degrees C was higher than at 41 degrees C, and was time-dependent. Also, different cell lines behaved in a qualitatively similar manner though the quantitative responses differed. The modulations in the nuclear matrix associated CK2 in response to heat shock appear to be due to trafficking of the enzyme between cytosolic and nuclear compartments. In addition, it was noted that isolated nuclei subjected to heat shock also responded by a shuttling of the intrinsic CK2 to the nuclear matrix compartment. These results suggest that modulations in CK2 in the nuclear compartment in response to the heat stress occur not only by a translocation of the enzyme from the cytoplasmic compartment to the nuclear compartment, but also that there is a redistribution of the kinase within the nuclear compartment resulting in a preferential association with the nuclear matrix. The results support the notion that CK2 association with the nuclear matrix in response to heat shock may serve a protective role in the cell response to stress.
Collapse
Affiliation(s)
- Alan T Davis
- Minneapolis Veterans Affairs Medical Center, Department of Laboratory Medicine and Pathology and University of Minnesota Cancer Center, University of Minnesota, Minneapolis, Minnesota 55417, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The data on lipid-nucleic interactions and their role in vitro and in vivo are presented. The results of study of DNA-lipid complexes in absence and in presence of divalent metal cations (triple complexes) are discussed. The triple complexes represent the generation of cellular structures such as pore complexes of eucaryotes and "Bayer's junctions" of procaryotes. The participation of triple complexes in the formation of structure of bacterial and eucaryotic nucleoid and nuclear matrix is analysed. A model of formation of triple complexes and cellular structures and their role in DNA-lipid interactions are discussed.
Collapse
Affiliation(s)
- V V Kuvichkin
- Laboratory of Reception Mechanisms Biophysics, Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Moscow Region, Pushkino, Russia.
| |
Collapse
|
31
|
Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002; 193:154-63. [PMID: 12384992 DOI: 10.1002/jcp.10172] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein disulfide isomerases (PDIs) constitute a family of structurally related enzymes which catalyze disulfide bonds formation, reduction, or isomerization of newly synthesized proteins in the lumen of the endoplasmic reticulum (ER). They act also as chaperones, and are, therefore, part of a quality-control system for the correct folding of the proteins in the same subcellular compartment. While their functions in the ER have been thoroughly studied, much less is known about their roles in non-ER locations, where, however, they have been shown to be involved in important biological processes. At least three proteins of this family from higher vertebrates have been found in unusual locations (i.e., the cell surface, the extracellular space, the cytosol, and the nucleus), reached through an export mechanism which has not yet been understood. In some cases their function in the non-ER location is clearly related to their redox properties, but in most cases their mechanism of action has still to be disclosed, although their propensity to associate with other proteins or even with DNA might be the main factor responsible for their activities.
Collapse
Affiliation(s)
- Carlo Turano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'Alessandro Rossi-Fanelli' and Centro di Biologia Molecolare del CNR, Università 'La Sapienza', Rome, Italy.
| | | | | | | |
Collapse
|
32
|
Liebich I, Bode J, Reuter I, Wingender E. Evaluation of sequence motifs found in scaffold/matrix-attached regions (S/MARs). Nucleic Acids Res 2002; 30:3433-42. [PMID: 12140328 PMCID: PMC137072 DOI: 10.1093/nar/gkf446] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 06/06/2002] [Accepted: 06/06/2002] [Indexed: 01/19/2023] Open
Abstract
Based on the contents of the database S/MARt DB, the most comprehensive data collection of scaffold/matrix-attached regions (S/MARs) publicly available thus far, we initiated a systematic evaluation of the stored data. By analyzing the 245 S/MAR sequences presently described in this database, we found that the S/MARs contained in this collection are generally AT-rich, with certain significant exceptions. Comparative analyses showed that most of the AT-rich motifs which were found to be enriched in S/MARs are also enriched in randomized S/MAR sequences of the same AT content. Some sequence patterns previously suggested to be characteristic for S/MARs were also investigated, among them potential binding sites for homeodomain transcription factors. Even though hexanucleotides containing the core motif of homeodomain factors were frequently observed in S/MARs, only a few potential binding sites for these factors were found enriched when compared with regulatory regions or exon sequences. All our analyses indicated that, on average, the observed frequency of motifs in S/MAR elements is largely influenced by the AT content. Our results can serve as a guideline for further improvements in the definition of S/MARs, which are now believed to constitute the functional coordinate system for genomic regulatory regions.
