1
|
Nollet M, Bachelier R, Joshkon A, Traboulsi W, Mahieux A, Moyon A, Muller A, Somasundaram I, Simoncini S, Peiretti F, Leroyer AS, Guillet B, Granel B, Dignat-George F, Bardin N, Foucault-Bertaud A, Blot-Chabaud M. Multiple variants of soluble CD146 are involved in Systemic Sclerosis: identification of a novel pro-fibrotic factor. Arthritis Rheumatol 2022; 74:1027-1038. [PMID: 35001552 DOI: 10.1002/art.42063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction and vascular damages, in which expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. As CD146 also exists as a circulating soluble form (sCD146) acting as a growth factor in numerous angiogenic- and inflammatory-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and characterized the regulation and functions of the different identified variants in SSc. METHODS To this end, we performed in vitro experiments, including RNA-seq and antibody arrays, and in vivo experiments using animal models of SSc induced by bleomycin and of hindlimb ischemia. RESULTS Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of membrane CD146 through Adam10 and Tace metalloproteinases, respectively. In addition, two novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146 were identified. Of interest, I5-13-sCD146 was significantly increased in sera of SSc patients, in particular in patients with pulmonary fibrosis, whereas I10-sCD146 was decreased. Further experiments revealed that shed sCD146 and I10-sCD146 displayed pro-angiogenic activity through FAK and PKCε signalling pathways, respectively, whereas I5-13-sCD146 displayed pro-fibrotic effects through wint1/β-catenin/wisp1 pathway. CONCLUSION Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could thus constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc, but also of other angiogenesis- or fibrosis-related pathologies.
Collapse
Affiliation(s)
- Marie Nollet
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Richard Bachelier
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Ahmad Joshkon
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Waël Traboulsi
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Amandine Mahieux
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Anais Moyon
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| | - Alexandre Muller
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil University, Kolhapur, India
| | | | - Franck Peiretti
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Aurélie S Leroyer
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| | - Brigitte Granel
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,Internal Medicine Department, AP-HM, Marseille, France
| | | | - Nathalie Bardin
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | | | | |
Collapse
|
2
|
Daskou M, Mu W, Sharma M, Vasilopoulos H, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathog 2022; 18:e1010160. [PMID: 34995311 PMCID: PMC8740974 DOI: 10.1371/journal.ppat.1010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hariclea Vasilopoulos
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rachel Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Athanasios Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shubhendu Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan M. Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Kothari V, Tang J, He Y, Kramer F, Kanter JE, Bornfeldt KE. ADAM17 Boosts Cholesterol Efflux and Downstream Effects of High-Density Lipoprotein on Inflammatory Pathways in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:1854-1873. [PMID: 33882688 PMCID: PMC8159900 DOI: 10.1161/atvbaha.121.315145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Yi He
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Jenny E. Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109
| |
Collapse
|
4
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
5
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
6
|
Chemaly M, McGilligan V, Gibson M, Clauss M, Watterson S, Alexander HD, Bjourson AJ, Peace A. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events. Arch Cardiovasc Dis 2017; 110:700-711. [DOI: 10.1016/j.acvd.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
|
7
|
High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling. Cell Metab 2017; 25:197-207. [PMID: 27866837 DOI: 10.1016/j.cmet.2016.10.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 06/30/2016] [Accepted: 10/20/2016] [Indexed: 01/15/2023]
Abstract
Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.
