1
|
Liu X, Wang M, Xu B, Ma X, Jiang Y, Huang H, Shi Z, Wu H, Wu Z, Guo S, Zhao J, Zhao J, Li X, Liang L, Guo Z, Shi L, Sun C, Wang N. Discovery and identification of semaphorin 4D as a bioindicator of high fracture incidence in type 2 diabetic mice with glucose control. J Adv Res 2025:S2090-1232(25)00174-2. [PMID: 40073972 DOI: 10.1016/j.jare.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Bone fracture is increasing in patients with type 2 diabetes mellitus (T2DM) due to skeletal fragility. Most antidiabetics are expected to reduce the incidence of fracture in patients with T2DM, however the results are disappointing. Metformin and GLP-1 receptor agonists have a neutral or minor positive effect in reducing fractures. OBJECTIVES We aim to reveal the mechanism of fracture in patients with T2DM treated with metformin or exendin-4, explore the key regulators responsible for bone fragility in T2DM. METHODS Trabecular and cortical masses in mice with T2DM were analyzed using micro-computed tomography. Biomechanical strength of bone was determined according to three-point bending, and the expression of bone-associated factors was examined with enzyme-linked immunosorbent assays. Important proteins and miRNAs were identified using proteomics analysis and deep screening analysis. Lastly, immunoprecipitation-mass spectrometry and dual-luciferase reporter analysis were used to identify key molecular signals. RESULTS We found that sermaphorin 4D (Sema4D) is the key regulator of bone fragility in T2DM. Exendin-4 increased the biomechanical properties of bone by decreasing serum Sema4D levels, and metformin has little effect on Sema4D. Anti-sema4D treatment could improve bone strength in T2DM mice compared with metformin or exendin-4. The biomechanical properties of bone were comparable between anti-Sema 4D and the combination of metformin and exendin-4. Exendin-4 promoted osteogenesis of BMSCs by activating CRMP2 to reverse the effect of sema4D. Metformin increased miR-140-3p levels, which decreased plexin B1 expression in bone mesenchymal stem cells. Metformin increased the effect of exendin-4 with more GLP-1 receptor expression to increase the biomechanical strength of bone via miR-140-3p-STAT3-miR-3657 signaling. CONCLUSION Blood glucose level is not the major factor contributing to impairment in bone remodeling. Sema4D is responsible for the increase in the incidence of bone fractures in T2DM. Accordingly, we proposed an effective therapeutic strategy to eliminate the effect of sema4D.
Collapse
Affiliation(s)
- Xuanchen Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, China; Department of Nutrition, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Mo Wang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Bin Xu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Air Force Military Medical University, Xi'an 710032 Shaanxi, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, Hong Kong Special Administrative Region
| | - Hai Huang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zengzeng Shi
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Hao Wu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zhigang Wu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Shuo Guo
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Jungang Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Jian Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Xiaokang Li
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Li Liang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Lei Shi
- Department of Orthopaedics, First Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Ning Wang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China.
| |
Collapse
|
2
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Zhang Y, Jia S, Wen G, Xie S, Song Z, Qi M, Liang Y, Bi W, Dong W. Zoledronate Promotes Peri-Implant Osteogenesis in Diabetic Osteoporosis by the AMPK Pathway. Calcif Tissue Int 2023; 113:329-343. [PMID: 37392365 DOI: 10.1007/s00223-023-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Together with diabetic osteoporosis (DOP), diabetes patients experience poor peri-implant osteogenesis following implantation for dentition defects. Zoledronate (ZOL) is widely used to treat osteoporosis clinically. To evaluate the mechanism of ZOL for the treatment of DOP, experiments with DOP rats and high glucose-grown MC3T3-E1 cells were used. The DOP rats treated with ZOL and/or ZOL implants underwent a 4-week implant-healing interval, and then microcomputed tomography, biomechanical testing, and immunohistochemical staining were performed to elucidate the mechanism. In addition, MC3T3-E1 cells were maintained in an osteogenic medium with or without ZOL to confirm the mechanism. The cell migration, cellular actin content, and osteogenic differentiation were evaluated by a cell activity assay, a cell migration assay, as well as alkaline phosphatase, alizarin red S, and immunofluorescence staining. The mRNA and protein expression of adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphogenetic protein 2 (BMP2), and collagen type I (Col-I) were detected using real-time quantitative PCRs and western blot assays, respectively. In the DOP rats, ZOL markedly improved osteogenesis, enhanced bone strength and increased the expression of AMPK, p-AMPK, and Col-I in peri-implant bones. The in vitro findings showed that ZOL reversed the high glucose-induced inhibition of osteogenesis via the AMPK signaling pathway. In conclusion, the ability of ZOL to promote osteogenesis in DOP by targeting AMPK signaling suggests that therapy with ZOL, particularly simultaneous local and systemic administration, may be a unique approach for future implant repair in diabetes patients.
Collapse
Affiliation(s)
- Yan Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shunyi Jia
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Guochen Wen
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shanen Xie
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhiqiang Song
- Oral and Maxillofacial Surgery, TangShan BoChuang Stomatology Hospital, Tangshan, 063000, Hebei, China
| | - Mengchun Qi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yongqiang Liang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wenjuan Bi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Institute of Stomatology, Chinese PLA General Hospital, Fuxing Lu 28#, Beijing, 100853, China.
| |
Collapse
|
4
|
Hong CY, Lin SK, Wang HW, Shun CT, Yang CN, Lai EHH, Cheng SJ, Chen MH, Yang H, Lin HY, Wu FY, Kok SH. Metformin Reduces Bone Resorption in Apical Periodontitis Through Regulation of Osteoblast and Osteoclast Differentiation. J Endod 2023; 49:1129-1137. [PMID: 37454872 DOI: 10.1016/j.joen.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION We have previously demonstrated that auxiliary metformin therapy promotes healing of apical periodontitis. Here we aimed to investigate the effects of metformin on osteoblast differentiation and osteoclast formation in cultured cells and rat apical periodontitis. METHODS Murine pre-osteoblasts MC3T3-E1 and macrophages RAW264.7 were cultured under hypoxia (2% oxygen) or normoxia (21% oxygen) and stimulated with receptor activator of nuclear factor-κB ligand (RANKL) when indicated. Metformin was added to the cultures to evaluate its anti-hypoxic effects. Expressions of osteoblast differentiation regulator runt-related transcription factor 2 (RUNX2), RANKL, and osteoclast marker tartrate-resistant acid phosphatase (TRAP) were assessed by Western blot. Apical periodontitis was induced in mandibular first molars of 10 Sprague-Dawley rats. Root canal therapy with or without metformin supplement was performed. Periapical bone resorption was measured by micro-computed tomography. Immunohistochemistry was used to examine RUNX2, RANKL, and TRAP expressions. RESULTS Hypoxia suppressed RUNX2 expression and enhanced RANKL synthesis in pre-osteoblasts. TRAP production increased in macrophages after hypoxia and/or RANKL stimulation. Metformin reversed hypoxia-induced RUNX2 suppression and RANKL synthesis in pre-osteoblasts. Metformin also inhibited hypoxia and RANKL-enhanced TRAP synthesis in macrophages. Intracanal metformin diminished bone loss in rat apical periodontitis. Comparing with vehicle control, cells lining bone surfaces in metformin-treated lesions had significantly stronger expression of RUNX2 and decreased synthesis of RANKL and TRAP. CONCLUSIONS Alleviation of bone resorption by intracanal metformin was associated with enhanced osteoblast differentiation and diminished osteoclast formation in rat apical periodontitis. Our results endorsed the role of metformin as an effective medicament for inflammatory bone diseases.
Collapse
Affiliation(s)
- Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Scott MC, Bourgeois A, Yu Y, Burk DH, Smith BJ, Floyd ZE. Extract of Artemisia dracunculus L. Modulates Osteoblast Proliferation and Mineralization. Int J Mol Sci 2023; 24:13423. [PMID: 37686232 PMCID: PMC10487575 DOI: 10.3390/ijms241713423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.
Collapse
Affiliation(s)
- Matthew C. Scott
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Aleah Bourgeois
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| |
Collapse
|
6
|
Pablos JL, Jiménez-Holguín J, Salcedo SS, Salinas AJ, Corrales T, Vallet-Regí M. New Photocrosslinked 3D Foamed Scaffolds Based on GelMA Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023; 9:gels9050403. [PMID: 37232995 DOI: 10.3390/gels9050403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The production of customized polymeric hydrogels in the form of 3D scaffolds with application in bone tissue engineering is currently a topic of great interest. Based on gelatin methacryloyl (GelMa) as one of the most popular used biomaterials, GelMa with two different methacryloylation degrees (DM) was obtained, to achieve crosslinked polymer networks by photoinitiated radical polymerization. In this work, we present the obtention of new 3D foamed scaffolds based on ternary copolymers of GelMa with vinylpyrrolidone (VP) and 2-hydroxyethylmethacrylate (HEMA). All biopolymers obtained in this work were characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), whose results confirm the presence of all copolymers in the crosslinked biomaterial. In addition, scanning electron microscopy (SEM) pictures were obtained verifying the presence of the porosity created by freeze-drying process. In addition, the variation in its swelling degree and its enzymatic degradation in vitro was analyzed as a function of the different copolymers obtained. This has allowed us to observe good control of the variation in these properties described above in a simple way by varying the composition of the different comonomers used. Finally, with these concepts in mind, biopolymers obtained were tested through assessment of several biological parameters such as cell viability and differentiation with MC3T3-E1 pre-osteoblastic cell line. Results obtained show that these biopolymers maintain good results in terms of cell viability and differentiation, along with tunable properties in terms of hydrophilic character, mechanical properties and enzymatic degradation.
