1
|
Cheng H, Chen H, Yan X, Zhang Q. Inhibition of NEURL3 Suppresses Osteoclast Differentiation via BMP7 Ubiquitination Modulation. Appl Biochem Biotechnol 2025; 197:3466-3481. [PMID: 39960614 DOI: 10.1007/s12010-025-05198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 05/11/2025]
Abstract
Osteoporosis (OP) is a genetic disorder characterized by an imbalance between osteoblast-mediated bone formation and osteoclast-induced bone resorption. However, the underlying gene-related mechanisms of its pathogenesis remain to be fully elucidated. Aberrantly expressed neuralized E3 ubiquitin-protein ligase 3 (NEURL3), which is related to osteoclastic differentiation, was identified through the analysis of the microarray profile GSE176265. Bone marrow-derived macrophages (BMMs) were isolated from the femurs and tibias of C57BL/6 J mice and treated with 30 ng/mL macrophage-colony-stimulating factor (M-CSF) and 100 ng/mL receptor activator of nuclear factor-kappa B ligand (RANKL) to induce osteoclastic differentiation, thereby mimicking OP in vitro. To model OP in vivo, ovariectomy (OVX)-induced bone loss was performed in mice. High expression levels of NEURL3 were confirmed in clinical samples, OP model cells, and OP model mice using quantitative real-time polymerase chain reaction (qRT-PCR). The impact of NEURL3 on osteoclastic differentiation was assessed by evaluating cell viability and the expression levels of osteoclastogenesis-related marker genes. Additionally, bone loss in mice was quantified using micro-computed tomography before and after NEURL3 inhibition. Mechanistically, the effects of NEURL3 on osteogenic differentiation were investigated by determining the protein levels of osteogenic markers via Western blotting. NEURL3 was markedly overexpressed in serum samples collected from patients with OP, OVX-induced OP mouse models, and induced osteoclasts. Inhibition of NEURL3 leads to a 20% decrease in BMM survival rate and a reduction in the number of tartrate-resistant acid phosphatase (TRAP) positive cells, which is a characteristic of mature osteoclasts. Furthermore, the expression levels of osteoclastogenesis-related marker genes were reduced by 50%. In vivo studies revealed that suppressing NEURL3 resulted in a 38% improvement in trabecular bone volume (BV/TV) and a 28% increase in bone mineral density (BMD) in the OVX-induced OP mice. Mechanistically, NEURL3 promoted osteoclast differentiation by increasing the ubiquitination levels of BMP7. Inhibition of BMP7 reversed the effects of NEURL3 on osteoclast differentiation in BMMs. Suppression of NEURL3 inhibits osteoclast differentiation of BMMs in vitro and alleviates bone loss in vivo. The underlying mechanism may involve NEURL3-induced ubiquitination of BMP7. Collectively, the downregulation of NEURL3 represents a promising therapeutic strategy for suppressing osteoclast differentiation and treating OP.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Spine Surgery, Jinhua Municipal Central Hospital, No.365, East Renmin Road, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Huilan Chen
- Department of Geriatrics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Xin Yan
- Department of Geriatrics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal 2025; 23:20. [PMID: 39799353 PMCID: PMC11724515 DOI: 10.1186/s12964-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism. Among the various research avenues exploring the potential of sirtuins, the effects of these proteins on obesity and OP have garnered significant attention from numerous researchers. Sirtuins regulate energy balance and lipid balance, which in turn inhibit the process of adipogenesis. Additionally, sirtuins regulate the balance between osteogenic and osteoblastic activity, which protects against the development of OP. However, no study has yet provided a comprehensive discussion of the relationship between the three: sirtuins, obesity, and OP. This paper will therefore describe the relationship between sirtuins and obesity, the relationship between sirtuins and OP, and a discussion focusing on the possibility of treating OP caused by obesity by targeting sirtuins. This will be based on the common influences on the occurrence of obesity and OP (such as mesenchymal stem cells, gut microbiota, and insulin). Finally, the potential of SIRT1, an important member of sirtuins, in polyphenolic natural products for the treatment of obesity and OP will be presented. This will contribute to a better understanding of the interactions between sirtuins and obesity and bone, which will facilitate the development of new therapeutic strategies for obesity and OP in the future.
Collapse
Grants
- Nos. 2021B1515140012, 2023A1515010083 the Natural Science Foundation of Guangdong Province
- No. 20211800905342 the Dongguan Science and Technology of Social Development Program
- No. A2024398 the Medical Scientific Research Foundation of Guangdong Province
- No. k202005 the Research and Development Fund of Dongguan People' s Hospital
- Nos. GDMU2021003, GDMU2021049, GDMU2022031, GDMU2022047, GDMU2022063, GDMU2022077, GDMU2022078, GDMU2023008, GDMU2023015, GDMU2023026, GDMU2023042, GDMU2023102 the Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- Nos. 202210571008, S202210571075, 202310571031, S202310571047, S202310571078, S202310571063, S202310571077 the Provincial and National College Students' Innovation and Entrepreneurship Training Program
- No. 4SG24028G the Guangdong Medical University-Southern Medical University twinning research team project
- No. PF100-2-01 "Climbing 100" Joint Merit Training Program Funded Project
- Nos. 2023ZYDS001, 2023FZDS001, 2023FYDB010 the Guangdong Medical University Students' Innovation Experiment Program
- the Research and Development Fund of Dongguan People’ s Hospital
- the Guangdong Medical University Students’ Innovation and Entrepreneurship Training Program
- the Provincial and National College Students’ Innovation and Entrepreneurship Training Program
- the Cai Limin National Traditional Chinese Medicine Inheritance Studio
- the Guangdong Medical University Students’ Innovation Experiment Program
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, China
| | - Yuying Huo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yujia Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqi Lin
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wuzheng Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziqin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wenqi Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Zhonghan Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Chenyue Yuan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyi Luo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yi Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
3
|
Li Y, Yuan J, Deng W, Li H, Lin Y, Yang J, Chen K, Qiu H, Wang Z, Kuek V, Wang D, Zhang Z, Mai B, Shao Y, Kang P, Qin Q, Li J, Guo H, Ma Y, Guo D, Mo G, Fang Y, Tan R, Zhan C, Liu T, Gu G, Yuan K, Tang Y, Liang D, Xu L, Xu J, Zhang S. Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling. Chin J Nat Med 2025; 23:90-101. [PMID: 39855834 DOI: 10.1016/s1875-5364(25)60810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 01/30/2025]
Abstract
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Collapse
Affiliation(s)
- Yongxian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haishan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuewei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiamin Yang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia; Curtin Medical School, Curtin University, Western Australia 6102, Australia
| | - Dongping Wang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Mai
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Pan Kang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiuli Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinglan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huizhi Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanhuai Ma
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Danqing Guo
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Guoye Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yijing Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210008, China
| | - Chenguang Zhan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guoning Gu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Kai Yuan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yongchao Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liangliang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Western Australia 6102, Australia.
| | - Shuncong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
4
|
Stromsnes K, Fajardo CM, Soto-Rodriguez S, Kajander ERU, Lupu RI, Pozo-Rodriguez M, Boira-Nacher B, Font-Alberich M, Gambini-Castell M, Olaso-Gonzalez G, Gomez-Cabrera MC, Gambini J. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals (Basel) 2024; 17:1697. [PMID: 39770539 PMCID: PMC11679375 DOI: 10.3390/ph17121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is a chronic disease that is characterized by a loss of bone density, which mainly affects the microstructure of the bones due to a decrease in bone mass, thereby making them more fragile and susceptible to fractures. Osteoporosis is currently considered one of the pandemics of the 21st century, affecting around 200 million people. Its most serious consequence is an increased risk of bone fractures, thus making osteoporosis a major cause of disability and even premature death in the elderly. In this review, we discuss its causes, the biochemical mechanisms of bone regeneration, risk factors, pharmacological treatments, prevention and the effects of diet, focusing in this case on compounds present in a diet that could have palliative and preventive effects and could be used as concomitant treatments to drugs, which are and should always be the first option. It should be noted as a concluding remark that non-pharmacological treatments such as diet and exercise have, or should have, a relevant role in supporting pharmacology, which is the recommended prescription today, but we cannot ignore that they can have a great relevance in the treatment of this disease.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Cristian Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Silvana Soto-Rodriguez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Erika Ria Ulrika Kajander
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Remus-Iulian Lupu
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | | | - Balma Boira-Nacher
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Maria Font-Alberich
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Marcos Gambini-Castell
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Maria-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| |
Collapse
|
5
|
Pan W, He Y, Huang Y. Research advances on silence information regulator 6 as a potential therapeutic target for bone regeneration and repair. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:427-433. [PMID: 39183069 PMCID: PMC11375492 DOI: 10.3724/zdxbyxb-2023-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Segmental bone defects and nonunion of fractures caused by trauma, infection, tumor or systemic diseases with limited osteogenesis and prolonged bone healing cycles are challenging issues in orthopedic clinical practice. Therefore, identifying regulatory factors for bone tissue regeneration and metabolism is crucial for accelerating bone repair and reconstructing defective areas. Silence information regulator 6 (SIRT6), functioning as a deacetylase and nucleotide transferase, is extensively involved in the regulation of differentiation, apoptosis, metabolism, and inflammation in bone cells including osteoblasts and osteoclasts, and is considered to be an important factor in regulating bone metabolism. SIRT6 forms a complex with B lymphocyte-induced maturation protein 1 (Blimp1), down-regulates the expression of the nuclear factor κB (NF-κB) pathway, and promotes the expression of the ERα-FasL axis signal to inhibit osteoclast formation and maturation differentiation, thereby hindering bone resorption and increasing bone mass. In addition, SIRT6 activates the Akt-mTOR pathway to regulate the autophagy level and osteogenesis of bone marrow mesenchymal stem cells, inhibits glycolysis and reactive oxygen production in osteoblasts, promotes osteoblast differentiation through the CREB/CCN1/COX2 pathway and the bone morphogenetic protein (BMP) signaling pathway, enhances bone formation, and accelerates bone regeneration and repair of skeletal tissue. This article provides an overview of the research progress on SIRT6 in the pathophysiology of bone regeneration, revealing its potential as a novel therapeutic target for bone tissue repair to alleviate the progression of skeletal pathological diseases.