Collapse
|
8
|
Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2795-2808. [DOI: 10.1016/j.bbamcr.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/02/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
|
9
|
Bisoendial R, Tabet F, Tak PP, Petrides F, Cuesta Torres LF, Hou L, Cook A, Barter PJ, Weninger W, Rye KA. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:2443-50. [PMID: 26359513 DOI: 10.1161/atvbaha.115.305777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/25/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo) A-I, the principal apolipoprotein of high-density lipoproteins, to preserve the normal function of lymphatic endothelial cells treated with TNF. APPROACH AND RESULTS TNF decreased the ability of lymphatic endothelial cells to form tube-like structures. Preincubation of lymphatic endothelial cells with apoA-I attenuated the TNF-mediated inhibition of tube formation in a concentration-dependent manner. In addition, apoA-I reversed the TNF-mediated suppression of lymphatic endothelial cell migration and lymphatic outgrowth in thoracic duct rings. ApoA-I also abrogated the negative effect of TNF on lymphatic neovascularization in an ATP-binding cassette transporter A1-dependent manner. At the molecular level, this involved downregulation of TNF receptor-1 and the conservation of prospero-related homeobox gene-1 expression, a master regulator of lymphangiogenesis. ApoA-I also re-established the normal phenotype of the lymphatic network in the diaphragms of human TNF transgenic mice. CONCLUSIONS ApoA-I restores the neovascularization capacity of the lymphatic system during TNF-mediated inflammation. This study provides a proof-of-concept that high-density lipoprotein-based therapeutic strategies may attenuate chronic inflammation via its action on lymphatic vasculature.
Collapse
Affiliation(s)
- Radjesh Bisoendial
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Fatiha Tabet
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Paul P Tak
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Francine Petrides
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Luisa F Cuesta Torres
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Liming Hou
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Adam Cook
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Philip J Barter
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Wolfgang Weninger
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.)
| | - Kerry-Anne Rye
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Immune Imaging, Centenary Institute, Newtown, New South Wales, Australia (R.B., A.C., W.W.); Lipid Research Group, Heart Research Institute, Sydney, New South Wales, Australia (R.B., F.T., F.P., L.F.C.T., L.H., P.J.B., K.A.R.); Department of Clinical Immunology and Rheumatology, Academic Medical Centre, Amsterdam, the Netherlands (P.P.T.); GlaxoSmithKline, Stevenage, United Kingdom (P.P.T.); Department of Rheumatology, Ghent University, Ghent, Belgium (P.P.T.); Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia (A.C., P.J.B., K.A.R.); Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales, Australia (W.W.); and Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (W.W.).
| |
Collapse
|
10
|
Morancho B, Martínez-Barriocanal Á, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res 2015; 17:106. [PMID: 26260680 PMCID: PMC4532141 DOI: 10.1186/s13058-015-0619-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. Methods We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Results Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Conclusions Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0619-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Águeda Martínez-Barriocanal
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Josep Villanueva
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain. .,Department of Biochemistry and Molecular Biology, Building M, Campus UAB, Bellaterra (Cerdanyola del Valles), Barcelona, 08193, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
11
|
Egg intake during carbohydrate restriction alters peripheral blood mononuclear cell inflammation and cholesterol homeostasis in metabolic syndrome. Nutrients 2014; 6:2650-67. [PMID: 25045936 PMCID: PMC4113762 DOI: 10.3390/nu6072650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023] Open
Abstract
Egg yolk contains bioactive components that improve plasma inflammatory markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. We further sought to determine whether egg yolk intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the inflammatory potential of leukocytes through modulation of cellular cholesterol content and distribution. Thirty-seven men and women classified with MetS consumed a moderate carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute (SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion increased from baseline to week 12 in the SUB group only, despite increases in PBMC toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol positively correlated with changes in lipid raft content. Together, these findings suggest that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and cholesterol homeostasis in MetS.
Collapse
|
12
|
Caveolin-1 is required for TGF-β-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis 2014; 5:e1326. [PMID: 25032849 PMCID: PMC4123087 DOI: 10.1038/cddis.2014.294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-beta (TGF-β) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-β in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-β receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-β-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1(-/-) hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-β, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-β-induced survival signals in Cav1(-/-) hepatocytes, such as AKT and ERK1/2 phosphorylation and NFκ-B activation. Transactivation of the EGFR pathway by TGF-β was impaired in Cav1(-/-) hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1(-/-) hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1(+/+) cells, which was not the case in Cav1(-/-) cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-β treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-β-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-β pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-β in liver cancer cells.
