1
|
Zhong P, Li X, Li J. Mechanisms, assessment, and exercise interventions for skeletal muscle dysfunction post-chemotherapy in breast cancer: from inflammation factors to clinical practice. Front Oncol 2025; 15:1551561. [PMID: 40104495 PMCID: PMC11913840 DOI: 10.3389/fonc.2025.1551561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy remains a central component of breast cancer treatment, significantly improving patient survival rates. However, its toxic side effects, along with cancer-related paraneoplastic syndromes, can lead to the loss of skeletal muscle mass and function, impairing physical abilities and increasing the risk of complications during treatment. Chemotherapeutic agents directly impact skeletal muscle cells by promoting protein degradation, inhibiting protein synthesis, and triggering systemic inflammation, all of which contribute to muscle atrophy. Additionally, these drugs can interfere with the proliferation and differentiation of stem cells, such as satellite cells, disrupting muscle regeneration and repair while inducing abnormal differentiation of intermuscular tissue, thereby worsening muscle wasting. These effects not only reduce the effectiveness of chemotherapy but also negatively affect patients' quality of life and disease prognosis. Recent studies have emphasized the role of exercise as an effective non-pharmacological strategy for preventing muscle loss and preserving muscle mass in cancer patients. This review examines the clinical manifestations of muscle dysfunction following breast cancer chemotherapy, the potential mechanisms underlying these changes, and the evidence supporting exercise as a therapeutic approach for improving muscle function.
Collapse
Affiliation(s)
- Pei Zhong
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xizhuang Li
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Li X, Zhu Z, Wen K, Ling T, Huang H, Qi L, Wang B. Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model. J Cancer Res Ther 2024; 20:2004-2012. [PMID: 39792410 DOI: 10.4103/jcrt.jcrt_140_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/01/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties. MATERIALS AND METHODS This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model. RESULTS DHA treatment significantly increases tumor-free body weight and food intake but decreases serum interleukin-6 level and tumor weight in CC mice. In addition, DHA treatment relieves muscle atrophy and decreases muscle ring finger 1 (MuRF1) and F-box-only protein 32 (Fbx32) expressions in CC mice. In vitro, DHA reverses the reduction in myotube formation induced by an LLC-conditioned medium and increases Fbx32 expression in C2C12 mouse myotubular cells. CONCLUSIONS Our study demonstrated that DHA ameliorates the cachectic state and skeletal muscle atrophy in LLC-induced cachectic mouse models, suggesting its therapeutic potential for CC.
Collapse
Affiliation(s)
- Xin Li
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhiying Zhu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Keting Wen
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Tingting Ling
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong, People's Republic of China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Qi
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical College, Weifang, Shandong, People's Republic of China
| | - Bei Wang
- Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
3
|
Li L, Wazir J, Huang Z, Wang Y, Wang H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis 2024; 11:101080. [PMID: 39220755 PMCID: PMC11364047 DOI: 10.1016/j.gendis.2023.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 09/04/2024] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by progressive weight loss and a disease process that nutritional support cannot reverse. Although progress has been made in preclinical research, there is still a long way to go in translating research findings into clinical practice. One of the main reasons for this is that existing preclinical models do not fully replicate the conditions seen in clinical patients. Therefore, it is important to understand the characteristics of existing preclinical models of cancer cachexia and pay close attention to the latest developments in preclinical models. The main models of cancer cachexia used in current research are allogeneic and xenograft models, genetically engineered mouse models, chemotherapy drug-induced models, Chinese medicine spleen deficiency models, zebrafish and Drosophila models, and cellular models. This review aims to revisit and summarize the commonly used animal models of cancer cachexia by evaluating existing preclinical models, to provide tools and support for translational medicine research.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
4
|
Varshney S, Shankar K, Kerr HL, Anderson LJ, Gupta D, Metzger NP, Singh O, Ogden SB, Paul S, Piñon F, Osborne-Lawrence S, Richard CP, Lawrence C, Mani BK, Garcia JM, Zigman JM. The LEAP2 Response to Cancer-Related Anorexia-Cachexia Syndrome in Male Mice and Patients. Endocrinology 2024; 165:bqae132. [PMID: 39331742 PMCID: PMC11481018 DOI: 10.1210/endocr/bqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
The hormone ghrelin serves a protective role in cancer-related anorexia-cachexia syndrome (CACS)-a condition in which plasma levels of ghrelin rise, its administration lessens CACS severity, and experimentally reduced signaling by its receptor (GHSR) worsens fat loss and anorexia and accelerates death. Yet, actions for the related hormone liver-expressed antimicrobial peptide-2 (LEAP2), which is an endogenous GHSR antagonist, are unexplored in CACS. Here, we found that plasma LEAP2 and LEAP2/ghrelin ratio were lower in Lewis lung carcinoma (LLC) and RM-9 prostate cancer CACS mouse models. Ghrelin deletion exaggerated losses of tumor-free body weight and fat mass, reduced food intake, reduced soleus muscle weight, and/or lowered grip strength in LLC or RM-9 tumor-bearing mice. LEAP2 deletion lessened reductions in tumor-free body weight and fat mass and increased food intake in LLC or RM-9 tumor-bearing mice. In a 55-subject cohort of patients with CACS or weight-stable cancer, the plasma LEAP2/total ghrelin ratio was negatively correlated with 6-month weight change preceding blood collection. These data demonstrate that ghrelin deletion exacerbates CACS in the LLC and RM-9 tumor-bearing mouse models while contrastingly, LEAP2 deletion reduces measures of CACS in these tumor-bearing mouse models. Further, they suggest that lower plasma LEAP2/ghrelin ratio protects against worsened CACS.
Collapse
Affiliation(s)
- Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Haiming L Kerr
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sean B Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhojit Paul
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Francisco Piñon
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Connor Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
5
|
Yule MS, Brown LR, Skipworth RJE, Laird BJA. Central neural mechanisms of cancer cachexia. Curr Opin Support Palliat Care 2024; 18:138-144. [PMID: 38752576 DOI: 10.1097/spc.0000000000000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
PURPOSE OF REVIEW Cachexia is a devasting syndrome which impacts a large number of patients with cancer. This review aims to provide a comprehensive overview of the central mechanisms of cancer cachexia. In particular, it focuses on the role of the central nervous system (CNS), the melanocortin system, circulating hormones and molecules which are produced by and act on the CNS and the psychological symptoms of cancer cachexia. RECENT FINDINGS A growing body of evidence suggests that a central mechanism of action underpins this multi-system disorder. Recent research has focused on the role of neuroinflammation that drives the sickness behaviour seen in cancer cachexia, with emphasis on the role of the hypothalamus. Melanocortin receptor antagonists are showing promise in preclinical studies. There are also new pharmacological developments to overcome the short half-life of ghrelin. GDF-15 has been identified as a core target and trials of compounds that interfere with its signalling or its central receptor are underway. SUMMARY Understanding the central mechanisms of cancer cachexia is pivotal for enhancing treatment outcomes in patients. While emerging pharmacological interventions targeting these pathways have shown promise, further research is essential.
Collapse
Affiliation(s)
- Michael S Yule
- St Columba's Hospice
- Edinburgh Cancer Research Centre, University of Edinburgh
| | - Leo R Brown
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard J E Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Barry J A Laird
- St Columba's Hospice
- Edinburgh Cancer Research Centre, University of Edinburgh
| |
Collapse
|
6
|
Li Y, Chen Y, Liao Y, Huang T, Tang Q, He C, Xu L, Chang H, Li H, Liu Q, Lai D, Xia Q, Zou Z. Photobiomodulation therapy moderates cancer cachexia-associated muscle wasting through activating PI3K/AKT/FoxO3a pathway. Apoptosis 2024; 29:663-680. [PMID: 38598070 DOI: 10.1007/s10495-024-01949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 04/11/2024]
Abstract
Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.
Collapse
Affiliation(s)
- Yonghua Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Liu Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hongsheng Li
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Quentin Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510631, China
| | - Dongming Lai
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510235, China.
| | - Qing Xia
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Galiana-Melendez F, Huot JR. The Impact of Non-bone Metastatic Cancer on Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:318-329. [PMID: 38649653 DOI: 10.1007/s11914-024-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the musculoskeletal consequences of cancer, including those that occur in the absence of bone metastases. RECENT FINDINGS Cancer patients frequently develop cachexia, a debilitating condition reflected by weight loss and skeletal muscle wasting. The negative effects that tumors exert on bone health represents a growing interest amongst cachexia researchers. Recent clinical and pre-clinical evidence demonstrates cancer-induced bone loss, even in the absence of skeletal metastases. Together with muscle wasting, losses in bone demonstrates the impact of cancer on the musculoskeletal system. Identifying therapeutic targets that comprehensively protect musculoskeletal health is essential to improve the quality of life in cancer patients and survivors. IL-6, RANKL, PTHrP, sclerostin, and TGF-β superfamily members represent potential targets to counteract cachexia. However, more research is needed to determine the efficacy of these targets in protecting both skeletal muscle and bone.
Collapse
Affiliation(s)
| | - Joshua R Huot
- Department of Anatomy, Cell Biology & Physiology, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Yue M, Qin Z, Hu L, Ji H. Understanding cachexia and its impact on lung cancer and beyond. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:95-105. [PMID: 39169934 PMCID: PMC11332896 DOI: 10.1016/j.pccm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by loss of body weight secondary to skeletal muscle atrophy and adipose tissue wasting. It not only has a significant impact on patients' quality of life but also reduces the effectiveness and tolerability of anticancer therapy, leading to poor clinical outcomes. Lung cancer is a prominent global health concern, and the prevalence of cachexia is high among patients with lung cancer. In this review, we integrate findings from studies of lung cancer and other types of cancer to provide an overview of recent advances in cancer cachexia. Our focus includes topics such as the clinical criteria for diagnosis and staging, the function and mechanism of selected mediators, and potential therapeutic strategies for clinical application. A comprehensive summary of current studies will improve our understanding of the mechanisms underlying cachexia and contribute to the identification of high-risk patients, the development of effective treatment strategies, and the design of appropriate therapeutic regimens for patients at different disease stages.