Collapse
Affiliation(s)
- Wenzheng Pan
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Yong He
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yue Huang
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
6
|
Zou B, Xiong Z, Yu Y, Shi S, Li X, Chen T. Rapid Selenoprotein Activation by Selenium Nanoparticles to Suppresses Osteoclastogenesis and Pathological Bone Loss. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401620. [PMID: 38621414 DOI: 10.1002/adma.202401620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Osteoclast hyperactivation stands as a significant pathological factor contributing to the emergence of bone disorders driven by heightened oxidative stress levels. The modulation of the redox balance to scavenge reactive oxygen species emerges as a viable approach to addressing this concern. Selenoproteins, characterized by selenocysteine (SeCys2) as the active center, are crucial for selenium-based antioxidative stress therapy for inflammatory diseases. This study reveals that surface-active elemental selenium (Se) nanoparticles, particularly lentinan-Se (LNT-Se), exhibit enhanced cellular accumulation and accelerated metabolism to SeCys2, the primary active Se form in biological systems. Consequently, LNT-Se demonstrates significant inhibition of osteoclastogenesis. Furthermore, in vivo studies underscore the superior therapeutic efficacy of LNT-Se over SeCys2, potentially attributable to the enhanced stability and safety profile of LNT-Se. Specifically, LNT-Se effectively modulates the expression of the selenoprotein GPx1, thereby exerting regulatory control over osteoclastogenesis inhibition, and the prevention of osteolysis. In summary, these results suggest that the prompt activation of selenoproteins by Se nanoparticles serves to suppress osteoclastogenesis and pathological bone loss by upregulating GPx1. Moreover, the utilization of bioactive Se species presents a promising avenue for effectively managing bone disorders.
Collapse
Affiliation(s)
- Binhua Zou
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Laboratory of Viral Pathogenesis & Infection Prevention and Control of Ministry of Education, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Wang M, Chen R, Wang S, Cui J, Lian D, Li L. Comparative Study of Binding Behaviors of Cyanidin, Cyanidin-3-Galactoside, Peonidin with Tyrosinase. J Fluoresc 2024; 34:1747-1760. [PMID: 37603228 DOI: 10.1007/s10895-023-03384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Cyanidin, peonidin and cyanidin-3-galactoside are the common anthocyanins with a variety of biological activities. Tyrosinase is a speed-limiting enzyme associated with melanin production. The inhibition of tyrosinase activity can prevent melanin disease while contributing to whitening. The interaction behaviors of the three anthocyanins against tyrosinase have been discussed in this paper. Cyanidin has strongest inhibitory effect on tyrosinase, and then peonidin, cyanidin-3-galactoside. Furthermore, the inhibition of tyrosinase by the three anthocyanins is mixed modes. The three anthocyanins can induce the static fluorescence quenching of tyrosinase. Cyanidin exhibits strongest binding affinity on tyrosinase, and then peonidin, cyanidin-3-galactoside based on Ka values obtain by fluorescence analysis. The binding of all anthocyanin to tyrosinase induce its conformation changes. According to molecular docking and fluorescence studies, they bind to tyrosinase by hydrogen bond and van der Waals force. In addition, the optimal modes of the three anthocyanins with tyrosinase are predicated by molecular docking. This work emphasizes that cyanidin, peonidin and cyanidin-3-galactoside may be potential drugs for the treatment of diseases caused by melanin.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
- Zhaoqing Xuanqing Middle School, Zhaoqing, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
8
|
Zhang T, Wang L, Duan X, Niu Y, Li M, Yun L, Sun H, Ma Y, Guo Y. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol (Lausanne) 2024; 14:1281213. [PMID: 38264287 PMCID: PMC10805026 DOI: 10.3389/fendo.2023.1281213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
Mitochondria plays a role in cell differentiation and apoptosis processes. Maintaining mitochondrial function is critical, and this involves various aspects of mitochondrial quality control such as protein homeostasis, biogenesis, dynamics, and mitophagy. Osteoporosis, a metabolic bone disorder, primarily arises from two factors: the dysregulation between lipogenic and osteogenic differentiation of aging bone marrow mesenchymal stem cells, and the imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Mitochondrial quality control has the potential to mitigate or even reverse the effects. Among the Sirtuin family, consisting of seven Sirtuins (SIRT1-7), SIRT1-SIRT6 play a crucial role in maintaining mitochondrial quality control. Additionally, SIRT1, SIRT3, SIRT6, and SIRT7 are directly involved in normal bone development and homeostasis by modulating bone cells. However, the precise mechanism by which these Sirtuins exert their effects remains unclear. This article reviews the impact of various aspects of mitochondrial quality control on osteoporosis, focusing on how SIRT1, SIRT3, and SIRT6 can improve osteoporosis by regulating mitochondrial protein homeostasis, biogenesis, and mitophagy. Furthermore, we provide an overview of the current state of clinical and preclinical drugs that can activate Sirtuins to improve osteoporosis. Specific Sirtuin-activating compounds are effective, but further studies are needed. The findings of this study may offer valuable insights for future research on osteoporosis and the development of clinical prevention and therapeutic target strategies.
Collapse
Affiliation(s)
- Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiping Duan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Chen GD, Liang SJ, Huang L, Yu HR, Wu YL, Wei QZ, Zhang ZQ. Associations of Dietary Anthocyanidins Intake with Bone Health in Children: A Cross-Sectional Study. Calcif Tissue Int 2023; 113:393-402. [PMID: 37656219 DOI: 10.1007/s00223-023-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Bone health and body composition share several common mechanisms like oxidative stress and inflammation. Anthocyanins have antioxidant and anti-inflammatory properties. We have reported that anthocyanins are associated with better body composition in children, but the associations with bone health have not been elucidated. We aimed to explore the association of anthocyanins with bone mineral content (BMC) and bone mineral density (BMD) at multiple sites in children. METHODS In this cross-sectional study, 452 Chinese children aged 6-9 years were recruited. A validated 79-item food frequency questionnaire was used to collect dietary information. BMC and BMD at multiple sites (whole body; whole body excluding head, WBEH; limbs; arms; legs) were measured by dual-energy X-ray. RESULTS Higher dietary intake of total anthocyanidins (per one standard deviation increase) was associated with a 1.28-13.6 g (1.31-1.60%, compared to median) higher BMC at all sites and a 3.61-6.96 mg (0.65-0.90%) higher BMD at the whole body, WBEH, and arm sites after controlling for a number of possible covariates. The results were similar and more pronounced for cyanidin, but not for delphinidin and peonidin. Higher dietary intake of cyanidin (per one standard deviation increase) was associated with a 1.33-15.4 g (1.48-1.68%) higher BMC at all sites and a 4.15-7.77 mg (0.66-1.00%) higher BMD at all sites except the legs. No statistically significant associations with BMC or BMD were found for dietary intake of delphinidin and peonidin. CONCLUSIONS Higher dietary intake of total anthocyanidins and cyanidins were associated with higher BMC and BMD in Chinese children.
Collapse
Affiliation(s)
- Geng-Dong Chen
- Department of Obstetrics, Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Shu-Jun Liang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Lan Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Hao-Ran Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Yu-Lin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Qin-Zhi Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| |
Collapse
|
10
|
Liu C, Wang Y, Zeng Y, Kang Z, Zhao H, Qi K, Wu H, Zhao L, Wang Y. Use of Deep-Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301136. [PMID: 37679058 PMCID: PMC10602559 DOI: 10.1002/advs.202301136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/07/2023] [Indexed: 09/09/2023]
Abstract
Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.
