1
|
Zhou W, Zhu L, Zu X, Ma Y, Shen P, Hu Y, Zhang P, Ni Z, Wang N, Sun D, Bai Z, Gao X, Huangfu C, Gao Y. A novel antioxidant and anti-inflammatory carboxymethylcellulose/chitosan hydrogel loaded with cannabidiol promotes the healing of radiation-combined wound skin injury in the 60Co γ-irradiated mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156790. [PMID: 40318533 DOI: 10.1016/j.phymed.2025.156790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/30/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Combined radiation and wound skin injury (RW) are frequently observed in patients undergoing tumor surgery plus radiotherapy, and but specific treatment is lacking. Chitosan (CS) and carboxymethyl cellulose (CMC) are commonly used to prepare hydrogel with good biocompatibility and low toxicity. Cannabidiol (CBD) has presented anti-inflammatory, antioxidant, and neuroprotective properties. METHODS CMC, CS, and CBD were used and designed for three types of hydrogels (CMC/CS2/CBD, CMC/CS3/CBD, CMC/CS4/CBD) with different ratios of CMC and CS based on previous report and our preliminary experiments. The CMC/CS/CBD hydrogel was synthesized using electrostatic interaction without chemical crosslinking, characterized via fourier transform infrared (FT-IR), and tested for mechanical properties, swelling behavior, biocompatibility, antioxidant activity, cytotoxicity, and hemocompatibility. 60Co γ irradiation (5 Gy, 0.62 Gy/min) combined with 1 cm circular trauma was applied to establish RW mice model. Topical applications of CMC/CS3, CMC/CS2/CBD, CMC/CS3/CBD were used to treat RW injury once a day for 10 consecutive days. The mice were euthanized 7, 14, 21 days after radiation, and samples were collected. RESULTS FT-IR confirmed the successful formation of a polyelectrolyte network. The CMC/CS3/CBD hydrogel exhibited optimal mechanical strength, rapid gelation, high swelling capacity, and excellent biocompatibility. Both CMC/CS2/CBD and CMC/CS3/CBD hydrogels effectively improved RW injury 7, 14, 21 days after radiation. Reduced inflammation and increased collagen production were observed the two groups. The significant increased expression of interleukin (IL)-1β, IL-22, IL-17A, IL-6, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, CC motif chemokine ligand (CCL)2, CCL3, CCL4, CCL5, CCL11 in the RW group was greatly inhibited after treatment with CMC/CS3/CBD hydrogel. Transcriptome analysis revealed the hydrogel's impact on lipid metabolism and epithelial differentiation pathways. CONCLUSIONS By integrating CBD into a CMC/CS-based hydrogel without using toxic crosslinkers, this study provides a novel, biomaterial-based, biocompatible approach for RW injury. These findings pave the way for future clinical application of CMC/CS3/CBD hydrogel in RW injury.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Long Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China; Department of Traditional Chinese Medicine, Qinghai University, No. 251 Ningda Road, Xining 810016, China
| | - Xiaoran Zu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaolei Ma
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China; Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Tianjin 301617, China
| | - Pan Shen
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Yangyi Hu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Pengfei Zhang
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Zhexin Ni
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Ningning Wang
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Dezhi Sun
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Zhijie Bai
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No 27 Taiping Road, Beijing, 100850, China.
| | - Chaoji Huangfu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China.
| | - Yue Gao
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing 100850, China; Department of Traditional Chinese Medicine, Qinghai University, No. 251 Ningda Road, Xining 810016, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
2
|
Zhang X, Sun X, Luo Y, Wang X, Mao C, Xu Z, Song Y, Yan J. Endogenous sulfur dioxide deficiency impairs bone regeneration through abolishing S-sulfenylating p38 at cysteine 211. Int Immunopharmacol 2025; 158:114814. [PMID: 40347882 DOI: 10.1016/j.intimp.2025.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Bone defects result in substantial medical expenses and a diminished quality of life for patients. Macrophage polarization is crucial in the bone regeneration process mediated by bone marrow-derived mesenchymal stem cells (BMSCs). macrophage-derived sulfur dioxide (SO2), the fourth endogenous gas signaling molecule, following hydrogen sulfide (H2S), has been shown to regulate macrophage chemotaxis and inflammatory responses. Nevertheless, the specific regulatory effects and mechanisms of macrophage-derived SO2 on bone regeneration are not yet fully understood. This study reveals for the first time that the absence of macrophage-derived SO2 promotes M1 macrophage polarization, whereas the administration of exogenous SO2 donors inhibits M1 polarization. The deficiency of macrophage-derived SO2 results in impaired osteogenic differentiation of BMSCs, whereas the administration of SO2 donors enhances this differentiation process. Further investigations have elucidated that p38α MAPK (p38) is crucial in mediating SO2's effects on M1 macrophage polarization and BMSCs osteogenic differentiation. Mechanistically, SO2 induces S-sulfenylation of p38 in macrophages, an effect that can be reversed by the thiol reductant dithiothreitol. Additionally, the C211S mutation in p38 abrogates the SO2-induced S-sulfenylation of p38, thereby preventing the inhibition of p38 activation and subsequently disrupting the regulation of M1 macrophage polarization and BMSCs osteogenic differentiation. In a model of mouse calvarial bone defects, we consistently observed that inhibiting SO2 production using the SO2-generating enzyme inhibitor HDX impaired bone regeneration capacity in mice, whereas the administration of an SO2 donor enhanced this capacity. In summary, macrophage-derived SO2 S-sulfenylates p38 at cysteine 211, thereby suppressing p38 activation, which inhibits M1 polarization and subsequently maintains the osteogenic differentiation of BMSCs. This study is the first to elucidate the role and mechanism of SO2 in sustaining osteogenesis, offering a novel strategy for addressing bone defect-related disorders.
Collapse
Affiliation(s)
- Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xutao Sun
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yumeng Luo
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoyan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caiyun Mao
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zihang Xu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yunjia Song
- Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Fang QQ, Gu YJ, Wang Y, Wang ZC, Lin XY, Guo K, Zhuang ZM, Zhong XC, Zhang LY, Chen J, Tan WQ. The therapeutic potential of Rosiglitazone in modulating scar formation through PPAR-γ pathway. Eur J Pharmacol 2025; 996:177445. [PMID: 40054722 DOI: 10.1016/j.ejphar.2025.177445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
The prevention and treatment of scars has always posed a challenge in the medical field. Researchers have reached the consensus that safe, effective and affordable treatments are needed. Here, by conducting non-targeted metabolomics and RNA sequencing experiments, we revealed that a significant number of metabolites and genes related to glucose and lipid metabolism underwent changes during scar formation, with peroxisome proliferator-activated receptor-γ (PPAR-γ) exerting a profound influence. Considering that rosiglitazone is a selective orally active PPAR-γ receptor agonist, scar models were induced in rats, and rosiglitazone was administered at different dosages. We characterized rosiglitazone as a crucial mediator in a rat scar model in vivo and in vitro in two models of transforming growth factor β1(TGF-β1) stimulated fibroblasts (NIH 3T3 and 3T3 L1). Functionally, activation of PPAR-γ with rosiglitazone effectively impedes fibrosis and mitigates scar formation. Rosiglitazone also inhibits some inflammatory factors, and downregulates triglyceride, lactic acid, glycogen and lactic dehydrogenase levels in rat scars. Conversely, rosiglitazone increases adenosine triphosphate (ATP) production and increases free fatty acid levels and the activity of acetyl-CoA carboxylase, fatty acid synthetase, succinate dehydrogenase. Collectively, these findings shed light on the underlying mechanisms and suggest that the use of rosiglitazone could be a promising therapeutic approach to alleviate fibrosis and reduce scar formation.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yang-Jun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, PR China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Jian Chen
- Department of Ultrasound Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
4
|
Liu D, Yu T, Ma S, Su L, Zhong S, Wang W, Liu Y, Yu JA, Gao M, Chen Y, Xu H, Liu Y. Insulin/PHMB-grafted sodium alginate hydrogels improve infected wound healing by antibacterial-prompted macrophage inflammatory regulation. J Nanobiotechnology 2025; 23:328. [PMID: 40319298 PMCID: PMC12048987 DOI: 10.1186/s12951-025-03398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Non-healing chronic wounds with high susceptibility to infection represent a critical challenge in modern healthcare. While growth factors play a pivotal role in regulating chronic wound repair, their therapeutic efficacy is compromised in infected microenvironments. Current wound dressings inadequately address the dual demands of sustained bioactive molecule delivery and robust antimicrobial activity. RESULTS In this study, we developed a sodium alginate hydrogel (termed P-SA/Ins), which incorporated polyhexamethylene biguanide (PHMB) grafting and long-acting glargine insulin loading. P-SA/Ins exhibited the favorable physicochemical performance, biocompatibility and antibacterial efficacy against both Gram-negative and Gram-positive pathogens through inhibition of bacterial proliferation and biofilm formation. Glargine insulin was applied to prolonged insulin delivery. P-SA/Ins treatment attenuated S. aureus induced pro-inflammatory cytokine cascades in macrophages. The evaluation in vivo using a rat model with S. aureus infected wound demonstrated that P-SA/Ins significantly enhanced wound healing and optimized skin barrier through antimicrobial-mediated modulation of macrophage polarization and subsequent inflammatory cytokine profiling. CONCLUSIONS Our findings demonstrate that P-SA/Ins promotes wound healing and restores epidermal barrier integrity, indicating its potential as a therapeutic dressing for chronic wound healing, particularly in cases with infection risk.