Collapse
Affiliation(s)
- Jesús L Pablos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Javier Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Sandra Sánchez Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Antonio J Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| | - Teresa Corrales
- Grupo de Fotoquímica, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria Hospital 12 de Octubre, imas12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain
| |
Collapse
|
7
|
Duan W, Zou H, Zang N, Ma D, Yang B, Zhu L. Metformin increases bone marrow adipose tissue by promoting mesenchymal stromal cells apoptosis. Aging (Albany NY) 2023; 15:542-552. [PMID: 36645914 PMCID: PMC9925686 DOI: 10.18632/aging.204486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/27/2022] [Indexed: 01/18/2023]
Abstract
Bone marrow adipose tissue (MAT) has the potential to exert both local and systemic effects on metabolic homeostasis. As a first-line drug used to treat type 2 diabetes mellitus, metformin has conflicting effects on MAT and bone marrow mesenchymal stem cell (BM-MSC) differentiation. Through a series of experiments in vivo and in vitro, we found that except improving the glucose and lipid metabolism disorder in ob/ob mice, 200 mg/kg metformin increased MAT in mice tibia, and prompted osteogenic genes (RunX2, OPN, OCN) and lipogenic genes (Ppar-γ, Cebpα, Scd1) expression in mice bone marrow. However, metformin promoted osteogenesis and inhibited lipogenesis of MSC in vitro, which is inconsistent with the results in vivo. Given MAT being considered the "filler" of the space after the apoptosis of bone marrow stroma, the effect of metformin on MSC apoptosis was examined. We discovered that metformin induces MSC apoptosis in vivo and in vitro. Therefore, we speculated that the increased MAT in mice tibia may be attributed to the filling of adipose tissue after apoptosis of bone marrow stromal cells induced by metformin. The increased MAT may be involved in the regulation of metformin on glucose, lipid, and bone metabolism in diabetic mice, providing a new way to understand the metabolic regulation of metformin. While increased MAT-associated insulin resistance and metabolic disorders may account for the poorer clinical benefits in patients with intensive glucose control.
Collapse
Affiliation(s)
- Wu Duan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Huajie Zou
- Department of Endocrinology, The Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Wan L, Wang L, Cheng R, Cheng L, Hu T. Metabolic shift and the effect of mitochondrial respiration on the osteogenic differentiation of dental pulp stem cells. PeerJ 2023; 11:e15164. [PMID: 37101792 PMCID: PMC10124543 DOI: 10.7717/peerj.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
Background Metabolism shifts from glycolysis to mitochondrial oxidative phosphorylation are vital during the differentiation of stem cells. Mitochondria have a direct function in differentiation. However, the metabolic shift and the effect of mitochondria in regulating the osteogenic differentiation of human dental pulp stem cells (hDPSCs) remain unclear. Methods Human dental pulp stem cells were collected from five healthy donors. Osteogenic differentiation was induced by osteogenic induction medium. The activities of alkaline phosphatase, hexokinase, pyruvate kinase, and lactate dehydrogenase were analyzed by enzymatic activity kits. The extracellular acidification rate and the mitochondrial oxygen consumption rate were measured. The mRNA levels of COL-1, ALP, TFAM, and NRF1 were analyzed. The protein levels of p-AMPK and AMPK were detected by western blotting. Results Glycolysis decreased after a slight increase, while mitochondrial oxidative phosphorylation continued to increase when cells grew in osteogenic induction medium. Therefore, the metabolism of differentiating cells switched to mitochondrial respiration. Next, inhibiting mitochondrial respiration with carbonyl cyanide-chlorophenylhydrazone, a mitochondrial uncoupler inhibited hDPSCs differentiation with less ALP activity and decreased ALP and COL-1 mRNA expression. Furthermore, mitochondrial uncoupling led to AMPK activation. 5-Aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, simulated the effect of mitochondrial uncoupling by inhibiting osteogenic differentiation, mitochondrial biogenesis, and mitochondrial morphology. Mitochondrial uncoupling and activation of AMPK depressed mitochondrial oxidative phosphorylation and inhibited differentiation, suggesting that they may serve as regulators to halt osteogenic differentiation from impaired mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Lingyun Wan
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyan Wang
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
New PCL/PEC Blends: In Vitro Cell Response of Preosteoblasts and Human Mesenchymal Stem Cells. BIOLOGY 2022; 11:biology11081201. [PMID: 36009827 PMCID: PMC9404747 DOI: 10.3390/biology11081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
In this study, new blends of PCL/PEC have been prepared in an easy manner by casting with the objective of obtaining new biomaterials to apply to tissue engineering and bone regeneration. The PCL/PEC blends obtained, together with neat polymer blends, were characterized by infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This full characterization is the key to disentangle the miscibility, which means good compatibility, of the polymer blends used in this work. The addition of increasing amounts of PEC, has shown in the new biomaterials obtained, a remarkable improvement in relation with the mechanical properties (manageable materials) and above all, in terms of an increase in their hydrophilic character with respect to the PCL neat polymer. The improvement of all these properties is reflected in their biological properties. With these thoughts in mind, the blends obtained were tested through the assessment of several biological parameters such as cell viability, proliferation, and differentiation of both the MC3T3-E1 osteoblastic cell line and hMSCs to evaluate their cell response to different polymer membranes aimed at bone tissue regeneration. “In vitro” biocompatibility methods have been chosen rather than in vivo studies due to their lower cost, faster procedure time, and minimum ethical concerns, and because it was the first time that the biological effects of these blends were studied. The results show that the PCL/PEC blends obtained, with tunable properties in terms of hydrophilic character and hydrolytic degradation, may be regarded as good candidates to perform “in vivo” tests and check their real-life applicability for bone regeneration. The polymer acronym (the weight percentage in the sub index) is PCLx/PECy as noted in table one with the summary of compositions.
Collapse
|
10
|
Walsh SK, Soni R, Arendt LM, Skala MC, Henak CR. Maturation- and degeneration-dependent articular cartilage metabolism via optical redox ratio imaging. J Orthop Res 2022; 40:1735-1743. [PMID: 34792214 DOI: 10.1002/jor.25214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
From the two metabolic processes in healthy cartilage, glycolysis has been associated with proliferation and oxidative phosphorylation (oxphos) with matrix synthesis. Recently, metabolic dysregulation was significantly correlated with cartilage degradation and osteoarthritis progression. While these findings suggest maturation predisposes cartilage to metabolic instability with consequences for tissue maintenance, these links have not been shown. Therefore, this study sought to address three hypotheses (a) chondrocytes exhibit differential metabolic activity between immaturity (0-4 months), adolescence (5-18 months), and maturity (>18 months); (b) perturbation of metabolic activity has consequences on expression of genes pertinent to cartilage tissue maintenance; and (c) severity of cartilage damage is positively correlated with glycolysis and oxphos activity as well as optical redox ratio in postadolescent cartilage. Porcine femoral cartilage samples from pigs (3 days to 6 years) underwent optical redox ratio imaging, which measures autofluorescence of NAD(P)H and FAD. Gene expression analysis and histological scoring was conducted for comparison against imaging metrics. NAD(P)H and FAD autofluorescence both demonstrated increasing intensity with age, while optical redox ratio was lowest in adolescent samples compared to immature or mature samples. Inhibition of glycolysis suppressed expression of Col2, Col1, ADAMTS4, and ADAMTS5, while oxphos inhibition had no effect. FAD fluorescence and optical redox ratio were positively correlated with histological degeneration. This study demonstrates maturation- and degeneration-dependent metabolic activity in cartilage and explores the consequences of this differential activity on gene expression. This study aids our basic understanding of cartilage biology and highlights opportunity for potential diagnostic applications.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rikin Soni
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
The effects of metformin and alendronate in attenuating bone loss and improving glucose metabolism in diabetes mellitus mice. Aging (Albany NY) 2022; 14:272-285. [PMID: 35027504 PMCID: PMC8791222 DOI: 10.18632/aging.203729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Background: To explore the anti-osteoporosis and anti-diabetes effects and potential underlying mechanisms of treatment with metformin and alendronate in diabetes mellitus mice. Methods: Eight-week-old C57 BL/KS db/db and db/+ female mice were evaluated according to the following treatment group for 12 weeks: control group, diabetes mellitus group, diabetes mellitus with metformin group, diabetes mellitus with Alendronate group, diabetes mellitus with metformin plus alendronate group. Glucose level, glucose tolerance test, bone mineral density, bone microarchitecture, bone histomorphometry, serum biomarkers, and qPCR analysis. Results: Combined metformin and alendronate can improve progression in glucose metabolism and bone metabolism, including blood glucose levels, blood glucose levels after 4 and 16 hours fasting, glucose tolerance test results, insulin sensitivity and reduces bone loss than the diabetes group. The use of alendronate alone can increase significantly serum glucagon-like peptide-1 levels than the diabetes group. The use of metformin alone can improve bone microstructure such as Tb.Sp and Tb.N of spine in diabetic mice. Conclusion: The combined use of alendronate and metformin has an anti-diabetes and anti-osteoporotic effect compared with diabetic mice, but they appear to act no obvious synergistically between alendronate and metformin.
Collapse
|
13
|
Gámez B, Morris EV, Olechnowicz SWZ, Webb S, Edwards JR, Sowman A, Turner CJ, Edwards CM. The antidiabetic drug metformin acts on the bone microenvironment to promote myeloma cell adhesion to preosteoblasts and increase myeloma tumour burden in vivo. Transl Oncol 2022; 15:101301. [PMID: 34890968 PMCID: PMC8665410 DOI: 10.1016/j.tranon.2021.101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023] Open
Abstract
Multiple myeloma is a haematological malignancy that is dependent upon interactions within the bone microenvironment to drive tumour growth and osteolytic bone disease. Metformin is an anti-diabetic drug that has attracted attention due to its direct antitumor effects, including anti-myeloma properties. However, the impact of the bone microenvironment on the response to metformin in myeloma is unknown. We have employed in vitro and in vivo models to dissect out the direct effects of metformin in bone and the subsequent indirect myeloma response. We demonstrate how metformin treatment of preosteoblasts increases myeloma cell attachment. Metformin-treated preosteoblasts increased osteopontin (OPN) expression that upon silencing, reduced subsequent myeloma cell adherence. Proliferation markers were reduced in myeloma cells cocultured with metformin-treated preosteoblasts. In vivo, mice were treated with metformin for 4 weeks prior to inoculation of 5TGM1 myeloma cells. Metformin-pretreated mice had an increase in tumour burden, associated with an increase in osteolytic bone lesions and elevated OPN expression in the bone marrow. Collectively, we show that metformin increases OPN expression in preosteoblasts, increasing myeloma cell adherence. In vivo, this translates to an unexpected indirect pro-tumourigenic effect of metformin, highlighting the importance of the interdependence between myeloma cells and cells of the bone microenvironment.