Collapse
Affiliation(s)
- I Liebich
- Research Group Bioinformatics, Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
33
|
Gerner C, Gotzmann J, Fröhwein U, Schamberger C, Ellinger A, Sauermann G. Proteome analysis of nuclear matrix proteins during apoptotic chromatin condensation. Cell Death Differ 2002; 9:671-81. [PMID: 12032676 DOI: 10.1038/sj.cdd.4401010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 12/20/2001] [Accepted: 01/08/2002] [Indexed: 11/08/2022] Open
Abstract
The nuclear matrix (NM) is considered a proteinaceous scaffold spatially organizing the interphase nucleus, the integrity of which is affected during apoptosis. Caspase-mediated degradation of NM proteins, such as nuclear lamins, precedes apoptotic chromatin condensation (ACC). Nevertheless, other NM proteins remain unaffected, which most likely maintain a remaining nuclear structure devoid of chromatin. We, therefore, screened various types of apoptotic cells for changes of the nuclear matrix proteome during the process of apoptotic ACC. Expectedly, we observed fundamental alterations of known chromatin-associated proteins, comprising both degradation and translocation to the cytosol. Importantly, a consistent set of abundant NM proteins, some (e.g. hNMP 200) of which displaying structural features, remained unaffected during apoptosis and might therefore represent constituents of an elementary scaffold. In addition, proteins involved in DNA replication and DNA repair were found accumulated in the NM fraction before cells became irreversibly committed to ACC, a time point characterized in detail by inhibitor studies with orthovanadate. In general, protein alterations of a consistent set of NM proteins (67 of which were identified), were reproducibly detectable in Fas-induced Jurkat cells, in UV-light treated U937 cells and also in staurosporine-treated HeLa cells. Our data indicate that substantial alterations of proteins linking chromatin to an elementary nuclear protein scaffold might play an intriguing role for the process of ACC.
Collapse
Affiliation(s)
- C Gerner
- Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE This study was undertaken to investigate the changes of nuclear matrix in long-term culture of rabbit limbal epithelial cells. METHODS Epithelial cells outgrown from limbal basal epithelium were serially cultivated. Nuclear matrices of early and late passages were extracted for morphologic study and protein analysis by two-dimensional gel electrophoresis and immunoblotting. RESULTS Differential growth and changes in morphology were observed in limbal epithelial cells of early and late passages. Cytokeratin type 3 was expressed in cells of later passages, indicating corneal cell differentiation during the long-term culture. These cells also showed reduced density of nuclear matrix fibrils and thinning of nuclear lamina. They were shown by two-dimensional gel electrophoresis to have lost most nuclear matrix proteins, including lamin A/C and proliferating cell nuclear antigen. However, five new protein entities were also expressed. CONCLUSION The nuclear matrix appeared to change along with limbal epithelial cell differentiation in culture. Whether such changes may affect the growth and viability of limbal cells after transplantation requires in vivo tissue analysis.