Collapse
|
13
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Chen J, Jiang X, Duan Y, Long J, Bartsch JW, Deng L. ADAM8 in asthma. Friend or foe to airway inflammation? Am J Respir Cell Mol Biol 2014; 49:875-84. [PMID: 23837412 DOI: 10.1165/rcmb.2013-0168tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation has been suggested as the pathological basis in asthma pathogenesis. Recruitment of leukocytes from the vasculature into airway sites is essential for induction of airway inflammation, a process thought to be mediated by a disintegrin and metalloprotease 8 (ADAM8). However, there is an apparent controversy about whether ADAM8 helps or hampers transmigration of leukocytes through endothelium in airway inflammation of asthma. This review outlines the current contradictory concepts concerning the role of ADAM8 in airway inflammation, particularly focusing on the recruitment of leukocytes during asthma, and attempts to bridge the existing experimental data on the basis of the functional analysis of different domains of ADAM8 and their endogenous processing in vivo. We suggest a possible hypothesis for the specific mechanism by which ADAM8 regulates the transmigration of leukocytes to explain the disparity existing in current studies, and we also raise some questions that require future investigations.
Collapse
Affiliation(s)
- Jun Chen
- 1 Key Lab of Biorheological Science and Technology, Ministry of Education, "National 985 Project" Institute of Biorheology and Gene Regulation, Bioengineering College, Chongqing University, Chongqing, P.R. China
| | | | | | | | | | | |
Collapse
|
15
|
HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis 2012; 225:105-14. [PMID: 22862966 DOI: 10.1016/j.atherosclerosis.2012.07.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Depletion of cholesterol by methyl-β-cyclodextrin (MCD) on peptide-loaded antigen presenting cells (APCs) inhibits antigen presentation and T cell activation. However, whether membrane cholesterol efflux induced by high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) also results in inhibition of antigen presentation and T cell activation is still unknown. METHODS AND RESULTS Various types of APCs, including B cells, macrophages and dendritic cells (DCs), were first loaded with antigen, then incubated with HDL and apoA-I to decrease cellular membrane cholesterol content. After being treated with HDL and apoA-I, APCs demonstrated decreased potential to activate T cells, and this decrease correlated with an increase in cholesterol efflux from APCs. Cholesterol repletion reversed the inhibitory effects of HDL and apoA-I, demonstrating that the observed reduction in T cell proliferation is mediated through cholesterol. Furthermore, lipid raft analysis showed that HDL and apoA-I reduced cholesterol and major histocompatibility (MHC) class II protein content in lipid rafts, suggesting that cholesterol efflux from APCs to HDL and apoA-I inhibits antigen presentation and T cell activation by reducing lipid rafts assembly in APCs. CONCLUSION HDL and apoA-I inhibit the capacity of APCs to stimulate T cell activation, and this inhibition can be attributed to cholesterol efflux and the ensuing disruption of plasma membrane lipid rafts in APCs. Overall, these findings suggest that cholesterol efflux mediated by HDL and apoA-I may serve to link immunity and cardioprotection.
Collapse
|
16
|
Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 2012; 23:169-78. [PMID: 22406271 PMCID: PMC3338129 DOI: 10.1016/j.tem.2012.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
Abstract
Although lipid metabolism and host defense are widely considered to be very divergent disciplines, compelling evidence suggests that host cell handling of self- and microbe-derived (e.g. lipopolysaccharide, LPS) lipids may have common evolutionary roots, and that they indeed may be inseparable processes. The innate immune response and the homeostatic network controlling cellular sterol levels are now known to regulate each other reciprocally, with important implications for several common diseases, including atherosclerosis. In the present review we discuss recent discoveries that provide new insight into the bidirectional crosstalk between reverse cholesterol transport and innate immunity, and highlight the broader implications of these findings for the development of therapeutics.