Collapse
Affiliation(s)
- Beatriz Gámez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Emma V Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Sam W Z Olechnowicz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Siobhan Webb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aneka Sowman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christina J Turner
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front Endocrinol (Lausanne) 2022; 13:898634. [PMID: 35846332 PMCID: PMC9279723 DOI: 10.3389/fendo.2022.898634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bone homeostasis involves bone formation and bone resorption, which are processes that maintain skeletal health. Oxidative stress is an independent risk factor, causing the dysfunction of bone homeostasis including osteoblast-induced osteogenesis and osteoclast-induced osteoclastogenesis, thereby leading to bone-related diseases, especially osteoporosis. Autophagy is the main cellular stress response system for the limination of damaged organelles and proteins, and it plays a critical role in the differentiation, apoptosis, and survival of bone cells, including bone marrow stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. High evels of reactive oxygen species (ROS) induced by oxidative stress induce autophagy to protect against cell damage or even apoptosis. Additionally, pathways such as ROS/FOXO3, ROS/AMPK, ROS/Akt/mTOR, and ROS/JNK/c-Jun are involved in the regulation of oxidative stress-induced autophagy in bone cells, including osteoblasts, osteocytes and osteoclasts. This review discusses how autophagy regulates bone formation and bone resorption following oxidative stress and summarizes the potential protective mechanisms exerted by autophagy, thereby providing new insights regarding bone remodeling and potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| |
Collapse
|
15
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
16
|
Ren C, Hao X, Wang L, Hu Y, Meng L, Zheng S, Ren F, Bu W, Wang H, Li D, Zhang K, Sun H. Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway. Adv Healthc Mater 2021; 10:e2100196. [PMID: 33987977 DOI: 10.1002/adhm.202100196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Indexed: 12/14/2022]
Abstract
The osteogenic potential of mesenchymal stem cells (MSCs) is severely impaired under persistent inflammation of periodontitis. A highly efficient way to promote or rescue osteogenic potential of MSCs under inflammation remains an unmet goal. Herein, metformin carbon dots (MCDs) with excellent biocompatibility are prepared from metformin hydrochloride and citric acid via a hydrothermal method. The MCDs can more effectively enhance the alkaline phosphatase (ALP) activity, calcium deposition nodules formation, expression of osteogenic genes and proteins in rat bone marrow mesenchymal stem cells (rBMSCs) than metformin under both inflammatory and normal conditions. Moreover, a novel pathway of extracellular signal-regulated kinases (ERK)/AMP-activated protein kinase (AMPK) signaling is involved in the MCDs-induced osteogenesis. In periodontitis rats, MCDs can effectively regenerate the lost alveolar bone, but not the metformin. Taken together, MCDs can be the promising candidate nanomaterial for periodontitis treatment. This work may provide a new pharmacological target of ERK/AMPK pathway for treating bone loss and also give additional insights into developing nanodrugs from the numerous medications.
Collapse
Affiliation(s)
- Chunxia Ren
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Xinqing Hao
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Lu Wang
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Yue Hu
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Lin Meng
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Shize Zheng
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Feilong Ren
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Wenhuan Bu
- School of Stomatology China Medical University Shenyang 110001 P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Daowei Li
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Hongchen Sun
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| |
Collapse
|
17
|
Shaik AR, Singh P, Shaik C, Kohli S, Vohora D, Ferrari SL. Metformin: Is It the Well Wisher of Bone Beyond Glycemic Control in Diabetes Mellitus? Calcif Tissue Int 2021; 108:693-707. [PMID: 33797562 DOI: 10.1007/s00223-021-00805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022]
Abstract
Both diabetes mellitus and osteoporosis constitute a notable burden in terms of quality of life and healthcare costs. Diabetes mellitus affecting the skeletal system has been gaining attention in recent years and is now getting recognized as yet another complication of the disease, known as diabetic bone disease. As this condition with weaker bone strength increases fracture risk and reduces the quality of life, so much attention is being paid to investigate the molecular pathways through which both diabetes and its therapy are affecting bone metabolism. Out of many therapeutic agents currently available for managing diabetes mellitus, metformin is one of the most widely accepted first choices worldwide. The purpose of this review is to describe the effects of biguanide-metformin on bone metabolism in type 2 diabetes mellitus including its plausible mechanisms of action on the skeleton. In vitro studies suggest that metformin directly stimulates osteoblasts differentiation and may inhibit osteoclastogenesis by increasing osteoprotegerin expression, both through activation of the AMPK signaling pathway. Several studies in both preclinical and clinical settings report the favorable effects of metformin on bone microarchitecture, bone mineral density, bone turnover markers, and fracture risk. However, animal studies were not specific in terms of the diabetic models used and clinical studies were associated with several confounders. The review highlights some of these limitations and provide future recommendations for research in this area which is necessary to better understand the role of metformin on skeletal outcomes in diabetes.
Collapse
Affiliation(s)
- Abdul Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Prabhjeet Singh
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Chandini Shaik
- Department of Pharmaceutical Analysis, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Serge Livio Ferrari
- Service and Laboratory of Bone Diseases, Department of Medicine, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
18
|
Donat A, Knapstein PR, Jiang S, Baranowsky A, Ballhause TM, Frosch KH, Keller J. Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. Int J Mol Sci 2021; 22:ijms22084120. [PMID: 33923498 PMCID: PMC8073638 DOI: 10.3390/ijms22084120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Bone tissue in vertebrates is essential to performing movements, to protecting internal organs and to regulating calcium homeostasis. Moreover, bone has also been suggested to contribute to whole-body physiology as an endocrine organ, affecting male fertility; brain development and cognition; and glucose metabolism. A main determinant of bone quality is the constant remodeling carried out by osteoblasts and osteoclasts, a process consuming vast amounts of energy. In turn, clinical conditions associated with impaired glucose metabolism, including type I and type II diabetes and anorexia nervosa, are associated with impaired bone turnover. As osteoblasts are required for collagen synthesis and matrix mineralization, they represent one of the most important targets for pharmacological augmentation of bone mass. To fulfill their function, osteoblasts primarily utilize glucose through aerobic glycolysis, a process which is regulated by various molecular switches and generates adenosine triphosphate rapidly. In this regard, researchers have been investigating the complex processes of energy utilization in osteoblasts in recent years, not only to improve bone turnover in metabolic disease, but also to identify novel treatment options for primary bone diseases. This review focuses on the metabolism of glucose in osteoblasts in physiological and pathophysiological conditions.
Collapse
|
19
|
Lin H, Shi F, Jiang S, Wang Y, Zou J, Ying Y, Huang D, Luo L, Yan X, Luo Z. Metformin attenuates trauma-induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. J Cell Mol Med 2020; 24:14491-14501. [PMID: 33169942 PMCID: PMC7754007 DOI: 10.1111/jcmm.16076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanyuan Wang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junrong Zou
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Institute of Basic Biomedical Sciences and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Queen Mary School, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Malta FS, Garcia RP, Azarias JS, Ribeiro GKDR, Miranda TS, Shibli JA, Bastos MF. Impact of hyperglycemia and treatment with metformin on ligature-induced bone loss, bone repair and expression of bone metabolism transcription factors. PLoS One 2020; 15:e0237660. [PMID: 32841254 PMCID: PMC7447028 DOI: 10.1371/journal.pone.0237660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
This study evaluated the influence of type 2 diabetes mellitus on bone loss, bone repair and cytokine production in hyperglycemic rats, treated or not with metformin. The animals were distributed as follow: Non-Hyperglycemic (NH), Non Hyperglycemic with Ligature (NH-L), Treated Non Hyperglycemic (TNH), Treated Non Hyperglycemic with Ligature Treated (TNH-L), Hyperglycemic (H), Treated Hyperglycemic (TH), Hyperglycemic with Ligature (H-L), Treated Hyperglycemic with Ligature (TH-L). At 40th day after induction of hyperglycemia, the groups NH-L, TNH-L, H-L, TH-L received a ligature to induce periodontitis. On the 69th, the TNH, TNH-L, TH, TH-L groups received metformin until the end of the study. Bone repair was evaluated at histometric and the expression levels of Sox9, RunX2 and Osterix. Analysis of the ex-vivo expression of TNF-α, IFN-γ, IL-12, IL-4, TGF-β, IL-10, IL-6 and IL-17 were also evaluated. Metformin partially reverse induced bone loss in NH and H animals. Lower OPG/RANKL, increased OCN and TRAP expression were observed in hyperglycemic animals, and treatment with metformin partially reversed hyperglycemia on the OPG/RANKL, OPN and TRAP expression in the periodontitis. The expression of SOX9 and RunX2 were also decreased by hyperglycemia and metformin treatment. Increased ex vivo levels of TNF-α, IL-6, IL-4, IL-10 and IL-17 was observed. Hyperglycemia promoted increased IL-10 levels compared to non-hyperglycemic ones. Treatment of NH with metformin was able to mediate increased levels of TNF-α, IL-10 and IL-17, whereas for H an increase of TNF-α and IL-17 was detected in the 24- or 48-hour after stimulation with LPS. Ligature was able to induce increased levels of TNF-α and IL-17 in both NH and H. This study revealed the negative impact of hyperglycemia and/or treatment with metformin in the bone repair via inhibition of transcription factors associated with osteoblastic differentiation.
