1
|
Kornfield JM, Bright H, Drake MG. Touching a Nerve: Neuroimmune Interactions in Asthma. Immunol Rev 2025; 331:e70025. [PMID: 40186378 PMCID: PMC12121487 DOI: 10.1111/imr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Asthma is an inflammatory airway disease characterized by excessive bronchoconstriction and airway hyperresponsiveness. Airway nerves play a crucial role in regulating these processes. In asthma, interactions between inflammatory cells and nerves result in nerve dysfunction, which worsens airway function. This review discusses new insights regarding the role of airway nerves in healthy lungs and examines how communication between nerves and leukocytes, including eosinophils, mast cells, dendritic cells, and innate lymphoid cells, contributes to nerve dysfunction and the worsening of airway disease. Clinical implications and therapeutic opportunities presented by neuroimmune interactions are also addressed.
Collapse
Affiliation(s)
- James M Kornfield
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Hoyt Bright
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Crosson T, Talbot S. Anatomical differences in nociceptor neurons sensitivity. Bioelectron Med 2022; 8:7. [PMID: 35382899 PMCID: PMC8985299 DOI: 10.1186/s42234-022-00088-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dorsal Root Ganglia (DRG) neurons are derived from the neural crest and mainly innervate the skin, while Jugular Nodose Complex (JNC) neurons originate from the placode and innervate internal organs. These ganglia are composed of highly heterogeneous groups of neurons aimed at assessing and preserving homeostasis. Among other subtypes, nociceptor neurons are specialized in sensing and responding to environmental dangers. As form typically follows function, we hypothesized that JNC and DRG neurons would be phenotypically and transcriptomically different. Methods Mouse JNC and DRG neurons were cultured ex vivo. Using calcium imaging, qPCR and neurite outgrowth assay, we compared the sensitivity of JNC and DRG neurons. Using in-silico analysis of existing RNA sequencing datasets, we confronted our results to transcriptomic differences found between both ganglia. Results We found drastically different expression levels of Transient Receptor Potential (TRP) channels, growth factor receptors and neuropeptides in JNC and DRG neurons. Functionally, naïve JNC neurons’ TRP channels are more sensitive to thermal cues than the ones from DRG neurons. However, DRG neurons showed increased TRP channel responsiveness, neuropeptide release and neurite outgrowth when exposed to Nerve Growth Factor (NGF). In contrast, JNC neurons preferentially responded to Brain-derived neurotrophic factor (BDNF). Conclusion Our data show that JNC and DRG neurons are transcriptomically and functionally unique and that pain sensitivity is different across anatomical sites. Drugs targeting NGF signaling may have limited efficacy to treat visceral pain. Bioelectronics nerve stimulation should also be adjusted to the ganglia being targeted and their different expression profile. Supplementary Information The online version contains supplementary material available at 10.1186/s42234-022-00088-w.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; 603:878-884. [PMID: 35296859 PMCID: PMC8967724 DOI: 10.1038/s41586-022-04515-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Collapse
Affiliation(s)
- Qiancheng Zhao
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Chuyue D. Yu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rui Wang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Qian J. Xu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rafael Dai Pra
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - Rui B. Chang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
5
|
Pincus AB, Fryer AD, Jacoby DB. Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neurosci Lett 2021; 751:135795. [PMID: 33667601 DOI: 10.1016/j.neulet.2021.135795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M2 muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.
| | - Allison D Fryer
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - David B Jacoby
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| |
Collapse
|
6
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
7
|
Meerschaert KA, Adelman PC, Friedman RL, Albers KM, Koerber HR, Davis BM. Unique Molecular Characteristics of Visceral Afferents Arising from Different Levels of the Neuraxis: Location of Afferent Somata Predicts Function and Stimulus Detection Modalities. J Neurosci 2020; 40:7216-7228. [PMID: 32817244 PMCID: PMC7534907 DOI: 10.1523/jneurosci.1426-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.
