1
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
2
|
He Q, Li Z, Yin J, Li Y, Yin Y, Lei X, Zhu W. Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer. Front Oncol 2021; 11:566539. [PMID: 33937013 PMCID: PMC8081889 DOI: 10.3389/fonc.2021.566539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes. Methods Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways. Results A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC. Conclusion A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jinbao Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
3
|
Al-Khatib SM, Abdo N, Al-Eitan LN, Al-Mistarehi AHW, Zahran DJ, Al Ajlouni M, Kewan TZ. The Impact of the Genetic Polymorphism in DNA Repair Pathways on Increased Risk of Glioblastoma Multiforme in the Arab Jordanian Population: A Case-Control Study. APPLICATION OF CLINICAL GENETICS 2020; 13:115-126. [PMID: 32606887 PMCID: PMC7295542 DOI: 10.2147/tacg.s248994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
Abstract
Introduction Among the Jordanian population, brain tumors are the tenth most common type of cancers in both males and females, comprising 2.8% of all newly diagnosed neoplasms. Diffuse gliomas are the most prevalent and the most aggressive primary brain tumors in adults. The incidence of diffuse gliomas varies among different populations; this variation is partially linked to genetic polymorphisms. The purpose of the study is to examine the association between (BRCA1 rs799917G>A, rs1799966T>C, EXO1 rs1047840G>A, EME1 rs12450550T>C, ERCC2 rs13181T>G, rs1799793C>T, and XRCC1 rs1799782G>A) DNA repair gene polymorphisms and glioblastoma multiforme (GBM) susceptibility, and survival in the Jordanian Arab population. Methods Eighty-four patients diagnosed with glioblastoma multiforme at the King Abdullah University Hospital (KAUH) between 2013 and 2018 and 225 healthy cancer-free control subjects with similar geographic and ethnic backgrounds to the patients were included in the study. Genomic DNA was extracted from the formalin-fixed paraffin-embedded tissues of the subjects. The Sequenom MassARRAY® sequencer system (iPLEX GOLD) was used. The analyses included assessments of population variability and survival. Results This study is the first to address the relationship between BRCA1 rs1799966 and rs799917 SNP, and the risk of GBM among the Arab Jordanian population. The findings of the study show that BRCA1 rs799917 is associated with decreased risk of GBM in the recessive model (AA vs G/G-A/G: OR, 0.46, 95% CI, 0.26-0.82, p=0.01) and the same SNP is associated with increased risk of GBM in the overdominant model (AG vs G/G-A/A: OR, 1.72, 95% CI, 1.02-2.89, p=0.04).
Collapse
Affiliation(s)
- Sohaib M Al-Khatib
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdel-Hameed W Al-Mistarehi
- Department of Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Deeb Jamil Zahran
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan Al Ajlouni
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tariq Zuheir Kewan
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Burman P, Lamb L, McCormack A. Temozolomide therapy for aggressive pituitary tumours - current understanding and future perspectives. Rev Endocr Metab Disord 2020; 21:263-276. [PMID: 32147777 DOI: 10.1007/s11154-020-09551-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of temozolomide (TMZ) for the management of aggressive pituitary tumours (APT) has revolutionised clinical practice in this field with significantly improved clinical outcomes and long-term survival. Its use is now well established however a large number of patients do not respond to treatment and recurrence after cessation of TMZ is common. A number of challenges remain for clinicians such as appropriate patient selection, treatment duration and the role of combination therapy. This review will examine the use of TMZ to treat APT including mechanism of action, treatment regimen and duration; biomarkers predicting response to treatment and patient selection; and current evidence for administration of TMZ in combination with other agents.
Collapse
Affiliation(s)
- Pia Burman
- Department of Endocrinology, Skåne University Hospital, University of Lund, Malmö, Sweden
| | - Lydia Lamb
- Department of Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ann McCormack
- Department of Endocrinology, St Vincent's Hospital, Sydney, NSW, Australia.
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2019; 76:40-49. [PMID: 30818168 DOI: 10.1016/j.dnarep.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/21/2022]
Abstract
DNA polymerases influence genome stability through their involvement in DNA replication, response to DNA damage, and DNA repair processes. Saccharomyces cerevisiae possess four non-essential DNA polymerases, Pol λ, Pol η, Pol ζ, and Rev1, which have varying roles in genome stability. In order to assess the contribution of the non-essential DNA polymerases in genome stability, we analyzed the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant in microhomology mediated repair, due to recent studies linking some of these DNA polymerases to this repair pathway. Our results suggest that the length and quality of microhomology influence both the overall efficiency of repair and the involvement of DNA polymerases. Furthermore, the non-essential DNA polymerases demonstrate overlapping and redundant functions when repairing double-strand breaks using short microhomologies containing mismatches. Then, we examined genome-wide mutation accumulation in the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant compared to wild type cells. We found a significant decrease in the overall rate of mutation accumulation in the quadruple mutant cells compared to wildtype, but an increase in frameshift mutations and a shift towards transversion base-substitution with a preference for G:C to T:A or C:G. Thus, the non-essential DNA polymerases have an impact on the nature of the mutational spectrum. The sequence and functional homology shared between human and S. cerevisiae non-essential DNA polymerases suggest these DNA polymerases may have a similar role in human cells.
Collapse
|
6
|
Mori T, Hamaya Y, Uotani T, Yamade M, Iwaizumi M, Furuta T, Miyajima H, Osawa S, Sugimoto K. Prevalence of elevated microsatellite alterations at selected tetranucleotide repeats in pancreatic ductal adenocarcinoma. PLoS One 2018; 13:e0208557. [PMID: 30532127 PMCID: PMC6285458 DOI: 10.1371/journal.pone.0208557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) prognosis remains poor even after complete resection owing to no valuable biomarkers for recurrence and chemosensitivity. Tumors not expressing MSH3 show elevated microsatellite alterations at selected tetranucleotide repeats (EMAST). EMAST reportedly occurs in several tumors. In colorectal cancer (CRC), EMAST was reportedly correlated with 5-fluorouracil (5-FU) sensitivity. However, EMAST prevalence in PDAC and its significance as a prognostic biomarker are unknown. This study aimed to investigate EMAST prevalence in PDAC and the associations between EMAST and pathological factors, EMAST and prognosis, and EMAST and MSH3 expression via immunohistochemistry (IHC). We assessed 40 PDAC patients undergoing surgery. Genomic DNA was extracted from tumors and normal tissues. EMAST and microsatellite instability-high (MSI-H) were analyzed using five polymorphic tetranucleotide markers and five mononucleotide markers, respectively. Tumor sections were stained for MSH3, and staining intensity was evaluated via the Histoscore (H-score). Eighteen of 40 (45%) PDAC patients were EMAST-positive; however, none were MSI-H-positive. Clinicopathological characteristics including overall survival (OS) and recurrence-free survival (RFS) were not significantly different between EMAST-positive and EMAST-negative patients (P = 0.45, 0.98 respectively). IHC was performed to evaluate MSH3 protein expression levels for the PDAC tissue specimens. H-scores of EMAST-positive patients ranged from 0 to 300 (median, 40) and those of EMAST-negative patients ranged from 0 to 300 (median, 170). MSH3 protein was not significantly downregulated in EMAST-positive patients (P = 0.07). This study is a preliminary study and the number of cases investigated was small, and thus, study of a larger cohort will reveal the clinical implication of EMAST.
