1
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
2
|
Alibardi L. Ultrastructure and immunohistochemistry of apteric skin in ratites and its epidermal soft cornification. Acta Histochem 2024; 126:152213. [PMID: 39476480 DOI: 10.1016/j.acthis.2024.152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
An electron microscopy and immunohistochemistry study has been conducted to acquire comparative information on the structure of apteric skin in ratites, ostrich and emu. The epidermis is thin in the neck of both species and thicker in the dorsal region where acidic and neutral keratins are present in the viable epidermis and stratum corneum. The dermis in both species is mostly occupied by collagen fibrils that form large bundles, often organized in alternated layers in the deeper part of the dermis. Numerous collagen fibrils contact the basement membrane of the epidermis. Sparse tactile Meissner or Krause sensilli are present among the thick collagen bundles. The ostrich epidermis in the dorsal skin is thicker than in the neck, with a columnar basal layer, 3-5 intermediate suprabasal layers and a thick corneous layer. The epidermis of the neck in emu is very thin, featuring two-three narrow cell layers above a flat basal layer and a relatively thick corneous layer. Basal and suprabasal keratinocytes contain lipid droplets and small keratin bundles but no keratohyalin accumulates in pre-corneous cells. The thin corneocytes form a multilayered corneous layer. Loricrine is present in pre-corneous and corneous layers while CBPs, formerly indicated as beta-keratins, are absent in apteric epidermis.
Collapse
|
3
|
Alibardi L. Immunolabeling for filaggrin and acidic keratins in the granular layer of mammalian epidermis indicates that an acidic-basic interaction is involved in cornification. Tissue Cell 2024; 88:102397. [PMID: 38677234 DOI: 10.1016/j.tice.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The soft epidermis of mammals derives from the accumulation of keratohyaline granules in the granular layer, before maturing into corneocytes. Main proteins accumulated in the granular layer are pro-filaggrin and filaggrin that determine keratin clumping and later moisturization of the stratum corneum that remains flexible. This soft epidermis allows the high sensitivity of mammalian skin. Presence and thickness of the stratum granulosum varies among different species of mammals and even between different body regions of the same animal, from discontinuous to multilayered. These variations are evident using antibodies for filaggrin, a large protein that share common epitopes among placentals. Here we have utilized filaggrin antibodies (8959 and 466) and an acidic keratin antibody (AK2) for labeling placental, marsupial and monotreme epidermis. AK2 labeling appears mainly to detect K24 keratin, and less likely other acidic keratins. Immunoreactivity for filaggrin is absent in platypus, discontinuous in Echidna and in the tested marsupials. In placentals, it is inconstantly or hardly detected in the thin epidermis of bat, rodents, and lagomorphs with a narrow, mono-stratified and/or discontinuous granular layer. In contrast, where the granular layer is continuous or even stratified, both filaggrin and AK2 antibodies decorate granular cells. The ultrastructural analysis using the AK2 antibody on human epidermis reveals that a weak labeling is associated with keratohyalin granules and filamentous keratins of transitional keratinocytes and corneocytes. This observation suggests that basophilic filaggrin interacts with acidic keratins like K24 and determines keratin condensation into corneocytes of the stratum corneum.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Italy.