Collapse
Affiliation(s)
- Kimberly A Meerschaert
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | - Robert L Friedman
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - H Richard Koerber
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian M Davis
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
9
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
10
|
De Col R, Messlinger K, Hoffmann T. Differential conduction and CGRP release in visceral versus cutaneous peripheral nerves in the mouse. J Neurosci Res 2018; 96:1398-1405. [DOI: 10.1002/jnr.24255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Karl Messlinger
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Tali Hoffmann
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
11
|
Han L, Limjunyawong N, Ru F, Li Z, Hall OJ, Steele H, Zhu Y, Wilson J, Mitzner W, Kollarik M, Undem BJ, Canning BJ, Dong X. Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness. Nat Neurosci 2018; 21:324-328. [PMID: 29403029 PMCID: PMC5857222 DOI: 10.1038/s41593-018-0074-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 01/28/2023]
Abstract
Asthma, accompanied by lung inflammation, bronchoconstriction and airway hyper-responsiveness, is a significant public health burden. Here we report that Mas-related G protein-coupled receptors (Mrgprs) are expressed in a subset of vagal sensory neurons innervating the airway and mediates cholinergic bronchoconstriction and airway hyper-responsiveness. These findings provide insights into the neural mechanisms underlying the pathogenesis of asthma.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Fei Ru
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Olivia J Hall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Haley Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuyan Zhu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julie Wilson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marian Kollarik
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bradley J Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan J Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
McGovern AE, Driessen AK, Simmons DG, Powell J, Davis-Poynter N, Farrell MJ, Mazzone SB. Distinct brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional anterograde transsynaptic viral tracing system. J Neurosci 2015; 35:7041-55. [PMID: 25948256 PMCID: PMC6605260 DOI: 10.1523/jneurosci.5128-14.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
Sensory nerves innervating the mucosa of the airways monitor the local environment for the presence of irritant stimuli and, when activated, provide input to the nucleus of the solitary tract (Sol) and paratrigeminal nucleus (Pa5) in the medulla to drive a variety of protective behaviors. Accompanying these behaviors are perceivable sensations that, particularly for stimuli in the proximal end of the airways, can be discrete and localizable. Airway sensations likely reflect the ascending airway sensory circuitry relayed via the Sol and Pa5, which terminates broadly throughout the CNS. However, the relative contribution of the Sol and Pa5 to these ascending pathways is not known. In the present study, we developed and characterized a novel conditional anterograde transneuronal viral tracing system based on the H129 strain of herpes simplex virus 1 and used this system in rats along with conventional neuroanatomical tracing with cholera toxin B to identify subcircuits in the brainstem and forebrain that are in receipt of relayed airway sensory inputs via the Sol and Pa5. We show that both the Pa5 and proximal airways disproportionately receive afferent terminals arising from the jugular (rather than nodose) vagal ganglia and the output of the Pa5 is predominately directed toward the ventrobasal thalamus. We propose the existence of a somatosensory-like pathway from the proximal airways involving jugular ganglia afferents, the Pa5, and the somatosensory thalamus and suggest that this pathway forms the anatomical framework for sensations arising from the proximal airway mucosa.
Collapse
Affiliation(s)
| | | | | | - Joseph Powell
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia 4072
| | - Nicholas Davis-Poynter
- Clinical Medical Virology Centre/Queensland Children's Medical Research Centre, the University of Queensland and Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Queensland, Australia 4029, and
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia 3800
| | | |
Collapse
|
13
|
Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Struct Funct 2014; 220:3683-99. [PMID: 25158901 DOI: 10.1007/s00429-014-0883-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
Complex sensations accompany the activation of sensory neurons within the respiratory system, yet little is known about the organization of sensory pathways in the brain that mediate these sensations. In the present study, we employ anterograde viral neuroanatomical tract tracing with isogenic self-reporting recombinants of HSV-1 strain H129 to map the higher brain regions in receipt of vagal sensory neurons arising from the trachea versus the lungs, and single-cell PCR to characterize the phenotype of sensory neurons arising from these two divisions of the respiratory tree. The results suggest that the upper and lower airways are predominantly innervated by sensory neurons derived from the somatic jugular and visceral nodose cranial ganglia, respectively. This coincides with central circuitry that is predominately somatic-like, arising from the trachea, and visceral-like, arising from the lungs. Although some convergence of sensory pathways was noted in preautonomic cell groups, this was notably absent in thalamic and cortical regions. These data support the notion that distinct afferent subtypes, via distinct central circuits, subserve sensations arising from the upper versus lower airways. The findings may explain why sensations arising from different levels of the respiratory tree are qualitatively and quantitatively unique.