Collapse
Affiliation(s)
- Taiki Mori
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Uotani
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Moriya Iwaizumi
- Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
7
|
Bengtsson D, Joost P, Aravidis C, Askmalm Stenmark M, Backman AS, Melin B, von Salomé J, Zagoras T, Gebre-Medhin S, Burman P. Corticotroph Pituitary Carcinoma in a Patient With Lynch Syndrome (LS) and Pituitary Tumors in a Nationwide LS Cohort. J Clin Endocrinol Metab 2017; 102:3928-3932. [PMID: 28938458 DOI: 10.1210/jc.2017-01401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT Lynch syndrome (LS) is a cancer-predisposing syndrome caused by germline mutations in genes involved in DNA mismatch repair (MMR). Patients are at high risk for several types of cancer, but pituitary tumors have not previously been reported. CASE A 51-year-old man with LS (MSH2 mutation) and a history of colon carcinoma presented with severe Cushing disease and a locally aggressive pituitary tumor. The tumor harbored a mutation consistent with the patient's germline mutation and displayed defect MMR function. Sixteen months later, the tumor had developed into a carcinoma with widespread liver metastases. The patient prompted us to perform a nationwide study in LS. NATIONWIDE STUDY A diagnosis consistent with a pituitary tumor was sought for in the Swedish National Patient Registry. In 910 patients with LS, representing all known cases in Sweden, another two clinically relevant pituitary tumors were found: an invasive nonsecreting macroadenoma and a microprolactinoma (i.e., in total three tumors vs. one expected). CONCLUSION Germline mutations in MMR genes may contribute to the development and/or the clinical course of pituitary tumors. Because tumors with MMR mutations are susceptible to treatment with immune checkpoint inhibitors, we suggest to actively ask for a family history of LS in the workup of patients with aggressive pituitary tumors.
Collapse
Affiliation(s)
- Daniel Bengtsson
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Internal Medicine, Kalmar County Hospital, 39185 Kalmar, Sweden
| | - Patrick Joost
- Department of Oncology and Pathology, Institute of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Christos Aravidis
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Marie Askmalm Stenmark
- Division of Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Clinical Genetics, Office for Medical Services, 22184 Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Ann-Sofie Backman
- Centrum for Digestive Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Institution of Medicine, Karolinska Institutet, Solna, 17176 Stockholm, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, 90187 Umeå, Sweden
| | - Jenny von Salomé
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, 17176 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Theofanis Zagoras
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Samuel Gebre-Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Malmö, University of Lund, 20502 Malmö, Sweden
| |
Collapse
|
8
|
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch 2015; 467:623-633. [PMID: 26263854 DOI: 10.1007/s00428-015-1820-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023]
Abstract
The association between inflammation and cancer has been pointed out in epidemiological and clinical studies, revealing how chronic inflammation may contribute to carcinogenesis in various malignancies. However, the molecular events leading to malignant transformation in a chronically inflamed environment are not fully understood. In urothelial carcinoma of the urinary bladder, inflammation plays a dual role. On the one hand, chronic inflammation is a well-established risk factor for the development of bladder cancer (BC), as seen in Schistosoma haematobium infection. On the other, intravesical therapy by bacillus Calmette-Guérin (BCG), which induces inflammation, offers protection against cancer recurrence. The large variety of pro-inflammatory mediators expressed by BC and immune cells binds to specific receptors which control signalling pathways. These activate transcription of a plethora of downstream factors. This review summarizes recent data regarding inflammation and urothelial carcinoma, with special emphasis on the role the inflammatory response plays in BC recurrence risk and progression.
Collapse
Affiliation(s)
- Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Stefania Nobili
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Largo Medaglie d'Oro 9, 50011, Trento, Italy
| | - Saverio Caini
- Unit of Molecular and Nutritional Epidemiology, Institute for Cancer Research and Prevention (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
9
|
Russo A, Pacchierotti F, Cimini D, Ganem NJ, Genescà A, Natarajan AT, Pavanello S, Valle G, Degrassi F. Genomic instability: Crossing pathways at the origin of structural and numerical chromosome changes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:563-580. [PMID: 25784636 DOI: 10.1002/em.21945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Genomic instability leads to a wide spectrum of genetic changes, including single nucleotide mutations, structural chromosome alterations, and numerical chromosome changes. The accepted view on how these events are generated predicts that separate cellular mechanisms and genetic events explain the occurrence of these types of genetic variation. Recently, new findings have shed light on the complexity of the mechanisms leading to structural and numerical chromosome aberrations, their intertwining pathways, and their dynamic evolution, in somatic as well as in germ cells. In this review, we present a critical analysis of these recent discoveries in this area, with the aim to contribute to a deeper knowledge of the molecular networks leading to adverse outcomes in humans following exposure to environmental factors. The review illustrates how several technological advances, including DNA sequencing methods, bioinformatics, and live-cell imaging approaches, have contributed to produce a renewed concept of the mechanisms causing genomic instability. Special attention is also given to the specific pathways causing genomic instability in mammalian germ cells. Remarkably, the same scenario emerged from some pioneering studies published in the 1980s to 1990s, when the evolution of polyploidy, the chromosomal effects of spindle poisons, the fate of micronuclei, were intuitively proposed to share mechanisms and pathways. Thus, an old working hypothesis has eventually found proper validation.
Collapse
Affiliation(s)
| | - Francesca Pacchierotti
- Laboratory of Toxicology, Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Rome, Italy
| | - Daniela Cimini
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia
| | - Neil J Ganem
- Department of Pharmacology, Division of Hematology and Oncology, Boston University School of Medicine, Boston, Massachusetts
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
10
|
Long H, Sung W, Miller SF, Ackerman MS, Doak TG, Lynch M. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. Genome Biol Evol 2014; 7:262-71. [PMID: 25539726 PMCID: PMC4316635 DOI: 10.1093/gbe/evu284] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High levels of genetic diversity exist among natural isolates of the bacterium Pseudomonas fluorescens, and are especially elevated around the replication terminus of the genome, where strain-specific genes are found. In an effort to understand the role of genetic variation in the evolution of Pseudomonas, we analyzed 31,106 base substitutions from 45 mutation accumulation lines of P. fluorescens ATCC948, naturally deficient for mismatch repair, yielding a base-substitution mutation rate of 2.34 × 10−8 per site per generation (SE: 0.01 × 10−8) and a small-insertion-deletion mutation rate of 1.65 × 10−9 per site per generation (SE: 0.03 × 10−9). We find that the spectrum of mutations in prophage regions, which often contain virulence factors and antibiotic resistance, is highly similar to that in the intergenic regions of the host genome. Our results show that the mutation rate varies around the chromosome, with the lowest mutation rate found near the origin of replication. Consistent with observations from other studies, we find that site-specific mutation rates are heavily influenced by the immediately flanking nucleotides, indicating that mutations are context dependent.
Collapse
Affiliation(s)
- Hongan Long
- Department of Biology, Indiana University, Bloomington
| | - Way Sung
- Department of Biology, Indiana University, Bloomington
| | | | | | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
11
|
Bacolla A, Cooper DN, Vasquez KM. Mechanisms of base substitution mutagenesis in cancer genomes. Genes (Basel) 2014; 5:108-46. [PMID: 24705290 PMCID: PMC3978516 DOI: 10.3390/genes5010108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules.
Collapse
Affiliation(s)
- Albino Bacolla
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Karen M Vasquez
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| |
Collapse
|
12
|
Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3-GENES GENOMES GENETICS 2013; 3:1453-65. [PMID: 23821616 PMCID: PMC3755907 DOI: 10.1534/g3.113.006429] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells.