Collapse
Affiliation(s)
- Fernando Souza Malta
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Roberto Puertas Garcia
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Josuel Siqueira Azarias
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | - Tamires Szemereske Miranda
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Marta Ferreira Bastos
- Department of Post-Graduation in Aging Sciences, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
21
|
Sánchez BG, Bort A, Vara-Ciruelos D, Díaz-Laviada I. Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem-Like Cells. Cells 2020; 9:cells9061441. [PMID: 32531951 PMCID: PMC7349866 DOI: 10.3390/cells9061441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in prostate adenocarcinoma. When exposed to anticancer therapies, tumor cells may switch into a different histological subtype, such as the neuroendocrine phenotype which is associated with treatment failure and a poor prognosis. In this study, we demonstrated that long-term androgen signal depletion of prostate LNCaP cells induced a neuroendocrine phenotype followed by re-differentiation towards a “stem-like” state. LNCaP cells incubated for 30 days in charcoal-stripped medium or with the androgen receptor antagonist 2-hydroxyflutamide developed neuroendocrine morphology and increased the expression of the neuroendocrine markers βIII-tubulin and neuron specific enolase (NSE). When cells were incubated for 90 days in androgen-depleted medium, they grew as floating spheres and had enhanced expression of the stem cell markers CD133, ALDH1A1, and the transporter ABCB1A. Additionally, the pluripotent transcription factors Nanog and Oct4 and the angiogenic factor VEGF were up-regulated while the expression of E-cadherin was inhibited. Cell viability revealed that those cells were resistant to docetaxel and 2-hidroxyflutamide. Mechanistically, androgen depletion induced the decrease in AMP-activated kinase (AMPK) expression and activation and stabilization of the hypoxia-inducible factor HIF-1α. Overexpression of AMPK in the stem-like cells decreased the expression of stem markers as well as that of HIF-1α and VEGF while it restored the levels of E-cadherin and PGC-1α. Most importantly, docetaxel sensitivity was restored in stem-like AMPK-transfected cells. Our model provides a new regulatory mechanism of prostate cancer plasticity through AMPK that is worth exploring.
Collapse
Affiliation(s)
- Belén G. Sánchez
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Alicia Bort
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Diana Vara-Ciruelos
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Inés Díaz-Laviada
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
- Chemical Research Institute “Andrés M. del Río” (IQAR), Alcalá University, 28871 Alcalá de Henares, Madrid, Spain
- Correspondence:
| |
Collapse
|
22
|
Nakamura K, Nobutani K, Shimada N, Tabata Y. Gelatin Hydrogel-Fragmented Fibers Suppress Shrinkage of Cell Sheet. Tissue Eng Part C Methods 2020; 26:216-224. [DOI: 10.1089/ten.tec.2019.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Koichiro Nakamura
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiaki Nobutani
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
The role of autonomously secreted PGE 2 and its autocrine/paracrine effect on bone matrix mineralization at the different stages of differentiating MC3T3-E1 cells. Biochem Biophys Res Commun 2020; 524:929-935. [PMID: 32059846 DOI: 10.1016/j.bbrc.2020.01.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
Bone is consisted of osteoblast-linage cells, bone-forming cells in various differentiation stages. However, it is not fully understood how communicate and interact these cells immigrated from bone marrow. In this study, we showed that prostaglandin E2 (PGE2) had a role in autonomous modification of matrix mineralization in osteoblastic cell line, MC3T3-E1, and interactions across the cells in different differentiation stages. Analysis using LC-MS/MS and inhibitors showed the autonomous secretion of PGE2 among the prostanoids in differentiation stages and that depend on COX-2, a key enzyme for production of PGE2. Treatment with inhibitors of PGE2 receptors and COX-2 indicated that secreted PGE2 regulates matrix mineralization in an autocrine/paracrine manner. In addition, we showed that the expression profile of PGE2 receptors (EP1-EP4) and PGE2 effects on matrix mineralization derived from it changed during cell differentiation. Treatment with inhibitors of PGE2 signaling in the early differentiation stage of MC3T3-E1 cells induced significant changes in matrix mineralization several days after. Stimulation with the extracts from culture medium of the matured cells including PGE2 and co-culture with the matured cells secreting PGE2 significantly promoted matrix mineralization of the early stage cells, in contrast, treatment with inhibitor of COX-2 and PGE2 receptors failed to do so. These results support that PGE2 plays important roles in the interaction system of osteoblast-linage cells in bone tissue to regulate matrix mineralization reflecting condition of bone-forming cells, that is, population and maturation.
Collapse
|
24
|
Jiating L, Buyun J, Yinchang Z. Role of Metformin on Osteoblast Differentiation in Type 2 Diabetes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9203934. [PMID: 31886264 PMCID: PMC6899291 DOI: 10.1155/2019/9203934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Metformin, an effective hypoglycemic, can modulate different points of malignant mass, polycystic ovary syndrome (PCOS), cardiovascular diseases, tuberculosis, and nerve regeneration. Recently, the effect of metformin on bone metabolism has been analyzed. Metformin relies on organic cation transporters (OCT1), a polyspecific cell membrane of the solute carrier 22A (SLC22A) gene family, to facilitate its intracellular uptake and action on complex I of the respiratory chain of mitochondria. These changes activate the cellular energy sensor AMP-activated protein kinase (AMPK). Thus, the increased cellular AMP/ATP ratio causes a dramatic and progressive activation of insulin and lysosomes, resulting in a decrease in intracellular glucose level, which promotes osteoblast proliferation and differentiation. AMPK also phosphorylates runt-related transcription factor 2 (Runx2) at S118, the lineage-specific transcriptional regulators, to promote osteogenesis. Metformin phosphorylates extracellular signal-regulated kinase (ERK), stimulates endothelial and inducible nitric oxide synthases (e/iNOS), inhibits the GSK3β/Wnt/β-catenin pathway, and promotes osteogenic differentiation of osteoblasts. The effect of metformin on hyperglycemia decreases intracellular reactive oxygen species (ROS) and advanced glycation end-products (AGEs) in collagen, and reduced serum levels of insulin-like growth factors (IGF-1) were beneficial for bone formation. Metformin has a certain effect on microangiopathy and anti-inflammation, which can induce osteoporosis, activate the activity of osteoclasts, and inhibit osteoblast activity, and has demonstrated extensive alteration in bone and mineral metabolism. The aim of this review was to elucidate the mechanisms of metformin on osteoblasts in insulin-deficient diabetes.
Collapse
Affiliation(s)
- Lin Jiating
- Department of Stomatology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| | - Ji Buyun
- Department of Stomatology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| | - Zhang Yinchang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province 241000, China
| |
Collapse
|
25
|
Adeyemi WJ, Olayaki LA, Abdussalam TA, Fabiyi TO, Raji TL, Adetunji AAR. Co-administration of omega-3 fatty acids and metformin showed more desirable effects than the single therapy on indices of bone mineralisation but not gluco-regulatory and antioxidant markers in diabetic rats. Biomed Pharmacother 2019; 121:109631. [PMID: 31715372 DOI: 10.1016/j.biopha.2019.109631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Although metformin (Met) is the most recommended anti-diabetogenic drug in type 2 diabetic state, the drug is known to compromise bone integrity. Like metformin, omega-3 fatty acids (ω-3) have gluco-regulatory action; however, it aids bone health. Therefore, the present study investigated the effects of ω-3 and/or metformin in diabetic rats. Fifty rats of ten animals per group were divided into the following: Control; Diabetic untreated; Diabetic + ω-3; Diabetic + metformin (metfm) and Diabetic + ω-3 + metf groups. Diabetes was induced by the administration of streptozotocin (65 mg/kg b.w., i.p.), 15 min after the administration of nicotinamide (110 mg/kg b.w., i.p.). Five days afterwards, treatments started and they lasted for 28 days. ω-3 and metformin were administered at 200 and 180 mg/kg b.w., p.o. respectively. The results showed that the induced diabetes was characterised by significant increases in calcium to phosphorus ratio, tartrate resistant acid phosphatase (TRAP), glucose and insulin resistance; but significant decreases in parathyroid hormone(PTH), phosphorus, TAC and hepatic glycogen. Relative to the diabetic control, treatments with ω-3 or metformin caused significant elevations in hepatic glycogen, total alkaline phosphatase (TALP), osteocalcin, PTH, estradiol, and calcium; however, significant decreases in TRAP and glucose. Co-administration of ω-3 and metformin caused more desirable effects on TALP, c-terminal telopeptide of type 1 collagen, estradiol and calcium to phosphorus ratio compared to the single administration. Relative to ω-3, melatonin showed a more favourable effect on calcium to phosphorus ratio; however, the former proved to have more desirable actions on insulin and TAC. Hence, it was concluded that the combined but not the single administration of ω-3 and metformin could be preferably used in the management of bone health in diabetic state.