| |
Collapse
|
4
|
Skieresz-Szewczyk K, Jackowiak H, Skrzypski M. Alpha-Keratin, Keratin-Associated Proteins and Transglutaminase 1 Are Present in the Ortho- and Parakeratinized Epithelium of the Avian Tongue. Cells 2022; 11:1899. [PMID: 35741029 PMCID: PMC9221158 DOI: 10.3390/cells11121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The lingual mucosa in birds is covered with two specific types of multilayered epithelia, i.e., the para- and orthokeratinized epithelium, that differ structurally and functionally. Comprehensive information on proteins synthesized in keratinocyte during their cytodifferentiation in subsequent layers of multilayered epithelia in birds concerns only the epidermis and are missing the epithelia of the lingual mucosa. The aim of the present study was to perform an immunohistochemical (IHC) and molecular analysis (WB) of bird-specific alpha-keratin, keratin-associated proteins (KAPs), namely filaggrin and loricrin, as well as transglutaminase 1 in the para- and orthokeratinized epithelium covering the tongue in the domestic duck, goose, and turkey. The results reveal the presence of alpha-keratin and KAPs in both epithelia, which is a sign of the cornification process. In contrast to the epidermis, the main KAPs involved in the cornification process of the lingual epithelia in birds is loricrin. Stronger expression with KAPs and transglutaminase 1 in the orthokeratinized epithelium than in the parakeratinized epithelium may determine the formation of a more efficient protective mechanical barrier. The presence of alpha-keratin, KAPs, and transglutaminase 1 epitopes characteristic of epidermal cornification in both types of the lingual epithelia may prove that they are of ectodermal origin.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Hanna Jackowiak
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland;
| |
Collapse
|
5
|
Alibardi L. Keratinization and Cornification are not equivalent processes but keratinization in fish and amphibians evolved into cornification in terrestrial vertebrates. Exp Dermatol 2022; 31:794-799. [PMID: 35007368 DOI: 10.1111/exd.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
The present account offers a generalized view of the evolution of process of terminal differentiation in keratinocytes of the epidermis in anamniotes, indicated as keratinization, into a further differentiating process of cornification in the skin and appendages of terrestrial vertebrates. Keratinization indicates the prevalent accumulation of intermediate filaments of keratins (IFKs) and is present in most fish and amphibian epidermis and inner epithelia of all vertebrates. During land adaptation, terrestrial vertebrates evolved a process of cornification and keratinocytes became dead corneocytes by the addition of numerous others proteins to the IFKs framework, represented by keratin-associated proteins (KAPs) and corneous proteins (CPs). Most of genes coding for these types of proteins are localized in chromosomal loci different and un-related from those of IFKs, and CPs originated from a gene cluster indicated as epidermal differentiation complex. During the evolution of reptiles and birds, the epidermis and corneous derivatives such as scales, claws, beaks and feathers mainly accumulate a type of CPs that overcome IFKs and containing a 34 amino acid beta-sheet core indicated as corneous beta proteins, formerly known as beta-keratins. Mammals did not evolve a beta-sheet core in their CPs and KAPs but instead produced numerous cysteine-rich IFKs in their epidermis and specialized KAPs in hairs, claws, nails, hooves and horns.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padova, Italy.,Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Alibardi L. Immunolabeling indicates that sulfhydryl oxidase is absent in anamniote epidermis but marks the process of cornification in the skin of terrestrial vertebrates. J Morphol 2020; 282:247-261. [PMID: 33196118 DOI: 10.1002/jmor.21299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023]
Abstract
The passage between keratinization to cornification of the epidermis and skin appendages in vertebrates requires formation of a stratum corneum rich in SS bonds among other cross-linking chemical bonds. A key enzyme, sulfhydryl oxidase (SOXase) catalyzes the oxidation of SH groups present in keratins and in corneous proteins of the epidermis into SS. Presence and distribution of SAXase has been studied by immunohistochemistry in all vertebrates, from fish to mammals. SOXase is immunohistochemically absent in all fish and amphibian species tested with the exception of a thin pre-corneous layer in the epidermis of adult anurans. SOXase is low to absent in corneous appendages such as horny teeth of lamprey or claws and horny beaks of amphibians. Conversely, SOXase is detected in the transitional (pre-corneous) and inner corneous layers of the epidermis of sauropsids and mammals. In lepidosaurian reptiles, SOXase appears in both beta- and alpha-corneous-layers, but is limited to the pre-corneous and corneous layers of the thin soft epidermises of birds and mammals, including the granular layer. SOXase is localized in pre-corneous layers and disappears in external corneous layers of amniote skin appendages such as claws, beaks of turtles and birds, and in developing feathers. This distribution further indicates that the increase activity of epidermal SOXase is/was essential, in addition to other enzymes such as epidermal transglutaminases, for the evolution of the corneous layer and of the different hard skin appendages present in terrestrial vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Immunohistochemical detection of sulfhydryl oxidase in chick skin appendages and feathers suggests that the enzyme contributes to maturation of the corneous material. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00498-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Cystatin immunoreactivity in cornifying layers of the epidermis suggests a role in the formation of the epidermal barrier in amniotes. ZOOLOGY 2018; 127:40-46. [PMID: 29503061 DOI: 10.1016/j.zool.2018.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/23/2022]
Abstract
The presence and localization of cystatin, a cysteine protease inhibitor involved in barrier formation in human and mice epidermis, has been studied in the epidermis of piscine and terrestrial vertebrates using a mouse monoclonal antibody. Cystatin has been localized by Immunostaining in the pre-corneous and corneous layers of monotreme, marsupial and placental mammals, and sparsely in the thin corneous layer of birds. Cystatin-immunolabeling is present in the pre-corneous and corneous layer of crocodilian and turtle epidermis, in the alpha-corneous layer and likely also in the beta-corneous layer of the epidermis in lizards, snakes and the tuatara. In keratinocytes of the pre-corneous (transitional) layers the protein initially shows a peripheral distribution that becomes compacted in mature corneocytes. The protein is not detected using the antibody in the epidermis of cyclostome, teleosts, sarcopterigian fish, and in amphibians. The study concludes that while in fish and amphibians cystatin is absent or however uncertainly localized in the epidermis, the protein instead appears present in the more external pre-corneous and corneous layers of amniotes. This special regionalization suggests a specific role of cystatin in the formation of the corneous epidermal barrier and regulation of desquamation originally evolved in the terrestrial environment.