Collapse
|
13
|
Huang G, Cai S, Wang W, Zhang Q, Liu A. Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One 2013; 8:e68457. [PMID: 23990873 PMCID: PMC3753326 DOI: 10.1371/journal.pone.0068457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
Many studies have reported the association of X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln, Arg194Trp, Arg280His, −77T>C, and X-ray repair cross-complementing group 3 (XRCC3) T241M polymorphisms with lung cancer risk, but the results remained controversial. Hence, we performed a meta-analysis to investigate the association between lung cancer risk and XRCC1 Arg399Gln (14,156 cases and 16,667 controls from 41 studies), Arg194Trp (7,426 cases and 9,603 controls from 23 studies), Arg280His (6,211 cases and 6,763 controls from 16 studies), −77T>C (2,487 cases and 2,576 controls from 5 studies), and XRCC3 T241M (8,560 cases and 11,557 controls from 19 studies) in different inheritance models. We found that −77T>C polymorphism was associated with increased lung cancer risk (dominant model: odds ration [OR] = 1.45, 95% confidence interval [CI] = 1.27–1.66, recessive model: OR = 1.73, 95% CI = 1.14–2.62, additive model: OR = 1.91, 95% CI = 1.24–1.94) when all the eligible studies were pooled into the meta-analysis. In the stratified and sensitive analyses, significantly decreased lung cancer risk was observed in overall analysis (dominant model: OR = 0.83, 95% CI = 0.78–0.89; recessive model: OR = 0.90, 95% CI = 0.81–1.00; additive model: OR = 0.82, 95% CI = 0.74–0.92), Caucasians (dominant model: OR = 0.82, 95% CI = 0.76–0.87; recessive model: OR = 0.89, 95% CI = 0.80–0.99; additive model: OR = 0.81, 95% CI = 0.73–0.91), and hospital-based controls (dominant model: OR = 0.81, 95% CI = 0.76–0.88; recessive model: OR = 0.89, 95% CI = 0.79–1.00; additive model: OR = 0.80, 95% CI = 0.71–0.90) for XRCC3 T241M. In conclusion, this meta-analysis indicates that XRCC1 −77T>C shows an increased lung cancer risk and XRCC3 T241M polymorphism is associated with decreased lung cancer risk, especially in Caucasians.
Collapse
Affiliation(s)
- Guohua Huang
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (GH); (AL)
| | - Shaoxi Cai
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Wang
- Gastroenterology Department, The Second People's Hospital of Zhuhai, Zhuhai, China
- Beijing Zhendong Guangming Pharmaceutical Research Institute Co. Ltd., Beijing, China
- Shanxi Zhendong Pharmaceutical Co. Ltd., Changzhi, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Aihua Liu
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (GH); (AL)
| |
Collapse
|
14
|
Zhang H, Liu H, Knauss JL. Associations between three XRCC1 polymorphisms and glioma risk: a meta-analysis. Tumour Biol 2013; 34:3003-13. [DOI: 10.1007/s13277-013-0865-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
|
15
|
Gammie AE, Erdeniz N. Characterization of pathogenic human MSH2 missense mutations using yeast as a model system: a laboratory course in molecular biology. CELL BIOLOGY EDUCATION 2012; 3:31-48. [PMID: 22039344 DOI: 10.1187/cbe.03-08-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 12/10/2003] [Indexed: 01/18/2023]
Abstract
This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring comprehensive laboratory reports modeled on the primary literature. The project for the course focuses on a gene, MSH2, implicated in the most common form of inherited colorectal cancer. Msh2 is important for maintaining the fidelity of genetic material where it functions as an important component of the DNA mismatch repair machinery. The goal of the project has two parts. The first part is to create mapped missense mutation listed in the human databases in the cognate yeast MSH2 gene and to assay for defects in DNA mismatch repair. The second part of the course is directed towards understanding in what way are the variant proteins defective for mismatch repair. Protein levels are analyzed to determine if the missense alleles display decreased expression. Furthermore, the students establish whether the Msh2p variants are properly localized to the nucleus using indirect immunofluorescence and whether the altered proteins have lost their ability to interact with other subunits of the MMR complex by creating recombinant DNA molecules and employing the yeast 2-hybrid assay.
Collapse
Affiliation(s)
- Alison E Gammie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.
| | | |
Collapse
|
16
|
Tolg C, Sabha N, Cortese R, Panchal T, Ahsan A, Soliman A, Aitken KJ, Petronis A, Bägli DJ. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. J Transl Med 2011; 91:825-36. [PMID: 21242958 DOI: 10.1038/labinvest.2010.197] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Host cell and bacterial factors determine severity and duration of infections. To allow for bacteria pathogenicity and persistence, bacteria have developed mechanisms that modify expression of host genes involved in cell cycle progression, apoptosis, differentiation and the immune response. Recently, Helicobacter pylori infection of the stomach has been correlated with epigenetic changes in the host genome. To identify epigenetic changes during Escherichia coli induced urinary tract infection (UTI), we developed an in vitro model of persistent infection of human uroepithelial cells with uropathogenic E. coli (UPEC), resulting in intracellular bacteria colonies. Cells inoculated with FimH-negative E. coli (N-UPEC) that are not internalized and non-inoculated cells were used as controls. UPEC infection significantly induced de novo methyltransferase (DNMT) activity (12.5-fold P=0.002 UPEC vs non-inoculated and 250-fold P=0.001 UPEC vs N-UPEC inoculated cells) and Dnmt1 RNA expression (6-fold P=0.04 UPEC vs non-inoculated cells) compared with controls. DNMT1 protein levels were significantly increased in three uroepithelial cell lines (5637, J82, HT-1197) in response to UPEC infection as demonstrated by confocal analysis. Real-time PCR analysis of candidate genes previously associated with bacteria infection and/or innate immunity, revealed UPEC-induced downregulation of the tumor suppressor gene CDKN2A (3.3-fold P=0.007 UPEC vs non-inoculated and 3.3-fold P=0.001 UPEC vs N-UPEC) and the DNA repair gene MGMT (9-fold P=0.03 UPEC vs non-inoculated). Expression of CDH1, MLH1, DAPK1 and TLR4 was not affected. Pyrosequencing of CDKN2A and MGMT CpG islands revealed increased methylation in CDKN2A exon 1 (3.8-fold P=0.04 UPEC vs N-UPEC and UPEC vs non-inoculated). Methylation of MGMT was not affected. UPEC-induced methylation of CDKN2A exon 1 may increase bladder cancer and presage UTI risk, and be useful as a biological marker for UTI susceptibility or recurrence.
Collapse
Affiliation(s)
- Cornelia Tolg
- Division of Urology, Developmental and Stem Cell Biology, Hospital for Sick Children, Research Institute, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nakken S, Rødland EA, Rognes T, Hovig E. Large-scale inference of the point mutational spectrum in human segmental duplications. BMC Genomics 2009; 10:43. [PMID: 19161616 PMCID: PMC2640414 DOI: 10.1186/1471-2164-10-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/22/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent segmental duplications are relatively large (> or = 1 kb) genomic regions of high sequence identity (> or = 90%). They cover approximately 4-5% of the human genome and play important roles in gene evolution and genomic disease. The DNA sequence differences between copies of a segmental duplication represent the result of various mutational events over time, since any two duplication copies originated from the same ancestral DNA sequence. Based on this fact, we have developed a computational scheme for inference of point mutational events in human segmental duplications, which we collectively term duplication-inferred mutations (DIMs). We have characterized these nucleotide substitutions by comparing them with high-quality SNPs from dbSNP, both in terms of sequence context and frequency of substitution types. RESULTS Overall, DIMs show a lower ratio of transitions relative to transversions than SNPs, although this ratio approaches that of SNPs when considering DIMs within most recent duplications. Our findings indicate that DIMs and SNPs in general are caused by similar mutational mechanisms, with some deviances at the CpG dinucleotide. Furthermore, we discover a large number of reference SNPs that coincide with computationally inferred DIMs. The latter reflects how sequence variation in duplicated sequences can be misinterpreted as ordinary allelic variation. CONCLUSION In summary, we show how DNA sequence analysis of segmental duplications can provide a genome-wide mutational spectrum that mirrors recent genome evolution. The inferred set of nucleotide substitutions represents a valuable complement to SNPs for the analysis of genetic variation and point mutagenesis.