Collapse
Affiliation(s)
- Hin-Fai Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 3rd/F Hong Kong Eye Hospital, 147K Argyle Street, Shatin, Hong Kong
| | | | | |
Collapse
|
35
|
Preferential damage to defined regions of genomic DNA by AT-specific anticancer drugs. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1067-568x(02)80003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Bortul R, Zweyer M, Billi AM, Tabellini G, Ochs RL, Bareggi R, Cocco L, Martelli AM. Nuclear changes in necrotic HL-60 cells. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:19-31. [PMID: 11455567 DOI: 10.1002/jcb.1073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell death in eukaryotes can occur by either apoptosis or necrosis. Apoptosis is characterized by well-defined nuclear changes which are thought to be the consequence of both proteolysis and DNA fragmentation. On the other hand, the nuclear modifications that occur during necrosis are largely less known. Here, we have investigated whether or not nuclear modifications occur during ethanol-induced necrotic cell death of HL-60 cells. By means of immunofluorescence staining, we demonstrate that the patterns given by antibodies directed against some nuclear proteins (lamin B1, NuMA, topoisomerase IIalpha, SC-35, B23/nucleophosmin) changed in necrotic cells. The changes in the spatial distribution of NuMA strongly resembled those described to occur during apoptosis. On the contrary, the fluorescent pattern characteristic for other nuclear proteins (C23/nucleolin, UBF, fibrillarin, RNA polymerase I) did not change during necrosis. By immunoblotting analysis, we observed that some nuclear proteins (SAF-A, SATB1, NuMA) were cleaved during necrosis, and in the case of SATB1, the apoptotic signature fragment of 70 kDa was also present to the same extent in necrotic samples. Caspase inhibitors did not prevent proteolytic cleavage of the aforementioned polypeptides during necrosis, while they were effective if apoptosis was induced. In contrast, lamin B1 and topoisomerase IIalpha were uncleaved in necrotic cells, whereas they were proteolyzed during apoptosis. Transmission electron microscopy analysis revealed that slight morphological changes were present in the nuclear matrix fraction prepared from necrotic cells. However, these modifications (mainly consisting of a rarefaction of the inner fibrogranular network) were not as striking as those we have previously described in apoptotic HL-60 cells. Taken together, our results indicate that during necrosis marked biochemical and morphological changes do occur at the nuclear level. These alterations are quite distinct from those known to take place during apoptosis. Our results identify additional biochemical and morphological criteria that could be used to discriminate between the two types of cell death. J. Cell. Biochem. Suppl. 36: 19-31, 2001.
Collapse
Affiliation(s)
- R Bortul
- Dipartimento di Morfologia Umana Normale, Università di Trieste, 34138 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Philimonenko VV, Flechon JE, Hozák P. The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp Cell Res 2001; 264:201-10. [PMID: 11262177 DOI: 10.1006/excr.2001.5150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear matrix or nucleoskeleton is thought to provide structural basis for intranuclear order. However, the nature of this structure is still uncertain because of numerous technical difficulties in its visualization. To reveal the "real" morphology of the nucleoskeleton, and to identify possible sources of structural artifacts, three methods of nucleoskeleton preparations were compared. The nucleoskeleton visualized by all these techniques consists of identical elements: nuclear lamina and an inner network comprising core filaments and the "diffuse" nucleoskeleton. We then tested if the nucleoskeleton is a stable structure or a transient transcription-dependent structure. Incubation with transcription inhibitors (alpha-amanitin, actinomycin D, and DRB) for various periods of time had no obvious effect on the morphology of the nucleoskeleton. A typical nucleoskeleton structure was observed also in a physiological model-in transcriptionally inactive mouse 2-cell embryos and in active 8- to 16-cell embryos. Our data suggest that the nucleoskeleton is a permanent structure of the cell nucleus regardless of the nuclear transcriptional state, and the principal architecture of the nucleoskeleton is identical throughout the interphase.