Collapse
Affiliation(s)
- Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Tianyi Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shan Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lefeng Su
- College of Chemistry & Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
| | - Shan Zhong
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Pediatric Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jia-Ao Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yunsheng Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - He Xu
- College of Chemistry & Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Pan Y, Xia M, Luo J, Lu S. Resveratrol Promotes Wound Healing by Enhancing Angiogenesis via Inhibition of Ferroptosis. Food Sci Nutr 2025; 13:e70254. [PMID: 40330211 PMCID: PMC12053223 DOI: 10.1002/fsn3.70254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Diabetic wound healing critically depends on functional endothelial cells for angiogenesis, yet the hyperglycemic microenvironment induces endothelial dysfunction through oxidative stress, inflammation, and senescence. Although ferroptosis has been recognized as a critical pathological factor contributing to impaired diabetic wound healing, the therapeutic potential of resveratrol (Res), a natural polyphenol with well-documented antioxidant and anti-ferroptotic properties, remains underexplored in this context. This study aimed to investigate the protective effects of Res on endothelial cells and elucidate its underlying mechanisms in diabetic wound healing. In vitro experiments systematically evaluated Res's impact on cellular inflammatory responses, senescence levels, and angiogenic capacity. Subsequent in vivo studies assessed Res's therapeutic potential by monitoring diabetic wound healing progression and analyzing associated histological changes. To clarify the mechanisms underlying Res's promotion of diabetic wound healing, we conducted comprehensive analyses measuring intracellular reactive oxygen species, lipid peroxidation levels, mitochondrial membrane potential and morphology, ferroptosis-related marker expression, and upstream signaling pathway regulation. Res significantly reduced HG-induced inflammatory responses and cellular senescence in human umbilical vein endothelial cells while enhancing their angiogenic potential in vitro. In vivo results showed that Res not only markedly accelerated diabetic wound healing but also demonstrated multiple beneficial effects, including effective suppression of cellular senescence, decreased ferroptosis levels, and significantly promoted angiogenesis. Mechanistic investigations confirmed that Res achieves these effects by inhibiting ferroptosis through activation of the PI3K-AKT-Nrf2 signaling axis. Our results demonstrate that Res protects endothelial cells from HG-induced ferroptosis by activating PI3K-AKT-Nrf2 signaling, thereby promoting angiogenesis and diabetic wound healing. These findings highlight Res as a promising therapeutic candidate for impaired diabetic wound repair and justify further clinical investigation.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Traumatic OrthopedicsThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangGuizhouChina
| | - Mingyan Xia
- Department of AnatomySchool of Basic Medicine Science, Guizhou Medical UniversityGuiyangChina
| | - Jin Luo
- Department of Traumatic OrthopedicsThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shuai Lu
- Department of BiologySchool of Basic Medical Science, Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
6
|
Ma J, Wei P, Xu X, Dong R, Deng X, Zhang F, Sun M, Li M, Liu W, Yao J, Cao Y, Ying L, Yang Y, Yang Y, Wu X, She G. Machine learning-assisted analysis of serum metabolomics and network pharmacology reveals the effective compound from herbal formula against alcoholic liver injury. Chin Med 2025; 20:48. [PMID: 40217538 PMCID: PMC11992827 DOI: 10.1186/s13020-025-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The popularity of herbal formulas is increasing worldwide. Nevertheless, the effective compound is challenging to identify due to its intricate composition and multiple targets. METHODS An integration machine learning-assisted approach was established, whereby the particular action mechanism and direct target were obtained through the correlation of compounds, targets, and metabolites. The association between a compound and an action pathway was selected from the shortest path of the "compound-target-pathway-disease" network, which was analyzed using the Floyd-Warshall algorithm. Subsequently, an investigation was conducted into the relationship between metabolites and action pathways, as well as targets, through the analysis of serum metabolomic profiling and the selection of metabolite biomarkers by random forest. In order to accurately identify the direct acting target as well as the most effective compound, the relationship between the compounds and their targets was investigated using a feature-based prediction model conducted by AdaBoost. The binding mode of the effective compound and the direct-acting target was verified by molecular docking, dynamics simulations, and western blotting. In this study, Baiji Wuweizi Granule (BWG) was employed to elucidate the effective compound against alcoholic liver injury (ALD). RESULTS BWG exerted an influence on the serum metabolomic, resulting in the identification of seven potential biomarkers. Furthermore, six effective compounds and the PI3K-AKT signalling pathway were identified through a co-analysis with the shortest path from compound to ALD in the "compound-target-pathway-disease" network. It was postulated that the effective compounds would bind with key targets from the PI3K-AKT signaling pathway, as indicated by the prediction model of compound-target interaction (R2 > 0.95). The dominant bonding type for the effective compounds and key targets was hydrogen bond. These results indicated that AKT1 was the notable target for BWG, and that 2,3,4,7-tetramethoxyphenanthrene was the marker compound for BWG against ALD. The present study provides evidence that the protective effect of BWG on ALD can be mediated by the PI3K-AKT signaling pathway. CONCLUSIONS Our findings demonstrate the value of a machine learning-assisted approach in identifying the key compound, target and pathway that underpin the efficacy of an herbal formula. This provides a foundation for future clinical and fundamental research.
Collapse
Affiliation(s)
- Jiamu Ma
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Peng Wei
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Xiao Xu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ruijuan Dong
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Xixi Deng
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Feng Zhang
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Mengyu Sun
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Mingxia Li
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Wei Liu
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Jianling Yao
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Yu Cao
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Letian Ying
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Yuqing Yang
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Yongqi Yang
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China
| | - Xiaopeng Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Gaimei She
- Beijing University of Chinese Medicine, Fangshan District, Beijing, 100029, China.
| |
Collapse
|
7
|
Yang N, Hua R, Lai Y, Zhu P, Ding J, Ma X, Yu G, Xia Y, Liang C, Gao W, Wang Z, Zhang H, Yang L, Zhou K, Ge L. Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis. J Nanobiotechnology 2025; 23:282. [PMID: 40197477 PMCID: PMC11978011 DOI: 10.1186/s12951-025-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti3C2TX (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.