Collapse
|
10
|
Disulfide-bond-mediated cross-linking of corneous beta-proteins in lepidosaurian epidermis. ZOOLOGY 2017; 126:145-153. [PMID: 29129393 DOI: 10.1016/j.zool.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
Abstract
Corneous beta-proteins (CBPs), formerly referred to as beta-keratins, are major protein components of the epidermis in lepidosaurian reptiles and are largely responsible for their material properties. These proteins have been suggested to form filaments of 3.4nm in thickness and to interact with themselves or with other proteins, including intermediate filament (IF) keratins. Here, we performed immunocytochemical labeling of CBPs in the epidermis of different lizards and snakes and investigated by immunoblotting analysis whether the reduction of disulfide bonds or protein oxidation affects the solubility and mobility of these CBPs. Immunogold labeling suggested that CBPs are partly co-localized with IF-keratins in differentiating and mature beta-cells. The chemical reduction of epidermal proteins from lizard and snake epidermis increased the abundance of CBP-immunoreactive bands in the size range of CBP monomers on Western blots. Conversely, in vitro oxidation of epidermal proteins reduced the abundance of putative CBP monomers. Some modifications in the IF-keratin range were also noted. These results strongly indicate that CBPs associate with IF-keratins and other proteins via disulfide bonds in the epidermis of lizards and snakes, which likely contributes to the resilience of the cornified beta- and alpha-layers of the lepidosaurian epidermis in live animals and after shedding.
Collapse
|
11
|
ALIBARDI LORENZO. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:338-351. [DOI: 10.1002/jez.b.22689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- LORENZO ALIBARDI
- Comparative Histolab and Department of Bigea; University of Bologna; Italy
| |
Collapse
|
12
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Alibardi L. Immunocytochemical localization of sulfhydryl oxidase in mammalian epidermis suggests that the enzyme cross-links keratins in the granular and transitional corneous layers. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
14
|
Alibardi L. Immunolocalization of sulfhydryl oxidase in reptilian epidermis indicates that the enzyme participates mainly to the hardening process of the beta-corneous layer. PROTOPLASMA 2015; 252:1529-1536. [PMID: 25740419 DOI: 10.1007/s00709-015-0782-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Reptilian skin is tough and scaled representing an evolutionary adaptation to the terrestrial environment. The presence of sulfhydryl oxidase during the process of hardening of the corneous layer in reptilian epidermis has been analyzed by immunocytochemistry and immunoblotting. Sulfhydryl oxidase-like immunoreactivity of proteins in the 50-65 kDa range of molecular weight is mainly observed in the transitional and pre-corneous layers of crocodilians, chelonian, and in the forming beta-layer of lepidosaurians. The ultrastructural localization of the enzyme by immunogold in lizard epidermis during renewal and resting stages shows that the labeling is mainly distributed in the cytoplasm and along the accumulating beta-packets of differentiating beta-cells while it appears very low to undetectable in differentiating alpha-cells of the lacunar, clear, mesos, and alpha-layers. The labeling however becomes absent or undetectable also in the fully mature beta-layer. The study shows that an oxidative enzyme is likely responsible of the cross-linking of the numerous cysteines present in the main proteins accumulated in corneocytes of reptilian epidermis, known as corneous beta-proteins (beta-keratins). This process of disulphide bond formation is probably largely responsible for the formation of hard beta-corneous layers in reptilian scales, a difference with alpha-corneous layers where substrate proteins of transglutaminase appear predominant.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, Bologna, Italy.
