1
|
Zhu Y, Yang Y, Lan Y, Yang Z, Gao X, Zhou J. The role of PKM2-mediated metabolic reprogramming in the osteogenic differentiation of BMSCs under diabetic periodontitis conditions. Stem Cell Res Ther 2025; 16:186. [PMID: 40251642 PMCID: PMC12008901 DOI: 10.1186/s13287-025-04301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/01/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and periodontitis have a bidirectional relationship, with each being a high-risk factor for the other. Prolonged hyperglycemia exacerbates periodontal inflammation and disrupts bone homeostasis. Pyruvate kinase M2 (PKM2), a key enzyme in glycolysis, is involved in metabolic reprogramming, but its role in osteogenesis under high-glucose (HG) inflammatory conditions remains largely unknown. This study aimed to investigate the effects of HG and inflammation on bone marrow mesenchymal stem cells (BMSCs) under indirect co-culture conditions and to explore how PKM2 regulates metabolism and mitochondrial function during osteogenic differentiation in HG inflammatory environments, elucidating its role in diabetic periodontitis (DP). METHODS Expose BMSCs to conditioned medium (CM) collected from RAW264.7 cells stimulated with HG and/or lipopolysaccharide (LPS). BMSCs functionality was assessed using CCK8, EdU, Annexin V-PI apoptosis assay, alkaline phosphatase (ALP), and Alizarin Red S (ARS) staining. Metabolic characteristics were evaluated through Seahorse assays, lactate production, glucose uptake, and ATP measurements. Mitochondrial function was assessed via JC-1, and ROS staining, Mito-Tracker staining, and transmission electron microscopy (TEM). Gene and protein expression were analyzed by quantitative real-time PCR and western blotting. In vivo therapeutic effects of shikonin were validated via micro-CT and histological staining in a diabetic periodontitis mouse model. RESULTS In vitro experiments demonstrated that HG inflammatory conditions impaired the survival of BMSCs, suppressed osteogenic differentiation, and induced metabolic reprogramming. This reprogramming was characterized by enhanced glycolysis, impaired oxidative phosphorylation (OXPHOS), abnormal upregulation of PKM2 expression, and mitochondrial dysfunction accompanied by morphological alterations. Shikonin effectively reversed these adverse effects by inhibiting PKM2 tetramerization, rescuing the loss of osteogenic function in BMSCs. The therapeutic potential of shikonin was confirmed in the diabetic periodontitis mouse model. CONCLUSION PKM2 impairs the osteogenesis of BMSCs by affecting metabolism and mitochondrial function, suggesting it as a potential therapeutic target for diabetic periodontitis.
Collapse
Affiliation(s)
- Yanlin Zhu
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Yuhan Yang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Zun Yang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Edcation, Chongqing, China.
| |
Collapse
|
2
|
Leypold T, Herbsthofer A, Craveiro RB, Wolf M, Beier JP, Ruhl T. Effects of cannabinoid receptor activation on Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells in vitro. J Periodontal Implant Sci 2025; 55:18-34. [PMID: 39058353 PMCID: PMC11885868 DOI: 10.5051/jpis.2303680184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease that results in the loss of periodontal tissue. The endocannabinoid system has anti-inflammatory properties and displays considerable potential for tissue regeneration. In this study, we aimed to explore whether the activation of this system can alleviate or reverse the inflammatory phenotype of human periodontal ligament stem cells (hPDLSCs) induced by exposure to the inflammagen lipopolysaccharide (LPS). METHODS We investigated the effects of activating specific cannabinoid receptors (CB1 and CB2) on the inflammatory phenotype of LPS-stimulated hPDLSCs. The exogenous ligands WIN55,212-2 and JWH-133 were employed to target the cannabinoid receptors. We conducted a thorough assessment of cell proliferation, metabolic activity, and adipogenic, osteogenic, and chondrogenic differentiation potential. Additionally, we measured cytokine release using enzyme-linked immunosorbent assays. RESULTS Exposure to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) caused an increase in cell proliferation while decreasing metabolic activity. While this exposure did not influence adipogenic or chondrogenic differentiation, it did result in reduced osteogenesis. Additionally, LPS induced the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein 1. Immunolabeling revealed the presence of CB1 and CB2 on the cellular membrane, with these receptors playing distinct roles in hPDLSCs. The CB1 agonist WIN55,212-2 was found to increase metabolic activity and promote adipogenic differentiation, whereas the CB2 agonist JWH-133 promoted cell proliferation and osteogenic differentiation. When hPDLSCs were co-exposed to Pg-LPS and CB ligands, JWH-133 slightly ameliorated the inhibition of osteogenic differentiation and suppressed the release of inflammatory cytokines. CONCLUSIONS This study clarifies the effects of specific CB receptor activation on hPDLCs and the inflammatory phenotype. Stimulation of the endocannabinoid system through the manipulation of endogenous or the application of exogenous cannabinoids in vivo may represent a potent therapeutic option for combating periodontal inflammatory disorders.
Collapse
Affiliation(s)
- Tim Leypold
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.
| | - Alix Herbsthofer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Meyer MD, Coelho RMI, Rangel-Coelho JP, Costa BC, Teixeira LN, Martinez EF, Casarin RCV, Santamaria MP, França FMG, Nociti-Jr FH, Lisboa-Filho PN, Kantovitz KR. Titanium dioxide nanotubes incorporated into conventional glass ionomer cement alter the biological behavior of pre-odontoblastic cells. Colloids Surf B Biointerfaces 2025; 246:114389. [PMID: 39591848 DOI: 10.1016/j.colsurfb.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
The objective was to address the repercussion of adding titanium dioxide nanotubes (TiO2-nt) into high-viscosity conventional glass ionomer cement (GIC) on the biological properties of pre-odontoblastic cells (MDPC-23) challenged by lipopolysaccharides (LPS - 2 μg/mL). TiO2-nt was added to Ketac Molar EasyMix at 3, 5, 7 %, whereas unblended GIC served as control. Analyses included proliferation (n=6; 24, 48, 72 h), metabolism (MTT; n=6; 24, 48, 72 h); morphology laser microscopy (n=3; 24, 48, 72 h); proteome assessments IL-1β, IL-6, IL-10, VEGF, TNF-α (n=3; 12, 18 h); mRNA levels (RT-PCR) of Il-1β, Il-6, Il-10, VEGF, TNF-α (n=3; 12, 18 h) and DSPP (n=3; 24, 72, 120 h). Data analysis included Shapiro-Wilk, Levene, and generalized linear models (α=0.05). Results demonstrated that cell proliferation increased over time for all groups, and was not impacted by TiO2-nt (p>0.05). GIC groups displayed lower MTT values compared to cells cultured without GIC discs (p=0.019); disregarding the presence of TiO2. Remarkably, TiO2-nt reversed the effect of GIC, reducing the levels of selected biomarkers. LPS treatment modified the expression of the immune-inflammatory markers by MDPC-23 cells (p<0.0001). Morphological analysis did not reveal distinctions for any of the studied. TiO2-nt modulated immune-inflammatory and dentin marker expression by MDPC-23 cells cultured on conventional GIC discs, and did not affect cell morphology/viability, regardless LPS exposure. In conclusion, TiO2-nt may become a reliable clinical strategy to encourage pulp tissue repair.
Collapse
Affiliation(s)
- Maria Davoli Meyer
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | | | - João Pedro Rangel-Coelho
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Bruna Carolina Costa
- School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP 17033-360, Brazil.
| | - Lucas Novaes Teixeira
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Elizabeth Ferreira Martinez
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Renato Corrêa Viana Casarin
- Piracicaba Dental School, State University of Campinas (FOP-UNICAMP), Av. Limeira 901, Areião, Piracicaba, SP 13414-903, Brazil.
| | | | | | - Francisco Humberto Nociti-Jr
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil; American Dental Association, Science & Research Institute, 100 Bureau Dr., Gaithersburg, MD 20899, USA.
| | - Paulo Noronha Lisboa-Filho
- School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP 17033-360, Brazil.
| | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil; Department of Comprehensive Dentistry, University of Maryland, School of Dentistry, 650 W Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Hu P, Long P, Li R, Lan X, He Y, Li G, Li S. Blockade of connexin43-containing hemichannel attenuates the LPS-induced inflammatory response in human dental pulp cells by inhibiting the extracellular flux of ATP and HMGB1. FRONTIERS IN ORAL HEALTH 2024; 5:1496819. [PMID: 39687479 PMCID: PMC11646852 DOI: 10.3389/froh.2024.1496819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Tissue repair can be promoted by moderate inflammation but suppressed by excessive levels. Therefore, control of excessive inflammation following removal of infection plays a critical role in promotion of pulpal repair. Connexin 43 (Cx43) forms hemichannels (HCs) or gap channels (GJs) to facilitate the delivery of small molecules between cells to regulate both inflammation and repair. Understanding the role of Cx43 in dental pulp may help develop a potential strategy to attenuate the inflammation and promote the formation of reparative dentin in deep caries. Methods We firstly investigated the expression profile of Cx43 in infected human third molars by histological analysis; then, we detected channel activity of Cx43 and the effect of mediating release of small molecules in lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (hDPCs) by molecular biology methods. Results were analyzed by one-way ANOVA and the unpaired t-test. The level of significance was set at α = 0.05. Results Analysis showed that the expression of Cx43 was upregulated in human third molars as the degree of infection increased, and Cx43 was not only expressed in odontoblast layer, but also detected in cell-rich zone and pulp proper. LPS activated Cx43 HCs in hDPCs while inhibiting GJs; blockade of Cx43 HCs attenuated LPS-induced inflammation. Furthermore, LPS promoted the extracellular release of adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1) within hDPCs, thus exacerbating LPS-induced inflammation. The blockade of Cx43 HCs inhibited the extracellular release of ATP and HMGB1 within hDPCs. Conclusion Collectively, our finding suggested that Cx43 plays a key role in infection and inflammation in dental pulp. LPS activates Cx43 HCs to mediate the extracellular release of ATP and HMGB1 to exacerbate LPS-induced inflammation of hDPCs.
Collapse
Affiliation(s)
- Peiling Hu
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Ping Long
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Ruotong Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Xiaorong Lan
- School of Stomatology, Southwest Medical University, Lu Zhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Yuanpei He
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Guangwen Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Shiting Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| |
Collapse
|
5
|
Liu L, Fang T, Miao C, Li X, Zeng Y, Wang T, Cao Y, Huang D, Song D. DLX6-AS1 regulates odonto/osteogenic differentiation in dental pulp cells under the control of BMP9 via the miR-128-3p/MAPK14 axis: A laboratory investigation. Int Endod J 2024; 57:1623-1638. [PMID: 38973098 DOI: 10.1111/iej.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
AIM The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanglin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
9
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Wang Y, Xie Y, Xue N, Xu H, Zhang D, Ji N, Chen Q. TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment. Biomolecules 2024; 14:368. [PMID: 38540786 PMCID: PMC10968114 DOI: 10.3390/biom14030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2025] Open
Abstract
In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were performed to measure the expression levels of nuclear factor kappa B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced the anti-inflammatory properties of DPSCs and partially restored their mineralization function by inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide a basis for the treatment of pulpitis.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yulang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ningning Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Bryniarska-Kubiak N, Basta-Kaim A, Kubiak A. Mechanobiology of Dental Pulp Cells. Cells 2024; 13:375. [PMID: 38474339 PMCID: PMC10931140 DOI: 10.3390/cells13050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland;
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland;
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
12
|
Bulanawichit W, Sinsareekul C, Kornsuthisopon C, Chansaenroj A, Trachoo V, Nowwarote N, Osathanon T. Toll-like receptor and C-type lectin receptor agonists attenuate osteogenic differentiation in human dental pulp stem cells. BMC Oral Health 2024; 24:148. [PMID: 38297241 PMCID: PMC10832253 DOI: 10.1186/s12903-024-03894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This study aimed to investigate the effects of various toll-like receptor (TLR) and C-type lectin receptor (CLR) ligands on osteogenic differentiation in human dental pulp stem cells (hDPSCs). METHODS hDPSCs were cultured and treated with various concentrations (0.01, 0.1, 1.0, and 10 µg/mL) of TLR or CLR agonists (PG-LPS, E.coli LPS, poly(I:C), Pam3CSK4, Furfurman, and Zymosan). Cell viability was determined by MTT assay. The effects of TLR and CLR agonists on osteogenic differentiation of hDPSCs were measured by alkaline phosphatase (ALP) activity, Alizarin Red S staining, and Von Kossa staining. In addition, the mRNA expression of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1) was examined by RT-qPCR. A non-parametric analysis was employed for the statistical analyses. The statistically significant difference was considered when p < 0.05. RESULTS Treatment with TLR and CLR agonists was associated with an increase in hDPSCs' colony-forming unit ability. Compared with the control group, TLR and CLR agonists significantly inhibited the osteogenic differentiation of hDPSCs by decreasing the ALP activity, mineralised nodule formation, and mRNA expression levels of osteogenesis-related genes (ALP, COL1A1, RUNX2, OSX, OCN and DMP1). The inhibition of TRIF but not Akt signalling rescued the effects of TLR and CLR agonist attenuating hDPSCs' mineralisation. CONCLUSIONS The activation of TLRs or CLRs exhibited an inhibitory effect on osteogenic differentiation of hDPSCs via the TRIF-dependent signalling pathway.
Collapse
Affiliation(s)
- Wajathip Bulanawichit
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Sinsareekul
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology and Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, Paris, France.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
13
|
Fahmy SH, Jungbluth H, Jepsen S, Winter J. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs). Clin Oral Investig 2023; 28:53. [PMID: 38157054 DOI: 10.1007/s00784-023-05466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This in vitro study aimed to modify TLR-2-mediated effects on the paracrine, proliferative, and differentiation potentials of human dental pulp-derived cells using histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. MATERIALS AND METHODS Cell viability was assessed using the XTT assay. Cells were either treated with 10 μg/ml Pam3CSK4 only, or pre-treated with valproic acid (VPA) (3 mM), trichostatin A (TSA) (3 μM), and MG-149 (3 μM) for a total of 4 h and 24 h. Control groups included unstimulated cells and cells incubated with inhibitors solvents only. Transcript levels for NANOG, OCT3-4, FGF-1 and 2, NGF, VEGF, COL-1A1, TLR-2, hβD-2 and 3, BMP-2, DSPP, and ALP were assessed through qPCR. RESULTS After 24 h, TSA pre-treatment significantly upregulated the defensins and maintained the elevated pro-inflammatory cytokines, but significantly reduced healing and differentiation genes. VPA significantly upregulated the pro-inflammatory cytokine levels, while MG-149 significantly downregulated them. Pluripotency genes were not significantly affected by any regimen. CONCLUSIONS At the attempted concentrations, TSA upregulated the defensins gene expression levels, and MG-149 exerted a remarkable anti-inflammatory effect; therefore, they could favorably impact the immunological profile of hDPCs. CLINICAL RELEVANCE Targeting hDPC nuclear function could be a promising option in the scope of the biological management of inflammatory pulp diseases.
Collapse
Affiliation(s)
- Sarah Hossam Fahmy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany.
| | - Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Zhou L, Zhao S, Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: a review. Front Physiol 2023; 14:1272764. [PMID: 37929208 PMCID: PMC10622672 DOI: 10.3389/fphys.2023.1272764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can differentiate into odontoblast-like cells and protect the pulp. The differentiation of DPSCs can be influenced by biomaterials or growth factors that activate different signaling pathways in vitro or in vivo. In this review, we summarized six major pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways. Various factors can influence the odontogenic differentiation of DPSCs through one or more signaling pathways. By understanding the interactions between these signaling pathways, we can expand our knowledge of the mechanisms underlying the regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
| | | | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Svandova E, Vesela B, Kratochvilova A, Holomkova K, Oralova V, Dadakova K, Burger T, Sharpe P, Lesot H, Matalova E. Markers of dental pulp stem cells in in vivo developmental context. Ann Anat 2023; 250:152149. [PMID: 37574172 DOI: 10.1016/j.aanat.2023.152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Masaryk University, Brno, Czech Republic
| | - Barbora Vesela
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| | | | | | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | | | - Tom Burger
- Veterinary University, Brno, Czech Republic
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; King's College London, London, United Kingdom.