Collapse
Affiliation(s)
- Ningning Yang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongrong Hua
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Peijun Zhu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Ding
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xianhui Ma
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yiheng Xia
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Chao Liang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Liangliang Yang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Kailiang Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Lu Ge
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| |
Collapse
|
8
|
Weng Y, Wang X, Tang Y, Du C, Li X, Zhu K, Bao Y, Zeng W, Cai C, Jia B, Yang Z, Tang L. Inhibition of bone morphogenetic protein 4 alleviates angiotensin II-induced abdominal aortic aneurysm by reducing inflammation and endothelial-mesenchymal transition. Atherosclerosis 2025; 403:119134. [PMID: 40081251 DOI: 10.1016/j.atherosclerosis.2025.119134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/21/2025] [Accepted: 02/15/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is one of the most common fatal macrovascular diseases worldwide which pathogenesis is still not well clarified. In this study, we systematically investigated the alternations of endothelial cell (ECs) functions and phenotypes by single-cell RNA sequencing in angiotensin (Ang) II-induced AAA mice models. METHOD AND RESULTS According to 10 × single-cell sequencing analysis, we revealed that ECs inflammation and endothelial-mesenchymal transition (EndoMT) were involved in the progress of Ang II-induced AAA. Three types of ECs, including Mature ECs (uninjured ECs), EndoMT ECs and Injury & inflammation ECs successively emerged during the progression of AAA. By using pseudotime-trajectory analysis, we speculated bone morphogenetic protein 4 (BMP4) as a candidate gene, participating in Ang II-induced AAA by regulating EndoMT and vascular inflammation. We found that inhibition of BMP4 ameliorated EndoMT and vascular inflammation in Ang II-induced AAA in vivo. In addition, we found that exogenous BMP4 directly promoted the phenotypic transition, inflammation, cell migration and invasion of mouse aortic endothelial cells via PI3K/AKT/mTOR pathways in vitro. Finally, Protein-protein interaction (PPI) analysis and co-immunoprecipitation (Co-IP) revealed that biglycan (BGN) directly combined with BMP4 and promoted the conversion of EndoMT. CONCLUSION Our findings firstly revealed a critical role of BMP4 in AAA progression, which promoted disease progression by inducing EndoMT and reprogramming ECs from anti-inflammatory to proinflammatory phenotype.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310013, China; Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Xihao Wang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310013, China
| | - Yimin Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Xinyao Li
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Wenping Zeng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Changhong Cai
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China.
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China.
| |
Collapse
|
9
|
Zeng T, Sun K, Mai L, Hong X, He X, Lin W, Chen S, Yan L. Extracellular Vesicle-Associated miR-ERIA Exerts the Antiangiogenic Effect of Macrophages in Diabetic Wound Healing. Diabetes 2025; 74:596-610. [PMID: 39854218 PMCID: PMC11926273 DOI: 10.2337/db24-0701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/21/2025] [Indexed: 01/26/2025]
Abstract
ARTICLE HIGHLIGHTS An understanding of cell interactions is needed to identify therapeutic targets for diabetic cutaneous ulcers. We explored extracellular vesicles after treatment with advanced glycation end products (AGEs-EVs) derived from macrophages that can suppress diabetic cutaneous wound healing. We found that a novel miRNA enriched in AGEs-EVs (miR-ERIA) suppresses the migration and tube formation of vascular endothelial cells by targeting helicase with zinc finger 2. miR-ERIA offers a potential therapeutic target for diabetic cutaneous ulcers.
Collapse
Affiliation(s)
- Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Lifang Mai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Xiaodan He
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| | - Weijie Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Medical Research Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
10
|
Lin S, Tang L, Xu N. Research progress and strategy of FGF21 for skin wound healing. Front Med (Lausanne) 2025; 12:1510691. [PMID: 40231082 PMCID: PMC11994443 DOI: 10.3389/fmed.2025.1510691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Fibroblast Growth Factor 21 (FGF21), a pivotal member of the fibroblast growth factor family, exhibits multifaceted biological functions, including the modulation of pro-inflammatory cytokines and metabolic regulation. Recent research has revealed that in impaired skin tissues, FGF21 and its receptors are upregulated and play a significant role in accelerating the wound healing process. However, the clinical application of FGF21 is severely limited by its short in vivo half-life: this factor is often degraded by enzymes before it can exert its therapeutic effects. To address this limitation, the transdermal drug delivery system (TDDS) has emerged as an innovative approach that enables sustained drug release, significantly prolonging the therapeutic duration. Leveraging genetic recombination technology, research teams have ingeniously fused FGF21 with cell-penetrating peptides (CPPs) to construct recombinant FGF21 complexes. These novel conjugates can efficiently penetrate the epidermal barrier and achieve sustained and stable pharmacological activity through TDDS. This review systematically analyzes the potential signaling pathways by which FGF21 accelerates skin wound repair, summarizes the latest advancements in TDDS technology, explores the therapeutic potential of FGF21, and evaluates the efficacy of CPP fusion tags. The manuscript not only proposes an innovative paradigm for the application of FGF21 in skin injury treatment but also provides new insights into its use in transdermal delivery, marking a significant step toward overcoming existing clinical therapeutic challenges. From a clinical medical perspective, this innovative delivery system holds promise for addressing the bioavailability issues of traditional FGF21 therapies, offering new strategies for the clinical treatment of metabolism-related diseases and wound healing. With further research, this technology holds vast potential for clinical applications in hard-to-heal wounds such as diabetic foot ulcers and burns.
Collapse
Affiliation(s)
- Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lu Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Wu F, Wang L, Zuo H, Tian H. LncRNA A1BG-AS1 regulates the progress of diabetic foot ulcers via sponging miR-214-3p. Endocr J 2025; 72:295-306. [PMID: 39779214 PMCID: PMC11913556 DOI: 10.1507/endocrj.ej24-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve aberrations and vascular lesions in the distal lower limbs are the etiological factors for diabetic foot ulcers (DFUs). This study aimed to understand the regulatory mechanism of angiogenesis in patients with DFU by examining lncRNA, as well as to explore effective targets for diagnosing and treating DFU. The serum levels of A1BG-AS1 and miR-214-3p and the predictive power of A1BG-AS1 for DFU were determined by quantitative PCR and ROC analysis. The correlation of A1BG-AS1 with clinical characteristics was examined using chi-square tests. The risk factors for DFU in patients with type 2 diabetes mellitus (T2DM) were identified using the logistic regression model. Furthermore, the binding sites of A1BG-AS1 and miR-214-3p were determined. Next, A1BG-AS1 interference plasmid and miR-214-3p inhibitor were co-transfected into high glucose-induced cells to investigate their effects on the expression of angiogenesis-related genes and cell proliferation. The A1BG-AS1 levels were upregulated, whereas the miR-214-3p levels were downregulated in patients with DFU. The upregulation of A1BG-AS1 was significantly associated with both blood glucose levels and ulcer grades. A1BG-AS1 served as a crucial biomarker for diagnosing DFU and evaluating the risk of DFU occurrence in patients with T2DM. Co-transfection experiments revealed that the inhibition of miR-214-3p effectively recovered the suppressive effects of A1BG-AS1 on angiogenesis-related gene expression, endothelial cell differentiation, and proliferation. The sponging effect of A1BG-AS1 on miR-214-3p impaired angiogenesis in patients with DFU. Thus, A1BG-AS1 is a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Lixia Wang
- Department of Internal Medicine, Huailai Shiji Hospital, Zhangjiakou 075400, China
| | - Hongju Zuo
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Hanbing Tian
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| |
Collapse
|
13
|
Deng C, Xiao Y, Zhao X, Li H, Chen Y, Ai K, Jiang T, Wei J, Chen X, Lei G, Zeng C. Sequential Targeting Chondroitin Sulfate-Bilirubin Nanomedicine Attenuates Osteoarthritis via Reprogramming Lipid Metabolism in M1 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411911. [PMID: 39792653 PMCID: PMC11884591 DOI: 10.1002/advs.202411911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation. LCF-CSBN is internalized by M1 macrophages via CD44-mediated endocytosis and targets the Golgi apparatus accompanied with the reactive oxygen species-responsive release of licofelone (LCF, dual inhibitor of arachidonic acid metabolism). LCF-CSBN effectively promotes M1 to M2 macrophage transition by reprogramming the Golgi apparatus-related sphingolipid metabolism and arachidonic acid metabolism. Intra-articularly injected LCF-CSBN retains in the joint for up to 28 days and accumulates into M1 macrophages. Moreover, LCF-CSBN can effectively attenuate joint inflammation, oxidative stress, and cartilage degeneration in OA model rats. These findings indicate the promising potential of lipid-metabolism-reprogramming LCF-CSBN in the targeted therapy of OA.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hui Li
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410008China
| | - Ting Jiang
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jie Wei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
14
|
Gao ZX, Fang Y, Xu SZ, He YS, Ge M, Zhang P, Xu YQ, He T, Wang P, Wang DG, Pan HF. Integrated analysis of ATAC-seq and RNA-seq reveals the chromatin accessibility and transcriptional landscape of immunoglobulin a nephropathy. Clin Immunol 2025; 272:110432. [PMID: 39848509 DOI: 10.1016/j.clim.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUNDS The association between chromatin accessibility in CD4+ T cells and Immunoglobulin A nephropathy (IgAN) remains unclear. METHODS We performed the assay for transposase accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on CD4+ T cells. ATAC-seq and RNA-seq were conducted to identify differentially accessible regions and differentially expressed genes (DEGs), respectively (P < 0.05, |log2 Fold Change| >1). QRT-PCR was utilized to validate target gene expression. RESULTS We identified 100,865 differentially accessible regions, of which 7225 exhibited higher accessibility in IgAN. Functional analysis revealed that these regions are enriched in T lymphocyte activation and immune pathways. ELF3, MEIS1, and NFYC were identified as key TFs associated with IgAN. QRT-PCR indicated a significant upregulation of hub genes including MEIS1 in IgAN. CONCLUSION We identified key TFs and genes by integrating ATAC-seq and RNA-seq, which provide novel therapeutic targets for IgAN and insights into its pathogenesis from an epigenetic perspective.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Peng Wang