| |
Collapse
|
15
|
Gillespie MJ, Crowley TM, Haring VR, Wilson SL, Harper JA, Payne JS, Green D, Monaghan P, Stanley D, Donald JA, Nicholas KR, Moore RJ. Transcriptome analysis of pigeon milk production - role of cornification and triglyceride synthesis genes. BMC Genomics 2013; 14:169. [PMID: 23497009 PMCID: PMC3610128 DOI: 10.1186/1471-2164-14-169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. Results We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon ‘lactating’ crop-specific annexin cp35. Beta-keratins play an important role in ‘lactating’ crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. Conclusions This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.
Collapse
Affiliation(s)
- Meagan J Gillespie
- Australian Animal Health Laboratory, CSIRO Animal, Food and Health Sciences, 5 Portarlington Road, Geelong, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alibardi L. Ultrastructural immunolocalization of involucrin in the medulla and inner root sheath of the human hair. Ann Anat 2011; 194:345-50. [PMID: 22197495 DOI: 10.1016/j.aanat.2011.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/26/2022]
Abstract
The participation of involucrin in the cornification of the human hair has been studied by light and electron microscopy immunohistochemistry. Immunoreactivity for involucrin is absent in keratinized cuticle and cortical cells although some immunolabeling is observed in the corneous membrane of internal cortical cells surrounding the hair medulla. Conversely, immunolabeling for involucrin is present in the cytoplasm of keratinizing cells of the medulla and inner root sheath. During the maturation and final cornification of medullary and inner root sheath cells the immunolabeling for involucrin tends to concentrate in the peripheral cytoplasm and along the cornified cell plasma membrane in both medullary and inner root sheath cells, a pattern similar to that known for corneocytes of the epidermis. This observation suggests that in the hair involucrin mainly participates in the formation of the corneous material of the medulla and inner root sheath in conjunction with trichohyalin, probably by the formation of isopeptide-bonds. Therefore, together with trichohyalin, the cross-linking due to involucrin is also responsible for the mechanical resistance of the corneous trabeculae present among the empty spaces of the medulla of the human hair.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia, University of Bologna, Italy.
| |
Collapse
|
17
|
Maddin HC, Eckhart L, Jaeger K, Russell AP, Ghannadan M. The anatomy and development of the claws of Xenopus laevis (Lissamphibia: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods. J Anat 2010; 214:607-19. [PMID: 19422431 DOI: 10.1111/j.1469-7580.2009.01052.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Digital end organs composed of hard, modified epidermis, generally referred to as claws, are present in mammals and reptiles as well as in several non-amniote taxa such as clawed salamanders and frogs, including Xenopus laevis. So far, only the claws and nails of mammals have been characterized extensively and the question of whether claws were present in the common ancestor of all extant tetrapods is as yet unresolved. To provide a basis for comparisons between amniote and non-amniote claws, we investigated the development, growth and ultrastructure of the epidermal component of the claws of X. laevis. Histological examination of developing claws of X. laevis shows that claw formation is initiated at the tip of the toe by the appearance of superficial cornified cells that are dark brown. Subsequent accumulation of new, proximally extended claw sheath corneocyte layers increases the length of the claw. Histological studies of adult claws show that proliferation of cornifying claw sheath cells occurs along the entire length of the claw-forming epidermis. Living epidermal cells that are converting into the cornified claw sheath corneocytes undergo a form of programmed cell death that is accompanied by degradation of nuclear DNA. Subsequently, the cytoplasm and the nuclear remnants acquire a brown colour by an as-yet unknown mechanism that is likely homologous to the colouration mechanism that occurs in other hard, cornified structures of amphibians such as nuptial pads and tadpole beaks. Transmission electron microscopy revealed that the cornified claw sheath consists of parallel layers of corneocytes with interdigitations being confined to intra-layer contacts and a cementing substance filling the intercorneocyte spaces. Together with recent reports that showed the main molecular components of amniote claws are absent in Xenopus, our data support the hypothesis that claws of amphibians likely represent clade-specific innovations, non-homologous to amniote claws.