Collapse
Affiliation(s)
- Changtong Liu
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
| | - Yixin Zeng
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Zirong Kang
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Kun Qi
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hongzhi Wu
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yi Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
- National Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang University314100JiaxingChina
| |
Collapse
|
11
|
A Comparison of the Antiosteoporotic Effects of Cornelian Cherry (Cornus mas L.) Extracts from Red and Yellow Fruits Containing Different Constituents of Polyphenols and Iridoids in Osteoblasts and Osteoclasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4122253. [PMID: 36225173 PMCID: PMC9550449 DOI: 10.1155/2022/4122253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Methods Polyphenolic and iridoid constituents of extracts were analyzed qualitatively and quantitatively using the ultraperformance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry. Primary cultured osteoblasts isolated from mouse calvarias and osteoclast-lineage primary cultured monocytes isolated from mouse bone marrow were used for the assessment of osteoblast and osteoclast differentiation. In the osteoblast culture, cellular viability, alkaline phosphatase (ALP) activity, ALP staining, and mRNA expression of Alpl and Runx2 were examined. In the osteoclast culture, the examined parameters were cellular viability, tartrate-resistant acid phosphatase (TRAP) activity and staining, and mRNA expression of Nfatc1, Ctsk, and Acp. Results A total of 41 main compounds of iridoids, anthocyanins, hydrolysable tannins, phenolic acids, and flavonols were identified in the three extracts. RED EXT1 contained most of the tested polyphenols and iridoids and was the only extract containing anthocyanins. YL EXT2 contained only one iridoid, loganic acid and gallic acid. YL EXT3 comprised a mixture of iridoids and polyphenols. RED EXT1, YL EXT 2, and to a lesser extent YL EXT3 promoted osteoblast differentiation increasing significantly ALP activity and the amount of ALP-positive stained cells. All extracts upregulated mRNA expression of Alpl and Runx2. RED EXT1 caused the most significant decrease in TRAP activity and the numbers of TRAP-positive multinucleated cells. RED EXT1 caused also the most significant downregulation of mRNA expression of osteoclast related genes Nfatc1, Ctsk, and Acp5. Extracts from yellow fruits, mostly YL EXT2 caused lower, but still significant inhibitory effect on TRAP and osteoclast related genes. Conclusions The main conclusion of our study is that all three extracts, especially RED EXT1 from red cornelian cherry fruits, possess the antiosteoporotic potential and may be a promising phytomedicine candidate for the prevention and treatment of osteoporosis.
Collapse
|
12
|
Protection against Osteoporosis by Fermented Mulberry Vinegar Supplementation via Inhibiting Osteoclastic Activity in Ovariectomized Rats and Osteoclastic Cells. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Menopause increases the osteoporosis risk, to which phytoestrogen intake can be beneficial. This study hypothesized that mulberry vinegar had a preventive effect on osteoporosis by decreasing osteoclastic activity. The hypothesis was tested in ovariectomized (OVX) rats and RANKL-differentiated osteoclast cells. OVX rats were given 0(OVX-CON), 0.5(OVX-MVL), 1(OVX-MVM), and 2(OVX-MVH) fermented mulberry vinegar (MV) mL/kg body weight (BW) daily for 12 weeks. Sham-operated rats had no MV supplementation (Normal-CON). The osteoporosis-related biomarkers were measured, and Micro-CT determined the bone mass of the femur. RANKL-differentiated Raw 264.7 cells were treated with MV (0–100 μg/mL). The cell viability, osteoporosis-related mRNA expression, and protein contents were measured. MV contained Acetobacter pasteurianus (7.31 log CFU/mL), citric acid (106 mg/mL), lactic acid (19.2 mg/mL), acetic acid (15.0 mg/mL), and rutin (0.36 mg/mL). OVX-MVM elevated the serum 17β-estradiol concentration similar to the Normal-CON group, but it did not prevent the decrease in uterine weight. OVX-MVM prevented the increase in osteoclastic-related parameters, including cathepsin K(CtsK), receptor activator of NF-κB ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) in the circulation. OVX-MVH also lowered C-telopeptide of type Ⅰ collagen as much as the Normal-CON group (p < 0.05). By contrast, OVX-MVH increased the serum osteoprotegerin concentration, an inhibitor of osteoclasts, better than the Normal-CON group (p < 0.05). These changes were integrated to alter the bone mineral density (BMD) in Micro-CT analysis: OVX-MVM and OVX-MVH prevented BMD decrease after OVX as much as the Normal-CON. In RANKL-differentiated osteoclast cells, the MV treatment for 24 and 48 h decreased RANKL-induced differentiation in osteoclast cells dose-dependently up to 100 µg/mL. Its decrease was related to inhibiting the TRAP activity and reducing TRAP-positive multinucleated cells during the five-day administration of RANKL. MV treatments also decreased mRNA expression of osteoclast-related genes (TRAP, Ctsk, OSCAR, and NFATc1). MV suppressed the protein contents of NFATc1 and c-FOS-related osteoclast. In conclusion, MV intake (1 mg/kg bw) protected against BMD loss mainly by inhibiting the osteoclastic activity (RANKL/RANK/TRAP) in OVX rats. MV may develop as a functional food for anti-osteoporosis in menopausal women.
Collapse
|
13
|
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front Pharmacol 2021; 12:773660. [PMID: 34776985 PMCID: PMC8585783 DOI: 10.3389/fphar.2021.773660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Bone regeneration in osteoporosis and fragility fractures which are highly associated with age remains a great challenge in the orthopedic field, even though the bone is subjected to a continuous process of remodeling which persists throughout lifelong. Regulation of osteoblast and osteoclast differentiation is recognized as effective therapeutic targets to accelerate bone regeneration in osteopenic conditions. Anthocyanins (ACNs), a class of naturally occurring compounds obtained from colored plants, have received increasing attention recently because of their well-documented biological effects, such as antioxidant, anti-inflammation, and anti-apoptosis in chronic diseases, like osteoporosis. Here, we summarized the detailed research progress on ACNs on bone regeneration and their molecular mechanisms on promoting osteoblast differentiation as well as inhibiting osteoclast formation and differentiation to explore their promising therapeutic application in repressing bone loss and helping fragility fracture healing. Better understanding the role and mechanisms of ACNs on bone regeneration is helpful for the prevention or treatment of osteoporosis and also for the exploration of new bone regenerative medicine.
Collapse
Affiliation(s)
- Wei Mao
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guowei Huang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zhang S, Wang M, Li J, Li Y, Zhou J, Tian Z, Liu C, Yao Q. Vaccine of RANKL mutant conjugated with KLH effectively stabilizing bone metabolism and preventing trabecular microstructural degeneration in osteoporotic rats. J Orthop Res 2021; 39:2465-2473. [PMID: 33382130 DOI: 10.1002/jor.24980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023]
Abstract
Receptor activator of nuclear factor kappa-B ligand (RANKL) is one of the key factors regulating the maturation of osteoclasts and an important target for osteoporosis treatment. A monoclonal antibody against RANKL showed effective therapeutic activity against osteoporosis by inhibiting bone resorption by osteoclasts. However, being an exogenous protein, its efficacy decreases after long-term use, and its discontinuation increases the risk of vertebral fractures. Here, we aimed to design an active immunotherapeutic agent to induce a T-cell dependent primary response. The agent, a mutant RANKL vaccine (mRv), was produced by cross-linking mutant RANKL, lacking the ability to stimulate osteoclast maturation, with the carrier protein keyhole limpet hemocyanin, a neo-antigen with a large molecular mass. Subcutaneous injection of mRv stimulated rats with ovariectomy-induced osteoporosis to produce high titers of anti-RANKL antibodies. The mutant RANKL vaccine decreased serum CTX-1 and BALP levels and inhibited the microstructural degeneration of trabecular bone in osteoporotic rats. mRv overcame immune system tolerance, stimulated rats to produce therapeutic antibodies, stabilized bone metabolism, and inhibited trabecular microstructural degeneration. These findings confirm the potential of the mutant RANKL vaccine to be developed into an effective preventive and therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Shudong Zhang
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Menglin Wang
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yiyin Li
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Tian
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Changzhen Liu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Yao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Ren Z, Raut NA, Lawal TO, Patel SR, Lee SM, Mahady GB. Peonidin-3-O-glucoside and cyanidin increase osteoblast differentiation and reduce RANKL-induced bone resorption in transgenic medaka. Phytother Res 2021; 35:6255-6269. [PMID: 34704297 DOI: 10.1002/ptr.7271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 01/23/2021] [Indexed: 11/07/2022]
Abstract
Experimental and clinical studies suggest a positive impact of anthocyanins on bone health; however, the mechanisms of anthocyanins altering the differentiation and function of osteoblasts and osteoclasts are not fully understood. This work demonstrates that dietary anthocyanins and resveratrol increased proliferation of cultured human hFOB 1.19 osteoblasts. In addition, treatment of serum starvation of hFOB osteoblasts with anthocyanins and resveratrol at 1.0 μg/ml reduced apoptosis, the Bax/Bcl-2 ratio, p53, and HDAC1 expression, but increased SIRT1/3 and PGC1α mRNA expression, suggesting mitochondrial and epigenetic regulation. In Sp7/osterix:mCherry transgenic medaka, peonidin-3-O-glucoside and resveratrol increased osteoblast differentiation and increased the expression of Sp7/osterix. Cyanidin, peonidin-3-O-glucoside, and resveratrol also reduced RANKL-induced ectopic osteoclast formation and bone resorption in col10α1:nlGFP/rankl:HSE:CFP medaka in doses of 1-4 μg/ml. The results indicate that both cyanidin and peonidin-3-O-glucoside have anabolic effects on bone, increasing osteoblast proliferation and differentiation, mitochondrial biogenesis, and by altering the osteoblast epigenome. Cyanidin and peonidin-3-O-glucoside also reduced RANKL-induced bone resorption in a transgenic medaka model of bone resorption. Thus, peonidin-3-O-glucoside and cyanidin appear to both increase bone formation and reduce bone loss, suggesting that they be further investigated as potential treatments for osteoporosis and osteomalacia.