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
15
|
Zhao W, Jia Z, Han J, Sun X. Boswellia Extract Promotes Healing and Resolving Inflammation in Oral Ulcers of Rat. J Oral Pathol Med 2025; 54:131-140. [PMID: 39871413 DOI: 10.1111/jop.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Recurrent aphthous ulcers significantly impact patients' quality of life due to their painful and recurrent nature, necessitating more effective treatments. This study explores the therapeutic potential of Boswellia to treat recurrent aphthous ulcers by its anti-inflammatory and healing promotion effect in a rat oral ulcer model. METHODS Network pharmacology techniques were employed to elucidate Boswellia's active components and potential targets. Intersecting targets of Boswellia and oral ulcer-related genes were screened for protein-protein interaction network analysis and functional enrichment. An oral ulcer model in rats was used and rats were treated with Boswellia extract. The healing process was monitored by measuring the ulcer area and body weight changes. Histological analysis was performed, and the role of Boswellia in macrophage polarization was investigated through gene expression analysis and protein array tests. The underlying mechanism involving PPARγ activation was also explored. RESULTS Network pharmacology analysis revealed Boswellia's interaction with key genes and pathways associated with inflammation and lipid metabolism, such as MAPK3, PPARG, and PTGS2. Boswellia extract significantly accelerated oral ulcer healing and recovered weight loss in rats. Histological examinations revealed reduced tissue swelling and inflammatory cell infiltration in treated groups. Furthermore, Boswellia extract decreased infiltration of M1 macrophage presence while increasing M2 macrophage, indicating an inflammation-resolving effect. In vitro studies showed that Boswellia extract enhanced M2-related gene expression and decreased pro-inflammatory cytokines, which is PPARγ dependent. CONCLUSION Boswellia extract promotes oral ulcer healing and resolves inflammation, primarily through the modulation of macrophage polarization via PPARγ activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuoqun Jia
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Han
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojun Sun
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Zhou YQ, Liu DQ, Mei W. Peroxisome proliferator-activated receptor gamma: A promising therapeutic target for the treatment of chronic pain. Brain Res 2025; 1850:149366. [PMID: 39617285 DOI: 10.1016/j.brainres.2024.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Chronic pain represents an incapacitating medical condition that profoundly impacts the patients' quality of life. Managing chronic pain poses a significant challenge for healthcare professionals due to its multifaceted nature and the limited effectiveness of current treatment options. Therefore, novel therapeutic interventions are crucially required for the management of chronic pain. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, exerts regulatory effects on physiological processes such as glucose and lipid metabolism. Emerging studies demonstrate that PPARγ is a critical regulator of the expression of various genes, including those of anti-inflammatory cytokines and antioxidant enzymes. Substantial evidence indicates decreased expression of PPARγ in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in animal models of chronic pain. Furthermore, natural or synthetic PPARγ agonists had inhibitory effects on nociceptive hypersensitivity in various animal models of chronic pain. This review summarizes and discusses preclinical evidence demonstrating the therapeutic potential of PPARγ agonists in chronic pain management. The available evidence indicates that PPARγ activation reduces chronic pain by inhibiting neuroinflammation and oxidative stress as well as modulation of opioidergic system. Overall, the use of PPARγ agonists is a promising therapeutic approach for treating chronic pain; however, further research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
17
|
Xie Y, Yang J, Zhu H, Yang R, Fan Y. The efferocytosis dilemma: how neutrophil extracellular traps and PI3K/Rac1 complicate diabetic wound healing. Cell Commun Signal 2025; 23:103. [PMID: 39985056 PMCID: PMC11844175 DOI: 10.1186/s12964-025-02092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 02/24/2025] Open
Abstract
AIMS/HYPOTHESIS The resolution of apoptotic cells (ACs) is crucial for wound healing and tissue remodeling and is often impaired by persistent inflammation. This study aimed to elucidate the impact of neutrophil extracellular traps (NETs) on diabetic wound healing by targeting the phosphoinositide 3-kinase/Ras-related C3 botulinum toxin substrate 1 (PI3K/Rac1) signaling pathway, which is pivotal for macrophage efferocytosis. METHODS A streptozotocin-induced diabetic mouse model was used to assess the impact of NETs on efferocytosis in vivo. The effects of NETs on macrophage efferocytosis and wound healing were evaluated using specific inhibitors and agonists targeting the PI3K/Rac1 pathway. In vitro, macrophages from diabetic wounds or cell lines (Raw264.7) were treated with NETs and a panel of pharmacological agents of the PI3K/Rac1 pathway to evaluate macrophage efferocytosis. RESULTS NETs were found to inhibit macrophage efferocytosis, resulting in delayed clearance of ACs that accumulate within the wounds. Inhibition of NET formation in diabetic mice rescued impaired efferocytosis, accompanied by reactivation of PI3K and Rac1 in macrophages. Moreover, pharmacological agents targeting the PI3K/Rac1 pathway restored NETs-induced impairment in efferocytosis, leading to rapid wound healing. Raw264.7 cells exhibited elevated activation levels of PI3K and Rac1 when co-cultured with ACs in vitro. Nevertheless, this signaling activation was inhibited when cultured in a NETs-conditioned medium, leading to attenuated efferocytosis. CONCLUSIONS/INTERPRETATION Targeting NETs and the PI3K/Rac1 pathway emerges as a potential therapeutic strategy to enhance healing in diabetic wounds by promoting macrophage efferocytosis.
Collapse
Affiliation(s)
- Yulin Xie
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Southern Medical University, Guangzhou, 510599, China
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Jiaman Yang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Southern Medical University, Guangzhou, 510599, China
| | - He Zhu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Rongya Yang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Southern Medical University, Guangzhou, 510599, China.
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
- Chinese PLA Medical School, Beijing, 100853, China.
| | - Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
- Chinese PLA Medical School, Beijing, 100853, China.
| |
Collapse
|
18
|
Hu L, Huang Z, Weng J, Huang C, Zhang L. Effect and Mechanism of Tricholoma matsutake Extract on UVA and UVB Radiation-Induced Skin Aging. J Microbiol Biotechnol 2025; 35:e2411085. [PMID: 40147922 PMCID: PMC11985413 DOI: 10.4014/jmb.2411.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
Ultraviolet (UV) radiation often causes skin aging, inflammation, cancer and other related skin diseases. In this study, the main components of Tricholoma matsutake extract (TME) were identified using UPLC-Q-TOF-MS, and their anti-photoaging effects were assessed through UV-induced cell and animal models. The key components identified were D-mannitol (27.41%), DL-malic acid (14%), alginate (12.5%), isoleucine (4.82%), and phenylalanine (4.31%), all of which played roles in anti-aging and UV protection. TME (50-100 mg/ml) significantly alleviated UVA/UVB-induced erythema and wrinkles in mice. Pathological staining showed that TME suppressed UV-induced epidermal hyperplasia (p < 0.05), reduced collagen damage (p < 0.01), and decreased mast cell infiltration (p < 0.01), while down-regulating inflammatory markers such as IL-6, IL-1β, and TNF-α. TME also upregulated type I collagen (COL-1). Flow cytometry results demonstrated that high-dose TME inhibited UV-induced apoptosis and reduced reactive oxygen species (ROS) in HaCaT cells (p < 0.05). Immunofluorescence and scratch migration assays showed that TME promoted PPAR-α expression, reduced inflammation, and supported skin repair (p < 0.01). Transcriptomic and metabolomic analyses indicated that TME regulated inflammation-related signaling pathways, helping to prevent skin aging. TME is a promising natural product for skin care and treatment of oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Lu Hu
- SHE LOG (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510000, P.R. China
| | - Zhenhai Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| | - Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| | - Chujie Huang
- SHE LOG (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China
| |
Collapse
|
19
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
20
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
21
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
22
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
23
|
Li H. Effect of Application of Autologous Conditioned Serum on Wound Healing in Diabetic Mice Through Inhibition of STING Pathway Activation. Biochem Genet 2025; 63:623-633. [PMID: 38478149 DOI: 10.1007/s10528-024-10734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2025]
Abstract
Slow wound healing in diabetic patients is a common complication of diabetes. Autologous conditioned serum (ACS) therapy is an emerging and safe biological therapy, and may accelerate the wound healing in diabetes. To investigate the effect of ACS in promoting wound healing in diabetic mice and its possible mechanism. Twenty-four six-week-old male C57BL/6 J mice were selected and divided into 5 groups, including control group (Ctrl), diabetic wound group (DW), ACS treatment group (DW+ACS) and STING pathway validation group (DW+ACS+DMXAA), with six mice in each group. Intervention was initiated after the back incision was performed, and wound healing was assessed on day 0, day 7, and day 14, and wound healing was assessed by hematoxylin and eosin (HE) staining of skin tissue on day 14. At the same time, the wound healing of the fibroblast markers collagen I and α-SMA was measured by immunohistochemistry and western blot. ACS treatment significantly accelerated the diabetic wound according to the wound area and HE staining results. Meanwhile, collagen I and α-SMA concentration evaluated by immunohistochemistry and western blot were remarkably elevated under the ACS interference. The STING signaling pathway was obviously activated in diabetic wound tissues. After the addition of DMXAA, an agonist of STING, the healing function of ACS was dramatically reversed. The application of ACS promotes wound healing in diabetic mice by enhancing fibroblasts. Meanwhile, the STING signaling pathway was inactivated by ACS interference. Hence, ACS can be used in the treatment of wound healing of Diabetes.