Collapse
Affiliation(s)
- V V Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4-Krc, 142 20, Czech Republic
| | | | | |
Collapse
|
38
|
Nagele RG, Velasco AQ, Anderson WJ, McMahon DJ, Thomson Z, Fazekas J, Wind K, Lee H. Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 2001; 114:377-88. [PMID: 11148139 DOI: 10.1242/jcs.114.2.377] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relative sizes of individual telomeres in cultured human cells under conditions of cell cycling, replicative quiescence, cell transformation and immortalization were determined using quantitative fluorescence in situ hybridization (Q-FISH) with a telomere-specific peptide nucleic acid (PNA) probe. Results obtained from analysis of telomere length profiles (TLPs), which display the distribution of relative telomere lengths for individual cells, confirmed telomere length heterogeneity at the single cell level and proportional shortening of telomere length during replicative aging of virus-transformed cells. TLPs also revealed that some telomeric ends of chromosomes are so closely juxtaposed within interphase nuclei that their fluorescent signals appear as a single spot. These telomeric associations (TAs) were far more prevalent in interphase nuclei of noncycling normal and virus-transformed cells than in their cycling counterparts. The number of interphase TAs per nucleus observed in late-passage E6/E7-transformed cells did not increase during progression to crisis, suggesting that telomere shortening does not increase the frequency of interphase TAs. Furthermore, interphase TAs were rarely observed in rapidly cycling, telomerase-positive, immortalized cells that exhibit somewhat shortened, but stabilized, telomere length through the activity of telomerase. Our overall results suggest that the number of interphase TAs is dependent more on whether or not cells are cycling than on telomere length, with TAs being most prominent in the nuclei of replicatively quiescent cells in which nonrandom (even preferred) chromosome spatial arrangements have been observed. We propose that interphase TAs may play a role in the generation and/or maintenance of nuclear architecture and chromosome positional stability in interphase nuclei, especially in cells with a prolonged G(1)/G(0) phase and possibly in terminally differentiated cells.
Collapse
Affiliation(s)
- R G Nagele
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey - School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Deppert W, G�hler T, Koga H, Kim E. Mutant p53: ?gain of function? through perturbation of nuclear structure and function? J Cell Biochem 2001. [DOI: 10.1002/1097-4644(2000)79:35+<115::aid-jcb1134>3.0.co;2-u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Alm K, Oredsson SM. The organization of replicon clusters is not affected by polyamine depletion. J Struct Biol 2000; 131:1-9. [PMID: 10945964 DOI: 10.1006/jsbi.2000.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier investigations have shown that polyamine depletion affects DNA replication negatively. DNA is synthesized in replicons which are gathered in replicon clusters. DNA replication is initiated simultaneously in every replicon of a replicon cluster. By pulse labeling cells with the thymidine analog bromodeoxyuridine and then detecting bromodeoxyuridine in situ with immunofluorescence, replicon clusters can be studied. We have used this method to investigate the effects of 2-difluoromethylornithine (DFMO)- and 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664)-mediated polyamine depletion on the organization of replicon clusters. The cells were studied by fluorescence microscopy and confocal laser scanning microscopy. Our studies give at hand that neither the number nor the distribution of replicon clusters were affected even after 4 days of treatment with 5 mM DFMO or 20 microM CGP 48664, indicating that polyamine depletion did not affect the organization of replicon clusters. However, the fluorescence intensity of the replicon clusters was much lower in inhibitor-treated cells. The results indicate that the impaired DNA replication observed in polyamine-depleted cells is not due to an effect on the initiation step of DNA replication, but rather on the elongation process. To confirm that it is possible to observe changes in the organization of replicon clusters using bromodeoxyuridine, we treated the cells with various drugs that affect DNA replication. Aphidicolin, which inhibits DNA elongation, gave results similar to those of DFMO and CGP 48664.
Collapse
Affiliation(s)
- K Alm
- Department of Animal Physiology, Lund University, Lund, 223 62, Sweden
| | | |
Collapse
|
41
|
Abstract
Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that Ins internalization, its association with CIBPs, and its translocation to the nucleus may be essential for the regulation of nuclear events by Ins.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | |
Collapse
|
42
|
Burchardt M, Burchardt T, Shabsigh A, De La Taille A, Benson MC, Sawczuk I. Current Concepts in Biomarker Technology for Bladder Cancers. Clin Chem 2000. [DOI: 10.1093/clinchem/46.5.595] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Background: Transitional cell carcinoma of the bladder (TCC) is the second most common malignancy of the urinary tract. More than 70% of treated tumors recur, and 30% of recurrent tumors progress. Currently, pathologic staging and grading are valuable prognostic factors for detecting and monitoring TCC. Urinalysis, cystoscopy, and cytology are either invasive or lack sensitivity and specificity. The availability of a noninvasive, reliable, and simple test would greatly improve the detection and monitoring of patients with TCC. Several biomarkers for bladder cancer have been proposed, but no single marker has emerged as the test of choice.