Collapse
Affiliation(s)
- Zhitao Ren
- Department of Pharmacy Practice, College of Pharmacy, WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nishikant A Raut
- Raman Fellow, Department of Pharmacy Practice, College of Pharmacy, WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Temitope O Lawal
- Schlumberger Fellow, Department of Pharmacy Practice, College of Pharmacy, WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Shital R Patel
- Department of Pharmacy Practice, College of Pharmacy, WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon M Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
He J, Chen K, Deng T, Xie J, Zhong K, Yuan J, Wang Z, Xiao Z, Gu R, Chen D, Li X, Lin D, Xu J. Inhibitory Effects of Rhaponticin on Osteoclast Formation and Resorption by Targeting RANKL-Induced NFATc1 and ROS Activity. Front Pharmacol 2021; 12:645140. [PMID: 34630071 PMCID: PMC8495440 DOI: 10.3389/fphar.2021.645140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The extravagant osteoclast formation and resorption is the main cause of osteoporosis. Inhibiting the hyperactive osteoclastic resorption is considered as an efficient treatment for osteoporosis. Rhaponticin (RH) is a small molecule that has been reported to possess anti-inflammatory, anti-allergic, anti-fibrotic, and anti-diabetic activities. However, the influence of RH on osteoclasts differentiation and function is still unclear. To this end, an array of assays including receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL) induced osteoclastogenesis, tartrate-resistant acidic phosphatase (TRAcP) staining, immunofluorescence, and hydroxyapatite resorption were performed in this study. It was found that RH had significant anti-catabolic effects by inhibiting osteoclastogenesis and bone resorption without cytotoxicity. Mechanistically, the expression of NADPH oxidase 1 (Nox1) was found to be suppressed and antioxidant enzymes including catalase, superoxide dismutase 2 (SOD-2), and heme oxygenase-1(HO-1) were enhanced following RH treatment, suggesting RH exhibited antioxidant activity by reducing the generation of reactive oxygen species (ROS) as well as enhancing the depletion of ROS. In addition, MAPKs, NF-κB, and intracellular Ca2+ oscillation pathways were significantly inhibited by RH. These changes led to the deactivation of osteoclast master transcriptional factor-nuclear factor of activated T cells 1 (NFATc1), as examined by qPCR and Western blot assay, which led to the decreased expression of downstream integrin β3, c-Fos, cathepsin K, and Atp6v0d2. These results suggested that RH could effectively suppress RANKL-regulated osteoclast formation and bone resorption. Therefore, we propose that RH can represent a novel natural small molecule for the treatment of osteoporosis by inhibiting excessive osteoclast activity.
Collapse
Affiliation(s)
- Jianbo He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Tiancheng Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiewei Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kunjing Zhong
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ronghe Gu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Orthopedics, First People’s Hospital of Nanning, Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Delong Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
17
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Luo Y, Qiu G, Liu Y, Li S, Xu Y, Zhang Y, Cao Y, Wang Y. Circular RNAs in osteoporosis: expression, functions and roles. Cell Death Discov 2021; 7:231. [PMID: 34482380 PMCID: PMC8418611 DOI: 10.1038/s41420-021-00624-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis, which is caused by an imbalance in osteoblasts and osteoclasts, is a global age-related metabolic disease. Osteoblasts induce osteocyte and bone matrix formation, while osteoclasts play an important role in bone resorption. Maintaining a balance between osteoblast formation and osteoclastic absorption is crucial for bone remodeling. Circular RNAs (circRNAs), which are characterized by closed-loop structures, are a class of novel endogenous transcripts with limited protein-coding abilities. Accumulating evidence indicates that circRNAs play important roles in various bone diseases, such as osteosarcoma, osteoarthritis, osteonecrosis, and osteoporosis. Recent studies have shown that circRNAs regulate osteoblast and osteoclast differentiation and may be potential biomarkers for osteoporosis. In the current review, we summarize the expression, function, and working mechanisms of circRNAs involved in osteoblasts, osteoclast differentiation, and osteoporosis.
Collapse
Affiliation(s)
- Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Yize Liu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Shanshan Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China. .,Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, P.R. China.
| |
Collapse
|
19
|
Shao Y, Hu X, Wu X. LncRNA X inactive-specific transcript promotes osteoclast differentiation through Tgif2 by acting as a ceRNA of miR-590-3p in a murine model. Regen Med 2021; 16:643-653. [PMID: 34187170 DOI: 10.2217/rme-2020-0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: This study aims to investigate whether long noncoding RNA (lncRNA) X-inactive specific transcript (Xist) can regulate osteoclast differentiation in osteoporosis and the mechanism. Materials & methods: The mouse model of osteoporosis was established by ovariectomy surgery. Osteoclast differentiation from RAW264.7 cells was induced in vitro. The relationships between associated genes were assessed. Results: Xist and Tgif2 were upregulated, but miR-590-3p was downregulated in ovariectomy mouse femurs and cell models. Xist knockdown or miR-590-3p overexpression inhibited Tgif2 expression and osteoclast differentiation. Tgif2 and Xist were the targets of miR-590-3p. Increased miR-590-3p expression inhibited Tgif2 level and osteoclast differentiation, while Xist overexpression reversed these effects. Conclusion: Xist serves as a ceRNA of miR-590-3p to promote Tgif2 level; thereby, contributing to osteoclast differentiation.
Collapse
Affiliation(s)
- Yuefeng Shao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, China
| | - Xinya Hu
- Department of Blood Purification Center, Kaifeng Central Hospital, Kaifeng, 475000, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
20
|
Samarpita S, Rasool M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis. Cytokine 2021; 142:155502. [PMID: 33810944 DOI: 10.1016/j.cyto.2021.155502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Interleukin (IL)-17A signaling pathway plays a critical role in the initiation and progression of rheumatoid arthritis (RA) and represents a viable target for RA therapy. Cyanidin, a flavonoid compound, is a novel inhibitor of IL-17A/IL-17RA (receptor subunit A) interaction in several inflammatory diseases. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signaling induced monocyte migration and fibroblast-like synoviocytes (FLS) released RANKL mediated osteoclastogenesis in RA has not yet been deciphered. In the present study, cyanidin impeded IL-17A induced migration of monocytes isolated from adjuvant-induced arthritic (AA) rats. At the molecular level, cyanidin blocked the activation of p38MAPK signaling in response to IL-17A. Importantly, cyanidin downregulated IL-17A induced expression of HSP27, CXCR4, and CCR7 in AA monocytes via modulating IL-17/p38 MAPK signaling axis. Alternatively, cyanidin significantly suppressed the formation of matured osteoclasts and bone resorption in a coculture system consisting of IL-17 treated AA-FLS and rat bone marrow-derived monocytes/macrophages. Further, cyanidin significantly inhibited the expression of RANKL and increased the expression of OPG in AA-FLS via blunted activation of IL-17A/STAT-3 signaling cascade. Interestingly, cyanidin impaired IL-17A induced overexpression of IL-17RA. Taken together, our study proposes a novel therapeutic function of cyanidin towards targeted inhibition of IL-17A/IL-17RA signaling mediated disease severity and bone erosion in RA.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
21
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
22
|
Li Y, Lin S, Liu P, Huang J, Qiu J, Wen Z, Yuan J, Qiu H, Liu Y, Liu Q, Zhou T, Luo P, Guo H, Ma Y, Guo D, Mo G, Tang Y, Xu L, Liang D, Xu J, Ding Y, Zhang S. Carnosol suppresses RANKL-induced osteoclastogenesis and attenuates titanium particles-induced osteolysis. J Cell Physiol 2021; 236:1950-1966. [PMID: 32722851 DOI: 10.1002/jcp.29978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.