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| |
Collapse
|
16
|
Kim JH, Irfan M, Hossain MA, Shin S, George A, Chung S. LPS-induced inflammation potentiates dental pulp stem cell odontogenic differentiation through C5aR and p38. Connect Tissue Res 2023; 64:505-515. [PMID: 37247252 PMCID: PMC10524681 DOI: 10.1080/03008207.2023.2218944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
AIM Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs). MATERIAL AND METHODS Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580). RESULTS Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase. CONCLUSIONS These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Muhammad Irfan
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Md Akil Hossain
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Susie Shin
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Seung Chung
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Mendes Soares IP, Anselmi C, Pires MLBA, Ribeiro RADO, Leite ML, Soares DG, DE Souza Costa CA, Hebling J. Chronic exposure to lipopolysaccharides as an in vitro model to simulate the impaired odontogenic potential of dental pulp cells under pulpitis conditions. J Appl Oral Sci 2023; 31:e20230032. [PMID: 37493701 PMCID: PMC10382076 DOI: 10.1590/1678-7757-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Simulating a bacterial-induced pulpitis environment in vitro may contribute to exploring mechanisms and bioactive molecules to counteract these adverse effects. OBJECTIVE To investigate the chronic exposure of human dental pulp cells (HDPCs) to lipopolysaccharides (LPS) aiming to establish a cell culture protocol to simulate the impaired odontogenic potential under pulpitis conditions. METHODOLOGY HDPCs were isolated from four healthy molars of different donors and seeded in culture plates in a growth medium. After 24 h, the medium was changed to an odontogenic differentiation medium (DM) supplemented or not with E. coli LPS (0 - control, 0.1, 1, or 10 µg/mL) (n=8). The medium was renewed every two days for up to seven days, then replaced with LPS-free DM for up to 21 days. The activation of NF-κB and F-actin expression were assessed (immunofluorescence) after one and seven days. On day 7, cells were evaluated for both the gene expression (RT-qPCR) of odontogenic markers (COL1A1, ALPL, DSPP, and DMP1) and cytokines (TNF, IL1B, IL8, and IL6) and the production of reactive nitrogen (Griess) and oxygen species (Carboxy-H2DCFDA). Cell viability (alamarBlue) was evaluated weekly, and mineralization was assessed (Alizarin Red) at 14 and 21 days. Data were analyzed with ANOVA and post-hoc tests (α=5%). RESULTS After one and seven days of exposure to LPS, NF-κB was activated in a dose-dependent fashion. LPS at 1 and 10 µg/mL concentrations down-regulated the gene expression of odontogenic markers and up-regulated cytokines. LPS at 10 µg/mL increased both the production of reactive nitrogen and oxygen species. LPS decreased cell viability seven days after the end of exposure. LPS at 1 and 10 µg/mL decreased hDPCs mineralization in a dose-dependent fashion. CONCLUSION The exposure to 10 µg/mL LPS for seven days creates an inflammatory environment that is able to impair by more than half the odontogenic potential of HDPCs in vitro, simulating a pulpitis-like condition.
Collapse
Affiliation(s)
- Igor Paulino Mendes Soares
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Caroline Anselmi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Maria Luiza Barucci Araujo Pires
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Rafael Antonio de Oliveira Ribeiro
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Maria Luísa Leite
- Department of Oral Health Sciences, The University of British Columbia, School of Dentistry, Vancouver, Canada
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| |
Collapse
|
18
|
Kim JH, Irfan M, Hossain MA, George A, Chung S. BDNF/TrkB Is a Crucial Regulator in the Inflammation-Mediated Odontoblastic Differentiation of Dental Pulp Stem Cells. Cells 2023; 12:1851. [PMID: 37508514 PMCID: PMC10378460 DOI: 10.3390/cells12141851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The odontoblastic differentiation of dental pulp stem cells (DPSCs) associated with caries injury happens in an inflammatory context. We recently demonstrated that there is a link between inflammation and dental tissue regeneration, identified via enhanced DPSC-mediated dentinogenesis in vitro. Brain-derived neurotrophic factor (BDNF) is a nerve growth factor-related gene family molecule which functions through tropomyosin receptor kinase B (TrkB). While the roles of BDNF in neural tissue repair and other regeneration processes are well identified, its role in dentinogenesis has not been explored. Furthermore, the role of BDNF receptor-TrkB in inflammation-induced dentinogenesis remains unknown. The role of BDNF/TrkB was examined during a 17-day odontogenic differentiation of DPSCs. Human DPSCs were subjected to odontogenic differentiation in dentinogenic media treated with inflammation inducers (LTA or TNFα), BDNF, and a TrkB agonist (LM22A-4) and/or antagonist (CTX-B). Our data show that BDNF and TrkB receptors affect the early and late stages of the odontogenic differentiation of DPSCs. Immunofluorescent data confirmed the expression of BDNF and TrkB in DPSCs. Our ELISA and qPCR data demonstrate that TrkB agonist treatment increased the expression of dentin matrix protein-1 (DMP-1) during early DPSC odontoblastic differentiation. Coherently, the expression levels of runt-related transcription factor 2 (RUNX-2) and osteocalcin (OCN) were increased. TNFα, which is responsible for a diverse range of inflammation signaling, increased the levels of expression of dentin sialophosphoprotein (DSPP) and DMP1. Furthermore, BDNF significantly potentiated its effect. The application of CTX-B reversed this effect, suggesting TrkB`s critical role in TNFα-mediated dentinogenesis. Our studies provide novel findings on the role of BDNF-TrkB in the inflammation-induced odontoblastic differentiation of DPSCs. This finding will address a novel regulatory pathway and a therapeutic approach in dentin tissue engineering using DPSCs.
Collapse
Affiliation(s)
| | | | | | | | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.-H.K.); (M.I.); (M.A.H.); (A.G.)
| |
Collapse
|
19
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Jian Z, Li Y, Zhang C, Zhong W, Ai D, He Y, Song J. Low-Intensity Pulsed Ultrasound Attenuates Periodontal Ligament Cells Apoptosis by Activating Yes-Associated Protein-Regulated Autophagy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1227-1237. [PMID: 36878833 DOI: 10.1016/j.ultrasmedbio.2023.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The goal of the work described here was to determine if low-intensity pulsed ultrasound (LIPUS) has an anti-inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in periodontal ligament cells (PDLCs). The mechanism underlying this effect remains to be explored and is likely related to PDLC apoptosis regulated by Yes-associated protein (YAP) and autophagy. METHODS To verify this hypothesis, we used a rat model of periodontitis and primary human PDLCs. We examined alveolar bone resorption in rats and apoptosis, autophagy and YAP activity in LPS-treated PDLCs with and without application of LIPUS by cellular immunofluorescence, transmission electron microscopy and Western blotting. Then, siRNA transfection was used to decrease YAP expression to confirm the regulatory role of YAP in the anti-apoptotic effect of LIPUS on PDLCs. DISCUSSION We found that LIPUS attenuated alveolar bone resorption in rats and this was accompanied by YAP activation. LIPUS inhibited hPDLC apoptosis by YAP activation, and promoted autophagic degradation to help autophagy completion. These effects were reversed after YAP expression was blocked. CONCLUSION LIPUS attenuates PDLC apoptosis by activating Yes-associated protein-regulated autophagy.