Collapse
Affiliation(s)
- Kathleen M Azzam
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
17
|
Li J, Liu B, Gao X, Ma Z, CaoSong T, Mei YA, Zheng Y. Overexpression of sigma-1 receptor inhibits ADAM10 and ADAM17 mediated shedding in vitro. Protein Cell 2012; 3:153-9. [PMID: 22322890 PMCID: PMC4875409 DOI: 10.1007/s13238-012-2006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022] Open
Abstract
The sigma-1 receptor is a molecular chaperone protein highly enriched in the brain. Recent studies linked it to many diseases, such as drug addition, Alzheimer's disease, stroke, depression, and even cancer. Sigma-1 receptor is enriched in lipid rafts, which are membrane microdomains essential in signaling processes. One of those signaling processes is ADAM17- and ADAM10-dependent ectodomain shedding. By using an alkaline phosphatase tagged substrate reporter system, we have shown that ADAM10-dependent BTC shedding was very sensitive to both membrane lipid component change and sigma-1 receptor agonist DHEAS treatment while ADAM17-dependent HB-EGF shedding was not; and overexpression of sigma-1 receptor diminished ADAM17- and ADAM10-dependent shedding. Our results indicate that sigma-1 receptor plays an important role in modifying the function of transmembrane proteases.
Collapse
Affiliation(s)
- Juan Li
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Bin Liu
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Xiaofei Gao
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Zhixing Ma
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Tianyi CaoSong
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yan-ai Mei
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yufang Zheng
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
18
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
19
|
Lemaire-Ewing S, Lagrost L, Néel D. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 2011; 221:303-10. [PMID: 22071358 DOI: 10.1016/j.atherosclerosis.2011.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Lipid rafts are microdomains of the plasma membrane which are enriched in cholesterol and sphingolipids. They serve as a platform for signal transduction, in particular during immune and inflammatory responses. As hypercholesterolemia and inflammation are two key elements of atherogenesis, it is conceivable that the cholesterol and cholesterol oxide content of lipid rafts might influence the inflammatory signalling pathways, thus modulating the development of atherosclerosis. In support of this emerging view, lipid rafts have been shown to be involved in several key steps of atherogenesis, such as the oxysterol-mediated apoptosis of vascular cells, the blunted ability of high density lipoproteins (HDL) to exert anti-inflammatory effects, and the exacerbated secretion of pro-inflammatory cytokines by immune cells. Additional studies are now required to address the relative contribution of lipid raft abnormalities to the pathophysiology of atherosclerosis and cardiovascular disease.
Collapse
|
20
|
Lamour NF, Wijesinghe DS, Mietla JA, Ward KE, Stahelin RV, Chalfant CE. Ceramide kinase regulates the production of tumor necrosis factor α (TNFα) via inhibition of TNFα-converting enzyme. J Biol Chem 2011; 286:42808-17. [PMID: 22009748 PMCID: PMC3234830 DOI: 10.1074/jbc.m111.310169] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a well known cytokine involved in systemic and acute inflammation. In this study, we demonstrate that ceramide 1-phosphate (C1P) produced by ceramide kinase (CERK) is a negative regulator of LPS-induced TNFα secretion. Specifically, bone marrow-derived macrophages isolated from CERK knock-out mice (CERK−/−) generated higher levels of TNFα than the wild-type mice (CERK+/+) in response to LPS. An increase in basal TNFα secretion was also observed in CERK−/− murine embryonic fibroblasts, which was rescued by re-expression of wild-type CERK. This effect was due to increased secretion and not transcription. The secretion of TNFα is regulated by TNFα-converting enzyme (TACE also known as ADAM17), and importantly, the activity of TACE was higher in cell extracts from CERK−/− as compared with wild type. In vitro analysis also demonstrated that C1P is a potent inhibitor of this enzyme, in stark contrast to ceramide and sphingosine 1-phosphate. Furthermore, TACE specifically bound C1P with high affinity. Finally, several putative C1P-binding sites were identified via homology throughout the protein sequence of TACE. These results indicate that C1P produced by CERK has a negative effect on the processing/secretion of TNFα via modulation of TACE activity.