Collapse
Affiliation(s)
- Hongxia Li
- Blood Transfusion Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
24
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
25
|
Feng S, Zhang Q, Liu Q, Huang C, Zhang H, Wang F, Zhu Y, Jian Q, Chen X, Jiang Q, Yan B. N 6-Methyladenosine Demethylase FTO Controls Macrophage Homeostasis in Diabetic Vasculopathy. Diabetes 2025; 74:82-95. [PMID: 39446524 DOI: 10.2337/db24-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Diabetic vasculopathy, encompassing complications such as diabetic retinopathy, represents a significant source of morbidity, with inflammation playing a pivotal role in the progression of these complications. This study investigates the influence of N6-methyladenosine demethylase (m6A) modification and the m6A demethylase fat mass and obesity-associated (FTO) protein on macrophage polarization and its subsequent effects on diabetic microvasculopathy. We found that diabetes induces a shift in macrophage polarization toward a proinflammatory M1 phenotype, which is associated with a reduction in m6A modification levels. Notably, FTO emerges as a critical regulator of m6A under diabetic conditions. In vitro experiments reveal that FTO not only modulates macrophage polarization but also mediates their interactions with vascular endothelial cells. In vivo experiments demonstrate that FTO deficiency exacerbates retinal inflammation and microvascular dysfunction in diabetic retinas. Mechanistically, FTO stabilizes mRNA through an m6A-YTHDF2-dependent pathway, thereby activating the PI3K/AKT signaling cascade. Collectively, these findings position FTO as a promising therapeutic target for the management of diabetic vascular complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fengsheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Yan R, Wang Y, Li W, Sun J. Promotion of chronic wound healing by plant-derived active ingredients and research progress and potential of plant polysaccharide hydrogels. CHINESE HERBAL MEDICINES 2025; 17:70-83. [PMID: 39949811 PMCID: PMC11814255 DOI: 10.1016/j.chmed.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Wound healing is a complex biochemical process. The use of herbal medicine in wound healing not only carries forward the wisdom of traditional medicine, with its anti-inflammatory and immune-regulating effects, but also reflects the direction of modern biopharmaceutical technology, such as its potential in developing new biomaterials like hydrogels. This article first outlines the inherent structural properties of healthy skin, along with the physiological characteristics related to chronic wounds in patients with diabetes and burns. Subsequently, the article delves into the latest advancements in clinical and experimental research on the impact of active constituents in herbal medicine on wound tissue regeneration, summarizing existing studies on the mechanisms of various herbal medicines in the healing of diabetic and burn wounds. Finally, the paper thoroughly examines the application and mechanisms of plant polysaccharide hydrogels containing active herbal compounds in chronic wound healing. The primary objective is to provide valuable resources for the clinical application and development of herbal medicine, thereby maximizing its therapeutic potential. It also represents the continuation of traditional medical wisdom, offering new possibilities for advancements in regenerative medicine and wound care.
Collapse
Affiliation(s)
- Ru Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Jialin Sun
- Department of Medicine, Heilongjiang Minzu College, Harbin 150066, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| |
Collapse
|
27
|
Yang D, Li W, Xiang P, Ge T, Li H, Zhang Y. Rhein promotes skin wound healing by activating the PI3K/AKT signaling pathway. Open Med (Wars) 2024; 19:20241116. [PMID: 39726811 PMCID: PMC11669899 DOI: 10.1515/med-2024-1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Rhein is a natural anthraquinone substance extracted from Rheum palmatum L. This study aimed to evaluate Rhein's protective effects against skin wound by in vivo and in vitro models and investigate whether its protective mechanism regulated the PI3K/AKT signaling pathway. The skin wound mice model was established and then treated with Rhein for 10 days. Hematoxylin and eosin staining and Masson's trichrome staining were applied to assess histological changes and collagen maturity in the mice skin wound tissues. Human skin fibroblasts (HSFs) viability, migration, and invasion were detected by Cell counting kit-8 (CCK-8), scratch wound, and transwell assays respectively. Moreover, the protein expression of p-PI3K, PI3K, p-AKT, and AKT were determined by western blot assay. We found that local treatment with Rhein promoted skin wound healing and accelerated collagen maturation, compared with the Model group. In addition, Rhein promoted skin wound healing through accelerated HSF proliferation, migration, and invasion. Furthermore, Rhein remarkably enhanced p-PI3K and p-AKT expression, as well as p-PI3K/PI3K and p-AKT/AKT ratio in skin wound mice and HSF cells, suggesting that Rhein promoted skin wound healing by activating PI3K/AKT signaling pathway. In conclusion, Rhein is a promising agent for promoting wound healing of skin tissues.
Collapse
Affiliation(s)
- Dong Yang
- Department of Anorectal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| | - Ping Xiang
- Department of Anorectal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| | - Tingrui Ge
- Department of Anorectal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| | - Huazhuan Li
- Department of Anorectal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| | - Yonggang Zhang
- Department of Anorectal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, 222016, China
| |
Collapse
|
28
|
Zou Y, Mao Z, Zhao C, Fan Z, Yang H, Xia A, Zhang X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int J Biol Macromol 2024; 283:137831. [PMID: 39566781 DOI: 10.1016/j.ijbiomac.2024.137831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Wound healing is a complex biological process that involves several stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings, to a certain extent, can provide wound protection but are limited in promoting wound healing, reducing scar formation, and preventing bacterial infections. In recent years, with the advancement of research in biomedical materials, fish skin dressings have become a research hotspot in the field of tissue regeneration due to their remarkable biocompatibility and precious bioactive components. However, current research on fish skin dressings remains focused on clinical treatment. To further deepen and promote the development of fish skin dressings, we put emphasis on discussing main bioactive components in fish skin. This article has reviewed the advantages of fish skin dressings in wound regeneration, especially the promotive effects of its main bioactive components-Omega-3 polyunsaturated fatty acids, collagen derived from fish skin, and the extracellular matrix of fish skin-on the wound healing process. Besides, by critically summarizing the research issues of each bioactive component, this review assists researchers in better defining the next direction of research, thereby designing the optimal dressing for different types of wounds.