Approach: We undertook a comprehensive literature search using Medline to identify all publications from 1980 to 1999. Articles that discussed potential biomarkers for TCC were screened. Only compounds that demonstrated high sensitivity or specificity, significant correlation with TCC diagnosis and staging, and extensive investigation were included in this review.
Content: Potential biomarkers of disease progression and prognosis include nuclear matrix protein, fibrin/fibrinogen product, bladder tumor antigen, blood group-related antigens, tumor-associated antigens, proliferating antigens, oncogenes, growth factors, cell adhesion molecules, and cell cycle regulatory proteins. The properties of the biomarkers and the methods for detecting or quantifying them are presented. Their sensitivities and specificities for detecting and monitoring disease were 54–100% and 61–97%, respectively, compared with 20–40% and 90% for urinalysis and cytology.
Summary: Although urine cytology and cystoscopy are still the standard of practice, many candidate biomarkers for TCC are emerging and being adopted into clinical practice. Further research and better understanding of the biology of bladder cancer, improved diagnostic techniques, and standardized interpretation are essential steps to develop reliable biomarkers. It is possible that using the current biomarkers as an adjuvant modality will improve our ability to diagnose and monitor bladder cancer.
Collapse
Affiliation(s)
- Martin Burchardt
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
- Department of Urology, Heinrich-Heine-Universitaet, 40225 Dusseldorf, Germany
| | - Tatjana Burchardt
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Ahmad Shabsigh
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Alexandre De La Taille
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Mitchell C Benson
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Ihor Sawczuk
- Department of Urology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
43
|
Quesada P, Tramontano F, Faraone-Mennella MR, Farina B. The analysis of the poly(ADPR) polymerase mode of action in rat testis nuclear fractions defines a specific poly(ADP-ribosyl)ation system associated with the nuclear matrix. Mol Cell Biochem 2000; 205:91-9. [PMID: 10821426 DOI: 10.1023/a:1007005715848] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The poly(ADP-ribosyl)ation system, associated with different nuclear fractions of rat testis, has been analyzed for both pADPR and pADPR acceptor proteins. The DNase I sensitive and resistant chromatin contain 35% and 40%, respectively, of the total pADPR synthesized in intact nuclei incubated with [32P]NAD. Moreover, the residual 25% were estimated to be associated with the nuclear matrix. Three different classes of pADPR are present in the nuclei. The longest and branched ADPribose polymers modify proteins present in the DNase I resistant (2 M NaCl extractable) chromatin and in the nuclear matrix, whereas polymers of> 20 residues interact with the components of the DNase I sensitive chromatin and oligomers of 6 ADPribose residues are bound specifically to the acid-soluble chromosomal proteins, present in isolated nuclear matrix. The main pADPR acceptor protein in all the nuclear fractions is represented by the PARP itself (auto-modification reaction). The hetero-modification reaction occurs mostly on histone H1 and core histones, that have been found associated to DNase I sensitive and resistant chromatin, respectively. Moreover, an oligo(ADP-ribosyl)ation occurs on core histones tightly-bound to the matrix associated regions (MARs) of chromatin loops.