Collapse
|
14
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sestak MS, Božičević V, Bakarić R, Dunjko V, Domazet-Lošo T. Phylostratigraphic profiles reveal a deep evolutionary history of the vertebrate head sensory systems. Front Zool 2013; 10:18. [PMID: 23587066 PMCID: PMC3636138 DOI: 10.1186/1742-9994-10-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022] Open
Abstract
Background The vertebrate head is a highly derived trait with a heavy concentration of sophisticated sensory organs that allow complex behaviour in this lineage. The head sensory structures arise during vertebrate development from cranial placodes and the neural crest. It is generally thought that derivatives of these ectodermal embryonic tissues played a central role in the evolutionary transition at the onset of vertebrates. Despite the obvious importance of head sensory organs for vertebrate biology, their evolutionary history is still uncertain. Results To give a fresh perspective on the adaptive history of the vertebrate head sensory organs, we applied genomic phylostratigraphy to large-scale in situ expression data of the developing zebrafish Danio rerio. Contrary to traditional predictions, we found that dominant adaptive signals in the analyzed sensory structures largely precede the evolutionary advent of vertebrates. The leading adaptive signals at the bilaterian-chordate transition suggested that the visual system was the first sensory structure to evolve. The olfactory, vestibuloauditory, and lateral line sensory organs displayed a strong link with the urochordate-vertebrate ancestor. The only structures that qualified as genuine vertebrate innovations were the neural crest derivatives, trigeminal ganglion and adenohypophysis. We also found evidence that the cranial placodes evolved before the neural crest despite their proposed embryological relatedness. Conclusions Taken together, our findings reveal pre-vertebrate roots and a stepwise adaptive history of the vertebrate sensory systems. This study also underscores that large genomic and expression datasets are rich sources of macroevolutionary information that can be recovered by phylostratigraphic mining.
Collapse
Affiliation(s)
- Martin Sebastijan Sestak
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
16
|
Muroi Y, Ru F, Chou YL, Carr MJ, Undem BJ, Canning BJ. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1017-23. [PMID: 23576611 DOI: 10.1152/ajpregu.00028.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50-60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. By contrast, <5% of neurons in the jugular vagal ganglia neurons were transfected, and action potential conduction in the jugular vagal nerve fibers was unchanged. The control virus (with GFP expression) was without effect on action potential discharge and conduction in either ganglia. In vivo, NaV 1.7 silencing in the nodose ganglia nearly abolished cough evoked by mechanically probing the tracheal mucosa in anesthetized guinea pigs. Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.
Collapse
Affiliation(s)
- Yukiko Muroi
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
17
|
The origin of the vertebrate jaw: Intersection between developmental biology-based model and fossil evidence. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5372-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Gai Z, Donoghue PCJ, Zhu M, Janvier P, Stampanoni M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 2011; 476:324-7. [DOI: 10.1038/nature10276] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/07/2011] [Indexed: 11/09/2022]
|
19
|
Burighel P, Caicci F, Manni L. Hair cells in non-vertebrate models: Lower chordates and molluscs. Hear Res 2011; 273:14-24. [DOI: 10.1016/j.heares.2010.03.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
20
|
Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 2010; 588:4769-83. [PMID: 20937710 DOI: 10.1113/jphysiol.2010.195339] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two major types of nociceptors have been described in dorsal root ganglia (DRGs). In comparison, little is known about the vagal nociceptor subtypes. The vagus nerves provide much of the capsaicin-sensitive nociceptive innervation to visceral tissues, and are likely to contribute to the overall pathophysiology of visceral inflammatory diseases. The cell bodies of these afferent nerves are located in the vagal sensory ganglia referred to as nodose and jugular ganglia. Neurons of the nodose ganglion are derived from the epibranchial placodes, whereas jugular ganglion neurons are derived from the neural crest. In the adult mouse, however, there is often only a single ganglionic structure situated alone in the vagus nerve. By employing Wnt1Cre/R26R mice, which express β-galactosidase only in neural crest derived neurons, we found that this single vagal sensory ganglion is a fused ganglion consisting of both neural crest neurons in the rostral portion and non-neural crest (nodose) neurons in the more central and caudal portions of the structure. Based on their activation and gene expression profiles, we identified two major vagal capsaicin-sensitive nociceptor phenotypes, which innervated a defined target, namely the lung in adult mice. One subtype is non-peptidergic, placodal in origin, expresses P2X2 and P2X3 receptors, responds to α,β-methylene ATP, and expresses TRKB, GFRα1 and RET. The other phenotype is derived from the cranial neural crest and does not express P2X2 receptors and fails to respond to α,β-methylene ATP. This population can be further subdivided into two phenotypes, a peptidergic TRKA(+) and GFRα3(+) subpopulation, and a non-peptidergic TRKB(+) and GFRα1(+) subpopulation. Consistent with their similar embryonic origin, the TRPV1 expressing neurons in the rostral dorsal root ganglia were more similar to jugular than nodose vagal neurons. The data support the hypothesis that vagal nociceptors innervating visceral tissues comprise at least two major subtypes. Due to distinctions in their gene expression profile, each type will respond to noxious or inflammatory conditions in their own unique manner.