Collapse
Affiliation(s)
- Nadia F Lamour
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
21
|
Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:1529-35. [PMID: 21810617 DOI: 10.4049/jimmunol.1100253] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid rafts and caveolae play a pivotal role in organization of signaling by TLR4 and several other immune receptors. Beyond the simple cataloguing of signaling events compartmentalized by these membrane microdomains, recent studies have revealed the surprisingly central importance of dynamic remodeling of membrane lipid domains to immune signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or crosslinking of raft lipids, are sufficient to induce micrometer-scale reordering of membranes and their protein cargo with consequent signal transduction. In this review, using TLR signaling in the macrophage as a central focus, we discuss emerging evidence that environmental and genetic perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of cholesterol and other lipids through rafts regulates the innate immune response, and highlight recent attempts to harness these insights toward therapeutic development.
Collapse
Affiliation(s)
- Michael B Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
22
|
Liu Y, Tang C. Regulation of ABCA1 functions by signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:522-9. [PMID: 21920460 DOI: 10.1016/j.bbalip.2011.08.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/02/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that protects cardiovascular disease by at least two mechanisms: by export of excess cholesterol from cells and by suppression of inflammation. ABCA1 exports cholesterol and phospholipids from cells by multiple steps that involve forming cell surface lipid domains, binding of apolipoproteins to ABCA1, activating signaling pathways, and solubilizing these lipids by apolipoproteins. ABCA1 executes its anti-inflammatory effect by modifying cell membrane lipid rafts and directly activating signaling pathways. The interaction of apolipoproteins with ABCA1 activates multiple signaling pathways, including Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), protein kinase A, Rho family G protein CDC42 and protein kinase C. Activating protein kinase A and Rho family G protein CDC42 regulates ABCA1-mediated lipid efflux, activating PKC stabilizes ABCA1 protein, and activating JAK2/STAT3 regulates both ABCA1-mediated lipid efflux and anti-inflammation. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. Targeting ABCA1 receptor-like property using agonists for ABCA1 protein could become a promising new therapeutic target for increasing ABCA1 function and treating cardiovascular disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Yuhua Liu
- Deparment of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA 98195-8055, USA
| | | |
Collapse
|
23
|
Raitoharju E, Seppälä I, Levula M, Kuukasjärvi P, Laurikka J, Nikus K, Huovila APJ, Oksala N, Klopp N, Illig T, Laaksonen R, Karhunen PJ, Viik J, Lehtinen R, Pelto-Huikko M, Tarkka M, Kähönen M, Lehtimäki T. Common variation in the ADAM8 gene affects serum sADAM8 concentrations and the risk of myocardial infarction in two independent cohorts. Atherosclerosis 2011; 218:127-33. [DOI: 10.1016/j.atherosclerosis.2011.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
24
|
Abstract
PURPOSE OF REVIEW This review describes the evidence that supports the hypothesis that high-density lipoprotein (HDL) is atheroprotective due to its antiinflammatory effects and benefits on vascular health. RECENT FINDINGS Recent investigations have shown that HDL may inhibit atherosclerosis by promoting healthy endothelial function and by limiting or inhibiting the activation of macrophage and other immune cells. Receptors for HDL clearly regulate immune system function as well as cellular stress. Recent studies also suggest that participation of HDL in the process of reverse cholesterol transport may inhibit growth factor and cytokine receptor signaling by depleting cholesterol from lipid rafts. However, inflammation can also be associated with circulating dysfunctional HDL, which often possesses both prooxidative and proinflammatory properties. SUMMARY These studies suggest that HDL-based therapeutics have potential in treating both acute and chronic conditions associated with inflammation. These studies also reveal several other pathways that may be targeted for therapeutic drug development.