Collapse
Affiliation(s)
| | | | - Tahir Ahmad Abdussalam
- Anatomy and Physiology Department, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | | | | | | |
Collapse
|
26
|
Jiang ZL, Jin H, Liu ZS, Liu MY, Cao XF, Jiang YY, Bai HD, Zhang B, Li Y. Lentiviral‑mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling. Mol Med Rep 2019; 20:3265-3275. [PMID: 31432117 PMCID: PMC6755203 DOI: 10.3892/mmr.2019.10540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with diabetes tend to have an increased incidence of osteoporosis, which may be associated with hyperglycemia; however, the pathogenic mechanisms governing this interaction remain unknown. The present study sought to investigate whether elevated extracellular glucose levels of bone mesenchymal stem cells (BMSCs) could influence osteoblastic differentiation and whether the intracellular Sonic hedgehog (Shh) pathway could adjust the effects. Furthermore, to verify the results in vivo, a rat tooth extraction model was constructed. BMSCs were incubated in eight types of culture medium, including low glucose (LG), LG + lentivirus (Lenti), LG + Lenti-small interfering RNA (Lenti-siRNA), LG + Lenti-Shh, high glucose (HG), HG + Lenti, HG + Lenti-siRNA and HG + Lenti-Shh. The lentiviral transfection efficiency was observed using a fluorescence microscope; protein and mRNA expression was detected by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The matrix mineralization and alkaline phosphatase (ALP) activity of BMSCs were examined by Alizarin red staining and ALP activity assays, respectively. The expression of osteogenesis-related genes in BMSCs were quantified by RT-qPCR. The alveolar ridge reduction was measured and histological sections were used to evaluate new bone formation in the tooth socket. With high concentrations of glucose, Shh expression, matrix mineralization nodules formation, ALP activity and the levels of bone morphogenic protein 4 (BMP4), bone sialoprotein (BSP) and osteopontin (OPN) expression were greatly reduced compared with LG and corresponding control groups. Whereas activated Shh signaling via Lenti-Shh could increase the number of matrix mineralization nodules, ALP activity, and the expression levels of BMP4, BSP and OPN in BMSCs. Additionally, in vivo assays demonstrated that Lenti-Shh induced additional bone formation. Collectively, the results of the present study indicated that HG inhibited the Shh pathway in osteoblasts and resulted in patterning defects during osteoblastic differentiation and bone formation, while the activation of Shh signaling could suppress these deleterious effects.
Collapse
Affiliation(s)
- Zhu-Ling Jiang
- Department of Implantology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhong-Shuang Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming-Yue Liu
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Fang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang-Yang Jiang
- Department of Dentistry, The Affiliated Hospital, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Hong-Dan Bai
- Feiyang Dental Clinic, Heihe, Heilongjiang 164300, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
27
|
Lee S, Kim JE, Seo HJ, Jang JH. Design of fibronectin type III domains fused to an elastin-like polypeptide for the osteogenic differentiation of human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:856-863. [PMID: 31267123 DOI: 10.1093/abbs/gmz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix (ECM) including fibronectin (FN) and elastin plays a pivotal role in providing a microenvironment to support tissue regeneration in stem cell therapy. To develop a novel biomimetic ECM for stem cell differentiation, we engineered FN type III 9 and 10 domains fused to elastin-like polypeptides (FN-ELPs). The recombinant FN-ELP fusion protein was expressed in Escherichia coli and purified by inverse transition cycling. Human mesenchymal stem cells (hMSCs) cultured on plates coated with FN-ELP had significantly greater adhesion activity and proliferation than cells grown on non-coated plates. FN-ELP induced the osteogenic differentiation by elevating alkaline phosphatase (ALP) and mineralization activity of hMSCs. Furthermore, the osteogenic marker gene expressions of ALP, collagen type I (Col I), osteopontin (OPN), and transcriptional coactivator with a PDZ-binding motif (TAZ) were increased in hMSCs cultured on plates coated with FN-ELP. We reported a novel biomimetic ECM with potential for bone regeneration that promotes the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Ji-Eun Kim
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Hye-Jin Seo
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
28
|
Metformin decreases bone turnover markers in polycystic ovary syndrome: a post hoc study. Fertil Steril 2019; 112:362-370. [PMID: 31227287 DOI: 10.1016/j.fertnstert.2019.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To study the effects of metformin treatment on bone turnover in women with polycystic ovary syndrome (PCOS), as measured by serum concentrations of bone turnover markers. DESIGN Post hoc study of a previously conducted prospective multicenter, placebo-controlled, randomized study. SETTING University clinic. PATIENT(S) The study cohort consisted of 74 non-obese women (body mass index < 27 kg/m2) and 44 obese women (body mass index ≥ 27 kg/m2) diagnosed with PCOS, with a mean age of 27.6 ± 4.0 (SD) years. INTERVENTION(S) Randomization to receive metformin or placebo for 3 months. MAIN OUTCOME MEASURE(S) Serum levels of bone formation marker procollagen type I amino-terminal propeptide (PINP) and bone resorption marker carboxy-terminal cross-linking telopeptide of type I collagen (CTX) at baseline and after metformin/placebo treatment. RESULT(S) Serum levels of PINP and CTX were similar between the metformin and placebo groups at baseline in the whole study population. Obese women, when compared with non-obese, had lower baseline levels of PINP and CTX. Levels of PINP and CTX were significantly reduced in the whole study population, as well as in both non-obese and obese women after 3 months of metformin treatment, whereas no significant changes were observed in the placebo group. CONCLUSION(S) Metformin treatment, when compared with placebo, was associated with reduced bone turnover, as suggested by reductions in markers of bone formation and resorption, leading to slower bone remodeling in premenopausal women with PCOS. CLINICAL TRIAL REGISTRATION NUMBER NCT00994812.
Collapse
|
29
|
Suzuki H, Tatei K, Ohshima N, Sato S, Izumi T. Regulation of MC3T3-E1 differentiation by actin cytoskeleton through lipid mediators reflecting the cell differentiation stage. Biochem Biophys Res Commun 2019; 514:393-400. [PMID: 31047639 DOI: 10.1016/j.bbrc.2019.04.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Actin cytoskeleton is reported to be related in various functions of osteoblast, bone-forming cell. However the function of actin cytoskeleton in osteoblasts is not fully understood, since bone formation is derived from extracellular interactions of functional proteins produced from osteoblasts, including osteocalcin (Ocn), and it is a result of closely and complex organized sequence of biochemical events. In this study, we showed that actin cytoskeleton of MC3T3-E1 cells functioned in recognition of cell condition and regulation of extracellular matrix mineralization, bone formation. Maturation of MC3T3-E1 cells by 14 days of culture reduced F-actin filaments, while induced expression of Ocn mRNA known as late stage differentiation marker and matrix mineralization, terminal stage of cell differentiation. The disruption of actin cytoskeleton with Cyto D in immature MC3T3-E1 cells significantly increased expression of Ocn mRNA in 24 h. Both PTX-induced inhibition of signal transduction through GPCRs and celecoxib-induced suppression of lipid mediators in immature MC3T3-E1 cells reduced actin filaments and suppressed matrix mineralization. Furthermore, addition of lipid mediators extracted from culture mediums of differentiated MC3T3-E1 cells by Bligh-Dyer method induced actin cytoskeleton reorganization and matrix mineralization change in MC3T3-E1 cells. Taken together, our data suggest that actin cytoskeleton of MC3T3-E1 cells regulates activation of developmental pathway reflecting cell differentiation stages through lipid mediators. The function we identified is important for bone formation tightly regulated by mechanical stress, since actin cytoskeleton is also known as a mechanosensor of osteoblasts.
Collapse
Affiliation(s)
- Hiraku Suzuki
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuaki Tatei
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
30
|
Wu J, Ren B, Shi F, Hua P, Lin H. BMP and mTOR signaling in heterotopic ossification: Does their crosstalk provide therapeutic opportunities? J Cell Biochem 2019; 120:12108-12122. [PMID: 30989716 DOI: 10.1002/jcb.28710] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) refers to the pathological formation of ectopic bone in soft tissues, it occurs following severe trauma or in patients with a rare genetic disorder known as fibrodysplasia ossificans progressiva. The pathological process of HO formation is a two-step mechanism: inflammation and destruction of connective tissues, followed by bone formation. The latter is further subdivided into three stages: fibroproliferation/angiogenesis, chondrogenesis, and osteogenesis. Currently, therapeutic options for HO are limited. New potential therapeutics will most likely arise from a more detailed understanding of the signaling pathways implicated in each stage of ectopic bone formation and molecular targets that may be effective at both the early and late stages of HO. Bone morphogenetic protein (BMP) signaling is believed to play a key role in the overall HO process. Recently, the mammalian target of rapamycin (mTOR) signaling pathway has received attention as a critical pathway for chondrogenesis, osteogenesis, and HO. Inhibition of mTOR signaling has been shown to block trauma-induced and genetic HO. Intriguingly, recent studies have revealed crosstalk between mTOR and BMP signaling. Moreover, mTOR has emerged as a factor involved in the early hypoxic and inflammatory stages of HO. We will summarize the current knowledge of the roles of mTOR and BMP signaling in HO, with a particular focus on the crosstalk between mTOR and BMP signaling. We also discuss the activation of AMP activated protein kinase (AMPK) by the most widely used drug for type 2 diabetes, metformin, which exerts a dual negative regulatory effect on mTOR and BMP signaling, suggesting that metformin is a promising drug treatment for HO. The discovery of an mTOR-BMP signaling network may be a potential molecular mechanism of HO and may represent a novel therapeutic target for the pharmacological control of HO.
Collapse
Affiliation(s)
- Jianhui Wu
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Bowen Ren
- Jiangxi Medical School, Nanchang University, Nanchang, Jiangx, China.,Nanchang Joint Programme, Queen Mary University of London, London, UK
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ping Hua
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
32
|
Raj JP, Venkatachalam S, Shekoba M, Norris JJ, Amaravati RS. Conventional antidiabetic agents and bone health: A pilot case-control study. Perspect Clin Res 2019; 10:177-182. [PMID: 31649868 PMCID: PMC6801990 DOI: 10.4103/picr.picr_125_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and Objectives: The burden of noncommunicable diseases such as diabetes (type 2 diabetes mellitus [T2DM]) and osteoporosis is increasing with increasing longevity. Uncontrolled T2DM is an independent risk factor for osteoporosis explained by the insulin osteocalcin pathway. Due to limited information on the effect of various commonly used antidiabetic agents (ADA) on bone health, our study aims to analyze the association between the two. Methodology: This is a case–control study, with 100 cases of clinical osteoporosis and 100 age-, sex-, and dietary status-matched controls in whom osteoporosis was ruled out by dual-energy X-ray absorptiometry scan. Prescription details of T2DM, physical activity levels, and disease status were collected using a pretested questionnaire. Exposure to each ADA was compared using the Chi-squared test. Binary logistic regression was performed to adjust the two main confounders, namely glycemic control and physical activity levels, and adjusted risk estimates were calculated. Results: There were a total of 74 T2DM patients, of whom 45 (60.8%) were cases and 29 (39.2%) were controls. Sulfonylureas (adjusted odds ratio [aOR] = 0.164, P = 0.004) and insulin (aOR = 0.248, P = 0.042) showed a significant protective effect on bone health. Biguanides (OR = 1.994, P = 0.029) and thiazolidinediones (OR: 5.444, P = 0.033), which demonstrated that an increased risk of osteoporosis in univariate analysis became insignificant after multivariate analysis. Conclusion: Sulfonylureas and insulin through the insulin osteocalcin pathway show favorable effect on bone health, but the probability of increased fractures secondary to hypoglycemic falls should be borne in mind. We recommend larger prospective studies to confirm this association.