Collapse
|
21
|
Takano-Maruyama M, Chen Y, Gaufo GO. Placodal sensory ganglia coordinate the formation of the cranial visceral motor pathway. Dev Dyn 2010; 239:1155-61. [PMID: 20235227 PMCID: PMC2948960 DOI: 10.1002/dvdy.22273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The parasympathetic reflex circuit is controlled by three basic neurons. In the vertebrate head, the sensory, and pre- and postganglionic neurons that comprise each circuit have stereotypic positions along the anteroposterior (AP) axis, suggesting that the circuit arises from a common developmental plan. Here, we show that precursors of the VIIth circuit are initially aligned along the AP axis, where the placode-derived sensory neurons provide a critical "guidepost" through which preganglionic axons and their neural crest-derived postganglionic targets navigate before reaching their distant target sites. In the absence of the placodal sensory ganglion, preganglionic axons terminate and the neural crest fated for postganglionic neurons undergo apoptosis at the site normally occupied by the placodal sensory ganglion. The stereotypic organization of the parasympathetic cranial sensory-motor circuit thus emerges from the initial alignment of its precursors along the AP axis, with the placodal sensory ganglion coordinating the formation of the motor pathway.
Collapse
Affiliation(s)
- Masumi Takano-Maruyama
- Department of Biology and Neuroscience Institute at the University of Texas at San Antonio, San Antonio, TX 78249
| | - Yiju Chen
- Department of Biology and Neuroscience Institute at the University of Texas at San Antonio, San Antonio, TX 78249
| | - Gary O. Gaufo
- Department of Biology and Neuroscience Institute at the University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
22
|
Undem BJ, Nassenstein C. Airway nerves and dyspnea associated with inflammatory airway disease. Respir Physiol Neurobiol 2008; 167:36-44. [PMID: 19135556 DOI: 10.1016/j.resp.2008.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 01/28/2023]
Abstract
The neurobiology of dyspnea is varied and complex, but there is little doubt that vagal nerves within the airways are capable of causing or modulating some dyspneic sensations, especially those associated with inflammatory airway diseases. A major contributor to the dyspnea associated with inflammatory airway disease is explained by airway narrowing and increases in the resistance to airflow. The autonomic (parasympathetic) airway nerves directly contribute to this by regulating bronchial smooth muscle tone and mucus secretion. In addition, a component of the information reaching the brainstem via airway mechanosensing and nociceptive afferent nerves likely contributes to the overall sensations of breathing. The airway narrowing can lead to activation of low threshold mechanosensitive stretch receptors, and vagal and spinal C-fibers as well as some rapidly adapting stretch receptor in the airways that are directly activated by various aspects of the inflammatory response. Inflammatory mediators can induce long lasting changes in afferent nerve activity by modulating the expression of key genes. The net effect of the increase in afferent traffic to the brainstem modulates synaptic efficacy at the second-order neurons via various mechanisms collectively referred to as central sensitization. Many studies have shown that stimuli that activate bronchopulmonary afferent nerves can lead to dyspnea in healthy subjects. A logical extension of the basic research on inflammation and sensory nerve function is that the role of vagal sensory nerve in causing or shaping dyspneic sensations will be exaggerated in those suffering from inflammatory airway disease.