Collapse
|
25
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
26
|
Yin K, Deng X, Mo ZC, Zhao GJ, Jiang J, Cui LB, Tan CZ, Wen GB, Fu Y, Tang CK. Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J Biol Chem 2011; 286:13834-45. [PMID: 21339300 DOI: 10.1074/jbc.m110.202275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the arterial intima. The activated macrophages secreted more pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, which promote the development of the disease. Apolipoprotein A-I (apoA-I), the major component of high density lipoprotein, is involved in reverse cholesterol transport of lipid metabolism. Recently, it has been found that apoA-I suppresses inflammation via repression of inflammatory cytokine expression; the mechanisms of the apoA-I-suppressive action, however, are not yet well characterized. In this study, we have for the first time found that apoA-I suppresses the expression of some inflammatory cytokines induced by lipopolysaccharide via a specific post-transcriptional regulation process, namely mRNA destabilization, in macrophages. Our further studies have also shown that AU-rich elements in the 3'-untranslated region of TNF-α mRNA are responsive to the apoA-I-mediated mRNA destabilization. The apoA-I-induced inflammatory cytokine mRNA destabilization was associated with increased expression of mRNA-destabilizing protein tristetraprolin through a JAK2/STAT3 signaling pathway-dependent manner. When blocking interaction of apoA-I with ATP-binding membrane cassette transporter A1 (ABCA1), a major receptor for apoA-I in macrophages, it would almost totally abolish the effect of apoA-I on tristetraprolin expression. These results present not only a novel mechanism for the apoA-I-mediated inflammation suppression in macrophages but also provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu WH, Chen KC, Chiou YL, Lin SR, Chang LS. Taiwan cobra phospholipase A2 elicits posttranscriptional up-regulation of ADAM17 in human neuroblastoma SK-N-SH cells. J Cell Biochem 2011; 111:148-57. [PMID: 20506406 DOI: 10.1002/jcb.22681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Taiwan cobra phospholipase A(2) (PLA(2)) treatment promoted proADAM17 processing into mature ADAM17 in human neuroblastoma SK-N-SH cells. The abolishment of catalytic activity caused a drastic drop in the PLA(2) ability to induce ADAM17 maturation, and lysophosphatidylcholine treatment mimicked the effect of PLA(2). ADAM17 activity measurement, ADAM17 cell surface levels, TNFR2 ectodomain shedding, and ADAM17 mRNA transcription supported that posttranscriptional up-regulation of ADAM17 occurred in PLA(2)-treated SK-N-SH cells. PLA(2) treatment induced p38 MAPK activation and ERK inactivation. p38 MAPK activation suppression by SB202190 (p38 MAPK inhibitor) abolished posttranscriptional up-regulation of ADAM17 in PLA(2)-treated cells, while treatment with U0126 (MEK1 and MEK2 inhibitor) increased ADAM17 maturation in SK-N-SH cells. Constitutively active MEK1 expression abrogated PLA(2)-induced ADAM17 maturation. Taken together, our data indicate that PLA(2)-evoked p38 MAPK activation and ERK inactivation are involved in ADAM17 posttranscriptional up-regulation, and suggest that the action of PLA(2) is catalytic activity-dependent.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Junyent M, Parnell LD, Lai CQ, Arnett DK, Tsai MY, Kabagambe EK, Straka RJ, Province M, An P, Smith CE, Lee YC, Borecki I, Ordovás JM. ADAM17_i33708A>G polymorphism interacts with dietary n-6 polyunsaturated fatty acids to modulate obesity risk in the Genetics of Lipid Lowering Drugs and Diet Network study. Nutr Metab Cardiovasc Dis 2010; 20:698-705. [PMID: 19819120 PMCID: PMC4361226 DOI: 10.1016/j.numecd.2009.