Collapse
Affiliation(s)
- Sigve Nakken
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
18
|
Lao T, Gu W, Huang Q. A meta-analysis on XRCC1 R399Q and R194W polymorphisms, smoking and bladder cancer risk. Mutagenesis 2008; 23:523-32. [DOI: 10.1093/mutage/gen046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Sánchez-Suárez P, Ostrosky-Wegman P, Gallegos-Hernández F, Peñarroja-Flores R, Toledo-García J, Bravo JL, Del Castillo ER, Benítez-Bribiesca L. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res 2007; 640:8-15. [PMID: 18207203 DOI: 10.1016/j.mrfmmm.2007.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/09/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
Abstract
Combined chemotherapy is used for the treatment of a number of malignancies such as breast cancer. The target of these antineoplastic agents is nuclear DNA, although it is not restricted to malignant cells. The aim of the present study was to assess DNA damage in peripheral blood lymphocytes (PBLs) of breast cancer patients subjected to combined adjuvant chemotherapy (5-fluorouracil, epirubicin and cyclophosphamide, FEC), using a modified comet assay to detect DNA single-strand breaks (SSB) and double-strand breaks (DSB). Forty-one female patients with advanced breast cancer before and after chemotherapy and 60 healthy females participated in the study. Alkaline and neutral comet assays were performed in PBLs according to a standard protocol, and DNA tail moment was measured by a computer-based image analysis system. Breast cancer patients before treatment had higher increased background levels of SSB and DSB as compared to healthy women. During treatment, a significant increase in DNA damage was observed after the 2nd cycle, which persisted until the end of treatment. Eighty days after the end of treatment the percentage of PBLs with SSB and DSB remained elevated, but the magnitude of DNA damage (tail moment) returned to baseline levels. There was no correlation between PBL DNA damage and response to chemotherapy. DNA-SSB and DSB in PBLs are present in cancer patients before treatment and increase significantly after combined chemotherapy. No correlation with response to adjuvant chemotherapy was found. Biomonitoring DNA damage in PBLs of cancer patients could help prevent secondary effects and the potential risks of developing secondary cancers.
Collapse
Affiliation(s)
- Patricia Sánchez-Suárez
- Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc # 330, Col. Doctores, 06725 México, D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Young LC, Listgarten J, Trotter MJ, Andrew SE, Tron VA. Evidence that dysregulated DNA mismatch repair characterizes human nonmelanoma skin cancer. Br J Dermatol 2007; 158:59-69. [PMID: 17970804 DOI: 10.1111/j.1365-2133.2007.08249.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In addition to an established role in the repair of postreplicative DNA errors, DNA mismatch repair (MMR) proteins also contribute to cellular responses to exogenous DNA damage. Previously, we have shown that Msh2-null mice display increased sensitivity to ultraviolet (UV) B-induced tumorigenesis, but squamous cell carcinomas (SCC) generated are microsatellite stable, suggesting a role for MMR other than postreplicative repair in UV-induced cutaneous tumour formation. OBJECTIVES We questioned whether there was evidence of MMR dysfunction in human SCC, thus validating the mouse models of MMR-dependent UVB-induced skin cancer. METHODS Using tissue microarrays we examined both nuclear and cytoplasmic levels of MMR proteins MSH2, MSH6, MSH3, MLH1 and PMS2 in more than 200 cases of cutaneous SCC and basal cell carcinoma (BCC). RESULTS We found that subsets of these 10 MMR protein measures were increased in nonmelanoma skin cancer (NMSC) compared with normal epidermal samples; this was particularly true of SCC. In fact, based on post hoc tests and MMR protein distribution patterns, BCC was distinct from SCC. With the exception of nuclear MSH2, the BCC had lower levels of identified MMR protein measures than SCC. We believe this to be important because not only is SCC more aggressive than BCC, but evidence suggests that these two NMSC subtypes arise through different molecular pathways. CONCLUSIONS In combination with previously established roles for MMR proteins in response to UVB-induced DNA damage, our data point towards an expanded perspective of the importance of MMR proteins in the suppression of UVB-induced tumorigenesis and, potentially, tumour behaviour.
Collapse
Affiliation(s)
- L C Young
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
21
|
Smith JA, Bannister LA, Bhattacharjee V, Wang Y, Waldman BC, Waldman AS. Accurate homologous recombination is a prominent double-strand break repair pathway in mammalian chromosomes and is modulated by mismatch repair protein Msh2. Mol Cell Biol 2007; 27:7816-27. [PMID: 17846123 PMCID: PMC2169143 DOI: 10.1128/mcb.00455-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a "donor" tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.
Collapse
Affiliation(s)
- Jason A Smith
- Department of Biological Sciences, University of South Carolina, 700 Sumter St., Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kang SY, Lee KG, Lee W, Shim JY, Ji SI, Chung KW, Chung YK, Kim NK. Polymorphisms in the DNA repair gene XRCC1 associated with basal cell carcinoma and squamous cell carcinoma of the skin in a Korean population. Cancer Sci 2007; 98:716-20. [PMID: 17355263 PMCID: PMC11158161 DOI: 10.1111/j.1349-7006.2007.00436.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA in most cells is regularly damaged by endogenous and exogenous mutagens. Unrepaired damage can result in apoptosis or may lead to unregulated cell growth and cancer. Inheritance of genetic variants at one or more loci results in reduced DNA repair capacity. This hospital-based case-control study examined whether polymorphisms in the DNA repair gene X-ray repair cross-complementing groups 1 (XRCC1) (Arg194Trp[C > T], Arg280His[G > A] and Arg399Gln[G > A]) play a role in susceptibility to skin cancer. We genotyped these polymorphisms for 212 histopathologically confirmed skin cancer cases (n = 114 basal cell carcinoma, n = 98 squamous cell carcinoma) and 207 age- and sex-matched healthy control cases in Korea. We found that individuals with the Arg/Gln and Arg/Gln + Gln/Gln genotypes at XRCC1 Arg399Gln(G > A) had an approximately 2-fold increased risk of basal cell carcinoma compared to individuals with the Arg/Arg genotype (adjusted odds ratio [AOR] = 2.812, 95% confidence interval [CI] 1.32-5.98, and AOR = 2.324, 95% CI 1.11-4.86). However, we observed that the 194Trp allele of the Arg194Trp(C > T) polymorphism was inversely associated with squamous cell carcinoma risk (Trp/Trp, AOR = 0.06, 95% CI 0.006-0.63). Our data suggest that the Arg194Trp and Arg399Gln polymorphisms may be differentially associated with skin cancer risk.