Collapse
|
18
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
19
|
Alibardi L, Toni M. Characterization of keratins and associated proteins involved in the corneification of crocodilian epidermis. Tissue Cell 2007; 39:311-23. [PMID: 17707449 DOI: 10.1016/j.tice.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/15/2022]
Abstract
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia, Sezione Anatomia, Comparata, via Selmi 3, 40126, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
20
|
Maddin HC, Musat-Marcu S, Reisz RR. Histological microstructure of the claws of the African clawed frog,Xenopus laevis (Anura: Pipidae): implications for the evolution of claws in tetrapods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:259-68. [PMID: 17262827 DOI: 10.1002/jez.b.21145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Claws are consistent components of amniote anatomy and may thus be implicated in the success of the amniote invasion of land. However, the evolutionary origin of these structures in tetrapods is unclear. Claws are present in certain extant non-amniotes, such as Xenopus laevis, the African clawed frog. The histology of the soft tissue component of the claws of X. laevis is described and compared with the amniote condition in order to gain new information on the question of homology of claws in these two groups based on patterns of keratinization. The X. laevis claw sheath is composed of a localized thickening of the corneous region of the epidermis that envelops the terminal phalanx. Noted differences between the non-cornified layers of the epidermis of the claw and non-claw region are the overall grainier appearance of the cells and an increased abundance of desmosomes in the intermediate spinosus cells. The biochemical identity of the sheath keratin(s) is inferred to be different from that of non-claw region epidermis, based on histological differences and differences in stain affinity between the two regions. The microstructure of the frog claw differs from that of amniotes in several respects, including the lack of a specified zone of growth near the base of the claw. Amphibians and amniotes, therefore, have very different patterns of claw sheath growth. Observations do not support homology of claws on a structural level in these two groups; however, further experimental work may confirm a conserved pattern of cornification in these structures in tetrapods.
Collapse
Affiliation(s)
- Hillary C Maddin
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
21
|
Alibardi L, Toni M. Skin structure and cornification proteins in the soft-shelled turtle Trionyx spiniferus. ZOOLOGY 2006; 109:182-95. [PMID: 16600580 DOI: 10.1016/j.zool.2005.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/09/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022]
Abstract
In contrast to most chelonians, the fully aquatic soft-shelled turtles have a smooth, unscaled, and pliable shell. The skin of the shell, tail, limbs, and neck of juveniles of Trionyx spiniferus has been studied by ultrastructural, immunocytochemical, and immunoblotting methods. The epidermis of the carapace and plastron has a thick corneous layer composed of alpha-corneocytes surrounded by a cornified cell envelope. The softer epidermis is similar to that of the shell but the epidermis and corneous layer are much thinner. Pre-corneous cells in both soft and shell epidermis are rich in vesicles produced in the Golgi apparatus and smooth endoplasmic vesicles, and contain numerous dense-core mucus-like and vesicular (lamellar) bodies. Secreted material is present among corneocytes where it probably forms an extensive intercellular lipid-mucus waterproof barrier. The dermis is very thick and composed of several layers of collagen bundles that form a plywood-patterned dermis. This dermis constitutes a strong mechanical barrier that compensates for the low content in beta-keratin, and lack of cornified scutes and dermal bones. The growth of the shell mainly occurs along the lateral margins. Immunocytochemistry reveals the presence of some beta-keratin in soft and shell epidermis, and this is confirmed by immunoblotting where bands at 18 and 32-35 kDa are present. Other proteins of the cornified cell envelope (loricrin and sciellin) or associated to lipid trafficking (caveolin-1) are also detected by immunoblotting. Loricrin positive bands at 24 and 57 kDa are present while bands cross-reactive for sciellin are seen at 45 and 53 kDa. Caveolin-1 positive bands are seen at 21-22 kDa. The presence of these proteins indicates that the epidermis is both coriaceous and waterproof. These results suggest that the shell of Trionyx is tough enough to be as mechanically efficient as the hard shell of the other turtles. At the same time, a soft shell is lighter, its shape is more easily controlled by muscles, and it allows a more controlled closure and retraction of limbs and neck inside the shell. Thus, the shell makes the animal more streamlined for swimming.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Italy.