Collapse
Affiliation(s)
- Yongxian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sipeng Lin
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Panjie Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianbin Huang
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junxiong Qiu
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhenkang Wen
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Yuhao Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Tengpeng Zhou
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijie Luo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizhi Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhuai Ma
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danqing Guo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoye Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongchao Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Yue Ding
- Orthopaedic Department, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuncong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Hu B, Chen L, Chen Y, Zhang Z, Wang X, Zhou B. Cyanidin-3-glucoside Regulates Osteoblast Differentiation via the ERK1/2 Signaling Pathway. ACS OMEGA 2021; 6:4759-4766. [PMID: 33644583 PMCID: PMC7905819 DOI: 10.1021/acsomega.0c05603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
Osteoporosis, characterized by a gradual decrease in the number of osteoblasts and a gradual increase in bone resorption of osteoclasts in bone tissue, is a global chronic disease, which severely impairs the quality of life of the elderly. Therefore, it is extremely urgent to study the prevention and treatment of osteoporosis. It has been reported that anthocyanins can regulate bone metabolism and prevent osteoporosis. Cyanidin-3-O-glucoside (C3G), the most common type of anthocyanin in nature, widely exists in a variety of vegetables and fruits. Although it has been shown that C3G has multiple effects on osteoclasts, its impact(s) and underlying mechanism(s) on osteoblasts are still not clear. Here, we evaluated the effect of C3G on cell proliferation and differentiation of osteoblasts (extracted from the hip joint of patients with osteoporosis) and MC3T3-E1 (a kind of osteoblast cell line from mice). We also test the ability of osteoblasts to mineralize after C3G treatment. To find the underlying mechanism of the above effects, we further evaluated the role of the ERK signaling pathway in C3G regulation of osteoblasts. The results showed that C3G treatment enhanced osteoblast proliferation rate, osteoblast mineralization points, the mRNA levels and protein expression levels of OC (osteocalcin), and the level of ERK phosphorylation, which could be blocked by pretreatment with ERK signaling pathway inhibitor. The above results not only indicate that the ERK pathway was involved in C3G regulation of osteoblast differentiation but also provide strong suggestive evidence that osteoblasts may be promising targets in preventive and therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Bosen Hu
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Lin Chen
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Yong Chen
- Central
Hospital Affiliated to Shenyang Medical College, 5 South 7th West Rd, Shenyang, Liaoning 110024, China
| | - Zhuo Zhang
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Xiaohong Wang
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Bo Zhou
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
- . Phone: +86-159-981-18508
| |
Collapse
|
24
|
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Aging Cell 2021; 20:e13301. [PMID: 33393735 PMCID: PMC7884050 DOI: 10.1111/acel.13301] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1-7 (SIRT1-SIRT7) are a family of nicotinamide adenine dinucleotide-dependent deacetylases with remarkable abilities to promote longevity and counteract age-related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age-related, postmenopausal, and immobilization-induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qiangqiang Li
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jack Chun‐yiu Cheng
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive SurgeryDrum Tower Hospital affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Wayne Yuk‐wai Lee
- SH Ho Scoliosis Research LaboratoryDepartment of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing UniversityThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
25
|
Hair R, Sakaki JR, Chun OK. Anthocyanins, Microbiome and Health Benefits in Aging. Molecules 2021; 26:537. [PMID: 33494165 PMCID: PMC7864342 DOI: 10.3390/molecules26030537] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The percentage of individuals over the age of 60 is projected to reach 22% by 2050; chronic diseases associated with aging can present challenges for these individuals. Anthocyanins and the gut microbiome have each been studied as independent influencers of health. Both these factors have shown to have a positive effect on cardiovascular and bone health in individuals, as well as on the prevention or treatment of certain forms of cancers. Anthocyanins have shown to modulate the composition of the gut microbiome and may have overlapping mechanisms in the prevention and treatment of cardiovascular disease, cancer, neurodegenerative disorders and aging-associated bone loss. These health outcomes are responsible for the hospitalization and deaths of millions of Americans every year and they cost the United States billions of dollars each year to maintain, prevent and treat. Alternative methods of treatment and prevention are desired since conventional methods (surgical and pharmacological methods, physical therapy, etc.) can be costly and have significant side effects; evidence suggests that anthocyanins and the gut microbiome may be potential avenues for this. This review evaluates the findings of existing literature on the role of anthocyanins and the gut microbiome on health and their potential as a natural therapeutic agent or a target organ to provide an alternative to the conventional methods of disease prevention and treatment.
Collapse
Affiliation(s)
| | | | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (R.H.); (J.R.S.)
| |
Collapse
|
26
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Shi F, Ni L, Gao YM. Tetrandrine Attenuates Cartilage Degeneration, Osteoclast Proliferation, and Macrophage Transformation through Inhibiting P65 Phosphorylation in Ovariectomy-induced Osteoporosis. Immunol Invest 2020; 51:465-479. [PMID: 33140671 DOI: 10.1080/08820139.2020.1837864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Osteoporosis is a common metabolic bone disease with high prevalence. Tetrandrine (TET) suppressed osteoclastogenesis, while the roles of TET in osteoporosis regulation remained unclear. Thus, the study aimed to investigate the effect of TET on osteoporosis and the underlying mechanism. METHODS The osteoporosis rabbit model was established through anterior cruciate ligament transection (ACLT) and bilateral ovariectomy (OVX). The degeneration of articular cartilage was assessed using HE staining and Alcian blue staining. The liver and kidney tissue injury was determined using HE staining. The activity of osteoclasts was evaluated using Tartrate-resistant acid phosphatase (TRAP) staining. The changes in bone structural parameters were determined through measuring the BMD, BV/TV, Tb.Th, Tb.N, and Tb.Sp, and the serum levels of calcium and phosphorus. Macrophage polarization was determined using Flow cytometry. RESULTS The bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp were changed in osteoporosis rabbit, which was reversed by TET. Besides, TET suppressed the increased serum levels of calcium and phosphorus in osteoporosis rabbit. Furthermore, TET inhibited the degeneration of articular cartilage and the activity of osteoclasts induced by osteoporosis. Moreover, TET inhibited the levels of MMP-9, PPAR-γ, RANKL, β-CTX and TRACP-5b, and increased the levels of OPG, ALP and osteocalcin (OC) in osteoporosis. Additionally, TET promoted macrophage transformation from M1 to M2 in osteoporotic and inhibited the production of IL-1β, TNF-α, and IL-6. TET also inhibited the p65 phosphorylation in osteoporosis. Besides, TET reversed RANKL-induced osteoclasts proliferation, p65 phosphorylation, and the expression changes of RANKL, Ki67, PPAR-γ, ALP, OPG. CONCLUSION TET attenuated bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp, inhibited articular cartilage degeneration, promoted bone formation, inhibited the inflammatory response, and promoted macrophage transformation from M1 to M2 via NF-κB inactivation in osteoporosis. TET may be a promising drug for osteoporosis therapy. ABBREVIATION TET: Tetrandrine; ACLT: anterior cruciate ligament transection; OVX: ovariectomy; TRAP: Tartrate-resistant acid phosphatase; BMD: bone mineral density; BV/TV: Bone volume/total volume; Tb.Th: trabecular thickness; Tb.N: trabecular number; Tb.Sp: trabecular separation; MMP-9: Matrix metallopeptidase 9; PPAR-γ: Peroxisome proliferator-activated receptor gamma; RANKL: Receptor activator of nuclear factor kappa-B ligand; OPG: Osteoprotegerin; ALP: alkaline phosphatase; OC: osteocalcin; β-CTX: β isomer of C-terminal telopeptide of type Ⅰ collagen; TRACP-5b: Tartrate-resistant acid phosphatase 5b; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin 6; NF-κB: Nuclear factor kappa B; PKC-α: Protein kinase C alpha; qRT-PCR: Quantitative real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Fang Shi
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| | - Lei Ni
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ye-Mei Gao
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| |
Collapse
|
28
|
The Role of Ca 2+-NFATc1 Signaling and Its Modulation on Osteoclastogenesis. Int J Mol Sci 2020; 21:ijms21103646. [PMID: 32455661 PMCID: PMC7279283 DOI: 10.3390/ijms21103646] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing of intracellular calcium concentration is a fundamental process for mediating osteoclastogenesis, which is involved in osteoclastic bone resorption. Cytosolic calcium binds to calmodulin and subsequently activates calcineurin, leading to NFATc1 activation, a master transcription factor required for osteoclast differentiation. Targeting the various activation processes in osteoclastogenesis provides various therapeutic strategies for bone loss. Diverse compounds that modulate calcium signaling have been applied to regulate osteoclast differentiation and, subsequently, attenuate bone loss. Thus, in this review, we summarized the modulation of the NFATc1 pathway through various compounds that regulate calcium signaling and the calcium influx machinery. Furthermore, we addressed the involvement of transient receptor potential channels in osteoclastogenesis.