Collapse
Affiliation(s)
- Sang Yoon Kang
- Institute for Clinical Research, and Department of Plastic and Reconstructive Surgery, Bundang CHA General Hospital, College of Medicine, Pochon CHA University, Seongnam, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bernstein H, Prasad A, Holubec H, Bernstein C, Payne CM, Ramsey L, Dvorakova K, Wilson M, Warneke JA, Garewal H. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence. Appl Immunohistochem Mol Morphol 2007; 14:166-72. [PMID: 16785784 DOI: 10.1097/01.pai.0000170533.61579.b9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cell Biology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bendardaf R, Lamlum H, Ristamäki R, Korkeila E, Syrjänen K, Pyrhönen S. Mismatch Repair Status Is a Predictive Factor of Tumour Response to 5-Fluorouracil and Irinotecan Chemotherapy in Patients with Advanced Colorectal Cancer. Tumour Biol 2007; 28:212-20. [PMID: 17717427 DOI: 10.1159/000107417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 02/19/2007] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIMS To determine the association between DNA mismatch repair (MMR) protein expression and response to chemotherapy in patients with advanced colorectal cancer (CRC). METHODS Using immunohistochemistry, tumour expression of 2 MMR genes, hMLH1 and hMSH2, was assessed in 86 patients with advanced CRC, who were treated with either irinotecan alone or in combination with 5-flurouracil/folinic acid. RESULTS Weak/negative staining in the tumours was associated with the presence of metastases at diagnosis (p = 0.026) and with the time for metastases to appear (p = 0.0001). An objective response to treatment was observed in 32/56 (57%) patients who had tumours with negative/weak MMR protein expression (p = 0.001), compared to 17% of patients with tumours with moderate/strong expression. Those who had tumours with weak/absent expression of either hMLH1 or hMSH2 who received the combination therapy were more likely to show an objective response (p = 0.0001). CONCLUSION Advanced CRC patients whose tumours have deficient MMR demonstrate a shorter time to metastasis than those with normal hMLH1/hMSH2 expression. Patients with MMR-deficient tumours are also more likely to benefit from combination chemotherapy (irinotecan plus 5-flurouracil/folinic acid).
Collapse
Affiliation(s)
- R Bendardaf
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
25
|
Wang H, Hoffman PD, Lawrence C, Hays JB. Testing excision models for responses of mismatch-repair systems to UV photoproducts in DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:296-306. [PMID: 16493608 DOI: 10.1002/em.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mismatch-repair (MMR) systems correct DNA replication errors and respond to a variety of DNA lesions. Previous observations that MMR antagonizes UV mutagenesis, and that the mismatch-recognition protein heterodimer MSH2*MSH6 (MutSalpha) selectively binds DNA containing "mismatched" photoproducts (T[CPD]T/AG, T[6-4]T/AG) but not "matched" photoproducts (T[CPD]T/AA, T[6-4]T/AA), suggested that mismatched photoproducts would provoke MMR excision similar to mismatched bases. Excision of incorrect nucleotides inserted opposite template photoproducts might then prevent UV-induced mutation. We tested T[CPD]T/AG DNA, in a sequence context in which it is bound substantially by hMutSalpha and in three other contexts, for stimulation of 3' MMR excision in mammalian nuclear extracts. T[CPD]T/AG was inactive in HeLa extracts, or in extracts deficient in the photoproduct-binding proteins DDB or XPC* hHR23B, arguing against interference from the nucleotide excision repair pathway. Prior incubation with hMutSalpha and MLH2.PMS2 (hMutLalpha) did not increase excision relative to homoduplex controls. T[6-4]T/AG also failed to provoke excision. T/G, C/A, and T/T substrates, even though bound by hMutSalpha no better than T[CPD]T/AG substrates, efficiently provoked excision. Even a substrate containing three T[CPD]T/AG photoproducts (in different contexts) did not significantly provoke excision. Thus, MMR may suppress UV mutagenesis by non-excisive mechanisms.
Collapse
Affiliation(s)
- Huxian Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
26
|
Tzortzaki EG, Tsoumakidou M, Makris D, Siafakas NM. Laboratory markers for COPD in “susceptible” smokers. Clin Chim Acta 2006; 364:124-38. [PMID: 16139829 DOI: 10.1016/j.cca.2005.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 11/25/2022]
Abstract
Smoking is the major risk factor for the development of chronic obstructive pulmonary disease. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition. However, only a relatively small proportion of smokers-about 15%-will develop clinically relevant COPD. Allergy, airway hyper-responsiveness (AHR) to methacholine, and gender differences have been proposed to identify individuals susceptible to the development of COPD. However, variable response to cigarette smoke clearly suggests genetic susceptibility. Among the COPD candidate genes are those (a) that effect the production of proteases and antiproteases, (b) modulate the metabolism of toxic substances in cigarette smoke, (c) are involved with mucocilliary clearance, and (d) that influence inflammatory mediators. Recently, sputum cells from smokers with and without COPD were tested for Microsatellite DNA Instability (MSI) with positive results. This finding suggests that MSI can be a useful marker of genetic susceptibility and thereby indicate destabilization of the genome in the "susceptible" smoker. Nevertheless, COPD lacks established viable biomarkers to predict and monitor disease progression and outcome variables. Such monitoring tools may be induced sputum, exhaled air condensate, peripheral blood, urine, bronchial biopsies, and bronchoalveolar lavage fluid (BALF). This review summarizes recent research on potential laboratory markers in smokers and subsequent COPD development.
Collapse
Affiliation(s)
- Eleni G Tzortzaki
- Department of Thoracic Medicine, University of Crete, Medical School, 71110 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
27
|
Ayres FM, Cruz ADD, Steele P, Glickman BW. Low doses of gamma ionizing radiation increase hprt mutant frequencies of TK6 cells without triggering the mutator phenotype pathway. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Flávio Monteiro Ayres
- University of Victoria, Canada; Universidade Católica de Goiás, Brazil; Universidade Estadual de Goiás, Brazil
| | | | | | | |
Collapse
|
28
|
Samara K, Zervou M, Siafakas NM, Tzortzaki EG. Microsatellite DNA instability in benign lung diseases. Respir Med 2005; 100:202-11. [PMID: 16005622 DOI: 10.1016/j.rmed.2005.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/23/2005] [Indexed: 02/02/2023]
Abstract
Recently DNA mismatch repair system (MMR) has been extensively investigated in molecular medicine. Microsatellite (MS) DNA alterations are considered as indicating an ineffective MMR system. MS loss of heterozygosity (LOH) and microsatellite instability (MSI) have been reported in a number of human malignancies. LOH and MSI have recently been detected in benign diseases, such as actinic keratosis, pterygium and atherosclerosis. In addition, MSI and LOH have been detected in asthma, chronic obstructive pulmonary disease, sarcoidosis and idiopathic pulmonary fibrosis. This is a review of MSI in benign lung diseases. It is concluded that detecting genetic alterations at the MS DNA level could be a useful technique to identify locus of potential altered genes that may play a key role in the pathogenesis of these diseases. In addition, MSI and LOH could be used as a genetic screening tool in molecular epidemiology.
Collapse
Affiliation(s)
- Katerina Samara
- Department of Thoracic Medicine, Medical School, University of Crete, Heraklion 71110, Crete, Greece
| | | | | | | |
Collapse
|
29
|
Ciavattini A, Piccioni M, Tranquilli AL, Filosa A, Pieramici T, Goteri G. Immunohistochemical expression of DNA mismatch repair (MMR) system proteins (hMLH1, hMSH2) in cervical preinvasive and invasive lesions. Pathol Res Pract 2005; 201:21-5. [PMID: 15807307 DOI: 10.1016/j.prp.2004.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The purpose of our study was to analyze the immunohistochemical expression of two MMR system proteins at different steps of neoplastic progression within the squamous cervical epithelium. We compared cases showing normal histologic appearance with those affected by low and high-grade squamous intraepithelial lesions and invasive cervical carcinoma. We investigated formalin-fixed and paraffin-embedded tissue specimens obtained from 83 selected patients (55 with preinvasive neoplastic lesions and 28 with invasive squamous cervical carcinoma) for the expression of hMSH2 and hMLH1 at the immunohistochemical level. We also included 30 patients with histologically normal cervix as a control group. Epithelial cells of CIN lesions showed a significant increase in the expression of both hMLH1 and hMSH2 proteins compared to non-neoplastic squamous epithelium (p < 0.0001). The cases of invasive carcinoma showed a positivity for hMLH1 protein that was statistically lower than that for non-neoplastic cells (p = 0.0009) and that for cases with CIN (p < 0.0001). Positivity for hMSH2 protein was higher than that for normal epithelium (p = 0.0007), but lower than that for preinvasive lesions (p = 0.0001). Preinvasive lesions showed increased expression of both proteins if compared with normal esocervical epithelium. Neoplastic stromal invasiveness is associated with a significant loss of hMLH1 function.