Collapse
Affiliation(s)
- Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
9
|
Shorter E, Engman V, Lanner JT. Cancer-associated muscle weakness - From triggers to molecular mechanisms. Mol Aspects Med 2024; 97:101260. [PMID: 38457901 DOI: 10.1016/j.mam.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Skeletal muscle weakness is a debilitating consequence of many malignancies. Muscle weakness has a negative impact on both patient wellbeing and outcome in a range of cancer types and can be the result of loss of muscle mass (i.e. muscle atrophy, cachexia) and occur independently of muscle atrophy or cachexia. There are multiple cancer specific triggers that can initiate the progression of muscle weakness, including the malignancy itself and the tumour environment, as well as chemotherapy, radiotherapy and malnutrition. This can induce weakness via different routes: 1) impaired intrinsic capacity (i.e., contractile dysfunction and intramuscular impairments in excitation-contraction coupling or crossbridge cycling), 2) neuromuscular disconnection and/or 3) muscle atrophy. The mechanisms that underlie these pathways are a complex interplay of inflammation, autophagy, disrupted protein synthesis/degradation, and mitochondrial dysfunction. The current lack of therapies to treat cancer-associated muscle weakness highlight the critical need for novel interventions (both pharmacological and non-pharmacological) and mechanistic insight. Moreover, most research in the field has placed emphasis on directly improving muscle mass to improve muscle strength. However, accumulating evidence suggests that loss of muscle function precedes atrophy. This review primarily focuses on cancer-associated muscle weakness, independent of cachexia, and provides a solid background on the underlying mechanisms, methodology, current interventions, gaps in knowledge, and limitations of research in the field. Moreover, we have performed a mini-systematic review of recent research into the mechanisms behind muscle weakness in specific cancer types, along with the main pathways implicated.
Collapse
Affiliation(s)
- Emily Shorter
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Viktor Engman
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
10
|
Yamamoto J, Onodera H, Kaminaga Y, Kayaba Y, Usui M. Anamorelin Induced Acute Hyperglycemia in a Patient with Advanced Pancreatic Cancer and Diabetes: A Case Report. TOHOKU J EXP MED 2024; 262:263-268. [PMID: 38325830 DOI: 10.1620/tjem.2024.j013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Anamorelin (ANAM) is a novel ghrelin receptor agonist for the treatment of cancer cachexia. In clinical trials of ANAM, glucose metabolism disorders as adverse effects were relatively frequent, however, when and how they occur remains unclear. Moreover, the safety in patients with pancreatic cancer and/or diabetes has not been clarified because most previous studies focused on patients with non-small cell lung cancer and had excluded patients with poorly controlled diabetes. Herein, a 66-year-old man with advanced pancreatic cancer and diabetes was administered ANAM, and acute hyperglycemia was developed and could be monitored by the self-monitoring of blood glucose (SMBG). Increasing the insulin dose failed to control hyperglycemia adequately, but the hyperglycemia ameliorated quickly after ANAM discontinuation. The continuous glucose monitoring (CGM) revealed that the sensor glucose levels had remained in the high range throughout the day during ANAM administration despite using 1.5 times more insulin. Our report is one of the few that describe the details of ANAM-induced hyperglycemia and provides important information for the safe and effective use of ANAM.
Collapse
Affiliation(s)
| | | | - Yuki Kaminaga
- Division of Metabolism and Diabetes, Osaki Citizen Hospital
| | - Yoko Kayaba
- Division of Metabolism and Diabetes, Osaki Citizen Hospital
| | - Masahiro Usui
- Division of Metabolism and Diabetes, Osaki Citizen Hospital
| |
Collapse
|
11
|
Lee B, Park Y, Lee Y, Kwon S, Shim J. Triptolide, a Cancer Cell Proliferation Inhibitor, Causes Zebrafish Muscle Defects by Regulating Notch and STAT3 Signaling Pathways. Int J Mol Sci 2024; 25:4675. [PMID: 38731894 PMCID: PMC11083231 DOI: 10.3390/ijms25094675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yongjin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Younggwang Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Seyoung Kwon
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Jaekyung Shim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| |
Collapse
|
12
|
Lim MJR, Zhang Z, Zheng Y, Khoo IWL, Ying RCVX, Koh SJQ, Lim E, Ngam PI, Soon B, Low YL, Tan LF, Teo K, Nga VDW, Yeo TT. Effect of sarcopenia and frailty on outcomes among patients with brain metastases. J Neurooncol 2024:10.1007/s11060-023-04542-w. [PMID: 38430419 DOI: 10.1007/s11060-023-04542-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/12/2023] [Indexed: 03/03/2024]
Abstract
PURPOSE Sarcopenia and frailty have been associated with increased mortality and duration of hospitalization in cancer. However, data investigating these effects in patients with brain metastases remain limited. This study aimed to investigate the effects of sarcopenia and frailty on clinical outcomes in patients with surgically treated brain metastases. METHODS Patients who underwent surgical resection of brain metastases from 2011 to 2019 were included. Psoas cross-sectional area and temporalis thickness were measured by two independent radiologists (Cronbach's alpha > 0.98). Frailty was assessed using the Clinical Frailty Scale (CFS) pre-operatively and post-operatively. Overall mortality, recurrence, and duration of hospitalization were collected. Cox regression was performed for mortality and recurrence, and multiple linear regression for duration of hospitalization. RESULTS 145 patients were included, with median age 60.0 years and 52.4% female. Psoas cross-sectional area was an independent risk factor for overall mortality (HR = 2.68, 95% CI 1.64-4.38, p < 0.001) and recurrence (HR = 2.31, 95% CI 1.14-4.65, p = 0.020), while post-operative CFS was an independent risk factor for overall mortality (HR = 1.88, 95% CI 1.14-3.09, p = 0.013). Post-operative CFS (β = 15.69, 95% CI 7.67-23.72, p < 0.001) and increase in CFS (β = 11.71, 95% CI 3.91-19.51, p = 0.004) were independently associated with increased duration of hospitalization. CONCLUSION In patients with surgically treated brain metastases, psoas cross-sectional area was an independent risk factor for mortality and recurrence, while post-operative CFS was an independent risk factor for mortality. Post-operative frailty and increase in CFS significantly increased duration of hospitalization. Measurement of psoas cross-sectional area and CFS may aid in risk stratification of surgical candidates for brain metastases.
Collapse
Affiliation(s)
- Mervyn Jun Rui Lim
- Division of Neurosurgery, National University Hospital, Singapore, Singapore.
| | - Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yilong Zheng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ivan Wei Loon Khoo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | - Ethanyn Lim
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Pei Ing Ngam
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Betsy Soon
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Ying Liang Low
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Li Feng Tan
- Healthy Ageing Programme, Alexandra Hospital, Singapore, Singapore
| | - Kejia Teo
- Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | | | - Tseng Tsai Yeo
- Division of Neurosurgery, National University Hospital, Singapore, Singapore
| |
Collapse
|
13
|
Zheng HL, Wei LH, Xu BB, Zheng HH, Xue Z, Chen QY, Xie JW, Zheng CH, Huang CM, Lin JX, Li P. Prognostic value of preoperative sarcopenia in gastric cancer: A 10-year follow-up study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108004. [PMID: 38330540 DOI: 10.1016/j.ejso.2024.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Preoperative sarcopenia is associated with prognosis in patients with gastric cancer (GC); however, studies with 10-year survival follow-up are lacking. METHODS Consecutive patients with GC who underwent radical gastrectomy between December 2009-2012 were included retrospectively. Preoperative sarcopenia was diagnosed using computed tomography skeletal muscle index. The Kaplan-Meier method estimated overall survival (OS) and relapse-free survival (RFS). Cox proportional hazard regression analysis determined the prognostic factors for OS and RFS. RESULTS In total, 781 patients with GC were included; among these, 207 (26.5%) had preoperative sarcopenia. Patients with sarcopenia had significantly lower 10-year OS and RFS than patients without sarcopenia (39.61% vs. 58.71% and 39.61% vs. 57.84%, respectively). Further, preoperative sarcopenia was an independent risk factor for 10-year OS (HR = 1.467; 95% confidence interval [CI]: 1.169-1.839) and RFS (HR = 1.450; 95% CI: 1.157-1.819). Patients with sarcopenia had a higher risk of death and recurrence in the first 10 years postoperatively than patients without sarcopenia. Additionally, the risk of death (HR = 2.62; 95% CI:1.581-4.332) and recurrence (HR = 2.34; 95% CI:1.516-3.606) was the highest in the 1st postoperative year and remained relatively stable thereafter. Further, postoperative adjuvant chemotherapy significantly improved 10-year OS (p = 0.006; HR = 0.558) and RFS (p = 0.008; HR = 0.573) in patients with TNM stage II-III GC that presented with sarcopenia. CONCLUSION Preoperative sarcopenia remained an independent risk factor for postoperative very long-term prognosis of GC. Postoperative adjuvant chemotherapy improved the long-term outcomes of stage II-III patients with sarcopenia.
Collapse
Affiliation(s)
- Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Ling-Hua Wei
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Bin-Bin Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Hong-Hong Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Zhen Xue
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China.