Collapse
Affiliation(s)
- Zixiang Jian
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Li
- NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Peking, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
21
|
Azaryan E, Karbasi S, Saharkhiz M, Hanafi-Bojd MY, Zarban A, Emadian Razavi F, Naseri M. Effect of HM-Exos on the migration and inflammatory response of LPS-exposed dental pulp stem cells. BMC Oral Health 2023; 23:95. [PMID: 36788505 PMCID: PMC9926843 DOI: 10.1186/s12903-023-02796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
AIM The purpose of this study was to investigate the effects of human milk exosomes (HM-Exos) on the viability, migration, and inflammatory responses of lipopolysaccharide (LPS)-exposed human dental pulp stem cells (HDPSCs) in vitro. METHODS HM-Exos were isolated, and dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze their physical properties (size and shape). To construct an in vitro inflammation model, HDPSCs were exposed to LPS. The MTT test and migration assay were used to investigate the effect of HM-Exos on cell proliferation and migration, and the quantitative polymerase chain reaction (qPCR) was used to assess the expression of inflammatory genes in HDPSCs. Data were analyzed using a one-way analysis of variance (ANOVA) with Tukey's post-test. RESULTS DLS measurement revealed that HM-Exos were 116.8 ± 3.6 nm in diameter. The SEM and TEM images revealed spherical shapes with diameters of 97.2 ± 34.6 nm. According to the results of the cell viability assay, the nontoxic concentration of HM-Exos (200 µg/ml) was chosen for the subsequent investigations. The migration assay results showed that HM-Exos improved the potential of LPS-exposed HDPSCs to migrate. The qPCR results indicated that HM-Exos significantly reduced the expression of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in HDPSCs after LPS stimulation. CONCLUSIONS HM-Exos increased LPS-exposed HDPSCs migration and proliferation and reduced gene expression of inflammatory cytokines. They may be a viable candidate for pulpitis therapy.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
22
|
Kim EJ, Yoon JU, Kim CH, Yoon JY, Kim JY, Kim HS, Choi EJ. Lidocaine inhibits osteogenic differentiation of human dental pulp stem cells in vitro. J Int Med Res 2023; 51:3000605231152100. [PMID: 36748349 PMCID: PMC9909061 DOI: 10.1177/03000605231152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Lidocaine is an amide local anaesthetic commonly used for pain control, however, few studies have investigated the effect of lidocaine on the osteogenic differentiation of human dental pulp stem cells (HDPSCs). The present study aimed to determine the effect of lidocaine on HDPSC viability and osteogenic differentiation. METHODS HDPSCs were incubated with 0, 0.05, 0.2, 0.5, and 1 mM lidocaine for 24, 48 and 72 h, after which, MTT assays were performed. HDPSCs cultured with the above lidocaine concentrations and osteogenic differentiation medium for 7 and 14 days were stained for alkaline phosphatase (ALP). Protein and mRNA levels of relevant osteogenic factors (bone morphogenetic protein-2 [BMP-2] and runt-related transcription factor 2 [RUNX2]) were examined using western blotting and real-time reverse-transcription polymerase chain reaction, respectively. RESULTS Lidocaine did not affect the viability of HDPSCs, however, lidocaine reduced ALP activity in HDPSCs. Levels of ALP, BMP-2, and RUNX2 mRNA were reduced with lidocaine, and levels of BMP-2 and RUNX2 proteins were decreased, versus controls. CONCLUSIONS Lidocaine inhibits osteogenic differentiation markers in HDPSCs in vitro, even at low concentrations, without cytotoxicity. This study suggests that lidocaine may inhibit osteogenic differentiation in HDPSC-mediated regenerative medicine, including pulp regeneration and repair.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anaesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Ji-Uk Yoon
- Department of Anaesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea,Research institute for convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Cheul-Hong Kim
- Department of Dental Anaesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Ji-Young Yoon
- Department of Dental Anaesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Joo-Young Kim
- Research institute for convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyang-Sook Kim
- Research institute for convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Eun-Ji Choi
- Department of Dental Anaesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea,Research institute for convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea,Eun-Ji Choi, Department of Dental Anaesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Geumoro 20, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
23
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Progress of LPS-induced apical lesion in rat immature mandibular molars. PEDIATRIC DENTAL JOURNAL 2023. [DOI: 10.1016/j.pdj.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Rothermund K, Calabrese TC, Syed-Picard FN. Differential Effects of Escherichia coli- Versus Porphyromonas gingivalis-derived Lipopolysaccharides on Dental Pulp Stem Cell Differentiation in Scaffold-free Engineered Tissues. J Endod 2022; 48:1378-1386.e2. [PMID: 36108879 PMCID: PMC9764159 DOI: 10.1016/j.joen.2022.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To leverage the therapeutic capabilities of dental pulp stem cells (DPSCs) for regenerative endodontic applications, a better understanding of their innate defense and reparative processes is needed. Lipopolysaccharide (LPS) is a major virulent factor of gram-negative bacteria and contributor to endodontic infections. We have developed 3-dimensional scaffold-free DPSC tissues that self-organize into dentin-pulp organoids comprising a mineralized dentin-like tissue on the periphery and an unmineralized pulp-like core. In this study, scaffold-free DPSC constructs were used as controllable experimental models to study the DPSC response to bacterial challenge. METHODS Scaffold-free constructs were engineered using DPSCs isolated from human third molars. To simulate bacterial exposure, DPSC constructs were exposed to either Porphyromonas gingivalis-derived LPS or Escherichia coli-derived LPS. The effects of LPS on DPSC differentiation, proliferation, and apoptosis were evaluated. RESULTS Engineered tissues lacking LPS treatment self-organized into dentin-pulp organoids. LPS treatment did not negatively affect DPSC proliferation or apoptosis in the engineered tissues. Both E. coli LPS and P. gingivalis LPS inhibited the up-regulation of RUNX2 messenger RNA expression and reduced the expression of the odontoblast-associated proteins (P < .05), suggesting that LPS is inhibiting odontoblastic differentiation. However, only E. coli LPS treatment significantly reduced mineral deposition in the DPSC (P < .05) constructs, indicating that E. coli LPS but not P. gingivalis LPS reduced functional differentiation of DPSCs and prevented DPSCs from self-organizing into a dentin-pulp complex-like structure. CONCLUSIONS This study establishes scaffold-free DPSC constructs as models of oral disease. Furthermore, it emphasizes the diversity of LPS derived from different bacterial species and highlights the necessity of using LPS derived from clinically relevant bacteria in basic science investigations.
Collapse
Affiliation(s)
- Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tia C Calabrese
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fatima N Syed-Picard
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Kang W, Wang Y, Li J, Xie W, Zhao D, Wu L, Wang H, Xie S. TAS2R supports odontoblastic differentiation of human dental pulp stem cells in the inflammatory microenvironment. Stem Cell Res Ther 2022; 13:374. [PMID: 35902880 PMCID: PMC9331142 DOI: 10.1186/s13287-022-03057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Inflammatory microenvironment promotes odontoblastic differentiation in human dental pulp stem cells (hDPSCs), but the regulatory mechanisms remain unclear. In this study, we aimed to explore the role of TAS2R in odontoblastic differentiation of hDPSCs in the inflammatory microenvironment. Methods Microarray analysis was performed to explore the differential mRNA profiles in inflammatory and healthy pulp tissues from the patients. hDPSCs isolated from the healthy pulp tissues were stimulated by LPS, TNFα and IL-6, respectively, to verify the effect of TAS2R. The expression markers related to odontoblastic differentiation of hDPSCs were observed by qPCR and chemical staining methods. TAS2R10 was overexpressed or silenced to observe the effect on odontoblastic differentiation of hDPSCs under LPS stimulation. The G protein and intracellular Ca2+ were detected, respectively, by qPCR and Fluo-4AM Ca2+ fluorescent probe. Results The expression of TAS2R was significantly upregulated in the inflammatory pulp tissues. In vitro, 5 subtypes of TAS2R mRNA expressions including TAS2R10, TAS2R14, TAS2R19, TAS2R30 and TAS2R31 in hDPSCs increased under the stimulation of LPS, TNFα or IL-6. In odontoblastic differentiation medium, we found LPS, TNFα or IL-6 stimulation promoted odontoblastic differentiation of hDPSCs. TAS2R10 overexpression in hDPSCs significantly increased the expression markers related to odontoblastic differentiation, whereas TAS2R10 silencing revealed the opposite effect. Furthermore, G protein was activated, and at the same time, intracellular Ca2+ enhanced when TAS2R10 was overexpressed, but decreased when TAS2R10 was silenced. Conclusions This study demonstrated that TAS2R was found to be expressed in hDPSCs, and TAS2R promoted odontoblastic differentiation of hDPSCs by mediating the increase in intracellular Ca2+ via the G protein-coupled receptors (GPCR) conventional signaling pathway in inflammatory microenvironment, which may be a potential target for the development of effective conservative treatments for dental pulp repair.
Collapse
Affiliation(s)
- Wen Kang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yiwen Wang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiaying Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Weige Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Dan Zhao
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Li Wu
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Sijing Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
27
|
Li J, Wang Z, Wang J, Guo Q, Fu Y, Dai Z, Wang M, Bai Y, Liu X, Cooper PR, Wu J, He W. Amphiregulin regulates odontogenic differentiation of dental pulp stem cells by activation of mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathways. Stem Cell Res Ther 2022; 13:304. [PMID: 35841013 PMCID: PMC9284861 DOI: 10.1186/s13287-022-02971-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Human dental pulp stem cells (hDPSCs) have received widespread attention in the fields of tissue engineering and regenerative medicine. Although amphiregulin (AREG) has been shown to play a vital function in the biological processes of various cell types, its effects on DPSCs remain largely unknown. The aim of this study was to explore the specific role of AREG as a biologically active factor in the regeneration of dental pulp tissue. Methods The growth of hDPSCs, together with their proliferation and apoptosis, in response to AREG was examined by CCK-8 assay and flow cytometry. We explored the effects of AREG on osteo/odontogenic differentiation in vitro and investigated the regeneration and mineralization of hDPSCs in response to AREG in vivo. The effects of AREG gain- and loss-of-function on DPSC differentiation were investigated following transfection using overexpression plasmids and shRNA, respectively. The involvement of the mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K)/Akt pathways in the mineralization process and the expression of odontoblastic marker proteins after AREG induction were investigated by using Alizarin Red S staining and Western blotting, respectively. Results AREG (0.01–0.1 µg/mL) treatment of hDPSCs from 1 to 7 days increased hDPSCs growth and affected apoptosis minimally compared with negative controls. AREG exposure significantly promoted hDPSC differentiation, shown by increased mineralized nodule formation and the expression of odontoblastic marker protein expression. In vivo micro-CT imaging and quantitative analysis showed significantly greater formation of highly mineralized tissue in the 0.1 μg/mL AREG exposure group in DPSC/NF-gelatin-scaffold composites. AREG also promoted extracellular matrix production, with collagen fiber, mineralized matrix, and calcium salt deposition on the composites, as shown by H&E, Masson, and Von Kossa staining. Furthermore, AREG overexpression boosted hDPSC differentiation while AREG silencing inhibited it. During the differentiation of hDPSCs, AREG treatment led to phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and PI3K/Akt. Notably, a specific inhibitor of ERK, JNK, and PI3K/Akt signaling markedly reduced AREG-induced differentiation, as well as levels of phosphorylated ERK and JNK in hDPSCs. Conclusions The data indicated that AREG promoted odontoblastic differentiation and facilitated regeneration and mineralization processes in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02971-4.