| | | |
Collapse
|
22
|
Alibardi L, Toni M. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. ACTA ACUST UNITED AC 2006; 40:73-134. [PMID: 16584938 DOI: 10.1016/j.proghi.2006.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The characteristics of scaled skin of reptiles is one of their main features that distinguish them from the other amniotes, birds and mammals. The different scale patterns observed in extant reptiles result from a long evolutive history that allowed each species to adapt to its specific environment. The present review deals with comparative aspects of epidermal keratinization in reptiles, chelonians (turtles and tortoises), lepidosaurian (lizards, snakes, sphenodontids), archosaurians (crocodilians). Initially the morphology and cytology of reptilian scales is outlined to show the diversity in the epidermis among different groups. The structural proteins (alpha-keratins and associated proteins), and enzymes utilized to form the corneous layer of the epidermis are presented. Aside cytokeratins (alpha-keratins), used for making the cytoskeleton, reptilian alpha-keratinocytes produce interkeratin (matrix) and corneous cell envelope proteins. Keratin bundles and degraded cell organelles constitute most of the corneous material of alpha-keratinocytes. Matrix, histidine-rich and sulfur-rich proteins are produced in the soft epidermis and accumulated in the cornified cell envelope. Main emphasis is given to the composition and to the evolution of the hard keratins (beta-keratins). Beta-keratins constitute the hard corneous material of scales. These small proteins are synthesized in beta-keratinocytes and are accumulated into small packets that rapidly merge into a compact corneous material and form densely cornified layers. Beta-keratins are smaller proteins (8-20 kDa) in comparison to alpha-keratins (40-70 kDa), and this size may determine their dense packing in corneocytes. Both glycine-sulfur-rich and glycine-proline-rich proteins have been so far sequenced in the corneous material of scales in few reptilian species. The latter keratins possess C- and N-amino terminal amino acid regions with sequence homology with those of mammalian hard keratins. Also, reptilian beta-keratins possess a central core with homology with avian scale/feather keratins. Multiple genes code for these proteins and their discovery and sequentiation is presently an active field of research. These initial findings however suggest that ancient reptiles already possessed some common genes that have later diversified to produce the specific keratin-associated proteins in their descendants: extant reptiles, birds and mammals. The evolution of these small proteins in lepidosaurians, chelonians and archosaurians represent the next step to understand the evolution of cornification in reptiles and derived amniotes (birds and mammals).
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, via Selmi 3, University of Bologna, 40126 Bologna, Italy.
| | | |
Collapse
|
23
|
Alibardi L. Structural and Immunocytochemical Characterization of Keratinization in Vertebrate Epidermis and Epidermal Derivatives. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:177-259. [PMID: 17098057 DOI: 10.1016/s0074-7696(06)53005-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents comparative aspects of epidermal keratinization in vertebrates, with emphasis on the evolution of the stratum corneum in land vertebrates. The epidermis of fish does not contain proteins connected with interkeratin matrix and corneous cell envelope formation. Mucus-like material glues loose keratin filaments. In amphibians a cell corneous envelope forms but matrix proteins, aside from mucus/glycoproteins, are scarce or absent. In reptiles, birds, and mammals specific proteins associated with keratin become relevant for the production of a resistant corneous layer. In reptiles some matrix, histidine-rich and sulfur-rich corneous cell envelope proteins are produced in the soft epidermis. In avian soft epidermis low levels of matrix and cornified proteins are present while lipids become abundant. In mammalian keratinocytes, interkeratin proteins, cornified cell envelope proteins, and transglutaminase are present. Topographically localized areas of dermal-epidermal interactions in amniote skin determine the formation of skin derivatives such as scales, feathers, and hairs. New types of keratin and associated proteins are produced in these derivatives. In reptiles and birds beta-keratins form the hard corneous material of scales, claws, beaks, and feathers. In mammals, small sulfur-rich and glycine-tyrosine-rich proteins form the corneous material of hairs, horns, hooves, and claws. Molecular studies on reptilian beta-keratins show they are glycine-rich proteins. They have C- and N-terminal amino acid regions homologous to those of mammalian proteins and a central core with homology to avian scale/feather keratins. These findings suggest that ancient reptiles already possessed some common genes that later diversified to produce some keratin-associated protein in extant reptiles and birds, and others in mammals. The evolution of these small proteins represents the more recent variation of the process of cornification in vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Department of Experimental and Evolutionary Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