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS The disintegrin and metalloproteinase ADAM17, also known as tumor necrosis factor alpha converting enzyme, is expressed in adipocytes. Importantly, elevated levels of ADAM17 expression have been linked to obesity and insulin resistance. Therefore, the aim of this study was to evaluate the association of six ADAM17 single nucleotide polymorphisms (SNPs) (m1254A>G, i14121C>A, i33708A>G, i48827A>C, i53440C>T, and i62781G>T) with insulin-resistance phenotypes and obesity risk, and their potential interactions with dietary polyunsaturated fatty acids (PUFA). METHODS AND RESULTS ADAM17 SNPs were genotyped in 936 subjects (448 men/488 women) who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. Anthropometrical and biochemical measurements were determined by standard procedures. PUFA intake was estimated using a validated questionnaire. G allele carriers at the ADAM17_m1254A>G polymorphism exhibited significantly higher risk of obesity (P=0.003), were shorter (P=0.017), had higher insulin (P=0.016), and lower HDL-C concentrations (P=0.027) than AA subjects. For the ADAM17_i33708A>G SNP, homozygotes for the A allele displayed higher risk of obesity (P=0.001), were heavier (P=0.011), had higher BMI (P=0.005), and higher waist measurements (P=0.023) than GG subjects. A significant gene-diet interaction was found (P=0.030), in which the deleterious association of the i33708A allele with obesity was observed in subjects with low intakes from (n-6) PUFA (P<0.001), whereas no differences in obesity risk were seen among subjects with high (n-6) PUFA intake (P>0.5) CONCLUSION These findings support that ADAM17 (m1254A>G and i33708A>G) SNPs may contribute to obesity risk. For the ADAM17_i33708A>G SNP, this risk may be further modulated by (n-6) PUFA intake.
Collapse
Affiliation(s)
- M Junyent
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|
30
|
Wang SH, Yuan SG, Peng DQ, Zhao SP. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy. Clin Exp Immunol 2010; 160:137-42. [PMID: 20059478 DOI: 10.1111/j.1365-2249.2009.04068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.
Collapse
Affiliation(s)
- S-H Wang
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
31
|
Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem 2009; 284:32336-43. [PMID: 19783654 DOI: 10.1074/jbc.m109.047472] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a cell membrane protein that exports excess cholesterol from cells to apolipoprotein (apo) A-I, the major protein in high density lipoproteins. Genetic studies have shown that ABCA1 protects against cardiovascular disease. The interaction of apoA-I with ABCA1 promotes cholesterol removal and activates signaling molecules, such as Janus kinase 2 (JAK2), that optimize the lipid export activity of ABCA1. Here we show that the ABCA1-mediated activation of JAK2 also activates STAT3, which is independent of the lipid transport function of ABCA1. ABCA1 contains two candidate STAT3 docking sites that are required for the apoA-I/ABCA1/JAK2 activation of STAT3. The interaction of apoA-I with ABCA1-expressing macrophages suppressed the ability of lysopolysaccaride to induce the inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, which was reversed by silencing STAT3 or ABCA1. Thus, the apoA-I/ABCA1 pathway in macrophages functions as an anti-inflammatory receptor through activation of JAK2/STAT3. These findings implicate ABCA1 as a direct molecular link between the cardioprotective effects of cholesterol export from arterial macrophages and suppressed inflammation.