Collapse
|
29
|
Yuan Y, Chen K, Chen X, Wang C, Qiu H, Cao Z, Song D, Sun Y, Guo J, Tickner J, Xu J, Zou J. Fumitremorgin C Attenuates Osteoclast Formation and Function via Suppressing RANKL-Induced Signaling Pathways. Front Pharmacol 2020; 11:238. [PMID: 32210820 PMCID: PMC7076231 DOI: 10.3389/fphar.2020.00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive bone resorption conducted by osteoclasts is considered as the main cause of osteoclast-related bone diseases such as osteoporosis. Therefore, the suppression of excessive osteoclast formation and function is one of the strategies to treat osteoclast-related bone diseases. Fumitremorgin C (Fum) is a mycotoxin extracted from Aspergillus fumigatus. It has been shown to have extensive pharmacological properties, but its role in the treatment of osteoclast-related bone diseases remains unclear. In this study, we aim to find out whether Fum can inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and function. The results showed that Fum could significantly attenuate osteoclast formation and function at concentrations from 2.5 to 10 µM. The protein expression of bone resorption factors such as NFATc1, cathepsin K, V-ATPase-d2, and c-Fos was suppressed with the treatment of Fum at a concentration of 10 µM. In addition, Fum was also shown to suppress the activity of NF-κB, intracellular reactive oxygen species level, and MAPK pathway. Taken together, the present study showed that Fum could attenuate the formation and function of osteoclast via suppressing RANKL-induced signaling pathways, suggesting that Fum might be a potential novel drug in the treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhen Cao
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Youqiang Sun
- Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
30
|
Samarpita S, Ganesan R, Rasool M. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicol Appl Pharmacol 2020; 391:114917. [PMID: 32044269 DOI: 10.1016/j.taap.2020.114917] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The hyperplastic phenotype of fibroblast-like synoviocytes (FLSs) plays an important role for synovitis, chronic inflammation and joint destruction in rheumatoid arthritis (RA). Interleukin 17A (IL-17A), a signature pro-inflammatory cytokine effectively influences the hyperplastic transformation of FLS cells and synovial pannus growth. IL-17A cytokine signalling participates in RA pathology by regulating an array of pro-inflammatory mediators and osteoclastogenesis. Cyanidin, a key flavonoid inhibits IL-17A/IL-17 receptor A (IL-17RA) interaction and alleviates progression and disease severity of psoriasis and asthma. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signalling in RA remains unknown. In the present study, cyanidin inhibited IL-17A induced migratory and proliferative capacity of FLS cells derived from adjuvant-induced arthritis (AA) rats. Cyanidin treatment reduced IL-17A mediated reprogramming of AA-FLS cells to overexpress IL-17RA. In addition, significantly decreased expression of IL-17A dependent cyr61, IL-23, GM-CSF, and TLR3 were observed in AA-FLS cells in response to cyanidin. At the molecular level, cyanidin modulated IL-17/IL-17RA dependent JAK/STAT-3 signalling in AA-FLS cells. Importantly, cyanidin activated PIAS3 protein to suppress STAT-3 specific transcriptional activation in AA-FLS cells. Cyanidin treatment to AA rats attenuated clinical symptoms, synovial pannus growth, immune cell infiltration, and bone erosion. Cyanidin reduced serum level of IL-23 and GM-CSF and expression of Cyr 61 and TLR3 in the synovial tissue of AA rats. Notably, the level of p-STAT-3 protein was significantly decreased in the synovial tissue of AA rats treated with cyanidin. This study provides the first evidence that cyanidin can be used as IL-17/17RA signalling targeting therapeutic drug for the treatment of RA and this need to be investigated in RA patients.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Ramamoorthi Ganesan
- Immunology Program, Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
31
|
Sakaki JR, Melough MM, Chun OK. Anthocyanins and anthocyanin-rich food as antioxidants in bone pathology. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Jin H, Wang Q, Chen K, Xu K, Pan H, Chu F, Ye Z, Wang Z, Tickner J, Qiu H, Wang C, Kenny J, Xu H, Wang T, Xu J. Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:8355-8368. [PMID: 31603626 PMCID: PMC6850941 DOI: 10.1111/jcmm.14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Astilbin, a traditional herb, is known to have anti-inflammatory, antioxidant and antihepatic properties, but its role in osteoporosis treatment has not yet been confirmed. In our study, astilbin was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, V-ATPase-d2 and integrin β3). Furthermore, we examined the underlying mechanisms and found that astilbin repressed osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, astilbin might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Haiming Jin
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Qingqing Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Ke Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Hao Pan
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Feifan Chu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhen Ye
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Heng Qiu
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Chao Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jacob Kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Te Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiake Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
33
|
Liu Y, Wang C, Wang G, Sun Y, Deng Z, Chen L, Chen K, Tickner J, Kenny J, Song D, Zhang Q, Wang H, Chen Z, Zhou C, He W, Xu J. Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities. Theranostics 2019; 9:4648-4662. [PMID: 31367247 PMCID: PMC6643439 DOI: 10.7150/thno.35414] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Osteoporosis is a severe bone disorder that is a threat to our aging population. Excessive osteoclast formation and bone resorption lead to changes in trabecular bone volume and architecture, leaving the bones vulnerable to fracture. Therapeutic approaches of inhibiting osteoclastogenesis and bone resorption have been proven to be an efficient approach to prevent osteoporosis. In our study, we have demonstrated for the first time that Loureirin B (LrB) inhibits ovariectomized osteoporosis and explored its underlying mechanisms of action in vitro. Methods: We examined the effects of LrB on RANKL-induced osteoclast differentiation and bone resorption, and its impacts on RANKL-induced NFATc1 activation, calcium oscillations and reactive oxygen species (ROS) production in osteoclasts in vitro. We assessed the in vivo efficacy of LrB using an ovariectomy (OVX)-induced osteoporosis model, which was analyzed using micro-computed tomography (micro-CT) and bone histomorphometry. Results: We found that LrB represses osteoclastogenesis, bone resorption, F-actin belts formation, osteoclast specific gene expressions, ROS activity and calcium oscillations through preventing NFATc1 translocation and expression as well as affecting MAPK-NFAT signaling pathways in vitro. Our in vivo study indicated that LrB prevents OVX-induced osteoporosis and preserves bone volume by repressing osteoclast activity and function. Conclusions: Our findings confirm that LrB can attenuate osteoclast formation and OVX-induced osteoporosis. This novel and exciting discovery could pave the way for the development of LrB as a potential therapeutic treatment for osteoporosis.
Collapse
|
34
|
Ma Y, Wang L, Zheng S, Xu J, Pan Y, Tu P, Sun J, Guo Y. Osthole inhibits osteoclasts formation and bone resorption by regulating NF-κB signaling and NFATc1 activations stimulated by RANKL. J Cell Biochem 2019; 120:16052-16061. [PMID: 31081953 DOI: 10.1002/jcb.28886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023]
Abstract
Chinese herbal medicine Fructus Cnidii has an outstanding effect on chronic lumbar pain and impotence, also has been used against osteoporosis with high frequency. Yet, the mechanisms of osthole, a derivative of Fructus Cnidii, on osteoclasts remains barely known. In this study, it was found out that osthole (10-6 mol/L, 10-5 mol/L) had the influence of inhibiting osteoclast formation and bone resorptive activities induced by receptor activator of nuclear factor κB ligand (RANKL), rather than affecting the viability of osteoclast-like cells. Furthermore, osthole could also inhibit the messenger RNA expressions of c-Src, tartrate-resistant acid phosphatase, β3-Integrin, matrix metallopeptidase 9, and cathepsin K. The results of the mechanistic study indicated that osthole regulated the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and nuclear factor-κB (NF-κB) activations following the RANKL stimulation. These findings suggested that the inhibitory effects of osthole were associated with restraining the activations of NFATc1 and NF-κB induced by RANKL. Thus osthole can be used as a potential treatment for abnormal bone-resorption related diseases.
Collapse
Affiliation(s)
- Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Suyang Zheng
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Li Z, Yuan G, Lin X, Liu Q, Xu J, Lian Z, Song F, Zheng J, Xie D, Chen L, Wang X, Feng H, Zhou M, Yao G. Dehydrocostus lactone (DHC) suppresses estrogen deficiency-induced osteoporosis. Biochem Pharmacol 2019; 163:279-289. [PMID: 30721671 DOI: 10.1016/j.bcp.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a chronic bone lytic disease, because of inadequate bone ossification and/or excessive bone resorption. Even though drugs are currently available for the treatment of osteoporosis, there remains an unmet need for the development of more specific novel agents with less adverse effects. Dehydrocostus lactone (DHC), a natural sesquiterpene lactone, was previously found to affect the differentiation of inflammatory cells by inhibiting NF-κB pathways, and garnered much interest for its anti-cancer properties via SOCS-mediated cell cycle arrest and apoptosis. As NF-κB pathway plays an essential role in osteoclast differentiation, we sought to discover the biological effects of DHC on osteoclast differentiation and resorptive activity, as well as the underlying mechanisms on these effects. Our research found that DHC inhibited RANKL-induced osteoclast differentiation, bone resorption and osteoclast specific genes expression via suppression of NF-κB and NFAT signaling pathways in vitro. We further demonstrated that DHC protected against ovariectomy (OVX)-induced bone loss in mice and the protective effect was mediated at least in part through the attenuation of NF-κB signaling pathway. Thus, this study provides insight that DHC might be used as a potential pharmacological treatment for osteoporosis.