Collapse
Affiliation(s)
- P Quesada
- Department of Organic and Biological Chemistry, University Federico II of Naples, Italy
| | | | | | | |
Collapse
|
44
|
|
45
|
Neri LM, Raymond Y, Giordano A, Borgatti P, Marchisio M, Capitani S, Martelli AM. Spatial distribution of lamin A and B1 in the K562 cell nuclear matrix stabilized with metal ions. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991001)75:1<36::aid-jcb4>3.0.co;2-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Yu S, Davis AT, Guo C, Green JE, Ahmed K. Differential targeting of protein kinase CK2 to the nuclear matrix upon transient overexpression of its subunits. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990701)74:1<127::aid-jcb14>3.0.co;2-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Stein GS, van Wijnen AJ, Stein JL, Lian JB, Pockwinse SH, McNeil S. Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB J 1999; 13 Suppl:S157-66. [PMID: 10352158 DOI: 10.1096/fasebj.13.9001.s157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Components of nuclear architecture are functionally interrelated with control of gene expression. There is growing appreciation that multiple levels of nuclear organization integrate the regulatory cues that support activation and suppression of genes as well as the processing of gene transcripts. The linear representation of genes and promoter elements provide the potential for responsiveness to physiological regulatory signals. Parameters of chromatin structure and nucleosome organization support synergism between activities at independent regulatory sequences and render promoter elements accessible or refractory to transcription factors. Association of genes, transcription factors, and the machinery for transcript processing with the nuclear matrix facilitates fidelity of gene expression within the three-dimensional context of nuclear architecture. Mechanisms must be defined that couple nuclear morphology with enzymatic parameters of gene expression. The recent characterization of factors that mediate chromatin remodeling and identification of intranuclear targeting signals that direct transcription factors to subnuclear domains where gene expression occurs link genetic and structural components of transcriptional control. Nuclear reorganization and aberrant intranuclear trafficking of transcription factors for developmental and tissue-specific control occurs in tumor cells and in neurological disorders. Compromises in nuclear structure-function interrelationships can occur as a consequence of microgravity-mediated perturbations in cellular architecture.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Neri LM, Bortul R, Zweyer M, Tabellini G, Borgatti P, Marchisio M, Bareggi R, Capitani S, Martelli AM. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990601)73:3<342::aid-jcb6>3.0.co;2-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Hatton D, Gray JC. Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:417-29. [PMID: 10406125 DOI: 10.1046/j.1365-313x.1999.00468.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four MAR-binding proteins of 60, 65, 70 and 72 kDa have been detected by South-Western blotting and isolated from pea nuclear matrices. Two cDNAs encoding the 60 and 65 kDa proteins (MARBP-1 and MARBP-2) were isolated from a pea leaf cDNA library by screening with a PCR product obtained using degenerate primers based on an amino acid sequence from the 60 kDa protein. The proteins of 560 and 550 amino acids are 86% identical and contain several KKD/E repeats near the C-terminus. Escherichia coli-expressed MARBP-1 specifically binds A/T-rich MAR DNA. The interaction of MARBP-1/MARBP-2 with MAR DNA involves novel DNA-binding motifs. The MARBP-1 and MARBP-2 genes are expressed in a range of pea tissues and are encoded by genes at different loci. MARBP-1 and MARBP-2 are homologous to yeast nucleolar proteins Nop56p and Nop58p, which are involved in ribosome biogenesis, and to similar highly conserved proteins in other eukaryotes and in archaebacteria. MARBP-1 and MARBP-2 may have multifunctional roles in chromatin organisation and ribosome biogenesis.
Collapse
Affiliation(s)
- D Hatton
- Department of Plant Sciences, University of Cambridge, UK
| | | |
Collapse
|
50
|
Abstract
Cellular responses to external signals often reflect alterations in gene expression. The activation of cell surface hormone or growth factor receptors upon the binding of appropriate ligands mobilizes signal transduction cascades that can ultimately impact the activity of defined sets of transcription factors. The interpretation of hormonal signals can also be initiated intracellularly, as is the case for steroid hormone receptors. In addition to recognizing specific hormones, steroid hormone receptors also function as transcription factors and directly transduce hormonal signals to activation or repression of unique target genes. The delivery of activated steroid receptors to high-affinity genomic sites must be efficient to account for the rapidity and selectivity of many transcriptional responses to steroid hormones. Thus, the signal transduction capacity of steroid hormone receptors will be affected by the efficiency of receptor trafficking both between different subcellular compartments (i.e., the cytoplasm and nucleus) and within a specific compartment (i.e., the nucleus). This article will highlight the recent advances in our understanding of subcellular and subnuclear trafficking of steroid receptors.
Collapse
Affiliation(s)
- D B DeFranco
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|