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China.
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350001, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350001, China; Fujian Province Minimally Invasive Medical Center, Fuzhou, 350001, China.
| |
Collapse
|
14
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
15
|
Huang Y, Wang J, Wei X, Zhang H, Shang W, Zhang X, Zhai L, Chen X, Li H, Qin S. GB18-06, a nanobody targeting GDF15, effectively alleviates weight loss and restores physical function in cachexia models. MAbs 2024; 16:2416453. [PMID: 39400041 PMCID: PMC11485916 DOI: 10.1080/19420862.2024.2416453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024] Open
Abstract
Cachexia is a complicated metabolic syndrome mainly associated with cancers, characterized by extreme weight loss and muscle wasting. It is a debilitating condition that negatively affects prognosis and survival. However, there is currently no effective pharmacological intervention that can reverse body weight loss and improve physical performance in patients with cachexia. Growth differentiation factor 15 (GDF15) can suppress appetite and regulate energy balance through binding to glial cell-derived neurotrophic factor receptor alpha-like (GFRAL). In order to develop a novel, effective treatment for cachexia, we generated a GDF15-targeting VHH nanobody, GB18-06, that was able to bind GDF15 with high affinity. In vitro, GB18-06 potently inhibited the GDF15-GFRAL signaling pathway, leading to a reduction of downstream ERK and AKT phosphorylation levels; in vivo, GB18-06 alleviated weight loss (>20%) in cancer and chemotherapy-induced cachexia models in mice. Compared with the control (phosphate-buffered saline) group, the ambulatory activity of mice in the GB18-06-treated group also increased 77%. Furthermore, GB18-06 exhibited desirable pharmacokinetic properties and an excellent developability profile. Our study has demonstrated a means of developing targeted treatment for cachexia with high efficacy, potentially leading to improved clinical outcomes and quality of life for patients with cachexia.
Collapse
Affiliation(s)
- Yu Huang
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Jinyong Wang
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Xiling Wei
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Hui Zhang
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Wei Shang
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Xiangling Zhang
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Lanjiao Zhai
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Xi Chen
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Huiming Li
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| | - Suofu Qin
- Drug Discovery, Center for Research and Development, Kexing Biopharm Co. Ltd, Shenzhen, China
| |
Collapse
|
16
|
Vu TT, Kim K, Manna M, Thomas J, Remaily BC, Montgomery EJ, Costa T, Granchie L, Xie Z, Guo Y, Chen M, Castillo AMM, Kulp SK, Mo X, Nimmagadda S, Gregorevic P, Owen DH, Ganesan LP, Mace TA, Coss CC, Phelps MA. Decoupling FcRn and tumor contributions to elevated immune checkpoint inhibitor clearance in cancer cachexia. Pharmacol Res 2024; 199:107048. [PMID: 38145833 PMCID: PMC10798214 DOI: 10.1016/j.phrs.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
High baseline clearance of immune checkpoint inhibitors (ICIs), independent of dose or systemic exposure, is associated with cachexia and poor outcomes in cancer patients. Mechanisms linking ICI clearance, cachexia and ICI therapy failure are unknown. Here, we evaluate in four murine models and across multiple antibodies whether altered baseline catabolic clearance of administered antibody requires a tumor and/or cachexia and whether medical reversal of cachexia phenotype can alleviate altered clearance. Key findings include mild cachexia phenotype and lack of elevated pembrolizumab clearance in the MC38 tumor-bearing model. We also observed severe cachexia and decreased, instead of increased, baseline pembrolizumab clearance in the tumor-free cisplatin-induced cachexia model. Liver Fcgrt expression correlated with altered baseline catabolic clearance, though elevated clearance was still observed with antibodies having no (human IgA) or reduced (human H310Q IgG1) FcRn binding. We conclude cachexia phenotype coincides with altered antibody clearance, though tumor presence is neither sufficient nor necessary for altered clearance in immunocompetent mice. Magnitude and direction of clearance alteration correlated with hepatic Fcgrt, suggesting changes in FcRn expression and/or recycling function may be partially responsible, though factors beyond FcRn also contribute to altered clearance in cachexia.
Collapse
Affiliation(s)
- Trang T Vu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Millennium Manna
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Bryan C Remaily
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Emma J Montgomery
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Travis Costa
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Lauren Granchie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yizhen Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alyssa Marie M Castillo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Gregorevic
- Department of Anatomy & Physiology and Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Dwight H Owen
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Latha P Ganesan
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas A Mace
- Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH , USA; The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Singh O, Ogden SB, Varshney S, Shankar K, Gupta D, Paul S, Osborne-Lawrence S, Richard CP, Metzger NP, Lawrence C, Leon Mercado L, Zigman JM. Ghrelin-responsive mediobasal hypothalamic neurons mediate exercise-associated food intake and exercise endurance. JCI Insight 2023; 8:e172549. [PMID: 37962950 PMCID: PMC10807726 DOI: 10.1172/jci.insight.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Previous studies have implicated the orexigenic hormone ghrelin as a mediator of exercise endurance and the feeding response postexercise. Specifically, plasma ghrelin levels nearly double in mice when they are subjected to an hour-long bout of high-intensity interval exercise (HIIE) using treadmills. Also, growth hormone secretagogue receptor-null (GHSR-null) mice exhibit decreased food intake following HIIE and diminished running distance (time until exhaustion) during a longer, stepwise exercise endurance protocol. To investigate whether ghrelin-responsive mediobasal hypothalamus (MBH) neurons mediate these effects, we stereotaxically delivered the inhibitory designer receptor exclusively activated by designer drugs virus AAV2-hSyn-DIO-hM4(Gi)-mCherry to the MBH of Ghsr-IRES-Cre mice, which express Cre recombinase directed by the Ghsr promoter. We found that chemogenetic inhibition of GHSR-expressing MBH neurons (upon delivery of clozapine-N-oxide) 1) suppressed food intake following HIIE, 2) reduced maximum running distance and raised blood glucose and blood lactate levels during an exercise endurance protocol, 3) reduced food intake following ghrelin administration, and 4) did not affect glucose tolerance. Further, HIIE increased MBH Ghsr expression. These results indicate that activation of ghrelin-responsive MBH neurons is required for the normal feeding response to HIIE and the usual amount of running exhibited during an exercise endurance protocol.
Collapse
Affiliation(s)
- Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Sean B. Ogden
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Subhojit Paul
- Center for Hypothalamic Research, Department of Internal Medicine
| | | | | | | | - Connor Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine
| | | | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine
- Division of Endocrinology & Metabolism, Department of Internal Medicine; and
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Sun J, Tan Y, Su J, Mikhail H, Pavel V, Deng Z, Li Y. Role and molecular mechanism of ghrelin in degenerative musculoskeletal disorders. J Cell Mol Med 2023; 27:3681-3691. [PMID: 37661635 PMCID: PMC10718156 DOI: 10.1111/jcmm.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ghrelin is a brain-gut peptide, and the first 28-peptide that was found in the gastric mucosa. It has a growth hormone (GH)-releasing hormone-like effect and can potently promote the release of GH from pituitary GH cells; however, it is unable to stimulate GH synthesis. Therefore, ghrelin is believed to play a role in promoting bone growth and development. The correlation between ghrelin and some degenerative diseases of the musculoskeletal system has been reported recently, and ghrelin may be one of the factors influencing degenerative pathologies, such as osteoporosis, osteoarthritis, sarcopenia and intervertebral disc degeneration. With population ageing, the risk of health problems caused by degenerative diseases of the musculoskeletal system gradually increases. In this article, the roles of ghrelin in musculoskeletal disorders are summarized to reveal the potential effects of ghrelin as a key target in the treatment of related bone and muscle diseases and the need for further research.
Collapse
Affiliation(s)
- Jianfeng Sun
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yibo Tan
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingyue Su
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Zhenhan Deng
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Yusheng Li
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
19
|
Martínez-Martel I, Pol O. A Novel Therapy for Cisplatin-Induced Allodynia and Dysfunctional and Emotional Impairments in Male and Female Mice. Antioxidants (Basel) 2023; 12:2063. [PMID: 38136183 PMCID: PMC10741113 DOI: 10.3390/antiox12122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
20
|
Zhang FM, Wu HF, Shi HP, Yu Z, Zhuang CL. Sarcopenia and malignancies: epidemiology, clinical classification and implications. Ageing Res Rev 2023; 91:102057. [PMID: 37666432 DOI: 10.1016/j.arr.2023.102057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sarcopenia is a progressive systemic skeletal muscle disorder characterized by a pathological decline in muscle strength, quantity, and quality, which frequently affects the elderly population. The majority of cancer patients are of advanced age. Patients may already have sarcopenia prior to cancer development, and those with cancer are prone to developing sarcopenia due to hypercatabolism, inflammation, reduced physical fitness, anorexia, adverse effects, and stress associated with anticancer therapy. Based on the timing, sarcopenia in patients with cancer can be categorized into three: pre-existing sarcopenia before the onset of cancer, sarcopenia related to cancer, and sarcopenia related to cancer treatment. Sarcopenia not only changes the body composition of patients with cancer but also increases the incidence of postoperative complications, reduces therapeutic efficacy, impairs quality of life, and results in shortened survival. Different therapeutic strategies are required to match the cancer status and physical condition of patients with different etiologies and stages of sarcopenia. Here, we present a comprehensive review of the epidemiology and diagnosis of sarcopenia in patients with cancer, elucidate the complex interactions between cancer and sarcopenia, and provide evidence-based strategies for sarcopenia management in these patients.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao-Fan Wu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University/ Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhen Yu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
21
|
Xie K, He D, Zhao T, Liu T, Tang M. Gastric Cancer with Sarcopenia: an Area Worth Focusing On. Curr Treat Options Oncol 2023; 24:1305-1327. [PMID: 37464229 DOI: 10.1007/s11864-023-01122-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/20/2023]
Abstract
OPINION STATEMENT Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer death worldwide, which seriously endangers human health. A number of studies have shown that sarcopenia occurs more frequently in patients with gastric cancer than in the general population and can significantly affect the disease status and survival of patients, which is of great significance in predicting the prognosis of gastric cancer. Patients with gastric cancer may suffer sarcopenia no matter before or after surgery, and the pathogenesis is complex. Abnormal nutrient metabolism and reduced exercise are the leading causes. In addition, surgical treatment and chemotherapy for gastric cancer might participate in the physiological and pathological mechanism of sarcopenia. Generally speaking, exercise and nutritional therapy are the main prevention and treatment methods for sarcopenia. But more prospective evidence is needed to establish reasonable interventions, and other drug treatments are in their infancy. For the diagnostic criteria of sarcopenia, the cut-off values of the skeletal muscle mass index obtained from CT images vary widely and need to be standardized and unified. We also need to explore simple predictors to facilitate sarcopenia risk assessment. More research is needed to formulate more appropriate treatments for gastric cancer patients with sarcopenia.