Collapse
Affiliation(s)
- Jeffrey Pradeep Raj
- Department of Pharmacology, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Mahesh Shekoba
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Rajkumar S Amaravati
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Karvande A, Kushwaha P, Ahmad N, Adhikary S, Kothari P, Tripathi AK, Khedgikar V, Trivedi R. Glucose dependent miR-451a expression contributes to parathyroid hormone mediated osteoblast differentiation. Bone 2018; 117:98-115. [PMID: 30218791 DOI: 10.1016/j.bone.2018.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Parathyroid hormone (PTH; amino acid 1-34, known as teriparatide) has reported promoting differentiation and glucose uptake in osteoblasts. However, how PTH regulates glucose metabolism to facilitate osteoblast differentiation is not understood. Here, we report that PTH promotes glucose dependent miR-451a expression which stimulates osteoblast differentiation. In addition to glucose uptake, PTH suppresses AMPK phosphorylation via PI3K-mTOR-AKT axis thereby preventing phosphorylation and inactivation of octamer-binding transcription factor 1 (OCT-1) which has been reported to act on the promoter region of miR-451a. Modulation of AMPK activity controls miR-451a levels in differentiating osteoblasts. Moreover, pharmacological inhibition of PI3K-mTOR-AKT axis suppressed miR-451a via increased AMPK activity. We report that this glucose regulated miRNA is an anabolic target and transfection of miR-451a mimic induces osteoblast differentiation and mineralization in vitro. These actions were mediated through the suppression of Odd-skipped related 1 (Osr1) and activation of Runx2 transcription. When injected in vivo, the miR-451a mimic significantly increased osteoblastogenesis, mineralization, reversed ovariectomy induced bone loss and improved bone strength. Together, these findings suggest that enhanced osteoblast differentiation associated with bone formation in case of PTH therapy is also a consequence of elevated miR-451a levels via glucose regulation. Consequently, this miRNA has the potential to be a therapeutic target for conditions of bone loss.
Collapse
Affiliation(s)
- Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sulekha Adhikary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kothari
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
34
|
Zheng L, Shen X, Ye J, Xie Y, Yan S. Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway. Life Sci 2018; 216:29-38. [PMID: 30414431 DOI: 10.1016/j.lfs.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
AIMS Metformin was found to protect against hyperglycemia-induced injury in osteoblasts, but the cellular mechanisms involved remain unclear. Therefore, the aim of this study was to determine the effect of metformin on hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts and to explore its relationships with the TLR4 signaling pathway. MAIN METHODS A mouse osteoblast cell line, MC3T3-E1, and a diabetic rat model were used to survey the protective effects of metformin on hyperglycemia-induced injury. TLR4 expression was altered using small interfering (si)RNA and lentivirus-mediated TLR4 overexpression. LPS was used as a specific TLR4 activator, and CLI-095 was used as a TLR4 inhibitor. KEY FINDINGS Metformin improved osteoblast differentiation, reduced apoptosis in hyperglycemic osteoblasts, and inhibited TLR4, MyD88 and NF-κB expression in a dose-dependent manner. Down-regulating the expression or inhibiting the activity of TLR4 enhanced these protective effects of metformin on osteoblast differentiation, cell viability and cell apoptosis in hyperglycemic conditions, whereas up-regulating the expression or activating the activity of TLR4 had the opposite effects. Activating NF-κB suppressed the protective effects of metformin, while inhibiting NF-κB activity had the opposite effects. Metformin increased ALP and OCN secretion, enhanced BMP-2 expression, improved bone mineral density (BMD), and decreased TLR4, MyD88 and NF-κB levels in the femur tissues of diabetic rats. SIGNIFICANCE Taken together our experimentation support the hypothesis that metformin may alleviate hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ximei Shen
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Diabetes Research Institute of Fujian Province, Fuzhou 350005, Fujian, China
| | - Junjian Ye
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Yun Xie
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; Diabetes Research Institute of Fujian Province, Fuzhou 350005, Fujian, China.
| |
Collapse
|
35
|
Dong W, Qi M, Wang Y, Feng X, Liu H. Zoledronate and high glucose levels influence osteoclast differentiation and bone absorption via the AMPK pathway. Biochem Biophys Res Commun 2018; 505:1195-1202. [DOI: 10.1016/j.bbrc.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 01/29/2023]
|
36
|
Ursini F, Russo E, Pellino G, D'Angelo S, Chiaravalloti A, De Sarro G, Manfredini R, De Giorgio R. Metformin and Autoimmunity: A "New Deal" of an Old Drug. Front Immunol 2018; 9:1236. [PMID: 29915588 PMCID: PMC5994909 DOI: 10.3389/fimmu.2018.01236] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metformin (dimethyl biguanide) is a synthetic derivative of guanidine, isolated from the extracts of Galega officinalis, a plant with a prominent antidiabetic effect. Since its discovery more than 50 years ago, metformin represents a worldwide milestone in treatment of patients with type 2 diabetes (T2D). Recent evidence in humans indicates novel pleiotropic actions of metformin which span from its consolidated role in T2D management up to various regulatory properties, including cardio- and nephro-protection, as well as antiproliferative, antifibrotic, and antioxidant effects. These findings, together with ground-breaking studies demonstrating its ability to prolong healthspan and lifespan in mice, provided the basis for defining metformin as a potential antiaging molecule. Moreover, emerging in vivo and in vitro evidence support the novel hypothesis that metformin can exhibit immune-modulatory features. Studies suggest that metformin interferes with key immunopathological mechanisms involved in systemic autoimmune diseases, such as the T helper 17/regulatory T cell balance, germinal centers formation, autoantibodies production, macrophage polarization, cytokine synthesis, neutrophil extracellular traps release, and bone or extracellular matrix remodeling. These effects may represent a powerful contributor to antiaging and anticancer properties exerted by metformin and, from another standpoint, may open the way to assess whether metformin can be a candidate molecule for clinical trials involving patients with immune-mediated diseases. In this article, we will review the available preclinical and clinical evidence regarding the effect of metformin on individual cells of the immune system, with emphasis on immunological mechanisms related to the development and maintenance of autoimmunity and its potential relevance in treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Gianluca Pellino
- Colorectal Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy.,Basilicata Ricerca Biomedica (BRB) Foundation, Potenza, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.,Department of Nuclear Medicine, IRCCS Neuromed, Pozzilli, Italy
| | | | - Roberto Manfredini
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| |
Collapse
|
37
|
Liu F, Chu C, Wei Q, Shi J, Li H, Dong N. Metformin ameliorates TGF-β1-induced osteoblastic differentiation of human aortic valve interstitial cells by inhibiting β-catenin signaling. Biochem Biophys Res Commun 2018; 500:710-716. [PMID: 29679571 DOI: 10.1016/j.bbrc.2018.04.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Osteoblastic differentiation of aortic valve interstitial cells (AVICs) is the central process in the development of calcific aortic valve disease (CAVD). Metformin is a widely used first-line antidiabetic drug, and recently, pleiotropic benefits of metformin beyond hypoglycemia have been reported in the cardiovascular system. Here, we examined the effect of metformin on the osteoblastic differentiation of human AVICs. Our results showed that metformin ameliorated TGF-β1-induced production of osteogenic proteins Runx2 and osteopontin as well as calcium deposition in the cultured human AVICs. Experiments using AICAR, Compound C and AMPKα siRNA showed that the beneficial effect of metformin on TGF-β1-induced osteoblastic differentiation of human AVICs was mediated by AMPKα. Moreover, metformin inhibited the TGF-β1-induced activation of β-catenin, and β-catenin siRNA blocked TGF-β1-induced osteoblastic differentiation of AVICs. Smad2/3 and JNK were phosphorylated to promote the TGF-β1-induced activation of β-catenin and osteoblastic differentiation of AVICs, and metformin also alleviated TGF-β1-induced activation of Smad2/3 and JNK. In conclusion, our results suggest a beneficial effect of metformin based on the prevention of osteoblastic differentiation of human AVICs via inhibition of β-catenin, which indicates the therapeutic potential of metformin for CAVD.
Collapse
Affiliation(s)
- Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chong Chu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qinyu Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
38
|
Loeffler J, Duda GN, Sass FA, Dienelt A. The Metabolic Microenvironment Steers Bone Tissue Regeneration. Trends Endocrinol Metab 2018; 29:99-110. [PMID: 29290501 DOI: 10.1016/j.tem.2017.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
Over the past years, basic findings in cancer research have revealed metabolic symbiosis between different cell types to cope with high energy demands under limited nutrient availability. Although this also applies to regenerating tissues with disrupted physiological nutrient and oxygen supply, the impact of this metabolic cooperation and metabolic reprogramming on cellular development, fate, and function during tissue regeneration has widely been neglected so far. With this review, we aim to provide a schematic overview on metabolic links that have a high potential to drive tissue regeneration. As bone is, aside from liver, the only tissue that can regenerate without excessive scar tissue formation, we will use bone healing as an exemplarily model system.