Collapse
Affiliation(s)
- Junqing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China.,Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China
| | - Zhihua Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Qian Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Yi Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China.,Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China
| | - Zihan Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Minghao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Yu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, 145 Chang-le Road, Xi'an, 710032, People's Republic of China
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Te Whare Wānanga O Otāgo, PO Box 56, Dunedin, 9054, New Zealand
| | - Jiayuan Wu
- Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi, 563003, People's Republic of China.
| | - Wenxi He
- Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, People's Republic of China.
| |
Collapse
|
28
|
Zou J, Mao J, Shi X. Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:350-361. [PMID: 36207838 PMCID: PMC9511472 DOI: 10.3724/zdxbyxb-2022-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
Regenerative endodontic therapy (RET) utilizing tissue engineering approach can promote the regeneration of pulp-dentin complex to restore pulp vascularization, neuralization, immune function and tubular dentin, therefore the regenerated pulp-dentin complex will have normal function. Multiple factors may significantly affect the efficacy of RET, including stem cells, biosignaling molecules and biomaterial scaffolds. Stem cells derived from dental tissues (such as dental pulp stem cells) exhibit certain advantages in RET. Combined application of multiple signaling molecules and activation of signal transduction pathways such as Wnt/β-catenin and BMP/Smad play pivotal roles in enhancing the potential of stem cell migration, proliferation, odontoblastic differentiation, and nerve and blood vessel regeneration. Biomaterials suitable for RET include naturally-derived materials and artificially synthetic materials. Artificially synthetic materials should imitate natural tissues for biomimetic modification in order to realize the temporal and spatial regulation of pulp-dentin complex regeneration. The realization of pulp-dentin complex regeneration depends on two strategies: stem cell transplantation and stem cell homing. Stem cell homing strategy does not require the isolation and culture of stem cells in vitro, so is better for clinical application. However, in order to achieve the true regeneration of pulp-dentin complex, problems related to improving the success rate of stem cell homing and promoting their proliferation and differentiation need to be solved. This article reviews the influencing factors of pulp-dentin complex regeneration and related biological strategies, and discusses the future research direction of RET, to provide reference for clinical translation and application of RET.
Collapse
Affiliation(s)
- Jielin Zou
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xin Shi
- 1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
29
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Sabatini C, Ayenew L, Khan T, Hall R, Lee T. Dental Pulp Cells Conditioning Through Poly(I:C) Activation of Toll-Like Receptor 3 (TLR3) for Amplification of Trophic Factors. J Endod 2022; 48:872-879. [PMID: 35447294 DOI: 10.1016/j.joen.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Regeneration of the pulp-dentin complex hinges on functionally diverse growth factors, cytokines, chemokines, signaling molecules, and other secreted factors collectively referred to as trophic factors. Delivery of exogenous factors and induced release of endogenous dentin-bound factors by conditioning agents have been explored towards these goals. The aim of this study was to investigate a promising regeneration strategy based on the conditioning of dental pulp cells (DPCs) with polyinosinic-polycytidylic acid [poly(I:C)] for amplification of endogenous trophic factors. METHODS DPCs were isolated from human dental pulps, propagated in culture, and treated with an optimized dose of poly(I:C). MTT assay and metabolite analysis were conducted to monitor the cytotoxicity of poly(I:C). ELISA and qPCR assays were performed to quantify induction of trophic factors in response to DPC conditioning. Statistical significance was P < .05. RESULTS Analysis of 32 trophic factors involved in Wnt signaling, cell migration and chemotaxis, cell proliferation and differentiation, extracellular matrix (ECM) remodeling and angiogenesis, and immunoregulation revealed that DPCs abundantly express many trophic factors including AMF, BDNF, BMP2, FGF1, FGF2, FGF5, HGF, MCP1, NGF, SDF1, TGFβ1, TIMP1, TIMP2, TIMP3, and VEGF-A, many of which were further induced by DPC conditioning; induction, which was significant for BDNF, EGF, HGF, LIF, MCP1, SDF1, IL6, IL11, MMP9 and TIMP1. Both DPCs proliferation and lactate production (P < .05) were inhibited by 8 μg/ml poly(I:C) relative to the control. CONCLUSIONS In vitro DPC conditioning through poly(I:C) activation of TLR3 led to amplification of trophic factors involved in tissue repair. The strategy offers promise for endodontic regeneration and tooth repair and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Techung Lee
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
31
|
Xu H, Zhao J, Chen G, Yuan Z, Liu J. Effects of BMAL1 on dentinogenic differentiation of Dental Pulp Stem Cells via PI3K / Akt / mTOR pathway. Int Endod J 2022; 55:505-516. [PMID: 35263812 DOI: 10.1111/iej.13720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
AIM The present study was aimed to investigate the effect of the circadian clock gene Bmal1 on dentinogenic differentiation of dental pulp stem cells (DPSCs) under inflammatory conditions. METHODOLOGY DPSCs were isolated from the pulp tissue of the healthy donor and were then stimulated with different concentrations of lipopolysaccharide (LPS) to mimic inflammatory conditions. Real-time polymerase chain reaction (PCR) was used to detect the gene expression of circadian clock genes Bmal1, Clock, Per1, Per2, Cry1, and Cry2. Western blot (WB) was applied to analyze the protein expression of circadian clock proteins (BMAL1, CLOCK) and dentinogenic differentiation related proteins (DSPP, DMP1). In addition, the apoptosis and osteogenic differentiation of DPSCs were also analyzed in the presence of different concentrations of LPS. RESULTS The expression of circadian clock genes of DPSCs significantly changed in an inflammatory environment. WB analysis shows that BMAL1 is relevant to the dentinogenic differentiation of DPSCs. In low concentrations of LPS-mimicked inflammatory condition, the expression of BMAL1 increased and promoted the dentinogenic differentiation of DPSCs. However, under high concentrations of LPS-mimicked inflammatory condition, the expression of BMAL1 decreased and inhibited the dentinogenic differentiation of DPSCs. Moreover, the effects of BMAL1 on dentinogenic differentiation of DPSCs may be through PI3K / Akt / mTOR pathway. CONCLUSIONS This study showed that the circadian clock gene Bmal1 affected dentinogenic differentiation of DPSCs, providing a new insight for clinical stem cell-based restorative dentinogenesis therapies.
Collapse
Affiliation(s)
- Hui Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
32
|
da Rocha EA, Alvarez MMP, Pelosine AM, Carrilho MRO, Tersariol ILS, Nascimento FD. Laser Photobiomodulation 808 nm: Effects on Gene Expression in Inflammatory and Osteogenic Biomarkers in Human Dental Pulp Stem Cells. Front Pharmacol 2022; 12:782095. [PMID: 35111053 PMCID: PMC8802107 DOI: 10.3389/fphar.2021.782095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
The tissue engineering of dental oral tissue is tackling significant advances and the use of stem cells promises to boost the therapeutical approaches of regenerative dentistry. Despite advances in this field, the literature is still scarce regarding the modulatory effect of laser photobiomodulation (PBM) on genes related to inflammation and osteogenesis in Postnatal Human Dental Pulp Stem cells (DPSCs). This study pointedly investigated the effect of PBM treatment in proliferation, growth and differentiation factors, mineralization, and extracellular matrix remodeling genes in DPSCs. Freshly extracted human third molars were used as a source for DPSCs isolation. The isolated DPSCs were stimulated to an inflammatory state, using a lipopolysaccharide (LPS) model, and then subjected or not to laser PBM. Each experiment was statistically evaluated according to the sample distribution. A total of 85 genes related to inflammation and osteogenesis were evaluated regarding their expression by RT-PCR. Laser PBM therapy has shown to modulate several genes expression in DPSCs. PBM suppressed the expression of inflammatory gene TNF and RANKL and downregulated the gene expression for VDR and proteolytic enzymes cathepsin K, MMP-8 and MMP-9. Modulation of gene expression for proteinase-activated receptors (PARs) following PBM varied among different PARs. As expected, PBM blocked the odontoblastic differentiation of DPSCs when subjected to LPS model. Conversely, PBM has preserved the odontogenic potential of DPSCs by increasing the expression of TWIST-1/RUNEX-2/ALP signaling axis. PBM therapy notably played a role in the DPSCs genes expression that mediate inflammation process and tissue mineralization. The present data opens a new perspective for PBM therapy in mineralized dental tissue physiology.