24
|
Alibardi L, Tschachler E, Eckhart L. Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. ACTA ACUST UNITED AC 2005; 286:962-73. [PMID: 16142807 DOI: 10.1002/ar.a.20234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Caspase-14, a member of the caspase family of cysteine proteases, is almost exclusively expressed in the epidermis. Studies on human and mouse cells and tissues have implicated caspase-14 in terminal differentiation of epidermal keratinocytes and in the formation of the stratum corneum. Here we investigated evolutionary aspects of the role of caspase-14 by analyzing its distribution in the epidermis and hair follicles of representative species of placental mammals, marsupials, and monotremes. Immunocytochemical staining showed that caspase-14 is consistently expressed in the granular and corneous layer of the epidermis of all mammalian species investigated. Ultrastructural analysis using gold-labeled anticaspase-14 antibodies revealed that caspase-14 is associated preferentially with keratin bundles and amorphous material of keratohyalin granules, but is also present in nuclei of transitional cells of the granular layer and in corneocytes. In hair follicles, caspase-14 was diffusely present in cornifying cells of the outer root sheath, in the companion layer, and, most abundantly, in the inner root sheath of all mammalian species here analyzed. In Henle and Huxley layers of the inner root sheath, labeling was seen in nuclei and, more diffusely, among trichohyalin granules of cornifying cells. In summary, the tissue expression pattern and the intracellular localization of caspase-14 are highly conserved among diverse mammalian species, suggesting that this enzyme is involved in a molecular process that appeared early in the evolution of mammalian skin. The association of caspase-14 with keratohyalin and trichohyalin granules may indicate a specific role of caspase-14 in the maturation of these keratinocyte-specific structures.
Collapse
|
25
|
Alibardi L, Toni M. Distribution and characterization of proteins associated with cornification in the epidermis of gecko lizard. Tissue Cell 2005; 37:423-33. [PMID: 16171836 DOI: 10.1016/j.tice.2005.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 05/08/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
The distribution and molecular weight of epidermal proteins of gecko lizards have been studied by ultrastructural, autoradiographic, and immunological methods. Setae of the climbing digital pads are cross-reactive to antibodies directed against a chick scutate scale beta-keratin but not against feather beta-keratin. Cross-reactivity for mammalian loricrin, sciellin, filaggrin, and transglutaminase are present in alpha-keratogenic layers of gecko epidermis. Alpha-keratins have a molecular weight in the range 40-58 kDa. Loricrin cross-reactive bands have molecular weights of 42, 50, and 58 kDa. Bands for filaggrin-like protein are found at 35 and 42 kDa, bands for sciellin are found at 40-45 and 50-55 kDa, and bands for transglutaminase are seen at 48-50 and 60 kDa. The specific role of these proteins remains to be elucidated. After injection of tritiated histidine, the tracer is incorporated into keratin and in setae. Tritiated proline labels the developing setae of the oberhautchen and beta layers, and proline-labeled proteins (beta-keratins) of 10-14, 16-18, 22-24 and 32-35 kDa are extracted from the epidermis. In whole epidermal extract (that includes the epidermis with corneous layer and the setae of digital pads), beta-keratins of low-molecular weight (10, 14-16, and 18-19 kDa) are prevalent over those at higher molecular weight (34 and 38 kDa). In contrast, in shed epidermis of body scales (made of corneous layer only while setae were not collected), higher molecular weight beta-keratins are present (25-27 and 30-34 kDa). This suggests that a proportion of the small beta-keratins present in the epidermis of geckos derive from the differentiating beta layer of scales and from the setae of digital pads. Neither small nor large beta-keratins of gecko epidermis cross-react with an antibody specifically directed against the feather beta-keratin of 10-12 kDa. This result shows that the 10 and 14-16 kDa beta-keratins of gecko (lepidosaurian) have a different composition than the 10-12 kDa beta-keratin of feather (archosaurian). It is suggested that the smaller beta-keratins in both lineages of sauropsids were selected during evolution in order to build elongated bundles of keratin filaments to make elongated cells. Larger beta-keratins in reptilian scales produce keratin aggregations with no orientation, used for mechanical protection.
Collapse
Affiliation(s)
- L Alibardi
- Dipartimento di Biologia evoluzionistica sperimentale, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | | |
Collapse
|