Collapse
Affiliation(s)
- Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Danling He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Li HX, Zheng H, Tang W, Sun YK, Zhang L, Kong XY, Yan T. Postoperative recurarization after sugammadex administration in two patients who received neoadjuvant chemotherapy: case reports and literature review. Can J Anaesth 2023; 70:1529-1538. [PMID: 37407856 DOI: 10.1007/s12630-023-02527-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Preoperative neoadjuvant chemotherapy plays a critical role in multidisciplinary therapy for a variety of malignant tumours. Although oncologists consider myocardial injury to be the most concerning side effect of chemotherapy, unique chemotherapy-mediated skeletal muscular damage has received attention recently. CLINICAL FEATURES We report two unusual cases of postoperative delayed respiratory failure following administration of the recommended sugammadex dosage for patients undergoing lengthy operations with deep neuromuscular blockade (NMB) after neoadjuvant chemotherapy. Based on clinical outcomes, especially the comparison of muscle imaging results in patients at different treatment time points, we concluded that NMB recurrence had a possible correlation with neoadjuvant chemotherapy-induced muscular damage. CONCLUSION The early identification of neoadjuvant chemotherapeutic side effects on NMB could be instrumental for clinical safety, especially in cases of major surgery requiring deep NMB. Thus, the timing of NMB antagonism and the recommended dosage of sugammadex warrant special consideration in these patients. In addition to neuromuscular monitoring during the operation, a more extended and closer observation period in the postanesthesia care unit is warranted.
Collapse
Affiliation(s)
- Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Xiang-Yi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Caeiro L, Gandhay D, Anderson LJ, Garcia JM. A Review of Nutraceuticals in Cancer Cachexia. Cancers (Basel) 2023; 15:3884. [PMID: 37568700 PMCID: PMC10417577 DOI: 10.3390/cancers15153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is largely characterized by muscle wasting and inflammation, leading to weight loss, functional impairment, poor quality of life (QOL), and reduced survival. The main barrier to therapeutic development is a lack of efficacy for improving clinically relevant outcomes, such as physical function or QOL, yet most nutraceutical studies focus on body weight. This review describes clinical and pre-clinical nutraceutical studies outside the context of complex nutritional and/or multimodal interventions, in the setting of cancer cachexia, in view of considerations for future clinical trial design. Clinical studies mostly utilized polyunsaturated fatty acids or amino acids/derivatives, and they primarily focused on body weight and, secondarily, on muscle mass and/or QOL. The few studies that measured physical function almost exclusively utilized handgrip strength with, predominantly, no time and/or group effect. Preclinical studies focused mainly on amino acids/derivatives and polyphenols, assessing body weight, muscle mass, and occasionally physical function. While this review does not provide sufficient evidence of the efficacy of nutraceuticals for cancer cachexia, more preclinical and adequately powered clinical studies are needed, and they should focus on clinically meaningful outcomes, including physical function and QOL.
Collapse
Affiliation(s)
- Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Devika Gandhay
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
| | - Lindsey J. Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Sato K, Miyauchi Y, Xu X, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Platinum-based anticancer drugs-induced downregulation of myosin heavy chain isoforms in skeletal muscle of mouse. J Pharmacol Sci 2023; 152:167-177. [PMID: 37257944 DOI: 10.1016/j.jphs.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cisplatin, a platinum-based anticancer drug used frequently in cancer treatment, causes skeletal muscle atrophy. It was predicted that the proteolytic pathway is enhanced as the mechanism of this atrophy. Therefore, we investigated whether a platinum-based anticancer drug affects the expression of the major proteins of skeletal muscle, myosin heavy chain (MyHC). Mice were injected with cisplatin or oxaliplatin for four consecutive days. C2C12 myotubes were treated using cisplatin and oxaliplatin. Administration of platinum-based anticancer drug reduced quadriceps mass and muscle strength compared to the control group. Protein levels of all MyHC isoforms were reduced in the platinum-based anticancer drug groups. However, only Myh2 (MyHC-IIa) gene expression in skeletal muscle of mice treated with platinum-based anticancer drugs was found to be reduced. Treatment of C2C12 myotubes with platinum-based anticancer drugs reduced the protein levels of all MyHCs, and treatment with the proteasome inhibitor MG-132 restored this reduction. The expression of Mef2c, which was predicted to act upstream of Myh2, was reduced in the skeletal muscle of mice treated systemically with platinum-based anticancer drug. Degradation of skeletal muscle MyHCs by proteasomes may be a factor that plays an important role in muscle mass loss in platinum-based anticancer drug-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Xinran Xu
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 1428501, Japan.
| |
Collapse
|
25
|
Wu SY, Ou CC, Lee ML, Hsin IL, Kang YT, Jan MS, Ko JL. Polysaccharide of Ganoderma lucidum Ameliorates Cachectic Myopathy Induced by the Combination Cisplatin plus Docetaxel in Mice. Microbiol Spectr 2023; 11:e0313022. [PMID: 37212664 PMCID: PMC10269453 DOI: 10.1128/spectrum.03130-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023] Open
Abstract
Cachexia is a lethal muscle-wasting syndrome associated with cancer and chemotherapy use. Mounting evidence suggests a correlation between cachexia and intestinal microbiota, but there is presently no effective treatment for cachexia. Whether the Ganoderma lucidum polysaccharide Liz-H exerts protective effects on cachexia and gut microbiota dysbiosis induced by the combination cisplatin plus docetaxel (cisplatin + docetaxel) was investigated. C57BL/6J mice were intraperitoneally injected with cisplatin + docetaxel, with or without oral administration of Liz-H. Body weight, food consumption, complete blood count, blood biochemistry, and muscle atrophy were measured. Next-generation sequencing was also performed to investigate changes to gut microbial ecology. Liz-H administration alleviated the cisplatin + docetaxel-induced weight loss, muscle atrophy, and neutropenia. Furthermore, upregulation of muscle protein degradation-related genes (MuRF-1 and Atrogin-1) and decline of myogenic factors (MyoD and myogenin) after treatment of cisplatin and docetaxel were prevented by Liz-H. Cisplatin and docetaxel treatment resulted in reducing comparative abundances of Ruminococcaceae and Bacteroides, but Liz-H treatment restored these to normal levels. This study indicates that Liz-H is a good chemoprotective reagent for cisplatin + docetaxel-induced cachexia. IMPORTANCE Cachexia is a multifactorial syndrome driven by metabolic dysregulation, anorexia, systemic inflammation, and insulin resistance. Approximately 80% of patients with advanced cancer have cachexia, and cachexia is the cause of death in 30% of cancer patients. Nutritional supplementation has not been shown to reverse cachexia progression. Thus, developing strategies to prevent and/or reverse cachexia is urgent. Polysaccharide is a major biologically active compound in the fungus Ganoderma lucidum. This study is the first to report that G. lucidum polysaccharides could alleviate chemotherapy-induced cachexia via reducing expression of genes that are known to drive muscle wasting, such as MuRF-1 and Atrogin-1. These results suggest that Liz-H is an effective treatment for cisplatin + docetaxel-induced cachexia.