Collapse
Affiliation(s)
- Elaine A da Rocha
- Technology Research Center, Mogi das Cruzes University, Mogi das Cruzes, Brazil
| | - Marcela M P Alvarez
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Agatha M Pelosine
- Interdisciplinary Center of Biochemical Investigation, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | | | | | - Fábio D Nascimento
- Technology Research Center, Mogi das Cruzes University, Mogi das Cruzes, Brazil.,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Center of Biochemical Investigation, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| |
Collapse
|
33
|
Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022; 12:biom12010138. [PMID: 35053286 PMCID: PMC8774278 DOI: 10.3390/biom12010138] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.
Collapse
|
34
|
Li W, Mao M, Hu N, Wang J, Huang J, Gu S. In vitro evaluation of periapical lesion-derived stem cells for dental pulp tissue engineering. FEBS Open Bio 2021; 12:270-284. [PMID: 34826215 PMCID: PMC8727956 DOI: 10.1002/2211-5463.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022] Open
Abstract
Dental pulp tissue engineering is a promising alternative treatment for pulpitis and periapical periodontitis, and dental pulp stem cells (DPSCs) are considered to be the gold standard for dental seed cell research. Periapical lesions harbor mesenchymal stem cells with the capacity for self-renewal and multilineage differentiation. However, it remains unknown whether these periapical lesion-derived stem cells (PLDSCs) are suitable for dental pulp tissue engineering. To investigate this possibility, PLDSCs and DPSCs were isolated using the tissue outgrowth method and cultured under identical conditions. We then performed in vitro experiments to investigate their biological characteristics. Our results indicate that PLDSCs proliferate actively in vitro and exhibit similar morphology, immunophenotype and multilineage differentiation ability as DPSCs. Simultaneously, PLDSCs exhibit stronger migrative ability and express more vascular endothelial growth factor and glial cell line-derived neurotrophic factor than DPSCs, and PLDSC-derived conditioned medium was more effective in tube formation assay. The mRNA expression levels of immunomodulatory genes HLA-G, IDO and ICAM-1 were also higher in PLDSCs. However, regarding osteo/odontogenic differentiation, PLDSCs showed weaker alkaline phosphatase staining and lower calcified nodule formation compared to DPSCs, as well as lower expression of ALP, RUNX2 and DSPP, as confirmed by a quantitative RT-PCR. The osteo/odontogenic protein expression levels of DSPP, RUNX2, DMP1 and SP7 were also higher in DPSCs. The present study demonstrates that PLDSCs demonstrate potential use as seed cells for dental pulp regeneration, especially for achieving enhanced neurovascularization.
Collapse
Affiliation(s)
- Weiping Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nan Hu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shensheng Gu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
35
|
Liu Y, Gan L, Cui DX, Yu SH, Pan Y, Zheng LW, Wan M. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World J Stem Cells 2021; 13:1647-1666. [PMID: 34909116 PMCID: PMC8641018 DOI: 10.4252/wjsc.v13.i11.1647] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative endodontics (RE) therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex. Current clinical RE procedures recruit endogenous stem cells from the apical papilla, periodontal tissue, bone marrow and peripheral blood, with or without application of scaffolds and growth factors in the root canal space, resulting in cementum-like and bone-like tissue formation. Without the involvement of dental pulp stem cells (DPSCs), it is unlikely that functional pulp regeneration can be achieved, even though acceptable repair can be acquired. DPSCs, due to their specific odontogenic potential, high proliferation, neurovascular property, and easy accessibility, are considered as the most eligible cell source for dentin–pulp regeneration. The regenerative potential of DPSCs has been demonstrated by recent clinical progress. DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp. The self-renewal, proliferation, and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors. Over recent decades, epigenetic modulations implicating histone modifications, DNA methylation, and noncoding (nc)RNAs have manifested as a new layer of gene regulation. These modulations exhibit a profound effect on the cellular activities of DPSCs. In this review, we offer an overview about epigenetic regulation of the fate of DPSCs; in particular, on the proliferation, odontogenic differentiation, angiogenesis, and neurogenesis. We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
36
|
Zhou T, Rong M, Wang Z, Chu H, Chen C, Zhang J, Tian Z. Conditioned medium derived from 3D tooth germs: A novel cocktail for stem cell priming and early in vivo pulp regeneration. Cell Prolif 2021; 54:e13129. [PMID: 34585454 PMCID: PMC8560607 DOI: 10.1111/cpr.13129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Conditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs-based pulp regeneration. MATERIALS AND METHODS We prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO-CM) and CM of 2D cultured tooth germ cells (2D TGC-CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs-primed DPSCs was explored using a tooth root fragment model on nude mice. RESULTS TGO-CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO-CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post-surgery, compared with the TGC-CM group. Secretome analysis revealed that TGO-CM contained more odontogenic and angiogenic growth factors and fewer pro-inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine-cytokine receptor interaction and PI3K-Akt signalling pathway. CONCLUSIONS The unique secretome profile of 3D TGO-CM made it a successful priming cocktail to enhance DPSCs-based early pulp regeneration.
Collapse
Affiliation(s)
- Tengfei Zhou
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxing Chu
- Department of Periodontology and Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front Immunol 2021; 12:707267. [PMID: 34539639 PMCID: PMC8446658 DOI: 10.3389/fimmu.2021.707267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16-20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lakshman P. Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
38
|
LNX1 Contributes to Cell Cycle Progression and Cisplatin Resistance. Cancers (Basel) 2021; 13:cancers13164066. [PMID: 34439220 PMCID: PMC8394373 DOI: 10.3390/cancers13164066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The ligand of numb-protein X1 (LNX1) is reported to be upregulated in various cancers, however the cellular function of LNX1 is not clearly characterized. The aim of the present study was to elucidate the regulation of LNX1 expression and clarify the role of LNX1 in cell-cycle progression and resistance to the cancer therapeutic agent, cisplatin. We found that LNX1 expression is decreased by DNA damage including cisplatin treatment and the levels of S and G2/M populations were correlated with LNX1 expression. We also showed that the upregulation of LNX1 contributes to cell-cycle progression and cisplatin resistance. Our data suggest that LNX1 is the important regulator of the cell cycle, and contributes to tumor progression. Abstract The ligand of numb-protein X1 (LNX1) acts as a proto-oncogene by inhibiting p53 stability; however, the regulation of LNX1 expression has not been investigated. In this study, we screened chemicals to identify factors that potentially regulate LNX1 expression. We found that LNX1 expression levels were decreased by DNA damage, including that by cisplatin. Upon treatment with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), LNX1 expression levels increased. In addition, cell-cycle progression increased upon LNX1 expression; the levels of S and G2/M populations were correlated with LNX1 expression. Moreover, in CRISPR-Cas9-mediated LNX1 knockout cells, we observed a delay in cell-cycle progression and a downregulation of genes encoding the cell-cycle markers cyclin D1 and cyclin E1. Finally, the upregulation of LNX1-activated cell-cycle progression and increased resistance to cisplatin-mediated cell death. Taken together, these results suggest that LNX1 contributes to cell-cycle progression and cisplatin resistance.
Collapse
|
39
|
Li J, Ju Y, Liu S, Fu Y, Zhao S. Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation. Connect Tissue Res 2021; 62:277-286. [PMID: 31769319 DOI: 10.1080/03008207.2019.1694010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: Schwann cells (SCs) are the main source of odontoblasts. They can migrate to the sites of injury and differentiate into odontoblasts during tooth development and regeneration. However, the molecular mechanisms by which SCs repair dental damage remain to be fully elucidated. In addition, exosomes play a crucial role in regulating cell-cell interaction. Hence, we aim to explore the biological function of exosomes secreted by human dental pulp stem cells (hDPSCs) and their effect on SCs.Materials and Methods: Exosomes were extracted from the supernatant of hDPSCs (exo) and LPS- preconditioned hDPSCs (LPS-exo), respectively. Following the evaluation of specific surface proteins and exosomes size and morphology, SCs were treated with exo and LPS-exo, and we examined SCs proliferation, migration, and odontogenic differentiation in vitro.Results: Exosomes had the capacity to regulate SCs proliferation and migration. Furthermore, exosomes from both groups stimulated SCs to produce dentin sialoprotein and undergo mineralization; however, LPS-exo had a better ability to modulate SCs migration and odontogenic differentiation compared with exo.Conclusions: Exosomes from hDPSCs, especially from LPS- preconditioned hDPSCs, can promote the proliferation, migration and odontogenic differentiation of SCs. LPS might change the hDPSCs' intercellular signals, which might mediate the odontogenic differentiation of SCs, transmitting in the manner of "exosomes".