Collapse
Affiliation(s)
- Zhaoning Li
- Department of Orthopedics, Dongguan People's Hospital, Dongguan, Guangdong 523000, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinjian Zheng
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Lingzi Chen
- Affiliated Chaozhou Central Hospital, Southern Medical University (Chaozhou Central Hospital), China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mengyu Zhou
- Department of Dentistry, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
36
|
Vitelli Storelli F, Molina AJ, Zamora-Ros R, Fernández-Villa T, Roussou V, Romaguera D, Aragonés N, Obón-Santacana M, Guevara M, Gómez-Acebo I, Fernández-Tardón G, Molina-Barceló A, Olmedo-Requena R, Capelo R, Chirlaque MD, Pérez-Gómez B, Moreno V, Castilla J, Rubín-García M, Pollán M, Kogevinas M, Lera JPB, Martín V. Flavonoids and the Risk of Gastric Cancer: An Exploratory Case-Control Study in the MCC-Spain Study. Nutrients 2019; 11:nu11050967. [PMID: 31035601 PMCID: PMC6566880 DOI: 10.3390/nu11050967] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies have investigated the association between the dietary flavonoid intake and gastric cancer (GC) risk; however, the results remain inconclusive. Investigating the relationship between the different classes of flavonoids and the histological types and origin of GC can be of interest to the research community. We used data from a population-based multi-case control study (MCC-Spain) obtained from 12 different regions of Spain. 2700 controls and 329 GC cases were included in this study. Odds ratios (ORs) were calculated using the mixed effects logistic regression considering quartiles of flavonoid intakes and log2. Flavonoid intake was associated with a lower GC risk (ORlog2 = 0.76; 95% CI = 0.65-0.89; ORq4vsq1 = 0.60; 95%CI = 0.40-0.89; ptrend = 0.007). Inverse and statistically significant associations were observed with anthocyanidins, chalcones, dihydroflavonols and flavan-3-ols. The isoflavanoid intake was positively associated with higher cancer risk, but without reaching a statistical significance. In general, no differences were observed in the GC risk according to the location and histological type. The flavonoid intake seems to be a protective factor against GC within the MCC-study. This effect may vary depending on the flavonoid class but not by the histological type and location of the tumor. Broader studies with larger sample size and greater geographical variability are necessary.
Collapse
Affiliation(s)
- Facundo Vitelli Storelli
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Antonio José Molina
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat (Barcelona), Spain.
| | - Tania Fernández-Villa
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Vasiliki Roussou
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Dora Romaguera
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Spain.
- Instituto de Salud Global de Barcelona (ISGlobal), 08003 Barcelona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Cancer Epidemiology Section, Public Health Division, Department of Health of Madrid, 28035 Madrid, Spain.
| | - Mireia Obón-Santacana
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08003 Barcelona, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Public Health Institute of Navarra-IDISNA, 31003 Pamplona, Spain.
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- University of Cantabria⁻IDIVAL, Santander, Spain.
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- University of Cantabria⁻IDIVAL, Santander, Spain.
| | - Ana Molina-Barceló
- Cancer and Public Health Area, FISABIO-Public Health, 46020 Valencia, Spain.
| | - Rocío Olmedo-Requena
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain.
| | - Rocío Capelo
- Centro de Investigación en Recursos Naturales, Salud, y Medio Ambiente (RENSMA), Universidad de Huelva, 21071 Huelva, Spain.
| | - María Dolores Chirlaque
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30007 Murcia, Spain.
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Victor Moreno
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908 Barcelona, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain.
| | - Jesús Castilla
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Public Health Institute of Navarra-IDISNA, 31003 Pamplona, Spain.
| | - María Rubín-García
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Manolis Kogevinas
- Instituto de Salud Global de Barcelona (ISGlobal), 08003 Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Departament de Ciències Experimentals i de la Salut, 08002 Barcelona, Spain.
| | - Juan Pablo Barrio Lera
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
| | - Vicente Martín
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain.
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain.
| |
Collapse
|
37
|
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater 2019; 8:e1801106. [PMID: 30328293 DOI: 10.1002/adhm.201801106] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | | | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
38
|
Lin X, Song F, Zhou L, Wang Z, Wei C, Xu J, Zhao J, Liu Q. Cepharanthine suppresses osteoclast formation by modulating the nuclear factor-κB and nuclear factor of activated T-cell signaling pathways. J Cell Biochem 2019; 120:1990-1996. [PMID: 30426543 DOI: 10.1002/jcb.27495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
The increased activation of osteoclasts is the major manifestation of several lytic bone diseases, including osteoporosis, rheumatoid arthritis, aseptic loosening of orthopedic implants, Paget disease and malignant bone diseases. One important bone-protective therapy in these diseases focuses on the inhibition of osteoclast differentiation and resorptive function. Given that the deleterious side-effects of currently available drugs, it is beneficial to search for effective and safe medications from natural compounds. Cepharanthine (CEP) is a compound extracted from Stephania japonica and has been found to have antioxidant and anti-inflammatory effects. In this study, we found that CEP inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone-resorbing activities using osteoclastogenesis and bone resorption assay. By polymerase chain reaction, we also found that CEP inhibited the expression of osteoclast-differentiation marker genes including Ctsk, Calcr, Atp6v0d2, Mmp9 and Nfatc1. Mechanistic analyses including Western blot and luciferase reporter assay revealed that CEP inhibited RANKL-induced activation of NF-κB and nuclear factor of activated T-cell, which are essential for the formation of osteoclast. Collectively, these data suggested that CEP can potentially be used as an alternative therapy for preventing or treating osteolytic diseases.
Collapse
Affiliation(s)
- Xixi Lin
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Fangming Song
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Lin Zhou
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chengming Wei
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Jiake Xu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| |
Collapse
|
39
|
Wang Q, Yao L, Xu K, Jin H, Chen K, Wang Z, Liu Q, Cao Z, kenny J, Liu Y, Tickner J, Xu H, Xu J. Madecassoside inhibits estrogen deficiency-induced osteoporosis by suppressing RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:380-394. [PMID: 30338925 PMCID: PMC6307845 DOI: 10.1111/jcmm.13942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Madecassoside (MA), isolated from Centella asiatica, was reported to have anti-inflammatory and antioxidant activities, but its role in osteoporosis treatment has not yet been confirmed. In our study, MA was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, ATP6V0D2/V-ATPase-d2, and integrin β3). Furthermore, we examined the underlying mechanisms and found that MA represses osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, MA might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lingya Yao
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Ke Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Haiming Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Qian Liu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
| | - Zhen Cao
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqingChina
| | - Jacob kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Yuhao Liu
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
- The Lab of Orthopaedics and Traumatology of Lingnan Medical Research CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Huazi Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Jiake Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
40
|
Chen K, Yuan Y, Wang Z, Song D, Zhao J, Cao Z, Chen J, Guo Q, Chen L, Tickner J, Xu J. Helvolic acid attenuates osteoclast formation and function via suppressing RANKL‐induced NFATc1 activation. J Cell Physiol 2018; 234:6477-6488. [DOI: 10.1002/jcp.27385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Kai Chen
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
| | - Yu Yuan
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
- School of Physical Education and Sports Science, South China Normal University Guangzhou Guangdong China
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
- Research Centre for Regenerative Medicine, Guangxi Medical University Nanning Guangxi China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University Nanning Guangxi China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University Guangxi China
- International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University Guangxi China
| | - Zhen Cao
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
- Department of Biomedical Materials Science Third Military Medical University Chongqing China
| | - Junhao Chen
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
| | - Qiang Guo
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
- Department of Spine Surgery Xiangya Hospital, Central South University Changsha China
| | - Li Chen
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
- Melbourne Medical School, University of Melbourne Parkville Victoria Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia Perth Western Australia Australia
| |
Collapse
|
41
|
Jeong HJ, Kim MH, Kim H, Kim HY, Nam SY, Han NR, Lee B, Cho H, Moon PD, Kim HM. PCE17 and its active compounds exert an anti-osteoporotic effect through the regulation of receptor activator of nuclear factor-κB ligand in ovariectomized mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyun-Ja Jeong
- Department of Food Science & Technology; Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup; Asan Chungcheongnam-do 31499 Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering; Sohae Collage; Gunsan Jeonbuk 573-717 Republic of Korea
| | - Hyeongjin Kim
- Department of Science in Korean Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hee-Yun Kim
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu; Seoul 130-701 Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu; Seoul 130-701 Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu; Seoul 130-701 Republic of Korea
| | - Boyoung Lee
- LG Household & Healthcare Research Park; Daejeon 34114 Republic of Korea
| | - Hosong Cho
- LG Household & Healthcare Research Park; Daejeon 34114 Republic of Korea
| | - Phil-Dong Moon
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu; Seoul 130-701 Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu; Seoul 130-701 Republic of Korea
| |
Collapse
|
42
|
Sirt1/Foxo Axis Plays a Crucial Role in the Mechanisms of Therapeutic Effects of Erzhi Pill in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9210490. [PMID: 30224934 PMCID: PMC6129318 DOI: 10.1155/2018/9210490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Background. Erzhi pill (EZP), a traditional Chinese herbal formula, has been widely used to treat postmenopausal osteoporosis (PMOP) in China.