Collapse
|
23
|
Baker CVH, O'Neill P, McCole RB. Lateral line, otic and epibranchial placodes: developmental and evolutionary links? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:370-83. [PMID: 17638322 PMCID: PMC4209393 DOI: 10.1002/jez.b.21188] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two embryonic cell populations, the neural crest and cranial ectodermal placodes, between them give rise to many of the unique characters of vertebrates. Neurogenic placode derivatives are vital for sensing both external and internal stimuli. In this speculative review, we discuss potential developmental and evolutionary relationships between two placode series that are usually considered to be entirely independent: lateral line placodes, which form the mechanosensory and electroreceptive hair cells of the anamniote lateral line system as well as their afferent neurons, and epibranchial placodes (geniculate, petrosal and nodose), which form Phox2b(+) visceral sensory neurons with input from both the external and internal environment. We illustrate their development using molecular data we recently obtained in shark embryos, and we describe their derivatives, including the possible geniculate placode origin of a mechanosensory sense organ associated with the first pharyngeal pouch/cleft (the anamniote spiracular organ/amniote paratympanic organ). We discuss how both lateral line and epibranchial placodes can be related in different ways to the otic placode (which forms the inner ear and its afferent neurons), and how both are important for protective somatic reflexes. Finally, we put forward a highly speculative proposal about the original function of the cells whose evolutionary descendants today include the derivatives of the lateral line, otic and epibranchial placodes, namely that they produced sensory receptors and neurons for Phox2b-dependent protective reflex circuits. We hope this review will stimulate both debate and a fresh look at possible developmental and evolutionary relationships between these seemingly disparate and independent placodes.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, United Kingdom.
| | | | | |
Collapse
|
24
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.
Collapse
|
25
|
Burighel P, Caicci F, Zaniolo G, Gasparini F, Degasperi V, Manni L. Does hair cell differentiation predate the vertebrate appearance? Brain Res Bull 2007; 75:331-4. [PMID: 18331894 DOI: 10.1016/j.brainresbull.2007.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/17/2007] [Indexed: 11/19/2022]
Abstract
It is generally accepted that the three main chordate groups (tunicates, cephalochordates and vertebrates) originated from a common ancestor having the basic features of the chordate body plan, i.e. a neural tube and a notochord flanked by striated musculature. There is now increasing evidence that tunicates, rather than cephalochordates, are the vertebrate sister-group. Correlated with this, tunicates have sensory structures similar to those derived from placodes or neural crest in vertebrates. In this context, we discuss here whether the precursors of vertebrate hair cells, which are placodal in origin, were present in ancestral chordates. The ascidian tunicates possess a coronal organ, consisting of a row of mechanosensory cells that runs around the base of the oral siphon. Its function is to monitor the incoming water flow. The cells are secondary sensory cells, i.e. they lack axons and synapse with neurons whose somata lie in the cerebral ganglion. They are accompanied by supporting cells and, as in vertebrates, have varying morphologies in the species so far examined: in one order (Enterogona), they are multiciliate; in the other (Pleurogona), they may possess an apical apparatus, consisting of one or two cilia accompanied by stereovilli, that are graded in length. Coronal cells thus resemble vertebrate hair cells closely in their morphology, embryonic origin and arrangement, which suggests they originated early in ancestral chordates. We are continuing our study of the coronal organ in other ascidian species, and report new data here on Botrylloides leachi, which conforms with the pattern of Pleurogona and, in particular, with previously published results on other botryllid ascidians.
Collapse
Affiliation(s)
- Paolo Burighel
- Department of Biology, University of Padova, Via U. Bassi 58/B 35131, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Christiaen L, Jaszczyszyn Y, Kerfant M, Kano S, Thermes V, Joly JS. Evolutionary modification of mouth position in deuterostomes. Semin Cell Dev Biol 2007; 18:502-11. [PMID: 17656139 DOI: 10.1016/j.semcdb.2007.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
In chordates, the oral ectoderm is positioned at the anterior neural boundary and is characterized by pituitary homeobox (Pitx) and overlapping Dlx and Six3 expressions. Recent studies have shown that the ectoderm molecular map is also conserved in hemichordates and echinoderms. However, the mouth develops in a more posterior position in these animals, in a domain characterized by Nkx2.1 and Goosecoid expression, in a manner similar to that observed in protostomes. Furthermore, BMP signaling antagonizes mouth development in echinoderms and hemichordates, but seems to promote oral ectoderm specification in chordates. Conversely, Nodal signaling appears to be required for oral ectoderm specification in sea urchins but not in chordates. The Nodal/BMP antagonism at work during ectoderm patterning thus seems to constitute a conserved feature in deuterostomes, and mouth relocation may have been accompanied by a change in the influence of BMP/Nodal signals on oral ectoderm specification. We suggest that the mouth primordium was located at the anterior neural boundary, in early chordate evolution. In extant chordate embryos, subsequent mouth positioning differ between urochordates and vertebrates, presumably as a consequence of surrounding tissues remodelling. We illustrate these morphogenetic movements by means of morphological data obtained by the confocal imaging of ascidian tailbud embryos, and provide a table for determining the tailbud stages of this model organism.