Collapse
Affiliation(s)
- Andrea Ciavattini
- Institute of Obstetrics and Gynecology, Politechnical University of Marche, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Smith JA, Waldman BC, Waldman AS. A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes. Genetics 2005; 170:355-63. [PMID: 15781695 PMCID: PMC1449728 DOI: 10.1534/genetics.104.039362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions."
Collapse
Affiliation(s)
- Jason A Smith
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | | | | |
Collapse
|
31
|
Yan T, Desai AB, Jacobberger JW, Sramkoski RM, Loh T, Kinsella TJ. CHK1 and CHK2 are differentially involved in mismatch repair–mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1147.3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The DNA mismatch repair (MMR) system plays an important role in mediating a G2-M checkpoint arrest and subsequent cell death following treatment with a variety of chemotherapeutic agents. In this study, using 6-thioguanine (6-TG) as a mismatch-inducing drug, we examine the role of ataxia telangiectasia mutated (ATM)/CHK2 and ATM and Rad-3 related (ATR)/CHK1 signaling pathways in MMR-mediated cell cycle responses in MMR-proficient human colorectal cancer RKO cells. We show that, in response to 6-TG (3 μmol/L × 24 hours), activating phosphorylation of CHK1 at Ser317 [CHK1(pS317)] and CHK2 at Thr68 [CHK2(pT68)] are induced differentially during a prolonged course (up to 6 days) of MMR-mediated cell cycle arrests following 6-TG treatment, with CHK1(pS317) being induced within 1 day and CHK2(pT68) being induced later. Using chemical inhibitors and small interfering RNA of the signaling kinases, we show that a MMR-mediated 6-TG-induced G2 arrest is ATR/CHK1 dependent but ATM/CHK2 independent and that ATR/CHK1 signaling is responsible for both initiation and maintenance of the G2 arrest. However, CHK2(pT68) seems to be involved in a subsequent tetraploid G1 arrest, which blocks cells that escape from the G2-M checkpoint following 6-TG treatment. Furthermore, we show that CHK2 is hyperphosphorylated at later times following 6-TG treatment and the phosphorylation of CHK2 seems to be ATM independent but up-regulated when ATR or CHK1 is reduced. Thus, our data suggest that CHK1(pS317) is involved in a MMR-mediated 6-TG-induced G2 arrest, whereas CHK2(pT68) seems to be involved in a subsequent tetraploid G1-S checkpoint. The two signaling kinases seem to work cooperatively to ensure that 6-TG damaged cells arrest at these cell cycle checkpoints.
Collapse
Affiliation(s)
- Tao Yan
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anand B. Desai
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James W. Jacobberger
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - R. Michael Sramkoski
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Tamalette Loh
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Timothy J. Kinsella
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
32
|
Bell JS, Harvey TI, Sims AM, McCulloch R. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Mol Microbiol 2004; 51:159-73. [PMID: 14651619 DOI: 10.1046/j.1365-2958.2003.03804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mismatch repair is one of a number of DNA repair pathways that cells possess to deal with damage to their genome. Mismatch repair is concerned with the recognition and correction of incorrectly paired bases, which can be base-base mismatches or insertions or deletions of a few bases, and appears to have been conserved throughout evolution. Primarily, this is concerned with increasing the fidelity of DNA replication, but also has important roles in the regulation of homologous recombination and the correction of chemical damage. In this study, we describe five genes in the protistan parasite Trypanosoma brucei that are likely to be involved in nuclear mismatch repair. The predicted T. brucei mismatch repair genes are diverged compared with their likely counterparts in the other eukaryotes examined to date. To demonstrate that these do indeed encode a functional nuclear mismatch repair system, we made T. brucei null mutants in two of the genes, MSH2 and MLH1, that are likely to be central to the functioning of the mismatch repair machinery. These mutations resulted in increased rates of sequence variation at a number of microsatellite loci in the parasite genome, and led to increased tolerance to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, both phenotypes consistent with mismatch repair impairment.
Collapse
Affiliation(s)
- Joanna S Bell
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
33
|
Wu SY, Culligan K, Lamers M, Hays J. Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2*MSH6 (MutSalpha) and MSH2*MSH7 (MutSgamma). Nucleic Acids Res 2004; 31:6027-34. [PMID: 14530450 PMCID: PMC219466 DOI: 10.1093/nar/gkg780] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides orthologs of other eukaryotic mismatch-repair (MMR) proteins, plants encode MSH7, a paralog of MSH6. The Arabidopsis thaliana recognition heterodimers AtMSH2*MSH6 (AtMutSalpha) and AtMSH2*MSH3 (AtMutSbeta) were previously found to bind the same subsets of mismatches as their counterparts in other eukaryotes--respectively, base-base mismatches and single extra nucleotides, loopouts of extra nucleotides (one or more) only--but AtMSH2*MSH7 (AtMutSgamma) bound well only to a G/T mismatch. To test hypotheses that MSH7 might be specialized for G/T, or for base mismatches in 5-methylcytosine contexts, we compared binding of AtMutSalpha and AtMutSgamma to a series of mismatched DNA oligoduplexes, relative to their (roughly similar) binding to G/T DNA. AtMutSgamma bound G/G, G/A, A/A and especially C/A mispairs as well or better than G/T, in contrast to MutSalpha, for which G/T was clearly the best base mismatch. The presence of 5-methylcytosine adjacent to or in a mispair generally lowered binding by both heterodimers, with no systematic difference between the two. Alignment of protein sequences reveals the absence in MSH7 of the clamp domains that in bacterial MutS proteins--and by inference MSH6 proteins--non-specifically bind the backbone of mismatched DNA, raising new questions as to how clamp domains enhance mismatch recognition. Plants must rigorously suppress mutation during mitotic division of meristematic cells that eventually give rise to gametes and may also use MMR proteins to antagonize homeologous recombination. The MSH6 versus MSH7 divergence may reflect specializations for particular mismatches and/or sequence contexts, so as to increase both DNA-replication and meiotic-recombination fidelity, or dedication of MSH6 to the former and MSH7 to the latter, consistent with genetic evidence from wheat.