Collapse
Affiliation(s)
- Julia Loeffler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - F Andrea Sass
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
39
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Effects of a self-assembling peptide as a scaffold on bone formation in a defect. PLoS One 2018; 13:e0190833. [PMID: 29304115 PMCID: PMC5755907 DOI: 10.1371/journal.pone.0190833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal fusion and bone defect after injuries, removal of bone tumors, and infections need to be repaired by implantation. In an aging society, recovery from these procedures is often difficult. In this study, we found that injection of SPG-178 leads to expression of several bone marker genes and mineralization in vitro, and revealed a significantly higher degree of newly formed bone matrix with use of SPG-178 in vivo. MC3T3-E1 cells were used to evaluate osteoblast differentiation promoted by SPG-178. To analyze gene expression, total RNA was isolated from MC3T3-E1 cells cultured for 7 and 14 days with control medium or SPG-178 medium. Among the several bone marker genes examined, SPG-178 significantly increased the mRNA levels for ALP, BMP-2 and Osteocalcin, OPN, BSP and for the Osterix. Ten-week-old female Wistar rats were used for all transplantation procedures. A PEEK cage was implanted into a bony defect (5 mm) within the left femoral mid-shaft, and stability was maintained by an external fixator. The PEEK cages were filled with either a SPG-178 hydrogel plus allogeneic bone chips (n = 4) or only allogeneic bone chips (n = 4). The rats were then kept for 56 days. Newly formed bone matrix was revealed inside the PEEK cage and there was an increased bone volume per total volume with the cage filled with SPG-178, compared to the control group. SPG-178 has potential in clinical applications because it has several benefits. These include its favorable bone conduction properties its ability to act as a support for various different cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and combined with a wide range of other materials.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Qin X, Jiang T, Liu S, Tan J, Wu H, Zheng L, Zhao J. Effect of metformin on ossification and inflammation of fibroblasts in ankylosing spondylitis: An in vitro study. J Cell Biochem 2018; 119:1074-1082. [PMID: 28696014 DOI: 10.1002/jcb.26275] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease characterized by fibroblasts ossification. However, effective drug therapy for AS is lacking. As an antidiabetic drug, metformin has demonstrated an antiosteogenic effect on osteoblasts in vitro. And it is also a kind of specific agonists for adenosine 5'-monophosphate activated protein kinase (AMPK), which is blocked in the process of AS. Given the role in antiosteogenesis and AMPK activating, metformin was investigated of its effect on fibroblasts harvested from capsular ligament of patients with femoral neck fracture and AS. Osteogenic specific makers (Alp, Bglap, Runx2, Bmp2, and Col1) in fibroblasts administered with metformin (20 μg/mL) were detected by ALP staining, alizarin red staining, qPCR, and Western blotting after 7 and 14 days of culture. Inflammation genes (il1-β and il6) and pathway (Pi3k, Akt, and Ampk) associated markers were also evaluated. Our results showed that osteogenic specific markers were greatly downregulated and ossification was effectively inhibited in AS fibroblasts after addition of metformin. Levels of inflammation markers were also decreased by metformin. Thus, metformin exerts potent effect on suppression of ossification and inflammation in AS fibroblasts via the activation of Pi3k/Akt and AMPK pathways, which may be developed as a potential agent for treatment of AS.
Collapse
Affiliation(s)
- Xiong Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sijia Liu
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiachang Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Lin H, Ying Y, Wang YY, Wang G, Jiang SS, Huang D, Luo L, Chen YG, Gerstenfeld LC, Luo Z. AMPK downregulates ALK2 via increasing the interaction between Smurf1 and Smad6, leading to inhibition of osteogenic differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:2369-2377. [PMID: 28847510 PMCID: PMC5660632 DOI: 10.1016/j.bbamcr.2017.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022]
Abstract
Activin A receptor type I or activin receptor-like kinase 2 (ACVRI/ALK2) belongs to type I TGF-β family and plays an important role in bone development. Activating mutations of ALK2 containing the R206 to H mutation, are present in 95% in the rare autosomal genetic disease fibrodysplasia ossificans progressiva (FOP), which leads to the development of ectopic bone formation in muscle. The effect of AMP-activated protein kinase (AMPK) activation on ALK2R206H-mediated signaling in fibroblasts obtained from a FOP patient was assessed in the present study. The activity of the mutated ALK2 was suppressed by pharmacological AMPK activators such as metformin and aspirin, while their actions were blocked by the dominant negative mutant of AMPK and mimicked by the constitutively active mutant of AMPK. Furthermore, activation of AMPK upregulated Smad6 and Smurf1 and thereby enhanced their interactions, resulting in its proteosome-dependent degradation of ALK2. In contrast, knockdown of Smad6 or Smurf1 prevented metformin-induced reduction of ALK2. To evaluate the biological relevance of AMPK action on ALK2 activity, we induced FOP fibroblasts into iPS cells and found that their osteogenic differentiation in vitro was inhibited by metformin. Our studies provide novel insight into potential approaches to treatment of FOP, since several AMPK activators (e.g. metformin, berberine, and aspirin) are already in clinical use for the treatment of diabetes and metabolic syndromes.
Collapse
Affiliation(s)
- Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Yuan-Yuan Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gang Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Shan-Shan Jiang
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Deqinag Huang
- The Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lingyu Luo
- The Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ye-Guang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
42
|
Mu W, Wang Z, Ma C, Jiang Y, Zhang N, Hu K, Li L, Wang Z. Metformin promotes the proliferation and differentiation of murine preosteoblast by regulating the expression of sirt6 and oct4. Pharmacol Res 2017; 129:462-474. [PMID: 29162538 DOI: 10.1016/j.phrs.2017.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022]
Abstract
Osteopenia, osteoporosis and bone salt metabolism disorder are common diseases in the aged and diabetics. From case reports of patients with T2DM, we have observed that metformin can decrease risk of bone fracture and promote bone formation. However, the underlying mechanism of metformin's effect on bone metabolism remains unknown. In our research, we show that metformin can promote proliferation of murine preosteoblast by regulating AMPK-mTORC2 and AKT-mTORC1 signaling axis. Furthermore, we have observed that metformin can promote SIRT6 expression before and during differentiation of murine preosteoblast. The interaction between SIRT6 and NF-κB is highly important in osteoblast differentiation just as the relationship between OPG and RANKL in the process of bone formation. During differentiation, we show that SIRT6 inhibits phosphorylation of NF-κB and that OPG increases while RANKL decrease in HG groups. In addition, ablation of sirt6 in mice causes phosphorylation of NF-κB at high-levels and RANKL increases slightly in femur bone cells. However, other bone formation marker proteins such as RUNX2, OSTERIX and OPG appear at low-levels in sirt6 KO mice. It has been confirmed that downregulation of OCT4 is critical incident in the differentiation of embryonic stem cells. Fortunately, we observe that SIRT6 can suppress OCT4 expression in murine preosteoblast and the expression of OCT4 is at high-level in sirt6 KO mice. Taken together, this study's results illuminate metformin's effect on bone metabolism under HG condition and help to elucidate why metformin can promote bone fracture healing of patients with T2DM.
Collapse
Affiliation(s)
- Wei Mu
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Zhuoran Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Chuanyu Ma
- Department of Orthopedics, Clinical Bone Research Center, PLA 101 Hospital, Wuxi, PR China
| | - Yunyun Jiang
- Department of Orthopedics, Clinical Bone Research Center, PLA 101 Hospital, Wuxi, PR China
| | - Nannan Zhang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Kaiqiang Hu
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Liyuan Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China.
| |
Collapse
|
43
|
Vianna AGD, Sanches CP, Barreto FC. Review article: effects of type 2 diabetes therapies on bone metabolism. Diabetol Metab Syndr 2017; 9:75. [PMID: 29021829 PMCID: PMC5613523 DOI: 10.1186/s13098-017-0274-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes complications and osteoporotic fractures are two of the most important causes of morbidity and mortality in older patients, and they share many features, including genetic susceptibility, molecular mechanisms, and environmental factors. Type 2 diabetes mellitus (T2DM) compromises bone microarchitecture by inducing abnormal bone cell function and matrix structure with increased osteoblast apoptosis, diminished osteoblast differentiation, and enhanced osteoclast-mediated bone resorption. The linkage between these two chronic diseases creates a possibility that certain antidiabetic therapies may affect bone function. The treatment of T2DM has been improved in the past two decades with the development of new therapeutic drugs. Each class has a pathophysiologic target related to the regulation of the energy metabolism and insulin secretion. However, both glycemic homeostasis and bone homeostasis are under the control of common regulatory factors. This background allows the individual pharmacological targets of antidiabetic therapies to affect bone quality due to their indirect effects on bone cell differentiation and the bone remodeling process. With a greater number of diabetic patients and antidiabetic agents being launched, it is critical to highlight the consequences of this disease and its pharmacological agents on bone health and fracture risk. Currently, there is little scientific knowledge approaching the impact of most anti-diabetic treatments on bone quality and fracture risk. Thus, this review aims to explore the pros and cons of the available pharmacologic treatments for T2DM on bone mineral density and risk fractures in humans.