Collapse
Affiliation(s)
- Jiabei Li
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yanqin Ju
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yunyu Fu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
40
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2021; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
El karim IA, Cooper PR, About I, Tomson PL, Lundy FT, Duncan HF. Deciphering Reparative Processes in the Inflamed Dental Pulp. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research over several decades has increased our understanding of the nature of reparative and regenerative processes in the dental pulp, at both the cellular and molecular level. However, advances in scientific knowledge have not translated into novel clinical treatment strategies for caries-induced pulpitis. This narrative review explores the evidence regarding the ability of inflamed pulp tissue to heal and how this knowledge may be used therapeutically. A literature search and evidence analysis covering basic, translational and clinical pulp biology research was performed. The review focuses on (1) the regenerative and defense capabilities of the pulp during caries-induced inflammation; (2) the potential of novel biomaterials to harness the reparative and regenerative functions of the inflamed pulp; and (3) future perspectives and opportunities for conservative management of the inflamed pulp. Current conservative management strategies for pulpitis are limited by a combination of unreliable diagnostic tools and an outdated understanding of pulpal pathophysiological responses. This approach leads to the often unnecessary removal of the entire pulp. Consequently, there is a need for better diagnostic approaches and a focus on minimally-invasive treatments utilizing biologically-based regenerative materials and technologies.
Collapse
|
42
|
Chen WJ, Xie J, Lin X, Ou MH, Zhou J, Wei XL, Chen WX. The Role of Small Extracellular Vesicles Derived from Lipopolysaccharide-preconditioned Human Dental Pulp Stem Cells in Dental Pulp Regeneration. J Endod 2021; 47:961-969. [PMID: 33775732 DOI: 10.1016/j.joen.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Regenerative endodontics has created a desirable shift in the treatment paradigm despite current limitations of regenerative outcomes. Mesenchymal stem cells (MSCs) facilitate tissue regeneration and repair in a mild inflammatory environment. Small extracellular vesicles (sEVs) derived from MSCs play an imperative role in the paracrine modulation of regenerative responses modulated by MSCs. However, it remains unknown whether MSCs enhance dental pulp regeneration or whether this enhancement is mediated by sEVs in a mild inflammatory environment. The present study aimed to elucidate the effects of sEVs originated from lipopolysaccharide (LPS)-preconditioned human dental pulp stem cells (hDPSCs) on dental pulp regeneration. METHODS All sEVs were isolated from hDPSCs cultured with or without LPS (ie, N-sEVs and L-sEVs, respectively). The effect of N-sEVs and L-sEVs on proliferation, migration, angiogenesis, and differentiation of rat bone marrow MSCs was identified in vitro. Moreover, N-sEVs or L-sEVs were implanted into rat pulpless root canal models, and the regenerated tissue in root canals was assessed via hematoxylin-eosin staining, Masson staining, and immunohistochemistry after 30 days of transplantation. RESULTS Both N-sEVs and L-sEVs could modulate BMSC proliferation, migration, angiogenesis, and differentiation. Both kinds of sEVs enhanced the structure of the regenerated tissue closer to that of a normal dental pulp in vivo. L-sEVs had a more significant effect than N-sEVs. CONCLUSIONS sEVs released by hDPSCs in a mild inflammatory microenvironment are capable of facilitating the regeneration of dental pulp through functional healing instead of scar healing, which has potential applications in regenerative endodontics.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jing Xie
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xi Lin
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Ming-Hang Ou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jun Zhou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xiao-Lang Wei
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Wen-Xia Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China.
| |
Collapse
|
43
|
Investigation of PPAR β/ δ within Human Dental Pulp Cells: A Preliminary In Vitro Study. PPAR Res 2021; 2021:8854921. [PMID: 33790957 PMCID: PMC7997762 DOI: 10.1155/2021/8854921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Controlling the inflammatory response to restore tissue homeostasis is a crucial step to maintain tooth vitality after pathogen removal from caries-affected dental tissues. The nuclear peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is a ligand-activated transcription factor with emerging anti-inflammatory roles in many cells and tissues. However, its expression and functions are poorly understood in human dental pulp cells (hDPCs). Thus, this study evaluated PPARβ/δ expression and assessed the anti-inflammatory effects evoked by activation of PPARβ/δ in lipopolysaccharide- (LPS-) induced hDPCs. Our results showed that hDPCs constitutively expressed PPARβ/δ mRNA/protein, and treatment with LPS increased PPARβ/δ mRNA expression. The selective PPARβ/δ agonist GW0742 significantly decreased inflammation-related mRNA expression in hDPCs (IL6, IL1β, TNFα, MMP1, and MMP2) and RAW264.7 cells (Il6 and Tnfα). Further, PPARβ/δ agonist attenuated MMP2/9 gelatinolytic activity in hDPCs. Previously LPS-conditioned hDPCs increased the migration of RAW264.7 cells through the membrane of a Transwell coculture system. Conversely, pretreatment with GW0742 markedly decreased macrophage recruitment. These findings provide among the first evidence that hDPCs express PPARβ/δ. In addition, they suggest that activation of PPARβ/δ by GW0742 can attenuate some cellular and molecular in vitro aspects related to the inflammatory process, pointing out to investigate its potential target role in dental pulp inflammation.
Collapse
|
44
|
Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int J Mol Sci 2021; 22:ijms22031480. [PMID: 33540711 PMCID: PMC7867227 DOI: 10.3390/ijms22031480] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The macroscopic and microscopic anatomy of the oral cavity is complex and unique in the human body. Soft-tissue structures are in close interaction with mineralized bone, but also dentine, cementum and enamel of our teeth. These are exposed to intense mechanical and chemical stress as well as to dense microbiologic colonization. Teeth are susceptible to damage, most commonly to caries, where microorganisms from the oral cavity degrade the mineralized tissues of enamel and dentine and invade the soft connective tissue at the core, the dental pulp. However, the pulp is well-equipped to sense and fend off bacteria and their products and mounts various and intricate defense mechanisms. The front rank is formed by a layer of odontoblasts, which line the pulp chamber towards the dentine. These highly specialized cells not only form mineralized tissue but exert important functions as barrier cells. They recognize pathogens early in the process, secrete antibacterial compounds and neutralize bacterial toxins, initiate the immune response and alert other key players of the host defense. As bacteria get closer to the pulp, additional cell types of the pulp, including fibroblasts, stem and immune cells, but also vascular and neuronal networks, contribute with a variety of distinct defense mechanisms, and inflammatory response mechanisms are critical for tissue homeostasis. Still, without therapeutic intervention, a deep carious lesion may lead to tissue necrosis, which allows bacteria to populate the root canal system and invade the periradicular bone via the apical foramen at the root tip. The periodontal tissues and alveolar bone react to the insult with an inflammatory response, most commonly by the formation of an apical granuloma. Healing can occur after pathogen removal, which is achieved by disinfection and obturation of the pulp space by root canal treatment. This review highlights the various mechanisms of pathogen recognition and defense of dental pulp cells and periradicular tissues, explains the different cell types involved in the immune response and discusses the mechanisms of healing and repair, pointing out the close links between inflammation and regeneration as well as between inflammation and potential malignant transformation.
Collapse
Affiliation(s)
- Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
- Correspondence:
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
| | - Markus Feuerer
- Department for Immunology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
45
|
Zhang Y, Lian M, Zhao X, Cao P, Xiao J, Shen S, Tang W, Zhang J, Hao J, Feng X. RICK regulates the odontogenic differentiation of dental pulp stem cells through activation of TNF-α via the ERK and not through NF-κB signaling pathway. Cell Biol Int 2021; 45:569-579. [PMID: 33169892 DOI: 10.1002/cbin.11498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 12/27/2022]
Abstract
Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.
Collapse
Affiliation(s)
- Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Zhao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Haimen People's Hospital, Nantong, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanxian Tang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaxuan Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Hao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
46
|
Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev Rep 2021; 17:1251-1263. [PMID: 33459973 DOI: 10.1007/s12015-020-10117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Deep caries, trauma, and severe periodontitis result in pulpitis, pulp necrosis, and eventually pulp loss. However, no clinical therapy can regenerate lost pulp. A novel pulp regeneration strategy for clinical application is urgently needed. Signaling transduction plays an essential role in regulating the regenerative potentials of dental stem cells. Cytokines or growth factors, such as stromal cell-derived factor (SDF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF), WNT, can promote the migration, proliferation, odontogenic differentiation, pro-angiogenesis, and pro-neurogenesis potentials of dental stem cells respectively. Using the methods of signaling modulation including growth factors delivery, genetic modification, and physical stimulation has been applied in multiple preclinical studies of pulp regeneration based on cell transplantation or cell homing. Transplanting dental stem cells and growth factors encapsulated into scaffold regenerated vascularized pulp-like tissue in the root canal. Also, injecting a flowable scaffold only with chemokines recruited endogenous stem/progenitor cells for pulp regeneration. Notably, dental pulp regeneration has gradually developed into the clinical phase. These findings enlightened us on a novel strategy for structural and functional pulp regeneration through elaborate modulation of signaling transduction spatially and temporally via clinically applicable growth factors delivery. But challenges, such as the adverse effects of unphysiological signaling activation, the controlled drug release system, and the safety of gene modulation, are necessary to be tested in future works for promoting the clinical translation of pulp regeneration.