Collapse
Affiliation(s)
- Sung-Yu Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Lin Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Kerr HL, Krumm K, Lee I(I, Anderson B, Christiani A, Strait L, Breckheimer BA, Irwin B, Jiang A(S, Rybachok A, Chen A, Caeiro L, Dacek E, Hall DB, Kostyla CH, Hales LM, Soliman TM, Garcia JM. EXT418, a novel long-acting ghrelin, mitigates Lewis lung carcinoma induced cachexia in mice. J Cachexia Sarcopenia Muscle 2023; 14:1337-1348. [PMID: 36942661 PMCID: PMC10235874 DOI: 10.1002/jcsm.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Ghrelin is a potential therapy for cachexia due to its orexigenic properties and anabolic effects on muscle and fat. However, its clinical use is limited by the short half-life of active (acylated) ghrelin (~11 min in humans). EXT418 is a novel long-acting, constitutively active ghrelin analog created by covalently linking it to a vitamin D derivative. Here, we evaluated the effects and mechanisms of action of EXT418 on Lewis lung carcinoma (LLC)-induced cachexia in mice. METHODS Male C57BL/6J mice (5- to 7-month-old) were implanted with 1 × 106 heat-killed (HK) or live LLC cells. When the tumour was palpable, mice were injected with vehicle (T + V) or EXT418 daily (T + 418 Daily, 0.25 mg/kg/day) or every other day (T + 418 EOD, 0.5 mg/kg/EOD) for up to 14 days, whereas HK-treated mice were given vehicle (HK + V). Subsets of T + 418 Daily or EOD-treated mice were pair-fed to the T + V group. Body composition and grip strength were evaluated before tumour implantation and at the end of the experiment. Molecular markers were probed in muscles upon termination. RESULTS In tumour-bearing mice, administration of EXT418 daily or EOD partially prevented weight loss (T + V vs. T + 418 Daily, P = 0.030; and vs. T + 418 EOD, P = 0.020). Similar effects were observed in whole body fat and lean body mass. Grip strength in tumour-bearing mice was improved by EXT418 daily (P = 0.010) or EOD (P = 0.008) administration compared with vehicle-treated mice. These effects of EXT418 on weight and grip strength were partially independent of food intake. EXT418 daily administration also improved type IIA (P = 0.015), IIB (P = 0.037) and IIX (P = 0.050) fibre cross-sectional area (CSA) in tibialis anterior (TA) and EXT418 EOD improved CSA of IIB fibres in red gastrocnemius (GAS; P = 0.005). In skeletal muscles, tumour-induced increases in atrogenes Fbxo32 and Trim63 were ameliorated by EXT418 treatments (TA and GAS/plantaris, PL), which were independent of food intake. EXT418 administration decreased expression of the mitophagy marker Bnip3 (GAS/PL; P ≤ 0.010). Similar effects of EXT418 EOD were observed in p62 (GAS/PL; P = 0.039). In addition, EXT418 treatments ameliorated the tumour-induced elevation in muscle Il6 transcript levels (TA and GAS/PL), independently of food intake. Il-6 transcript levels in adipose tissue and circulating IL-10 were elevated in response to the tumour but these increases were not significant with EXT418 administration. Tumour mass was not altered by EXT418. CONCLUSIONS EXT418 mitigates LLC-induced cachexia by attenuating skeletal muscle inflammation, proteolysis, and mitophagy, without affecting tumour mass and partially independent of food intake.
Collapse
Affiliation(s)
- Haiming L. Kerr
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Kora Krumm
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Ian (In‐gi) Lee
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Anthony Christiani
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Lena Strait
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Beatrice A. Breckheimer
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Brynn Irwin
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Alice (Siyi) Jiang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Artur Rybachok
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Amanda Chen
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Lucas Caeiro
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | - Elizabeth Dacek
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| | | | - Caroline H. Kostyla
- Extend Biosciences, Inc.St. NewtonMassachusettsUSA
- Present address:
Atalanta TherapeuticsBostonMassachusettsUSA
| | | | | | - Jose M. Garcia
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Medicine, Division of Gerontology and Geriatric MedicineUniversity of Washington School of MedicineWashingtonSeattleUSA
| |
Collapse
|
27
|
Matsumoto C, Sekine H, Zhang N, Mogami S, Fujitsuka N, Takeda H. Role of p53 in Cisplatin-Induced Myotube Atrophy. Int J Mol Sci 2023; 24:ijms24119176. [PMID: 37298128 DOI: 10.3390/ijms24119176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chemotherapy-induced sarcopenia is an unfavorable prognostic factor implicated in the development of postoperative complications and reduces the quality of life of patients with cancer. Skeletal muscle loss due to cisplatin use is caused by mitochondrial dysfunction and activation of muscle-specific ubiquitin ligases Atrogin-1 and muscle RING finger 1 (MuRF1). Although animal studies suggest the involvement of p53 in age-, immobility-, and denervation-related muscle atrophy, the association between cisplatin-induced atrophy and p53 remains unknown. Herein, we investigated the effect of a p53-specific inhibitor, pifithrin-alpha (PFT-α), on cisplatin-induced atrophy in C2C12 myotubes. Cisplatin increased the protein levels of p53, phosphorylated p53, and upregulated the mRNA expression of p53 target genes PUMA and p21 in C2C12 myotubes. PFT-α ameliorated the increase in intracellular reactive oxygen species production and mitochondrial dysfunction, and also reduced the cisplatin-induced increase in the Bax/Bcl-2 ratio. Although PFT-α also reduced the cisplatin-induced increase in MuRF1 and Atrogin-1 gene expression, it did not ameliorate the decrease in myosin heavy chain mRNA and protein levels and muscle-specific actin and myoglobin protein levels. We conclude that cisplatin increases muscle degradation in C2C12 myotubes in a p53-dependent manner, but p53 has minimal involvement in the reduction of muscle protein synthesis.
Collapse
Affiliation(s)
- Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Nana Zhang
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun 300-1192, Japan
| | - Hiroshi Takeda
- Gastroenterology, Tokeidai Memorial Hospital, 2-3 North-1, East 1, Chuo-ku, Sapporo 060-0031, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
28
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
29
|
Han Y, Kim HI, Park J. The Role of Natural Products in the Improvement of Cancer-Associated Cachexia. Int J Mol Sci 2023; 24:ijms24108772. [PMID: 37240117 DOI: 10.3390/ijms24108772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The enormous library of natural products and herbal medicine prescriptions presents endless research avenues. However, the lack of research evidence and trials on cancer-induced cachexia limit the therapeutic potential of natural products. Cancer-induced cachexia is a systemic wasting syndrome characterized by continuous body weight loss with skeletal muscle and adipose tissue atrophy. Cancer cachexia is a problem in itself and reduces the quality of life by lessening the treatment efficacy of anticancer drugs. This review summarizes single natural product extracts for cancer-induced cachexia, not compounds derived from natural products and herbal medicine prescriptions. This article also discusses the effect of natural products on cachexia induced by anticancer drugs and the role of AMPK in cancer-induced cachexia. The article included the mice model used in each experiment to encourage researchers to utilize animal models for research on cancer-induced cachexia in the future.
Collapse
Affiliation(s)
- Yohan Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Candemir B, İleri İ, Yalçın MM, Sel AT, Göker B, Gülbahar Ö, Yetkin İ. Relationship Between Appetite-Related Peptides and Frailty in Older Adults. Endocr Res 2023:1-9. [PMID: 36799510 DOI: 10.1080/07435800.2023.2180029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Frailty, is a geriatric syndrome that reduces the resistance to stress situations caused by activities of daily living and increases morbidity and mortality. We hypothesized that a decrease in orexigenic peptides or an increase in anorexigenic peptides might be associated with frailty. We aimed to investigate the relationship between frailty and six appetite-related peptides: ghrelin, neuropeptide Y (NPY), agouti-related peptide (AgRP), cocaine-amphetamine-associated peptide (CART), peptide YY, and alpha MSH (α-MSH). METHODS This cross-sectional study was conducted on 85 older adults who visited the outpatient clinic. All patients underwent comprehensive geriatric assessment. Frailty status was assessed using the Fried frailty index. Plasma levels of six appetite-related peptides were studied. RESULTS The mean age was 73.7 ± 5.4 years, 27 (31.8%) of the patients were male, and 32 of the patients (37.6%) were frail. While plasma levels of ghrelin, NPY and AgRP were significantly lower in frail patients, CART and α-MSH levels were higher compared to non-frail patients (p < .05 for all). Peptide YY was found to be higher in the frail group, however, the difference did not reach statistical significance (p = .052). In multivariate logistic regression analysis, the ghrelin, AgRP, CART, and α-MSH levels were independent predictors of frailty. Moreover, a weak correlation was found between all peptides(except NPY) and handgrip strength and Lawton-Brody score. CONCLUSION Ghrelin, AgRP, CART, and α-MSH levels were found to be independent predictors of frailty. Our results suggest that appetite-related peptides might be playing roles in the pathogenesis of frailty. Further larger prospective studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Burcu Candemir
- Health Sciences University, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - İbrahim İleri
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Mehmet Muhittin Yalçın
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Aydın Tuncer Sel
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Berna Göker
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | - İlhan Yetkin
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
31
|