Collapse
Affiliation(s)
- A. G. D. Vianna
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433–4° andar–Mercês, Curitiba, Paraná 80810-040 Brazil
- Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155–Bloco Medicina–Prado Velho, Curitiba, Paraná 80215-901 Brazil
| | - C. P. Sanches
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433–4° andar–Mercês, Curitiba, Paraná 80810-040 Brazil
| | - F. C. Barreto
- Division of Nephrology, Department of Internal Medicine, Federal University of Paraná, Rua General Carneiro, 181–Alto da Gloria, Curitiba, Paraná 80060-900 Brazil
| |
Collapse
|
44
|
de Araújo AA, Pereira ADSBF, de Medeiros CACX, Brito GADC, Leitão RFDC, Araújo LDS, Guedes PMM, Hiyari S, Pirih FQ, de Araújo Júnior RF. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One 2017; 12:e0183506. [PMID: 28847008 PMCID: PMC5573680 DOI: 10.1371/journal.pone.0183506] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Aim To evaluate the effects of metformin (Met) on inflammation, oxidative stress, and bone loss in a rat model of ligature-induced periodontitis. Materials & methods Male albino Wistar rats were divided randomly into five groups of twenty-one rats each, and given the following treatments for 10 days: (1) no ligature + water, (2) ligature + water, (3) ligature + 50 mg/kg Met, (4) ligature + 100 mg/kg Met, and (5) ligature + 200 mg/kg Met. Water or Met was administered orally. Maxillae were fixed and scanned using Micro-computed Tomography (μCT) to quantitate linear and bone volume/tissue volume (BV/TV) volumetric bone loss. Histopathological characteristics were assessed through immunohistochemical staining for MMP-9, COX-2, the RANKL/RANK/OPG pathway, SOD-1, and GPx-1. Additionally, confocal microscopy was used to analyze osteocalcin fluorescence. UV-VIS analysis was used to examine the levels of malondialdehyde, glutathione, IL-1β and TNF-α from gingival tissues. Quantitative RT-PCR reaction was used to gene expression of AMPK, NF-κB (p65), and Hmgb1 from gingival tissues. Significance among groups were analysed using a one-way ANOVA. A p-value of p<0.05 indicated a significant difference. Results Treatment with 50 mg/kg Met significantly reduced concentrations of malondialdehyde, IL-1β, and TNF-α (p < 0.05). Additionally, weak staining was observed for COX-2, MMP-9, RANK, RANKL, SOD-1, and GPx-1 after 50 mg/kg Met. OPG and Osteocalcin showed strong staining in the same group. Radiographically, linear measurements showed a statistically significant reduction in bone loss after 50 mg/kg Met compared to the ligature and Met 200 mg/kg groups. The same pattern was observed volumetrically in BV/TV and decreased osteoclast number (p<0.05). RT-PCR showed increased AMPK expression and decreased expression of NF-κB (p65) and HMGB1 after 50 mg/kg Met. Conclusions Metformin, at a concentration of 50 mg/kg, decreases the inflammatory response, oxidative stress and bone loss in ligature-induced periodontitis in rats.
Collapse
Affiliation(s)
- Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Post Graduation Program Public Health / Post Graduation Program in Pharmaceutical Science, UFRN, Natal, RN, Brazil
- * E-mail:
| | | | | | | | | | | | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Post Graduation Program in Parasitary Biology/Post Guaduation Biological Science, UFRN, Natal, RN, Brazil
| | - Sarah Hiyari
- Section of Periodontics, School of Dentistry, University of California, UCLA, Los Angeles, California, United States of America
| | - Flávia Q. Pirih
- Section of Periodontics, School of Dentistry, University of California, UCLA, Los Angeles, California, United States of America
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Post Graduation Program in Functional and Structural Biology/ Post Graduation Program Health Science/Department of Morphology, UFRN, Natal, RN, Brazil
| |
Collapse
|
45
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
46
|
Sui BD, Hu CH, Zheng CX, Shuai Y, He XN, Gao PP, Zhao P, Li M, Zhang XY, He T, Xuan K, Jin Y. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 2017; 7:1225-1244. [PMID: 28435461 PMCID: PMC5399589 DOI: 10.7150/thno.18181] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments.
Collapse
|
47
|
Abstract
Diabetes be it type 1 or type 2 is associated with an increased risk of fragility fractures. The mechanisms underlying this increased risk are just being elucidated. Anti-diabetes medications are crucial for maintaining glucose control and for preventing micro- and macrovascular complications in diabetes. However, they may modulate fracture risk in diabetes in different ways. Thiazolidinediones have demonstrated an unfavorable effect on the skeleton, while metformin and sulfonylureas may have a neutral if not beneficial effect on bone. The use of insulin has been associated with an increased risk of fragility fractures though it is not clear whether it is due to direct influence of insulin or whether it is mediated through hypoglycemia and increased falls risk. The overall effect of incretin mimetics appears to be beneficial; however, this has to be elucidated further. The bone effects of pramlintide, a synthetic analog of amylin, have not been explored fully. Finally, issues regarding bone safety of SGLT2 (sodium-dependent glucose transporter 2) inhibitors, the newest anti-diabetic medications on the market are of concern. The purpose of this review is to provide a comprehensive overview of the effect of these medications on bone metabolism and the studies exploring the risk or lack thereof of these medications on bone loss and fragility fractures.
Collapse
Affiliation(s)
- Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, ACADEMIA, 20 College Road, Singapore, 169856, Singapore.
| |
Collapse
|
48
|
Gu Q, Gu Y, Yang H, Shi Q. Metformin Enhances Osteogenesis and Suppresses Adipogenesis of Human Chorionic Villous Mesenchymal Stem Cells. TOHOKU J EXP MED 2017; 241:13-19. [PMID: 28025449 DOI: 10.1620/tjem.241.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin is the first-line anti-hyperglycemic drugs commonly used to treat type 2 diabetes. Recent studies have shown that metformin can enhance bone formation through induction of endothelial nitric oxide synthase (eNOS). Human chorionic villous mesenchymal stem cells (CV-MSCs) are promising candidates for regenerative medicine. The present study aimed to investigate the effects of metformin on the osteogenic and adipocytic differentiation of human CV-MSCs, and to elucidate the underlying mechanism. CV-MSCs, prepared from human term placentae, were cultured with different concentrations of metformin. Treatment for 72 hours with 0.05 mM metformin had no noticeable effect on the proliferation of CV-MSCs. Consequently, CV-MSCs were cultured for seven or 14 days in the osteogenic medium supplemented with 0.05 mM metformin. Treatment for seven days with metformin increased the expression levels of osteogenic protein mRNAs, including alkaline phosphatase, runt-related transcription factor 2, and osteopontin. Metformin also enhanced the mineralization of CV-MSCs. Furthermore, metformin induced the expression of eNOS in CV-MSCs during osteogenic differentiation. By contrast, when CV-MSCs were cultured for 14 days in the adipogenic medium, 0.05 mM metformin inhibited the expression of adipogenic protein mRNAs, including proliferators-activated receptor-γ and CCAAT/enhancer binding protein-α. The lipid droplet accumulation was also reduced on 28 days after metformin treatment. These findings indicate that metformin can enhance osteogenic differentiation of CV-MSCs and reduce adipocyte formation. The effect of metformin on osteogenic differentiation of CV-MSCs may be associated with eNOS expression. Our findings will highlight the therapeutic potential of metformin in osteoporosis and bone fracture.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University
| | | | | | | |
Collapse
|
49
|
Phung S, Lee C, Hong C, Song M, Yi JK, Stevenson RG, Kang MK, Shin KH, Park NH, Kim RH. Effects of Bioactive Compounds on Odontogenic Differentiation and Mineralization. J Dent Res 2016; 96:107-115. [PMID: 28033065 DOI: 10.1177/0022034516675152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping involves the placement of dental materials directly onto vital pulp tissues after deep caries removal to stimulate the regeneration of reparative dentin. This physical barrier will serve as a "biological seal" between these materials and the pulp tissue. Although numerous direct pulp capping materials are available, the use of small bioactive compounds that can potently stimulate and expedite reparative dentin formation is still underexplored. Here, the authors compared and evaluated the pro-osteogenic and pro-odontogenic effects of 4 small bioactive compounds- phenamil (Phen), purmorphamine (Pur), genistein (Gen), and metformin (Met). The authors found that these compounds at noncytotoxic concentrations induced differentiation and mineralization of preosteoblastic MC3T3-E1 cells and preodontoblastic dental pulp stem cells (DPSCs) in a dose-dependent manner. Among them, Phen consistently and potently induced differentiation and mineralization in vitro. A single treatment with Phen was sufficient to enhance the mineralization potential of DPSCs in vitro. More importantly, Phen-treated DPSCs showed enhanced odontogenic differentiation and mineralization in vivo. Our study suggests that these small bioactive compounds merit further study for their potential clinical use as pulp capping materials.
Collapse
Affiliation(s)
- S Phung
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - C Lee
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - C Hong
- 3 Section of Orthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - M Song
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - J K Yi
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - R G Stevenson
- 2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - K-H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - N-H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.,5 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA.,4 UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
50
|
Wang YG, Han XG, Yang Y, Qiao H, Dai KR, Fan QM, Tang TT. Functional differences between AMPK α1 and α2 subunits in osteogenesis, osteoblast-associated induction of osteoclastogenesis, and adipogenesis. Sci Rep 2016; 6:32771. [PMID: 27600021 PMCID: PMC5013406 DOI: 10.1038/srep32771] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
The endocrine role of the skeleton-which is impaired in human diseases including osteoporosis, obesity and diabetes-has been highlighted previously. In these diseases, the role of AMPK, a sensor and regulator of energy metabolism, is of biological and clinical importance. Since AMPK's main catalytic subunit α has two isoforms, it is unclear whether functional differences between them exist in the skeletal system. The current study overexpressed AMPKα1 and α2 in MC3T3-E1 cells, primary osteoblasts and mouse BMSCs by lentiviral transduction. Cells overexpressing AMPKα2 showed higher osteogenesis potential than AMPKα1, wherein androgen receptor (AR) and osteoactivin played important roles. RANKL and M-CSF were secreted at lower levels from cells overexpressing α2 than α1, resulting in decreased osteoblast-associated osteoclastogenesis. Adipogenesis was inhibited to a greater degree in 3T3-L1 cells overexpressing α2 than α1, which was modulated by AR. An abnormal downregulation of AMPKα2 was observed in human BMSCs exhibiting the fibrous dysplasia (FD) phenotype. Overexpression of AMPKα2 in these cells rescued the defect in osteogenesis, suggesting that AMPKα2 plays a role in FD pathogenesis. These findings highlight functional differences between AMPKα1 and α2, and provide a basis for investigating the molecular mechanisms of diseases associated with impaired functioning of the skeletal system.
Collapse
Affiliation(s)
- Yu-gang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Xiu-guo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Ke-rong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Qi-ming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| | - Ting-ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China
| |
Collapse
|