Collapse
|
47
|
Li Y, Zhao Y, Han J, Wang Y, Lei S. Effects of epigallocatechin gallate (EGCG) on the biological properties of human dental pulp stem cells and inflammatory pulp tissue. Arch Oral Biol 2021; 123:105034. [PMID: 33472098 DOI: 10.1016/j.archoralbio.2020.105034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of epigallocatechin gallate (EGCG) on the proliferation, mineralization, inflammation and hypoxia responses of human dental pulp stem cells (hDPSCs) in vitro and its effect on inflammatory pulp tissue in rats in vivo. DESIGN The optimum concentration of EGCG was selected by creating a dose response curve. Expression of odontogenic/osteogenic-related genes and inflammatory cytokines after stimulation with Lipopolysaccharide (LPS) was detected by real-time PCR. Under hypoxic conditions, cell proliferation and expression of reactive oxygen species (ROS) and superoxide dismutase (SOD) were detected.In vivo, the maxillary first molars of SD rats were pulpotomized and stimulated with 5 mg/mL LPS for 30 min. Normal saline and EGCG were used to flush the pulp chamber. After 2 months, samples were removed for micro-CT scanning and HE staining. RESULTS CCK-8 assay revealed that 10 μg/mL EGCG had no significant effect on the proliferation of hDPSCs. EGCG inhibited expression of IL-1β, IL-6, and TNF-α. Furthermore, EGCG rescued cell proliferation ability, increased SOD activity and reduced ROS expression under hypoxia.In vivo, reduced inflammatory cell accumulation was observed in the coronal pulp in the EGCG group, while in the control group, diffuse inflammatory cells were observed in the radicular pulp. CONCLUSION EGCG had no obvious effects on calcified nodule formation but significantly inhibited the inflammatory response of hDPSCs and inhibited apoptosis of hDPSCs caused by hypoxia injury. In vivo, EGCG exerts inhibitory effects on pulp tissue inflammation.
Collapse
Affiliation(s)
- Yongtao Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Jianmin Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China; Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuoyi Lei
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
48
|
Shayegan A, Zucchi A, De Swert K, Balau B, Truyens C, Nicaise C. Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation. Int Endod J 2021; 54:585-600. [PMID: 33210765 DOI: 10.1111/iej.13448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
AIM To model in vitro the contact between adult dental pulp stem cells (DPSCs) and lipoteichoic acid (LTA), a cell wall component expressed at the surface of most Gram-positive bacteria. METHODOLOGY Human DPSCs obtained from impacted third molars were cultured and exposed to various concentrations of S. aureus LTA (0.1, 1.0 and 10 µg mL-1 ). The effects of LTA on DPSCs proliferation and apoptosis were investigated by MTT assay and flow cytometry. Mineralization of DPSCs was evaluated by alizarin red staining assay. Migration was investigated by microphotographs of wound-healing and Transwell migration assays. Reverse transcription polymerase chain reaction was used to examine the effects of LTA on p65 NF-κB translocation and TLR1, TLR2 or TLR6 regulation. Enzyme-linked immunosorbent assay was used to investigate LTA-stimulated DPSCs cytokine production. One-way or two-way ANOVA and Tukey post hoc multiple comparison were used for statistical analysis. RESULTS DPSCs expressed TLR1, TLR2 and TLR6 involved in the recognition of various forms of LTA or lipoproteins. Exposure to LTA did not up- or down-regulate the mRNAs of TLR1, TLR2 or TLR6 whilst LPS acted as a potent inducer of them [TLR1 (P ≤ 0.05), TLR2 (P ≤ 0.001) and TLR6 (P ≤ 0.001)]. Translocation of p65 NF-κB to the nucleus was detected in LTA-stimulated cells, but to a lesser extent than LPS-stimulated DPSCs (P ≤ 0.001). The viability of cells exposed to LTA was greater than unstimulated cells, which was attributed to an increased proliferation and not to less cell death [LTA 1 μg mL-1 (P ≤ 0.001) and 10 μg mL-1 (P ≤ 0.01)]. For specific doses of LTA (1.0 µg mL-1 ), adhesion of DPSCs to collagen matrix was disturbed (P ≤ 0.05) and cells enhanced their horizontal mobility (P ≤ 0.001). LTA-stimulated DPSCs released IL-6 and IL-8 in a dose-dependent manner (P ≤ 0.0001). At all concentrations investigated, LTA did not influence osteogenic/odontoblastic differentiation. CONCLUSIONS Human DPSCs were able to sense the wall components of Gram-positive bacteria likely through TLR2 signalling. Consequently, cells modestly proliferated, increased their migratory behaviour and contributed significantly to the local inflammatory response through cytokine release.
Collapse
Affiliation(s)
- A Shayegan
- Department of Children and Adult Operative Dentistry, Children's Hospital of Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - A Zucchi
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - K De Swert
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| | - B Balau
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| | - C Truyens
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - C Nicaise
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| |
Collapse
|
49
|
EDTA Promotes the Mineralization of Dental Pulp In Vitro and In Vivo. J Endod 2020; 47:458-465. [PMID: 33352150 DOI: 10.1016/j.joen.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Dentin regeneration is one of the main goals of vital pulp treatment in which the biological properties of dental pulp cells (DPCs) need to be considered. In our previous study, we showed that EDTA could enhance the stromal cell-derived factor 1 alpha-induced migration of DPCs. The purpose of this study was to explore the effects of EDTA on the mineralization of dental pulp in vitro and in vivo. METHODS DPCs were obtained from human premolars or third molars. Alkaline phosphatase assays and alizarin red S staining were used to examine the degree of differentiation and mineralized nodule formation of DPCs. Real-time polymerase chain reaction and Western blot analysis were performed to detect the messenger RNA and protein expressions of mineralization-related markers in DPCs. Extracellular-regulated protein kinase and Smad inhibitors were used to study the roles of these 2 signaling pathways in this process. In addition, pulp exposures were created on 18 premolars of 2 beagle dogs (>12 months) using a high-speed dental handpiece. The experimental group (n = 9) was treated with 12% EDTA for 5 minutes, and the control group (n = 9) was treated with sterile saline for the same duration. Mineral trioxide aggregate was used for direct pulp capping followed by glass ionomer cement sealing. Samples were collected 3 months later, and the regenerated dentin was assessed by micro-computed tomographic and histologic analyses. RESULTS Exposure to 12% EDTA promoted the activity of alkaline phosphatase, the formation of mineralized nodules, and the messenger RNA and protein expressions of mineralization-related markers in DPCs. Furthermore, the process of 12% EDTA enhancing the differentiation of DPCs was mediated by the extracellular-regulated protein kinase 1/2 signaling pathway and inhibited by the Smad2/3 signaling pathway. In vivo, compared with the control group, more regenerated dentin that had fewer tunnel defects was formed in the 12% EDTA-treated group. CONCLUSIONS Our results showed that 12% EDTA could promote the mineralization of dental pulp in vitro and in vivo.
Collapse
|
50
|
Aguilar P, Mahanonda R, Sa-Ard-Iam N, Lertchirakarn V. Effects of lipopolysaccharide on proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. AUST ENDOD J 2020; 47:281-289. [PMID: 33296134 DOI: 10.1111/aej.12475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of lipopolysaccharide on cell proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. After challenging with various lipopolysaccharide concentrations to apical papilla cells from both stages of root development for 168 h, cell proliferation and migration were investigated. Osteogenic differentiation was examined by Alizarin red staining, and gene expressions of bone/cementum or dentin-related genes were examined by polymerase chain reaction. Lipopolysaccharide did not affect cell proliferation and migration in both groups. Lipopolysaccharide at 1 and 5 µg mL-1 increased Alizarin red staining in apical papilla cells from early-stage but not the late-stage cells. Bone sialoprotein (bone/cementum marker) gene expression increased in both early and late stage of root development at 5 µg mL-1 . These results might explain bone/cementum generation in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Panuroot Aguilar
- Oral Biology Program, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Veera Lertchirakarn
- Faculty of Dentistry, Department of Microbiology and, RU on Oral Microbiology and Immunology, Chulalongkorn University, Patumwan, Bangkok, Thailand
| |
Collapse
|