Collapse
Affiliation(s)
- Shiau-Yin Wu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 973631-7301, USA
| | | | | | | |
Collapse
|
34
|
Ayres FM, Momotuk EG, Bastos CDC, Cruz ADD. Detection of mutator phenotype in Brazilian patients with acute and chronic myeloid leukemia. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000400003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
36
|
Nielsen FC, Jäger AC, Lützen A, Bundgaard JR, Rasmussen LJ. Characterization of human exonuclease 1 in complex with mismatch repair proteins, subcellular localization and association with PCNA. Oncogene 2003; 23:1457-68. [PMID: 14676842 DOI: 10.1038/sj.onc.1207265] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human exonuclease 1 (hEXO1) has been implicated in DNA mismatch repair (MMR), replication, and recombination, but the nature of its interaction with these cellular processes is still ambiguous. We show that hEXO1 colocalizes with proliferating cell nuclear antigen (PCNA) at DNA replication sites and that the C-terminal region of hEXO1 is sufficient for this localization. We also show that both hMLH1-hPMS2 (MutLalpha) and hMLH1-hEXO1 complexes are formed in a reaction mixture containing all three proteins. Moreover, hEXO1 5' double-stranded exonuclease activity on a homoduplex substrate but not on a substrate containing a G/T mismatch was inhibited by complex formation with hMSH2-hMSH6 (MutSalpha) or MutLalpha. Taken together, the results support a model in which hEXO1 plays a role in events at the replication sites as well as a functional role in the MMR and/or recombination processes.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Young LC, Peters AC, Maeda T, Edelmann W, Kucherlapati R, Andrew SE, Tron VA. DNA mismatch repair protein Msh6 is required for optimal levels of ultraviolet-B-induced apoptosis in primary mouse fibroblasts. J Invest Dermatol 2003; 121:876-80. [PMID: 14632208 DOI: 10.1046/j.1523-1747.2003.12486.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent data support a role for DNA mismatch repair in the cellular response to some forms of exogenous DNA damage beyond that of DNA repair; cells with defective DNA mismatch repair have partial or complete failure to undergo apoptosis and/or G2M arrest following specific types of damage. We propose that the DNA mismatch repair Msh2/Msh6 heterodimer, responsible for the detection of DNA damage, promotes apoptosis in normal cells, thus protecting mammals from ultraviolet-induced malignant transformation. Using primary mouse embryonic fibroblasts derived from Msh6+/+ and Msh6-/- mice, we compare the response of DNA-mismatch repair-proficient and -deficient cells to ultraviolet B radiation. In the wild-type mouse embryonic fibroblasts, ultraviolet-B-induced increases in Msh6 protein levels were not dependent on p53. Msh6-/- mouse embryonic fibroblasts were significantly less sensitive to the cytotoxic effects of ultraviolet B radiation. Further comparison of the Msh6+/+ and Msh6-/- mouse embryonic fibroblasts revealed that Msh6-/- mouse embryonic fibroblasts undergo significantly less apoptosis following ultraviolet B irradiation, thus indicating that ultraviolet-B-induced apoptosis is partially Msh6 dependent. These data support a role for Msh6 in protective cellular responses of primary cells to ultraviolet-B-induced mutagenesis and, hence, the prevention of skin cancer.
Collapse
Affiliation(s)
- Leah C Young
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur J Cancer 2003; 39:2142-9. [PMID: 14522371 DOI: 10.1016/s0959-8049(03)00569-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Indeed, in certain circumstances reduced levels of DNA nucleotide excision repair are associated with a good therapeutic outlook (Curr Biol 9 (1999) 273). A paradoxical relationship between DNA mismatch repair (MMR) and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between MMR and tumour therapy might be more complex. Here, we briefly review how MMR deficiency can affect drug resistance and the extent to which loss of MMR is a prognostic factor in certain cancer therapies. We also consider how the inverse relationship between MMR activity and drug resistance might influence the development of treatment-related malignancies which are increasingly linked to MMR defects.
Collapse
Affiliation(s)
- M Bignami
- Laboratorio di Tossicologia Comparata, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
39
|
Young LC, Hays JB, Tron VA, Andrew SE. DNA mismatch repair proteins: potential guardians against genomic instability and tumorigenesis induced by ultraviolet photoproducts. J Invest Dermatol 2003; 121:435-40. [PMID: 12925197 DOI: 10.1046/j.1523-1747.2003.12450.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to their established role in repairing post-replicative DNA errors, DNA mismatch repair proteins contribute to cell cycle arrest and apoptosis in response to a wide range of exogenous DNA damage (e.g., alkylation-induced lesions). The role of DNA mismatch repair in response to ultraviolet-induced DNA damage has been historically controversial. Recent data, however, suggest that DNA mismatch repair proteins probably do not contribute to the removal of ultraviolet-induced DNA damage, but may be important in suppressing mutagenesis, effecting apoptosis, and suppressing tumorigenesis following exposure to ultraviolet radiation.
Collapse
Affiliation(s)
- Leah C Young
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | |
Collapse
|
40
|
Lamers MH, Winterwerp HH, Sixma TK. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J 2003; 22:746-56. [PMID: 12554674 PMCID: PMC140748 DOI: 10.1093/emboj/cdg064] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA mismatch repair is an essential safeguard of genomic integrity by removing base mispairings that may arise from DNA polymerase errors or from homologous recombination between DNA strands. In Escherichia coli, the MutS enzyme recognizes mismatches and initiates repair. MutS has an intrinsic ATPase activity crucial for its function, but which is poorly understood. We show here that within the MutS homodimer, the two chemically identical ATPase sites have different affinities for ADP, and the two sites alternate in ATP hydrolysis. A single residue, Arg697, located at the interface of the two ATPase domains, controls the asymmetry. When mutated, the asymmetry is lost and mismatch repair in vivo is impaired. We propose that asymmetry of the ATPase domains is an essential feature of mismatch repair that controls the timing of the different steps in the repair cascade.
Collapse
Affiliation(s)
| | | | - Titia K. Sixma
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
41
|
Abstract
Defects in DNA-repair pathways lead to an accumulation of mutations in genomic DNA that result from non-repair or mis-repair of modifications introduced into the DNA by endogenous or exogenous agents or by the malfunction of DNA metabolic pathways. Until recently, only two repair pathways, postreplicative mismatch repair and nucleotide excision repair, have been linked to cancer in mammals, but these have been joined in recent months also by the damage-reversal and base-excision-repair processes, which have been shown to be inactivated, either through mutation or epigenetically, in human cancer.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zürich, Switzerland.
| | | |
Collapse
|
42
|
Liu D, Momoi H, Li L, Ishikawa Y, Fukumoto M. Microsatellite instability in thorotrast-induced human intrahepatic cholangiocarcinoma. Int J Cancer 2002; 102:366-71. [PMID: 12402306 DOI: 10.1002/ijc.10726] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thorotrast, a colloidal suspension of radioactive (232)ThO(2) that emits alpha particles, was used as a radiographic contrast during World War II. It is known to induce liver cancers, most frequently ICC, decades after injection. Since radiation induces genomic instability, we analyzed MSI in Thorotrast-induced ICC. The frequency of MSI(+) cases was 62.5% in Thorotrast ICC, whereas it was 22.7% in non-Thorotrast ICC. However, frameshift mutations of mononucleotide repeats were not observed in Thorotrast ICC. In addition, the MSI(+) phenotype was not associated with the quantity of Thorotrast deposited or the latency period of ICC induction. Promoter regions of both the hMLH1 and the hMSH2 MMR genes tended to be hypermethylated in the tumor part compared to the adjacent nontumor part in Thorotrast ICC. Methylation of the hMLH1 promoter was associated with the MSI(+) phenotype in Thorotrast ICC. In contrast, methylation status of these promoter regions was not related to MSI in non-Thorotrast ICC cases. These findings suggest that MSI induced by exposure to Thorotrast mainly reflects clonal expansion of cancer cells and is partly due to inactivation of hMLH1 by hypermethylation.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
43
|
Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002; 11:2453-65. [PMID: 12453231 DOI: 10.1046/j.1365-294x.2002.01643.x] [Citation(s) in RCA: 614] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.