Collapse
Affiliation(s)
- Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
32
|
Korade Z, Kenworthy AK, Mirnics K. Molecular consequences of altered neuronal cholesterol biosynthesis. J Neurosci Res 2009; 87:866-75. [PMID: 18951487 DOI: 10.1002/jnr.21917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The first dedicated step in de novo cholesterol biosynthesis begins with formation of squalene and ends with the reduction of 7-dehydrocholesterol by 7-dehydrocholesterol reductase (Dhcr7) into cholesterol, which is an essential structural and signaling molecule. Mutations in the Dhcr7 gene lead to Smith-Lemli-Opitz syndrome (SLOS), which is characterized by developmental deformities, incomplete myelination, and mental retardation. To understand better the molecular consequences of Dhcr7 deficiency in neuronal tissue, we analyzed the effect of cholesterol deficiency on the transcriptome in Neuro2a cells. Transient down-regulation of Dhcr7 by siRNA led to altered expression of multiple molecules that play critical roles in intracellular signaling or vesicular transport or are inserted into membrane rafts (e.g. Egr1, Snx, and Adam19). A similar down-regulation was also observed in stable Dhrc7-shRNA-transfected cell lines, and the findings were verified by qPCR. Furthermore, we investigated the Dhcr7-deficient and control cells for the expression of several critical genes involved in lipid biosynthesis. Among these, fatty acid synthase, sterol-regulatory element binding protein 2, SREBF chaperone, site-1 protease, and squalene synthase showed a significant down-regulation, suggesting that, in a neuronal cell line, Dhcr7 is a potent regulator of lipid biosynthesis. Importantly, the gene expression changes were present in both lipid-containing and cholesterol-deficient media, suggesting that intrinsic cholesterol biosynthesis is necessary for normal neuronal function and cannot be supplemented from extrinsic sources.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
33
|
Tang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:563-72. [PMID: 19344785 DOI: 10.1016/j.bbalip.2009.03.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 01/28/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that exports cholesterol from cells and suppresses macrophage inflammation. ABCA1 exports cholesterol by a multistep pathway that involves forming cell-surface lipid domains, solubilizing these lipids by apolipoproteins, binding of apolipoproteins to ABCA1, and activating signaling processes. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. ABCA1 transcription is highly induced by sterols, and its expression and activity are regulated post-transcriptionally by diverse processes. ABCA1 mutations can reduce plasma HDL levels, accelerate cardiovascular disease, and increase the risk for type 2 diabetes. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels, inflammation, atherogenesis, and pancreatic beta cell function. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages, raising the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become a promising new therapeutic target for treating cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington 98195-8055, USA.
| | | |
Collapse
|
34
|
Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, Torre RDL. Mononuclear Cell Transcriptome Response after Sustained Virgin Olive Oil Consumption in Humans: An Exploratory Nutrigenomics Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:7-19. [DOI: 10.1089/omi.2008.0079] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Olha Khymenets
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Montserat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - María-Isabel Covas
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria-Antonia Pujadas
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Daniel Muñoz
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Valentini Konstantinidou
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Cardiovascular Risk and Nutrition Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
35
|
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a fascinating family of transmembrane and secreted proteins with important roles in regulating cell phenotype via their effects on cell adhesion, migration, proteolysis and signalling. Though all ADAMs contain metalloproteinase domains, in humans only 13 of the 21 genes in the family encode functional proteases, indicating that at least for the other eight members, protein-protein interactions are critical aspects of their biological functions. The functional ADAM metalloproteinases are involved in "ectodomain shedding" of diverse growth factors, cytokines, receptors and adhesion molecules. The archetypal activity is shown by ADAM-17 (tumour necrosis factor-alpha convertase, TACE), which is the principal protease involved in the activation of pro-TNF-alpha, but whose sheddase functions cover a broad range of cell surface molecules. In particular, ADAM-17 is required for generation of the active forms of Epidermal Growth Factor Receptor (EGFR) ligands, and its function is essential for the development of epithelial tissues. Several other ADAMs have important sheddase functions in particular tissue contexts. Another major family member, ADAM-10, is a principal player in signalling via the Notch and Eph/ephrin pathways. For a growing number of substrates, foremost among them being Notch, cleavage by ADAM sheddases is essential for their subsequent "regulated intramembrane proteolysis" (RIP), which generates cleaved intracellular domains that translocate to the nucleus and regulate gene transcription. Several ADAMs play roles in spermatogenesis and sperm function, potentially by effecting maturation of sperm and their adhesion and migration in the uterus. Other non-catalytic ADAMs function in the CNS via effects on guidance mechanisms. The ADAM family are thus fundamental to many control processes in development and homeostasis, and unsurprisingly they are also linked to pathological states when their functions are dysregulated, including cancer, cardiovascular disease, asthma, Alzheimer's disease. This review will provide an overview of current knowledge of the human ADAMs, discussing their structure, function, regulation and disease involvement.
Collapse
Affiliation(s)
- Dylan R Edwards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|