However, its molecular mechanisms remain unclear. The aim of the present study is to investigate the antiosteoporotic effect of EZP on an
ovariectomized rat model of PMOP. We performed the biomarkers of bone metabolism disorder, bone morphology, bone mineral density (BMD),
and bone biomechanics to confirm the successful establishment of the PMOP model. We then investigated the expression of biomarkers related to
the Sirt1/Foxo axis. We also examined microRNA-132 (miR-132), a regulator in the Sirtuin1 (Sirt1) expression.
The bone metabolism disorder, bone morphology, BMD, and bone biomechanics in ovariectomized rats were improved by EZP administration.
The antiosteoporotic effect of EZP was confirmed. We also found that the expressions of Sirt1, Runx2, Foxo1, and Foxo3a were downregulated in
ovariectomized rats, while being then upregulated by EZP administration. And the expression of PPAR-γ
and miR-132 was upregulated in ovariectomized rats and then downregulated by EZP administration. These results provided evidence that
Sirt1/Foxo axis related mechanism may play a crucial role in the therapeutic effects of EZP, indicating that Sirt1/Foxo axis can be considered
as a potential therapeutic target for PMOP in the future.
Collapse
|
43
|
Guo Q, Cao Z, Wu B, Chen F, Tickner J, Wang Z, Qiu H, Wang C, Chen K, Tan R, Gao Q, Xu J. Modulating calcium-mediated NFATc1 and mitogen-activated protein kinase deactivation underlies the inhibitory effects of kavain on osteoclastogenesis and bone resorption. J Cell Physiol 2018; 234:789-801. [PMID: 30078210 DOI: 10.1002/jcp.26893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Osteoclasts are responsible for bone resorption during the process of bone remodeling. Increased osteoclast numbers and bone resorption activity are the main factors contributing to bone loss-related diseases such as osteoporosis. Therefore, modulating the formation and function of osteoclasts is critical for the effective treatment of osteolysis and osteoporosis. Kavain is the active ingredient extracted from the root of the kava plant, which possesses known anti-inflammatory properties. However, the effects of kavain on osteoclastogenesis and bone resorption remain unclear. In this study, we found that kavain inhibits receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and fusion using tartrate-resistant acid phosphatase staining and immunofluorescence. Furthermore, kavain inhibited bone resorption performed by osteoclasts. Using reverse transcription-polymerase chain reaction and western blot analysis, we found that kavain downregulates the expression of osteoclast marker genes, such as nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), v-atpase d2 (Atp6v0d2), dendrocyte expressed seven transmembrane protein (Dcstamp), matrix metallopeptidase 9 (Mmp9), cathepsin K (Ctsk), and Acp5. Additionally, kavain repressed RANKL-induced calcium oscillations, nuclear factor of activated T cells activation, and mitogen-activated protein kinase phosphorylation, while leaving NF-κB unaffected. We found no effects of kavain on either osteoblast proliferation or differentiation. Besides, kavain inhibited bone loss in ovariectomized mice by suppressing osteoclastogenesis. Collectively, these data suggest a potential use for kavain as a candidate drug for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Cao
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Bo Wu
- Department of Orthopedics, The Second Affiliate Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangxiao Chen
- Department of Surgery, Chinese People's Liberation Army 66325 Hospital, Beijing, China
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chao Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qile Gao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Song D, Cao Z, Liu Z, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Dong S, Xu J. Cistanche deserticola
polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production. J Cell Physiol 2018; 233:9674-9684. [DOI: 10.1002/jcp.26882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Dezhi Song
- Research Centre for Regenerative Medicine Guangxi Medical University Nanning China
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning China
- Department of Microbiology Guangxi Medical University Nanning China
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Zhen Cao
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
- Department of Biomedical Materials Science, School of Biomedical Engineering Third Military Medical University Chongqing China
| | - Zaibing Liu
- Department of Radiology People’s Hospital of Zhangqiu District Jinan China
| | - Jennifer Tickner
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering Third Military Medical University Chongqing China
| | - Jiake Xu
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
45
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
46
|
Liu C, Cao Z, Zhang W, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Tan R, Dong S, Xu J. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL‐induced NFAT activation and calcium signaling. J Cell Physiol 2018; 233:8971-8983. [DOI: 10.1002/jcp.26841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chuan Liu
- Department of Anatomy Third Military Medical University Chongqing China
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- Department of Orthopedics The Army General Hospital Beijing China
| | - Zhen Cao
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Wen Zhang
- Department of Surgery Chinese People’s Liberation Army 66325 Hospital Beijing China
| | - Jennifer Tickner
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules, Nanjing University Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Shiwu Dong
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
| | - Jiake Xu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
47
|
Song D, Cao Z, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Guo C, Dong S, Xu J. Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Arch Biochem Biophys 2018; 647:76-83. [PMID: 29678628 DOI: 10.1016/j.abb.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Abstract
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Dezhi Song
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Zhen Cao
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China; Department of Anatomy, Third Military Medical University, Chongqing, 400038, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chunyu Guo
- Department of Neurosurgery, Nanning Second People's Hospital, Nanning, 530031, Guangxi, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
48
|
Song D, Cao Z, Huang S, Tickner J, Li N, Qiu H, Chen X, Wang C, Chen K, Sun Y, Dong S, Xu J. Achyranthes bidentata polysaccharide suppresses osteoclastogenesis and bone resorption via inhibiting RANKL signaling. J Cell Biochem 2018; 119:4826-4835. [PMID: 29345352 DOI: 10.1002/jcb.26682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
Osteoclasts are highly differentiated multinucleated giant cells that play fundamental roles in bone resorption and in the pathogenesis of osteolytic conditions, such as osteoporosis and cancer-induced bone loss. Achyranthes bidentata polysaccharide (ABP) is a hydrophilic compound with anti-oxidation and anti-aging characteristics. The impact of ABP on RANKL-induced osteoclast formation and bone resorption has not been assessed, hence, in this study we investigated the effect of ABP on osteoclast formation and resorption in murine bone marrow derived osteoclasts. We found that ABP was able to suppress RANKL-induced osteoclast differentiation and bone resorption activity at concentrations above 6.5 µM, while demonstrating no cytotoxicity at concentrations up to 10 µM. The actions of ABP were mediated through inhibition of RANKL-induced c-Fos and NFATc1 gene and protein expression. Furthermore, we found that ABP suppressed NFATc1 transcriptional activity, and the phosphorylation of MAPK pathways induced by RANKL. Collectively, ABP attenuates RANKL-mediated osteoclast activity and signaling, and might serve as a potential therapeutic candidate for preventing bone loss related diseases.
Collapse
Affiliation(s)
- Dezhi Song
- Department of Microbiology, Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Cao
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China.,Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Song Huang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Nan Li
- Third Cadre Department, Chinese People's Liberation Army Chinese People's Liberation Army 401 Hospital, Qingdao, Shandong, China
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Xi Chen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Youqiang Sun
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
49
|
Liang Y, Farooq MU, Hu Y, Tang Z, Zhang Y, Zeng R, Zheng T, Ei HH, Ye X, Jia X, Zhu J. Study on Stability and Antioxidant Activity of Red Anthocyanidin Glucoside Rich Hybrid Rice, its Nutritional and Physicochemical Characteristics. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuanke Liang
- Rice Research Institute, Sichuan Agricultural University
| | | | - Yongjun Hu
- Yibin Products Quality Superivison and Inspection Institute
| | - Zhicheng Tang
- Rice Research Institute, Sichuan Agricultural University
| | - Yujie Zhang
- Rice Research Institute, Sichuan Agricultural University
| | - Rui Zeng
- Rice Research Institute, Sichuan Agricultural University
| | - Tengda Zheng
- Rice Research Institute, Sichuan Agricultural University
| | - Hla Hla Ei
- Rice Research Institute, Sichuan Agricultural University
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University
| |
Collapse
|