Collapse
Affiliation(s)
- You-Chun Li
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
44
|
Mark SC, Sandercock LE, Luchman HA, Baross A, Edelmann W, Jirik FR. Elevated mutant frequencies and predominance of G:C to A:T transition mutations in Msh6(-/-) small intestinal epithelium. Oncogene 2002; 21:7126-30. [PMID: 12370835 DOI: 10.1038/sj.onc.1205861] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 07/03/2002] [Accepted: 07/09/2002] [Indexed: 01/18/2023]
Abstract
The DNA mismatch repair (MMR) system is primarily responsible for purging newly synthesized DNA of errors incurred during semi-conservative replication. Lesion recognition is initially carried out by one of two heterodimeric protein complexes, MutS(alpha) or MutS(beta). While the former, comprised of MSH2 and MSH6, recognizes mispairs as well as short (1-2 nucleotide) insertions/deletions (IDLs), the latter, made up of MSH2 and MSH3, is primarily responsible for recognizing 2-6 nucleotide IDLs. As most of the functional information on these heterodimers is derived from in vitro studies, it was of interest to study the in vivo consequences of a lack of MutS(alpha). To this end, Big Blue( trade mark ) mice, that carry a lacI(+) transgenic lambda shuttle-phage mutational reporter, were crossed with Msh6(-/-) mice to evaluate the specific contribution of MutS(alpha) to genome integrity. Consistent with the importance of MutS(alpha) in lesion surveillance, small intestine epithelial cell DNA derived from lacI(+) Msh6(-/-) mice exhibited striking increases (average of 41-fold) in spontaneous mutant frequencies. Furthermore, the lacI gene mutation spectrum was dominated by G:C to A:T transitions, highlighting the critical importance of the MutS(alpha) complex in suppressing this frequently observed type of spontaneous mutation.
Collapse
Affiliation(s)
- Sean C Mark
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
45
|
Bhaumik SR, Chary KVR. Molecular dynamics and mechanics calculations on a DNA duplex with A(+)-C, G-T and T-C mispairs. J Biomol Struct Dyn 2002; 20:199-206. [PMID: 12354071 DOI: 10.1080/07391102.2002.10506835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Despite major advances in characterizing purine(R)-purine(R), purine(R)-pyrimidine(Y) and pyrimidine(Y)-pyrimidine(Y) mismatches in DNA, there have not been any structural studies on a synthetic DNA duplex containing several different mispairs. Here, using NMR restrained molecular mechanics and dynamics simulations we have structurally characterized a 12 nucleotide long antiparallel DNA duplex with three different mispairs, namely A+-C, G-T and T-C. Our results show that the overall conformation of the antiparallel DNA duplex is B-DNA-like with slight structural distortions at or near the mispairs' sites. All these mispairs are properly stacked with their flanking base pairs. Each mispair is stabilized by two hydrogen bonds and the decreasing order of the hydrogen-bonding interactions is G-T>T-C>A+-C. G-T mispair has smaller configurational space while the structure is slightly bent at A+-C mispair's site. Overall, this study is the first ever structural characterization of a DNA duplex with three different mismatched base pairs and throws light upon the local conformations of the three mispairs present in the DNA duplex.
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Chemical Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | | |
Collapse
|
46
|
Rochette PJ, Bastien N, McKay BC, Therrien JP, Drobetsky EA, Drouin R. Human cells bearing homozygous mutations in the DNA mismatch repair genes hMLH1 or hMSH2 are fully proficient in transcription-coupled nucleotide excision repair. Oncogene 2002; 21:5743-52. [PMID: 12173044 DOI: 10.1038/sj.onc.1205641] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 04/24/2002] [Accepted: 04/29/2002] [Indexed: 01/20/2023]
Abstract
The transcription-coupled nucleotide excision repair (TCNER) pathway maintains genomic stability by rapidly eliminating helix-distorting DNA adducts, such as UV-induced cyclobutane pyrimidine dimers (CPDs), specifically from the transcribed strands of active genes. DNA mismatch repair (MMR) constitutes yet another critical antimutagenic pathway that removes mispaired bases generated during semiconservative replication. It was previously reported that the human colon adenocarcinoma strains HCT116 and LoVo (bearing homozygous mutations in the MMR genes hMLH1 and hMSH2, respectively), besides manifesting hallmark phenotypes associated with defective DNA mismatch correction, are also completely deficient in TCNER of UV-induced CPDs. This revealed a direct mechanistic link between MMR and TCNER in human cells, although subsequent studies have either supported, or argued against, the validity of this important notion. Here, the ligation-mediated polymerase chain reaction was used to show at nucleotide resolution that MMR-deficient HCT116 and LoVo retain the ability to excise UV-induced CPDs much more rapidly from the transcribed vs the nontranscribed strands of active genes. Moreover, relative to DNA repair-proficient counterparts, MMR-deficient cells were not more sensitive to the cytotoxic effects of UV, and displayed equal ability to recover mRNA synthesis following UV challenge. These results conclusively demonstrate that hMLH1- and hMSH2-deficient human colon adenocarcinoma cells are fully proficient in TCNER.
Collapse
Affiliation(s)
- Patrick J Rochette
- Department of Medical Biology, Faculty of Medicine, Laval University and Unité de Recherche en Génétique Humaine et Moléculaire, Research Centre, Hôpital St-François d'Assise, Centre Hospitalier Universitaire de Québec, PQ, Canada G1L 3L5
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The cytotoxic effect of many anticancer drugs relies on their ability to damage DNA. Drug resistance can be associated with the ability to remove potentially lethal DNA lesions. DNA damage tolerance offers an alternative route to resistance. In a drug-tolerant cell, persistent DNA damage has become uncoupled from cell death. Tolerance to some DNA damaging drugs is accompanied by inactivation of the cell's DNA mismatch repair pathway. This is widely acknowledged as the mechanism underlying resistance to methylating agents and to 6-thioguanine which produce structurally similar types of DNA damage. Defects in mismatch repair are also associated with resistance to numerous drugs that produce a wide variety of structurally diverse DNA lesions. Here I consider possible mechanisms by which mismatch repair might influence drug resistance and the extent to which loss of mismatch repair might be considered to confer a multidrug resistance phenotype.
Collapse
Affiliation(s)
- P Karran
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| |
Collapse
|
48
|
Abstract
The human protein MED1, also known as MBD4, was isolated in a yeast two-hybrid screening as an interactor of the mismatch repair protein MLH1. MED1 contains an N-terminal 5-methylcytosine binding domain (MBD), which allows binding to methylated DNA, and a C-terminal catalytic domain with homology to bacterial DNA damage-specific glycosylases/lyases. This suggests that DNA methylation may play a role in human DNA repair. MED1 acts as a mismatch-specific DNA N-glycosylase active on thymine, uracil, 5-fluorouracil and, weakly, 3,N(4)-ethenocytosine paired with guanine. The glycosylase activity of MED1 prefers substrates in which the G:T mismatch is present in the context of methylated or unmethylated CpG sites. Since G:T mismatches can originate via spontaneous deamination of 5-methylcytosine to thymine, MED1 appears to act as a caretaker of genomic fidelity at CpG sites. Mutagenesis caused by these deamination events is a frequent mechanism of genetic instability in cancer; thus, based on the biochemical activity of its gene product, MED1 is a candidate tumor suppressor gene. Indeed, frameshift mutations of the MED1 gene have been reported in human colorectal, gastric, endometrial, and pancreatic cancer. In the future, efforts should be directed toward investigations of the functional role of the MED1 gene in the pathogenesis, prevention, and treatment of human cancer.
Collapse
Affiliation(s)
- A Bellacosa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|