Collapse
Affiliation(s)
- Ying Zou
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zongtao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhonghao Fan
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Anqi Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Xudong Zhang
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
29
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
30
|
Wang Q, Cao B, Zhan J, Hu X, Yu Y, Li X, Liu Y. Sea Buckthorn Oil Promotes the PI3K-Akt-ERK Signaling Pathway and Macrophage M2 Polarization to Reduce Radiation-induced Skin Injury. Radiat Res 2024; 202:785-794. [PMID: 39343736 DOI: 10.1667/rade-23-00100.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/23/2024] [Indexed: 10/01/2024]
Abstract
In this work, we explored the role and mechanism of sea buckthorn oil in reducing radiation-induced skin damage. The radiation-induced rat skin injury model was established using strontium-90. Rats were treated with sea buckthorn oil twice a day postirradiation, and skin damage was observed at different times and evaluated using an injury score. Skin pathological changes were observed using hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry were used to detect the expression of vascular growth and pathway proteins. ELISA was used to detect the secretion level of inflammatory factors. Immunohistochemistry was used to detect macrophage polarization marker proteins. We found that sea buckthorn oil can alleviate radiation-induced skin damage, accelerate skin vascular regeneration, and promote the up-regulation of vascular endothelial growth factor (VEGF) and its receptor (VEGFR). These results demonstrate the beneficial effects of sea buckthorn oil on radiation-induced skin damage. Furthermore, the levels of IL-1β and TNF-α in the sea buckthorn oil treatment group were significantly lower than those in the control group, while the levels of IL-4 and IL10 were significantly higher (P < 0.05). CD206 expression also increased in the sea buckthorn oil treatment group, while CD16 expression decreased compared to the control group (P < 0.05). Western blotting showed that PI3K, Akt and ERK expression increased in the sea buckthorn oil treatment group (P < 0.05). The beneficial effect of sea buckthorn oil in reducing the inflammatory response in irradiated rats was diminished when they were treated with PI3K inhibitor. We conclude that sea buckthorn oil may regulate macrophage M2 polarization by increasing the PI3K-Akt-ERK signaling pathway, thereby inhibiting the inflammatory response and promoting skin vascular regeneration to prevent and treat radiation-induced skin damage.
Collapse
Affiliation(s)
- Qiu Wang
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Binyan Cao
- Emergency Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Junwei Zhan
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xinyu Hu
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yang Yu
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xueyu Li
- Nursing Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Ying Liu
- Emergency Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
31
|
Hua S, Zhang Y, Zhu Y, Fu X, Meng L, Zhao L, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystals strengthened injectable stretchable hydrogel as multi-responsive enhanced antibacterial wound dressing for promoting diabetic wound healing. Carbohydr Polym 2024; 343:122426. [PMID: 39174115 DOI: 10.1016/j.carbpol.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
The intricate microenvironment of diabetic wounds characterized by hyperglycemia, intense oxidative stress, persistent bacterial infection and complex pH fluctuations hinders the healing process. Herein, an injectable multifunctional hydrogel (QPTx) was developed, which exhibited excellent mechanical performance and triple responsiveness to pH, temperature, and glucose due to dynamic covalent cross-linking involving dynamic Schiff base bonds and phenylboronate esters with phenylboronic-modified quaternized chitosan (QCS-PBA), polydopamine coated tunicate cellulose crystals (PDAn@TCNCs) and polyvinyl alcohol (PVA). Furthermore, the hydrogels can incorporate insulin (INS) drugs to adapt to the complex and variable wound environment in diabetic patients for on-demand drug release that promote diabetic wound healing. Based on various excellent properties of the colloidal materials, the hydrogels were evaluated for self-healing, rheological and mechanical properties, in vitro insulin response to pH/temperature/glucose release, antibacterial, antioxidant, tissue adhesion, coagulation, hemostasis in vivo and in vitro, and biocompatibility and biodegradability. By introducing PDAn@TCNCs particles, the hydrogel has photothermal antibacterial activity, enhanced adhesion and oxidation resistance. We further demonstrated that these hydrogel dressings significantly improved the healing process compared to commercial dressings (Tegaderm™) in full-layer skin defect models. All indicated that the glucose-responsive QPTx hydrogel platform has great potential for treating diabetic wounds.
Collapse
Affiliation(s)
- Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingtao Meng
- School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lihua Zhao
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
32
|
Theapparat Y, Khongthong S, Roekngam N, Suwandecha T, Nopparat J, Faroongsarng D. Pyroligneous extract, a biomaterial derived from pyrolytic palm kernel shell wood vinegar, as a novel diabetic wound healing aid: an animal study. Drug Dev Ind Pharm 2024; 50:907-916. [PMID: 39512002 DOI: 10.1080/03639045.2024.2427795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Wound in diabetes is difficult to heal since it possesses excessive inflammation. The aim of the study was to evaluate wound healing activity of chitosan-based hydrogel containing pyroligneous acid in diabetic animals. SIGNIFICANCE Pyroligneous acid, a byproduct of biochar production from palm kernel shell biomass, contained oxygenated compounds which, with extracting enrichment, could promote wound healing. METHODS Streptozotocin-induced diabetic male jcl: ICR mice were subjected to create wounds and treat with hydrogel containing pyroligneous extract at dose strengths of 0 (placebo), 100 and 150 µg/g-gel. Commercial gel (Intrasite®) was used as an active comparator. On 3-, 7-, 10- and 14-day post-wounding, wound contraction was rated and wound site tissues were collected. The specimens were H&E stained and microscopically examined to evaluate histological responses. The underline wound healing related cytokine and polypeptide expressions were determined using real-time PCR and western blot. RESULTS It was found that the extract accelerated the healing process in a dose-dependent manner where at dose strength of 150 µg/g-gel was as effective as active comparator. It increased gene expression of the cytokine and related proteins in TGF-β/SMAD signaling pathway and may further activate diabetic induced TGF-β downregulation to restore up to the level that healthy skin tissues express. It also enhanced the expressions of Akt, FAK, RhoA and Rac-1 and evidently activated phosphorylation of Akt and FAK. CONCLUSION The study demonstrated the extract could be a novel biomaterial for healing of such a chronic inflammatory wound as the wound in diabetes.
Collapse
Affiliation(s)
- Yongyuth Theapparat
- Microbiome System Engineering Research Center, Prince of Songkla University, Songkhla, Thailand
- Center of Excellence in Functional Foods and Gastronomy, Prince of Songkla University, Songkhla, Thailand
| | - Sunisa Khongthong
- Rajamangala University of Technology Srivijaya, Nakhon Sri Thammarat, Thailand
| | - Natthrit Roekngam
- Rajamangala University of Technology Srivijaya, Nakhon Sri Thammarat, Thailand
| | - Tan Suwandecha
- School of Pharmacy, Walailak University, Nakhon Sri Thammarat, Thailand
| | - Jongdee Nopparat
- Department of Anatomy, Prince of Songkla University, Songkhla, Thailand
| | - Damrongsak Faroongsarng
- Microbiome System Engineering Research Center, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Department of Pharmaceutical Technology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
33
|
Shi M, Guo K, Liu Y, Cao F, Fan T, Deng Z, Meng Y, Bu M, Ma Z. Role of macrophage polarization in periodontitis promoting atherosclerosis. Odontology 2024; 112:1209-1220. [PMID: 38573421 DOI: 10.1007/s10266-024-00935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Periodontitis is a chronic inflammatory destructive disease occurring in periodontal supporting tissues. Atherosclerosis(AS) is one of the most common cardiovascular diseases. Periodontitis can promote the development and progression of AS. Macrophage polarization is closely related to the development and progression of the above two diseases, respectively. The purpose of this animal study was to evaluate the effect of periodontitis on aortic lesions in atherosclerotic mice and the role of macrophage polarization in this process. 45 ApoE-/-male mice were randomly divided into three groups: control (NC), atherosclerosis (AS), and atherosclerosis with periodontitis (AS + PD). Micro CT, serological testing and pathological testing(hematoxylin-eosin staining, oil red O staining and Masson staining) were used for Evaluate the modeling situation. Immunohistochemistry(IHC) and immunofluorescence(IF) were performed to evaluate macrophage content and macrophage polarization in plaques. Cytokines associated with macrophage polarization were analyzed using quantitative real-time polymerase chain reaction(qRT-PCR) and enzyme-linked immunosorbent assay(Elisa). The expression of macrophages in plaques was sequentially elevated in the NC, AS, and AS + PD groups(P < 0.001). The expression of M1 and M1-related cytokines showed the same trend(P < 0.05). The expression of M2 and M2-related cytokines showed the opposite trend(P < 0.05). The rate of M1/M2 showed that AS + PD > AS > NC. Our preliminary data support that experimental periodontitis can increase the content of macrophage in aortic plaques to exacerbate AS. Meanwhile, experimental periodontitis can increase M1 macrophages, and decrease M2 macrophages, increasing M1/M2 in the plaque.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Kaili Guo
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Yue Liu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Fengdi Cao
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Tiantian Fan
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Zhuohang Deng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Yuhan Meng
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Mingyang Bu
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China
| | - Zhe Ma
- Department of Preventive Dentistry, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, No.383, Zhongshan East Road, Changan District, Shijiazhuang, Hebei, China.