Huang K, Chiang Y, Huang T, Chen H, Lin P, Ali M, Hsia S. Capsaicin alleviates cisplatin-induced muscle loss and atrophy in vitro and in vivo. J Cachexia Sarcopenia Muscle 2023; 14:182-197. [PMID: 36401337 PMCID: PMC9891949 DOI: 10.1002/jcsm.13120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cisplatin (CP) is a widely used chemotherapeutic drug with subsequent adverse effects on different organs and tissues including skeletal muscle loss and atrophy as the most common clinical symptoms. The molecular mechanism of cisplatin-induced muscle atrophy is not clearly understood. However, recent significant advances indicate that it is related to an imbalance in both the protein status and apoptosis. Capsaicin (CAP) is one of the major ingredients in chilli peppers. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation with particular therapeutic potential in muscle atrophy. However, the mechanisms underlying its protective effects against cisplatin-induced muscle loss and atrophy remain largely unknown. This study aims to investigate capsaicin's beneficial effects on cisplatin-induced muscle loss and atrophy in vitro and in vivo. METHODS The anti-muscle-atrophic effect of capsaicin on cisplatin-induced muscle loss was investigated using in vivo and in vitro studies. By using the pretreatment model, pretreated capsaicin for 24 h and treated with cisplatin for 48 h, we utilized a C2 C12 myotube formation model where cell viability analysis, immunofluorescence, and protein expression were measured to investigate the effect of capsaicin in hampering cisplatin-induced muscle atrophy. C57BL/6 mice were administered capsaicin (10, 40 mg/kg BW) as a pretreatment for 5 weeks and cisplatin (3 mg/kg BW) for seven consecutively days to assess muscle atrophy in an animal model for protein and oxidative stress examination, and the grip strength was tested to evaluate the muscle strength. RESULTS Our study results indicated that cisplatin caused lower cell viability and showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in the myotube diameter, repression of Akt, and mTOR protein expression. However, pretreatment with capsaicin could ameliorate cisplatin-induced muscle atrophy by up-regulating the protein synthesis in skeletal muscle as well as down-regulating the markers of protein degradation. Additionally, capsaicin was able to downregulate the protein expression of apoptosis-related markers, activated TRPV1 and autophagy progress modulation and the recovery of lysosome function. In vivo, capsaicin could relieve oxidative stress and cytokine secretion while modulating autophagy-related lysosome fusion, improving grip strength, and alleviating cisplatin-induced body weight loss and gastrocnemius atrophy. CONCLUSIONS These findings suggest that capsaicin can restore cisplatin-induced imbalance between protein synthesis and protein degradation pathways and it may have protective effects against cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Ko‐Chieh Huang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Fen Chiang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Tsui‐Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Hsin‐Yuan Chen
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Po‐Han Lin
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Cancer Progression Research CenterNational Yang‐Ming Chiao Tung UniversityTaipeiTaiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of PharmacyAin Shams UniversityCairoEgypt
| | - Shih‐Min Hsia
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- School of Food and Safety, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Nutrition Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center for Digestive MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
32
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
33
|
Jhuo CF, Hsieh SK, Chen WY, Tzen JTC. Attenuation of Skeletal Muscle Atrophy Induced by Dexamethasone in Rats by Teaghrelin Supplementation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020688. [PMID: 36677745 PMCID: PMC9864913 DOI: 10.3390/molecules28020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Muscle atrophy caused by an imbalance between the synthesis and the degradation of proteins is a syndrome commonly found in the elders. Teaghrelin, a natural compound from oolong tea, has been shown to promote cell differentiation and to inhibit dexamethasone-induced muscle atrophy in C2C12 cells. In this study, the therapeutic effects of teaghrelin on muscle atrophy were evaluated in Sprague Dawley rats treated with dexamethasone. The masses of the soleus, gastrocnemius and extensor digitorum longus muscles were reduced in dexamethasone-treated rats, and the reduction of these muscle masses was significantly attenuated when the rats were supplemented with teaghrelin. Accordingly, the level of serum creatine kinase, a marker enzyme of muscle proteolysis, was elevated in dexamethasone-treated rats, and the elevation was substantially reduced by teaghrelin supplementation. A decrease in Akt phosphorylation causing the activation of the ubiquitin-proteasome system and autophagy for protein degradation was detected in the gastrocnemius muscles of the dexamethasone-treated rats, and this signaling pathway for protein degradation was significantly inhibited by teaghrelin supplementation. Protein synthesis via the mTOR/p70S6K pathway was slowed down in the gastrocnemius muscles of the dexamethasone-treated rats and was significantly rescued after teaghrelin supplementation. Teaghrelin seemed to prevent muscle atrophy by reducing protein degradation and enhancing protein synthesis via Akt phosphorylation.
Collapse
Affiliation(s)
- Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| |
Collapse
|
34
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
35
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
36
|
Li F, Luo T, Rong H, Lu L, Zhang L, Zheng C, Yi D, Peng Y, Lei E, Xiong X, Wang F, Garcia JM, Chen J. Maternal rodent exposure to di-(2-ethylhexyl) phthalate decreases muscle mass in the offspring by increasing myostatin. J Cachexia Sarcopenia Muscle 2022; 13:2740-2751. [PMID: 36263449 PMCID: PMC9745490 DOI: 10.1002/jcsm.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Di-(2-ethylhexyl) phthalate (DEHP) and its metabolites can cross the placenta and may cause birth defects and developmental disorders. However, whether maternal DEHP exposure affects skeletal muscle development in the offspring and the pathways involved are unknown. This study investigated the effects of maternal DEHP exposure and the contribution of myostatin (MSTN) to skeletal muscle development in the offspring. METHODS Pregnant wild-type and muscle-specific myostatin knockout (MSTN KO) C57BL/6 mice were randomized to receive vehicle (corn oil) or 250 mg/kg DEHP by gavage every other day until their pups were weaned (postnatal day 21 [PND21]). Body weights of the offspring mice were measured longitudinally, and their hindleg muscles were harvested at PD21. Also, C2C12 cells were treated with mono-2-ethylhexyl phthalate (MEHP), the primary metabolite of DEHP, and proteolysis, protein synthesis, and myogenesis markers were measured. The contribution of myostatin to maternal DEHP exposure-induced muscle wasting in the offspring was determined. RESULTS Maternal DEHP exposure reduced body weight growth, myofibre size, and muscle mass in the offspring compared to controls (Quad: 2.70 ± 0.1 vs. 3.38 ± 0.23, Gastroc: 2.29 ± 0.09 vs. 2.81 ± 0.14, Tibialis: 1.01 ± 0.07 vs. 1.25 ± 0.11, mg/tibial length in mm, all P < 0.01, n = 35). Maternal DEHP exposure significantly increased Myostatin expression (2.45 ± 0.41 vs. 0.03 ± 0.00 DEHP vs. controls, P < 0.01, n = 5), Atrogin-1(2.68 ± 0.65 vs. 0.63 ± 0.01, P < 0.05, n = 5), MuRF1 (1.56 ± 0.51 vs. 0.31 ± 0.01, P < 0.05, n = 5), and Smad2/3 phosphorylation (4.12 ± 0.35 vs. 0.49 ± 0.18, P < 0.05), and decreased MyoD (0.27 ± 0.01 vs. 1.52 ± 0.01, P < 0.05, n = 5), Myogenin (0.25 ± 0.03 vs. 1.95 ± 0.56, P < 0.05, n = 5), and AKT phosphorylation (4.12 ± 0.35 vs. 1.00 ± 0.06, P < 0.05, n = 5), in skeletal muscle of the offspring in MSTNflox/flox , but not in MSTN KO mice. Maternal DEHP exposure resulted in up-regulation of CCAAT/enhancer-binding protein δ (C/EBPδ, 4.12 ± 0.35 vs. 1.00 ± 0.19, P < 0.05, n = 5) in skeletal muscle of the offspring in MSTNflox/flox and MSTN KO mice (4.12 ± 0.35 vs. 4.35 ± 0.28, P > 0.05, n = 5). In vitro, C/EBPδ silencing abrogated the MEHP-induced increases in Myostatin, MuRF-1, and Atrogin-1 and decreases in MyoD and Myogenin expression. CONCLUSIONS Maternal DEHP exposure impairs skeletal muscle development in the offspring by enhancing the C/EBPδ-myostatin pathway in mice.
Collapse
Affiliation(s)
- Fengju Li
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ting Luo
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Center for Disease Control and Prevention of JiangjinChongqingChina
| | - Honghui Rong
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lu Lu
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ling Zhang
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chuanfeng Zheng
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Dali Yi
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yi Peng
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Enyu Lei
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaotao Xiong
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Fengchao Wang
- Institute of Combined injury, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jose M. Garcia
- GRECCVA Puget Sound Health Care System and University of WashingtonSeattleWashingtonUSA
| | - Ji‐an Chen
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
37
|
Xu T, Li Z, Li H, Hou J, Li J, Jin G, Li S, Li Q. Dynamic changes in the body composition during chemotherapy for gastrointestinal tumors in the context of active nutrition intervention. Front Oncol 2022; 12:965848. [PMID: 36523983 PMCID: PMC9745107 DOI: 10.3389/fonc.2022.965848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/17/2022] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To explore the dynamic changes in the body composition during chemotherapy in patients with gastrointestinal malignancies in the context of active nutrition intervention. METHODS Patients with gastrointestinal malignancies receiving first-line chemotherapy in the Department of Medical Oncology of Ordos Central Hospital from September 2019 to January 2022 were included in this study. The Nutritional Risk Screening form 2002, Patient-Generated Subjective Global Assessment form, bioelectrical impedance analysis, and dynamic changes in L3 skeletal muscle index (SMI) (L3SMI) were assessed at baseline and after chemotherapy. The recommended protocol of the Nutrition Guidelines for Cancer Patients in China 2020 was adopted as the active nutrition intervention. Chemotherapy-related toxic adverse reactions and the degree of toxicity were recorded with the adoption of the Common Terminology Criteria for Adverse Events version 4.0 by the National Institutes of Health. The type of toxicity Chemotherapy-Induced Nauseaand Vomiting(CINV) and hematological. RESULTS Fifty cases were enrolled in the study, and 38 cases completed the dynamic follow-ups. The average follow-up time was 125.63 d. In the context of active nutrition intervention, the prevalence of sarcopenia decreased from 26.3% before chemotherapy to 21.1% after chemotherapy. The average L3SMI decreased from 38.77 cm2/m2 to 38.04 cm2/m2, with a reduction of 1.41% ± 8.49% (P = 0.177). The SMI remained stable or increased in 57.9% (22/38) of patients. The benefit of active nutrition intervention was greater in the sarcopenic group than in the non-sarcopenic group (P = 0.033). There was an increased incidence of chemotherapy-related toxic adverse reactions of ≥ grade 3 during chemotherapy in the sarcopenic group compared with the muscle retention/gain group (P = 0.089). CONCLUSION Active nutrition intervention might decrease the degree of reduction of L3SMI and the incidence of sarcopenia in patients with gastrointestinal tumors and raise the proportion of patients with stable or increased SMI during chemotherapy.
Collapse
Affiliation(s)
- Ting Xu
- Ordos Clinical College, Inner Mongolia Medical University, Ordos, China
| | - Zhenhao Li
- School of Public Health and Management, WenZhou Medical University, Zhejiang, China
| | - Hui Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Jixiang Hou
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Jingjing Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Gaowa Jin
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Shaohua Li
- Department of Paediatrics, Ordos Maternal and Child Health Hospital, Ordos, China
| | - Quanfu Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| |
Collapse
|
38
|
Huot JR, Pin F, Chatterjee R, Bonetto A. PGC1α overexpression preserves muscle mass and function in cisplatin-induced cachexia. J Cachexia Sarcopenia Muscle 2022; 13:2480-2491. [PMID: 35903870 PMCID: PMC9530502 DOI: 10.1002/jcsm.13035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chemotherapy induces a cachectic-like phenotype, accompanied by skeletal muscle wasting, weakness and mitochondrial dysfunction. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α), a regulator of mitochondrial biogenesis, is often reduced in cachectic skeletal muscle. Overexpression of PGC1α has yielded mixed beneficial results in cancer cachexia, yet investigations using such approach in a chemotherapy setting are limited. Utilizing transgenic mice, we assessed whether overexpression of PGC1α could combat the skeletal muscle consequences of cisplatin. METHODS Young (2 month) and old (18 month) wild-type (WT) and PGC1α transgenic male and female mice (Tg) were injected with cisplatin (C; 2.5 mg/kg) for 2 weeks, while control animals received saline (n = 5-9/group). Animals were assessed for muscle mass and force, motor unit connectivity, and expression of mitochondrial proteins. RESULTS Young WT + C mice displayed reduced gastrocnemius mass (male: -16%, P < 0.0001; female: -11%, P < 0.001), muscle force (-6%, P < 0.05, both sexes), and motor unit number estimation (MUNE; male: -53%, P < 0.01; female: -51%, P < 0.01). Old WT + C male and female mice exhibited gastrocnemius wasting (male: -22%, P < 0.05; female: -27%, P < 0.05), muscle weakness (male: -20%, P < 0.0001; female: -17%, P < 0.01), and loss of MUNE (male: -82%, P < 0.01; female: -62%, P < 0.05), suggesting exacerbated cachexia compared with younger animals. Overexpression of PGC1α had mild protective effects on muscle mass in young Tg + C male only (gastrocnemius: +10%, P < 0.05); however, force and MUNE were unchanged in both young Tg + C male and female, suggesting preservation of neuromuscular function. In older male, protective effects associated with PGC1α overexpression were heighted with Tg + C demonstrating preserved muscle mass (gastrocnemius: +34%, P < 0.001), muscle force (+13%, P < 0.01), and MUNE (+3-fold, P < 0.05). Similarly, old female Tg + C did not exhibit muscle wasting or reductions in MUNE, and had preserved muscle force (+11%, P < 0.05) compared with female WT + C. Follow-up molecular analysis demonstrated that aged WT animals were more susceptible to cisplatin-induced loss of mitochondrial proteins, including PGC1α, OPA1, cytochrome-C, and Cox IV. CONCLUSIONS In our study, the negative effects of cisplatin were heighted in aged animals, whereas overexpression of PGC1α was sufficient to combat the neuromuscular dysfunction caused by cisplatin, especially in older animals. Hence, our observations indicate that aged animals may be more susceptible to develop chemotherapy side toxicities and that mitochondria-targeted strategies may serve as a tool to prevent chemotherapy-induced muscle wasting and weakness.
Collapse
Affiliation(s)
- Joshua R. Huot
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Rohit Chatterjee
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Andrea Bonetto
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology – Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
39
|
PD-1 Alleviates Cisplatin-Induced Muscle Atrophy by Regulating Inflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11091839. [PMID: 36139912 PMCID: PMC9495887 DOI: 10.3390/antiox11091839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle atrophy is an important characteristic of cachexia, which can be induced by chemotherapy and significantly contributes to functional muscle impairment. Inflammation and oxidative stress are believed to play important roles in the muscle atrophy observed in cachexia, but whether programmed cell death protein 1 (PD-1) is affected by this condition remains unclear. PD-1 is a membrane protein that is expressed on the surface of many immune cells and plays an important role in adaptive immune responses and autoimmunity. Thus, we investigated the role and underlying mechanism of PD-1 in cisplatin-induced muscle atrophy in mice. We found that PD-1 knockout dramatically contributed to skeletal muscle atrophy. Mechanistically, we found that E3 ubiquitin-protein ligases were significantly increased in PD-1 knockout mice after cisplatin treatment. In addition, we found that PD-1 knockout significantly exacerbated cisplatin-induced skeletal muscle inflammation and oxidative stress. Moreover, we found that there were significant increases in ferroptosis-related and autophagy-related genes in PD-1 knockout mice after cisplatin treatment. These data indicate that PD-1 plays an important role in cisplatin-induced skeletal muscle atrophy.
Collapse
|
40
|
Ferrara M, Samaden M, Ruggieri E, Vénéreau E. Cancer cachexia as a multiorgan failure: Reconstruction of the crime scene. Front Cell Dev Biol 2022; 10:960341. [PMID: 36158184 PMCID: PMC9493094 DOI: 10.3389/fcell.2022.960341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a devastating syndrome associated with the end-stage of several diseases, including cancer, and characterized by body weight loss and severe muscle and adipose tissue wasting. Although different cancer types are affected to diverse extents by cachexia, about 80% of all cancer patients experience this comorbidity, which highly reduces quality of life and response to therapy, and worsens prognosis, accounting for more than 25% of all cancer deaths. Cachexia represents an urgent medical need because, despite several molecular mechanisms have been identified, no effective therapy is currently available for this devastating syndrome. Most studies focus on skeletal muscle, which is indeed the main affected and clinically relevant organ, but cancer cachexia is characterized by a multiorgan failure. In this review, we focus on the current knowledge on the multiple tissues affected by cachexia and on the biomarkers with the attempt to define a chronological pathway, which might be useful for the early identification of patients who will undergo cachexia. Indeed, it is likely that the inefficiency of current therapies might be attributed, at least in part, to their administration in patients at the late stages of cachexia.
Collapse
Affiliation(s)
- Michele Ferrara
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Samaden
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Ruggieri
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Tissue Regeneration and Homeostasis Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Xu T, Li ZH, Liu T, Jiang CH, Zhang YJ, Li H, Jiang Y, Zhao J, Guo WJ, Guo JY, Wang L, Li JX, Shen J, Jin GW, Zhang ZW, Li QF. Progress in Research on Antitumor Drugs and Dynamic Changes in Skeletal Muscles. Front Pharmacol 2022; 13:893333. [PMID: 35873591 PMCID: PMC9298970 DOI: 10.3389/fphar.2022.893333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: To review the research progress of reltionship between antitumor drugs and the dynamic changes of the skeletal muscles during treatment phase. Background: Sarcopenia is a common disease in patients with tumors, and it has been agreed that patients with tumors and sarcopenia experience more serious adverse reactions and have a shorter long-term survival after antitumor therapy than patients without sarcopenia. Antitumor drugs whilst beneficial for tumor regression, interferes and synergizes with cancer-induced muscle wasting/sarcopenia, induced myodemia or intramuscular fat and the two conditions often overlap making it difficult to drive conclusions. In recent years, increasing attention has been paid to the dynamic changes in skeletal muscles during antitumor drug therapy. Dynamic changes refer not only measurement skeletal muscle quantity at baseline level, but give more emphasis on the increasing or decreasing level during or end of the whole treatment course. Methods: We retrievaled published English-language original research articles via pubmed, those studies mainly focused on repeated measurements of skeletal muscle index using computed tomography (CT) in cancer patients who received antitumor drug treatment but not received interventions that produced muscle mass change (such as exercise and nutritional interventions). Conclusion: This article will summarize the research progress to date. Most of antineoplastic drug cause skeletal muscle loss during the treatment course, loss of L3 skeletal muscle index is always associated with poor clinical outcomes.