| |
Collapse
|
34
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
35
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
36
|
Yang Y, Fan L, Jiang J, Sun J, Xue L, Ma X, Kuai L, Li B, Li Y. M2 macrophage-polarized anti-inflammatory microneedle patch for accelerating biofilm-infected diabetic wound healing via modulating the insulin pathway. J Nanobiotechnology 2024; 22:489. [PMID: 39143532 PMCID: PMC11323363 DOI: 10.1186/s12951-024-02731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Macrophages play a pivotal role in the healing of diabetic ulcers. The sustained elevation of glucose levels damages the insulin signaling pathway in macrophages, leading to dysfunctional macrophages that struggle to transition from pro-inflammatory (M1) to reparative (M2) states. Therefore, modulating macrophage inflammatory responses via the insulin pathway holds promise for diabetic ulcer treatment. Additionally, the presence of biofilm impedes drug penetration, and the resulting immunosuppressive microenvironment exacerbates the persistent infiltration of pro-inflammatory M1 macrophages. Therefore, we designed an array of dissolvable microneedle (denoted as NPF@MN) loaded with self-assembled nanoparticles that could deliver NPF nanoparticles, acid-sensitive NPF-releasing Protocatechualdehyde (PA) with hypoglycemic and insulin-like effects, regulating macrophage polarization to an anti-inflammatory M2 phenotype. Additionally, this study extensively examined the mechanism by which NPF@MN accelerates the healing of diabetic ulcers through the activation of the insulin signaling pathway. Through RNA-seq and GSEA analysis, we identified a reduction in the expression of pathway-related factors such as IR, IRS-1, IRS-2, and SHC. Our work presents an innovative therapeutic approach targeting the insulin pathway in diabetic ulcers and underscores its translational potential for clinical management.
Collapse
Affiliation(s)
- Yushan Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Limin Fan
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiuyuan Sun
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Liangyi Xue
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Xiaoyi Ma
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
37
|
Gan X, Hu J, Pang Q, Yan R, Bao Y, Liu Y, Song J, Wang Z, Sun W, Huang F, Cai C, Wang L. LDHA-mediated M2-type macrophage polarization via tumor-derived exosomal EPHA2 promotes renal cell carcinoma progression. Mol Carcinog 2024; 63:1486-1499. [PMID: 38780182 DOI: 10.1002/mc.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Lactate dehydrogenase A (LDHA) is known to promote the growth and invasion of various types of tumors, affects tumor resistance, and is associated with tumor immune escape. But how LDHA reshapes the tumor microenvironment and promotes the progression of renal cell carcinoma (RCC) remains unclear. In this study, we found that LDHA was highly expressed in clear cell RCC (ccRCC), and this high expression was associated with macrophage infiltration, while macrophages were highly infiltrated in ccRCC, affecting patient prognosis via M2-type polarization. Our in vivo and in vitro experiments demonstrated that LDHA and M2-type macrophages could enhance the proliferation, invasion, and migration abilities of ccRCC cells. Mechanistically, high expression of LDHA in ccRCC cells upregulated the expression of EPHA2 in exosomes derived from renal cancer. Exosomal EPHA2 promoted M2-type polarization of macrophages by promoting activation of the PI3K/AKT/mTOR pathway in macrophages, thereby promoting the progression of ccRCC. All these findings suggest that EPHA2 may prove to be a potential therapeutic target for advanced RCC.
Collapse
Affiliation(s)
- Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiatao Hu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingyang Pang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rui Yan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Bao
- Department of Urology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weihao Sun
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fuzhao Huang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Qi Y, Zhou Q, Zhang Y, Deng J, Li R, Zhang X. Exploring the active components and potential mechanisms of Alpiniae oxyphyllae Fructus in treating diabetes mellitus with depression by UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking. Metab Brain Dis 2024; 39:1065-1084. [PMID: 38954241 DOI: 10.1007/s11011-024-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The growing incidence of diabetes mellitus (DM) and depression is a global public health issue. Alpiniae oxyphyllae Fructus (AOF) is a kind of medicinal and edible plant which be found with anti-diabetic property, and could improve depression-like symptoms. This study aimed to screen active targets and potential mechanisms of AOF in treating DM with depression. Injection of streptozotocin (STZ) and exposure to chronic unpredictable mild stress (CUMS) for 4 weeks were used to conduct the DM with depression mice model. Behavioral tests, indexes of glucose metabolism, monoamine neurotransmitters, inflammatory cytokine and oxidative stress were measured. Histopathological change of hippocampus tissue was observing by HE and Nissl staining. UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking were used to explore the chemical components and mechanisms of AOF on the DM with depression. AOF showed a reversed effect on body weight in DM with depression mice. Glucose metabolism and insulin resistance could be improved by treatment of AOF. In addition, AOF could alleviate depression-like behaviors based on the results of behavior tests and monoamine neurotransmitters. AOF also attenuated STZ-CUMS induced neuron injury in hippocampus. Next, a total of 61 chemical components were identified in the UPLC-Q-Exactive Orbitrap/MS analysis of the extract of AOF. Network pharmacology analysis suggested that 12 active components and 227 targets were screened from AOF, and 1802 target genes were screened from DM with depression, finally 126 intersection target genes were obtained. Drug-disease targets network was constructed and implied that the top five components with a higher degree value includes quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol. Protein-protein interaction (PPI) network showed that MAPK1, FOS, AKT1, IL6 and TP53 may be the core intersection targets. The mechanism of the effect of AOF on DM with depression was analyzed through gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, mainly involved in AGE/RAGE, PI3K/AKT, and MAPK signaling pathways. The results of molecular docking indicated that quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol all had good binding to the core intersection targets. Overall, our experimental researches have demonstrated that AOF could exert the dual effects of anti-diabetic and anti-depression on DM with depression mice, through multi-targets and multi-pathways.
Collapse
Affiliation(s)
- Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
39
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
40
|
Gao J, Song X, Ou H, Cheng X, Zhang L, Liu C, Dong Y, Wang X. The association between vitamin D and the progression of diabetic nephropathy: insights into potential mechanisms. Front Med (Lausanne) 2024; 11:1388074. [PMID: 38978780 PMCID: PMC11228314 DOI: 10.3389/fmed.2024.1388074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Aims Vitamin D deficiency (VDD) is prevalent in the population, with inadequate intake, impaired absorption and metabolism as the main causative factors. VDD increases the risk of developing chronic diseases such as type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), but the molecular mechanisms underlying this phenomenon are not known. The aim of this study was to investigate the association and potential mechanisms of vitamin D levels with the progression of DN by analyzing general clinical data and using bioinformatics methods. Methods The study included 567 diabetes mellitus type 2 (T2DM) patients from the Rocket Force Characteristic Medical Center as the case group and 221 healthy examinees as the normal control group. T2DM patients were categorized into T2DM, early diabetic nephropathy (EDN), and advanced diabetic nephropathy (ADN) based on the progression of diabetic nephropathy. The renal RNA-seq and scRNA-seq data of patients with DN were mined from public databases, and the differential expression of vitamin D-related genes in normal-EDN-ADN was analyzed by bioinformatics method, protein interaction network was constructed, immune infiltration was evaluated, single cell map was drawn, and potential mechanisms of VD and DN interaction were explored. Results Chi-square test showed that vitamin D level was significantly negatively correlated with DN progression (p < 0.001). Bioinformatics showed that the expression of vitamin D-related cytochrome P450 family genes was down-regulated, and TLR4 and other related inflammatory genes were abnormally up-regulated with the progression of DN. Vitamin D metabolism disturbance up-regulate "Nf-Kappa B signaling pathway," B cell receptor signaling pathway and other immune regulation and insulin resistance related pathways, and inhibit a variety of metabolic pathways. In addition, vitamin D metabolism disturbance are strongly associated with the development of diabetic cardiomyopathy and several neurological disease complications. Conclusion VDD or vitamin D metabolism disturbance is positively associated with the severity of renal injury. The mechanisms may involve abnormal regulation of the immune system by vitamin D metabolism disturbance, metabolic suppression, upregulation of insulin resistance and inflammatory signalling pathways.