Collapse
Affiliation(s)
- Ting Xu
- Ordos Clinical College, Inner Mongolia Medical University, Ordos, China
| | - Zhen-Hao Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Ting Liu
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Cai-Hong Jiang
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Ya-Juan Zhang
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Hui Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Ying Jiang
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Juan Zhao
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Wen-Jing Guo
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Jia-Yuan Guo
- Ordos Clinical College, Inner Mongolia Medical University, Ordos, China
| | - Lu Wang
- Ordos Clinical College, Inner Mongolia Medical University, Ordos, China
| | - Jia-Xuan Li
- Ordos Clinical College, Inner Mongolia Medical University, Ordos, China
| | - Jing Shen
- Ordos Clinical College, Baotou Medical College, Ordos, China
| | - Gao-Wa Jin
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Ze-Wei Zhang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Quan-Fu Li
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| |
Collapse
|
42
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
43
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martínez-Guardado I, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4604. [PMID: 35457471 PMCID: PMC9025820 DOI: 10.3390/ijerph19084604] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
One of the common traits found in cancer patients is malnutrition and cachexia, which affects between 25% to 60% of the patients, depending on the type of cancer, diagnosis, and treatment. Given the lack of current effective pharmacological solutions for low muscle mass and sarcopenia, holistic interventions are essential to patient care, as well as exercise and nutrition. Thus, the present narrative review aimed to analyze the nutritional, pharmacological, ergonutritional, and physical exercise strategies in cancer-related cachexia. The integration of multidisciplinary interventions could help to improve the final intervention in patients, improving their prognosis, quality of life, and life expectancy. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Cancer-related cachexia is a complex multifactorial phenomenon in which systemic inflammation plays a key role in the development and maintenance of the symptomatology. Pharmacological interventions seem to produce a positive effect on inflammatory state and cachexia. Nutritional interventions are focused on a high-energy diet with high-density foods and the supplementation with antioxidants, while physical activity is focused on strength-based training. The implementation of multidisciplinary non-pharmacological interventions in cancer-related cachexia could be an important tool to improve traditional treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | | | | |
Collapse
|
44
|
Effect of Bacterial Infection on Ghrelin Receptor Regulation in Periodontal Cells and Tissues. Int J Mol Sci 2022; 23:ijms23063039. [PMID: 35328456 PMCID: PMC8950409 DOI: 10.3390/ijms23063039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of bacterial infection on the expression of growth hormone secretagogue receptor (GHS-R) was investigated in periodontal cells and tissues, and the actions of ghrelin were evaluated. GHS-R was assessed in periodontal tissues of rats with and without periodontitis. Human gingival fibroblasts (HGFs) were exposed to Fusobacterium nucleatum in the presence and absence of ghrelin. GHS-R expression was determined by real-time PCR and immunocytochemistry. Furthermore, wound healing, cell viability, proliferation, and migration were evaluated. GHS-R expression was significantly higher at periodontitis sites as compared to healthy sites in rat tissues. F. nucleatum significantly increased the GHS-R expression and protein level in HGFs. Moreover, ghrelin significantly abrogated the stimulatory effects of F. nucleatum on CCL2 and IL-6 expressions in HGFs and did not affect cell viability and proliferation significantly. Ghrelin stimulated while F. nucleatum decreased wound closure, probably due to reduced cell migration. Our results show original evidence that bacterial infection upregulates GHS-R in rat periodontal tissues and HGFs. Moreover, our study shows that ghrelin inhibited the proinflammatory actions of F. nucleatum on HGFs without interfering with cell viability and proliferation, suggesting that ghrelin and its receptor may act as a protective molecule during bacterial infection on periodontal cells.
Collapse
|
45
|
Matsumoto C, Sekine H, Nahata M, Mogami S, Ohbuchi K, Fujitsuka N, Takeda H. Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy. Biol Pharm Bull 2022; 45:780-792. [DOI: 10.1248/bpb.b22-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co
| | | | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co
| | | | | |
Collapse
|
46
|
Herrera-Martínez Y, Alzas Teomiro C, León Idougourram S, Molina Puertas MJ, Calañas Continente A, Serrano Blanch R, Castaño JP, Gálvez Moreno MÁ, Gahete MD, Luque RM, Herrera-Martínez AD. Sarcopenia and Ghrelin System in the Clinical Outcome and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2021; 14:cancers14010111. [PMID: 35008278 PMCID: PMC8750458 DOI: 10.3390/cancers14010111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Malnutrition and sarcopenia affect clinical outcomes in cancer patients. Nutritional evaluation in patients with neuroendocrine neoplasms (NENs) is not routinely performed. Currently, the evaluation of sarcopenia using CT scans is the gold standard in cancer patients, additionally, anthropometric, biochemical and molecular analysis of patients with gastroenteropancreatic NENs at diagnosis was perfomed. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes. Abstract Background: Malnutrition and sarcopenia affect clinical outcomes and treatment response in cancer patients. Patients with neuroendocrine neoplasms (NENs) may present with additional symptoms related to tumor localization in the gastrointestinal tract and hormone secretion, increasing the risk and effects of sarcopenia. Aim: To explore the presence of malnutrition and sarcopenia in gastroenteropancreatic (GEP)-NEN patients, their relation to tumor characteristics, patient outcomes, survival and the molecular expression of ghrelin system components in the tumor. Patients and methods: One-hundred-and-four patients were included. Anthropometric, biochemical and CT-scans at diagnosis were evaluated. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes.
Collapse
Affiliation(s)
| | - Carlos Alzas Teomiro
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Soraya León Idougourram
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - María José Molina Puertas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Alfonso Calañas Continente
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Raquel Serrano Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Medical Oncology Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - María Ángeles Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
- Correspondence:
| |
Collapse
|
47
|
Hain BA, Xu H, Waning DL. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J Cachexia Sarcopenia Muscle 2021; 12:1597-1612. [PMID: 34664403 PMCID: PMC8718092 DOI: 10.1002/jcsm.12795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.
Collapse
Affiliation(s)
- Brian A Hain
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - David L Waning
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
48
|
Wahdan SA, Elsherbiny DA, Azab SS, El-Demerdash E. Piceatannol ameliorates behavioural, biochemical and histological aspects in cisplatin-induced peripheral neuropathy in rats. Basic Clin Pharmacol Toxicol 2021; 129:486-495. [PMID: 34390194 DOI: 10.1111/bcpt.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Peripheral neurotoxicity is a dose-limiting and a potentially lifelong persistent toxicity of cisplatin. This study investigated the possible protective effect of piceatannol (PIC) in a model of cisplatin-induced peripheral neuropathy in rats. PIC (10 mg/kg, i.p.) was given for 7 days, starting 2 days before cisplatin single injection (7 mg/kg, i.p.). Behavioural, biochemical and histological examinations were conducted. Cisplatin administration resulted in thermal hypoalgesia evidenced by increased paw and tail withdrawal latency times in the hotplate and tail flick tests, respectively, and reduced the abdominal constrictions in response to the acetic acid injection. Moreover, cisplatin treatment decreased rat locomotor activity and grip strength. These behavioural alterations were reversed by PIC coadministration. In addition, PIC decreased cisplatin-induced elevation in serum neurotensin and platinum accumulation in sciatic nerve. Also, PIC reversed, to a large extent, cisplatin-induced microscopical alterations in nerve axons and restored normal myelin thickness. Therefore, PIC may protect against cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
49
|
Leng Y, Zhao C, Yan G, Xu S, Yang Y, Gong T, Li X, Li C. Ghrelin enhances cisplatin sensitivity in HO-8910 PM human ovarian cancer cells. J Ovarian Res 2021; 14:162. [PMID: 34789301 PMCID: PMC8597245 DOI: 10.1186/s13048-021-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to platinum-based chemotherapy is one of the crucial problems in ovarian cancer treatment. Ghrelin, a widely distributed peptide hormone, participates in a series of cancer progression. The aim of this study is to determine whether ghrelin influences the sensitivity of ovarian cancer to cisplatin, and to demonstrate the underlying mechanism. METHODS The anti-tumor effects of ghrelin and cisplatin were evaluated with human ovarian cancer cells HO-8910 PM in vitro or in vivo. Cell apoptosis and cell cycle were analyzed via flow cytometry assay. The signaling pathway and the expression of cell cycle protein were analyzed with Western Blot. RESULTS Our results showed that treatment with ghrelin specifically inhibited cell proliferation of HO-8910 PM and sensitized these cells to cisplatin via S phase cell cycle arrest, and enhanced the inhibitory effect of cisplatin on tumor growth of HO-8910 PM derived xenografts in vivo. Treatment with ghrelin inhibited the expression of p-Erk1/2 and p-p38, which was opposite the effect of cisplatin. However, under the treatment of ghrelin, cisplatin treatment exhibited a stronger effect on inhibiting P21 expression, upregulating p-CDK1 and cyclin B1 expression, and blocking cell cycle progression. Mechanistically, ghrelin promoted S phase cell cycle arrest and upregulated p-CDK1 and cyclin B1 expression induced by cisplatin via inhibition of p38. CONCLUSION This study revealed a specifically inhibitory effect of ghrelin on platinum-resistance via suppressing p-P38 and subsequently promoting p-CDK1 mediated cell cycle arrest in HO-8910 PM.
Collapse
Affiliation(s)
- Yun Leng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 518101, China.,School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Can Zhao
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Shuangyue Xu
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Ting Gong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Chenglin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China. .,School of Medicine, Xiamen University, Xiamen, 361100, China.
| |
Collapse
|
50
|
Dose-dependent effects of ghrelin and aberrant anti-Mullerian hormone levels in the prevention of ovarian damage caused by cisplatin in Wistar-albino rats. Arch Gynecol Obstet 2021; 305:1003-1009. [PMID: 34687336 DOI: 10.1007/s00404-021-06292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Ghrelin has previously been proven to have anti-inflammatory and antioxidant properties in preventing cisplatin-induced ovarian damage. The aim of this study was to evaluate the potential effects of this hormone in preventing this damage in rats using histopathological and biochemical methods. METHODS Twenty-eight Wistar-albino rats were randomly divided into four groups. While no drug was given to Group 1 (sham group), acylated ghrelin was intraperitoneally administered to Group 2 at 0.5 nmol/kg and Group 3 at 2 nmol/kg for 21 days. Group 4 received only saline solution. On the 15th day, a single dose of 5 mg/kg cisplatin was intraperitoneally administered to each rat in Groups 2, 3 and 4. Serum anti-Mullerian hormone (AMH) values were measured on days 0, 15 and 21. Then, laparotomy and bilateral oophorectomy were performed, and the ovaries were histopathologically examined. RESULTS The number of primordial and primary follicles was significantly higher in Group 3 than in the saline solution + cisplatin group. In Group 4, cisplatin caused significantly higher follicle damage in the primordial, primary and secondary phases compared to the sham group. The AMH level of the SF + cisplatin group was significantly lower than that of the sham group and the high-dose ghrelin + cisplatin group, and the AMH level of the sham group was significantly higher than that of the low-dose ghrelin + cisplatin group. CONCLUSION High-dose ghrelin was effective in preventing cisplatin-induced ovarian damage by preserving the number of primordial and primary follicles. Larger randomized studies are needed to determine the optimal dosage and duration of ghrelin.
Collapse
|