Collapse
Affiliation(s)
- Jiachen Gao
- The PLA Rocket Force Characteristic Medical Center, The Postgraduate Training Base of Jinzhou Medical University, Beijing, China
| | - Xiujun Song
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hongling Ou
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Lishu Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ya Dong
- The PLA Rocket Force Characteristic Medical Center, The Postgraduate Training Base of Jinzhou Medical University, Beijing, China
| | - Xinru Wang
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
41
|
Liang Y, Shen S, Ye X, Zhang W, Lin X. Celastrol alleviates airway hyperresponsiveness and inflammation in obese asthma through mediation of alveolar macrophage polarization. Eur J Pharmacol 2024; 972:176560. [PMID: 38604543 DOI: 10.1016/j.ejphar.2024.176560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1β, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.
Collapse
Affiliation(s)
- Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Sijia Shen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiaoxiao Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
42
|
Shi Y, Wang S, Wang K, Yang R, Liu D, Liao H, Qi Y, Qiu K, Hu Y, Wen H, Xu K. Relieving Macrophage Dysfunction by Inhibiting SREBP2 Activity: A Hypoxic Mesenchymal Stem Cells-Derived Exosomes Loaded Multifunctional Hydrogel for Accelerated Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309276. [PMID: 38247194 DOI: 10.1002/smll.202309276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.
Collapse
Affiliation(s)
- Yan Shi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510650, P. R. China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Huaiwei Liao
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yuhan Qi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Keqing Qiu
- Dermatological Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yanghong Hu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, P. R. China
| | - Huicai Wen
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Kui Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
| |
Collapse
|
43
|
Yin D, Shen G. Exosomes from adipose-derived stem cells regulate macrophage polarization and accelerate diabetic wound healing via the circ-Rps5/miR-124-3p axis. Immun Inflamm Dis 2024; 12:e1274. [PMID: 38888351 PMCID: PMC11184652 DOI: 10.1002/iid3.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) hold promising application prospects in the treatment of diabetic wounds, although the underlying mechanisms of repair have not been fully elucidated. This research aimed to elucidate the mechanisms by which ADSCs promote wound healing. METHODS Exosomes from ADSCs were isolated and circRps5 level was identified. To investigate the role of circRps5 in the regulation, exosomes from differently treated ADSCs were used. Different exosomes were injected into the edge of the wound in diabetic mice, and the effects on wound healing status, pathology, collagen, cytokines, and macrophage phenotype were assessed. Raw264.7 cells were co-treated with high glucose and exosomes, and then cell phenotype and autophagy were examined in vitro, followed by the evaluation of miR-124-3p's impact on cell phenotype. RESULTS Exosomes from ADSCs were isolated and identified using nanoparticle tracking analysis and exosome markers. Overexpression of circRps5 accelerated wound healing, reduced inflammatory response, enhanced collagen production, and promoted the M2 transformation of macrophages. In high glucose-induced macrophages, its overexpression also inhibited excessive autophagy. When macrophages overexpressed miR-124-3p, the induction of the M2 phenotype was suppressed. Luciferase reporter assay proved the combination of circRps5 and miR-124-3p. CONCLUSION This study identifies that circRps5 carried by ADSC-Exos promotes macrophage M2 polarization through miR-124-3p. These findings provide valuable insights into the mechanism of ADSC-Exos for treating refractory diabetic wounds, laying a solid theoretical groundwork for future clinical development.
Collapse
Affiliation(s)
- Dongjing Yin
- Department of Burns and Plastic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Burns and Plastic SurgeryAffiliated Nantong Hospital 3 of Nantong UniversityNantongJiangsuChina
| | - Guoliang Shen
- Department of Burns and Plastic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
44
|
Ryu S, Lee EK. The Pivotal Role of Macrophages in the Pathogenesis of Pancreatic Diseases. Int J Mol Sci 2024; 25:5765. [PMID: 38891952 PMCID: PMC11171839 DOI: 10.3390/ijms25115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The pancreas is an organ with both exocrine and endocrine functions, comprising a highly organized and complex tissue microenvironment composed of diverse cellular and non-cellular components. The impairment of microenvironmental homeostasis, mediated by the dysregulation of cell-to-cell crosstalk, can lead to pancreatic diseases such as pancreatitis, diabetes, and pancreatic cancer. Macrophages, key immune effector cells, can dynamically modulate their polarization status between pro-inflammatory (M1) and anti-inflammatory (M2) modes, critically influencing the homeostasis of the pancreatic microenvironment and thus playing a pivotal role in the pathogenesis of the pancreatic disease. This review aims to summarize current findings and provide detailed mechanistic insights into how alterations mediated by macrophage polarization contribute to the pathogenesis of pancreatic disorders. By analyzing current research comprehensively, this article endeavors to deepen our mechanistic understanding of regulatory molecules that affect macrophage polarity and the intricate crosstalk that regulates pancreatic function within the microenvironment, thereby facilitating the development of innovative therapeutic strategies that target perturbations in the pancreatic microenvironment.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
45
|
Wang M, Li C, Liu Y, Jin Y, Yu Y, Tan X, Zhang C. The effect of macrophages and their exosomes in ischemic heart disease. Front Immunol 2024; 15:1402468. [PMID: 38799471 PMCID: PMC11116575 DOI: 10.3389/fimmu.2024.1402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.
Collapse
Affiliation(s)
- Minrui Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanyuan Jin
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiu Tan
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
46
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
47
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
48
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
49
|
Langley D, Zimmermann K, Krenske E, Stefanutti G, Kimble RM, Holland AJA, Fear MW, Wood FM, Kenna T, Cuttle L. Unremitting pro-inflammatory T-cell phenotypes, and macrophage activity, following paediatric burn injury. Clin Transl Immunology 2024; 13:e1496. [PMID: 38463658 PMCID: PMC10921233 DOI: 10.1002/cti2.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Objectives The aim of this study was to characterise the dynamic immune profile of paediatric burn patients for up to 18 months post-burn. Methods Flow cytometry was used to measure 25 cell markers, chemokines and cytokines which reflected both pro-inflammatory and anti-inflammatory immune profiles. Peripheral blood mononuclear cells from 6 paediatric burn patients who had returned for repeated burn and scar treatments for > 4 timepoints within 12 months post-burn were compared to four age-matched healthy controls. Results While overall proportions of T cells, NK cells and macrophages remained relatively constant, over time percentages of these immune cells differentiated into effector and proinflammatory cell phenotypes including Th17 and activated γδ T cells. Circulating proportions of γδ T cells increased their expression of pro-inflammatory mediators throughout the burn recovery, with a 3-6 fold increase of IL-17 at 1-3 weeks, and NFκβ 9-18 months post-burn. T-regulatory cell plasticity was also observed, and Treg phenotype proportions changed from systemically reduced skin-homing T-regs (CCR4+) and increased inflammatory (CCR6+) at 1-month post-burn, to double-positive cell types (CCR4+CCR6+) elevated in circulation for 18 months post-burn. Furthermore, Tregs were observed to proportionally express less IL-10 but increased TNF-α over 18 months. Conclusion Overall, these results indicate the circulating percentages of immune cells do not increase or decrease over time post-burn, instead they become highly specialised, inflammatory and skin-homing. In this patient population, these changes persisted for at least 18 months post-burn, this 'immune distraction' may limit the ability of immune cells to prioritise other threats post-burn, such as respiratory infections.
Collapse
Affiliation(s)
- Donna Langley
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| | - Kate Zimmermann
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Emma Krenske
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Giorgio Stefanutti
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Roy M Kimble
- Department of Paediatric Surgery, Urology, Burns and TraumaChildren's Health Queensland, Queensland Children's HospitalSouth BrisbaneQLDAustralia
| | - Andrew JA Holland
- The Children's Hospital at Westmead Burns Unit, Department of Paediatrics and Child Health, Kids Research InstituteSydney Medical School, The University of SydneySydneyNSWAustralia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
- Burns Service of Western AustraliaPerth Children's Hospital and Fiona Stanley HospitalPerthWAAustralia
| | - Tony Kenna
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Immunology and Infection Control (CIIC)QIMR Berghofer Medical Research Institute, Queensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Leila Cuttle
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT)South BrisbaneQLDAustralia
- Centre for Biomedical Technology (CBT)Queensland University of Technology (QUT)Kelvin GroveQLDAustralia
| |
Collapse
|
50
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|