Collapse
Affiliation(s)
- Lionel Christiaen
- Center for Integrative Genomics, Molecular & Cell Biology Department, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Caicci F, Burighel P, Manni L. Hair cells in an ascidian (Tunicata) and their evolution in chordates. Hear Res 2007; 231:63-72. [PMID: 17611058 DOI: 10.1016/j.heares.2007.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 05/09/2007] [Accepted: 05/15/2007] [Indexed: 11/19/2022]
Abstract
In ascidians, mechanoreceptors of the oral area are involved in monitoring the incoming water flow. Sensory cells are represented by scattered, ciliated primary cells (sending their own axons to the cerebral ganglion) or secondary sensory cells (axonless cells forming afferent and efferent synapses with neurons, whose somata are located in the ganglion) of the coronal organ. Coronal cells have varying morphologies: in species of the Enterogona order, they are multiciliate, whereas those of Pleurogona possess an apical apparatus composed of one or two cilia accompanied by stereovilli, in some cases also graded in length. The coronal organ has been proposed as a homologue to the vertebrate octavo-lateralis system, because coronal cells resemble vertebrate hair cells for morphology, embryonic origin and arrangement. In the ascidian Molgula socialis (Pleurogona), we now describe the morphology of the coronal organ, which contains a few associated rows of sensory cells that run the whole length of the oral velum and the branched tentacles. Three kinds of sensory cells, accompanied by specialised supporting cells, are present. Comparisons between the coronal organ and other chordate mechanosensory structures suggest that hair cells originated in the common ancestor of chordates.
Collapse
MESH Headings
- Animals
- Chordata
- Evolution, Molecular
- Hair Cells, Auditory/anatomy & histology
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory/ultrastructure
- Mechanoreceptors
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Models, Anatomic
- Neurons, Afferent
- Phylogeny
- Urochordata/physiology
Collapse
Affiliation(s)
- F Caicci
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padua, Italy.
| | | | | |
Collapse
|
28
|
O’Neill P, McCole RB, Baker CVH. A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol 2007; 304:156-81. [PMID: 17234174 PMCID: PMC4988491 DOI: 10.1016/j.ydbio.2006.12.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/15/2022]
Abstract
In order to gain insight into the evolution of the genetic control of the development of cranial neurogenic placodes and cranial sensory ganglia in vertebrates, we cloned and analysed the spatiotemporal expression pattern of six transcription factor genes in a chondrichthyan, the shark Scyliorhinus canicula (lesser-spotted dogfish/catshark). As in other vertebrates, NeuroD is expressed in all cranial sensory ganglia. We show that Pax3 is expressed in the profundal placode and ganglion, strongly supporting homology between the separate profundal ganglion of elasmobranchs and basal actinopterygians and the ophthalmic trigeminal placode-derived neurons of the fused amniote trigeminal ganglion. We show that Pax2 is a conserved pan-gnathostome marker for epibranchial and otic placodes, and confirm that Phox2b is a conserved pan-gnathostome marker for epibranchial placode-derived neurons. We identify Eya4 as a novel marker for the lateral line system throughout its development, expressed in lateral line placodes, sensory ridges and migrating primordia, neuromasts and electroreceptors. We also identify Tbx3 as a specific marker for lateral line ganglia in shark embryos. We use the spatiotemporal expression pattern of these genes to characterise the development of neurogenic placodes and cranial sensory ganglia in the dogfish, with a focus on the epibranchial and lateral line placodes. Our findings demonstrate the evolutionary conservation across all gnathostomes of at least some of the transcription factor networks underlying neurogenic placode development.
Collapse
Affiliation(s)
| | - R. B. McCole
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - C. V. H. Baker
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
29
|
Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, Darras S. Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 2006; 4:e225. [PMID: 16787106 PMCID: PMC1481523 DOI: 10.1371/journal.pbio.0040225] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022] Open
Abstract
The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.
Collapse
Affiliation(s)
- Andrea Pasini
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| | - Aldine Amiel
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| | - Ute Rothbächer
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| | - Agnès Roure
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| | - Patrick Lemaire
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| | - Sébastien Darras
- 1Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS/Université de la Méditerranée, Marseille, France
| |
Collapse
|
30
|
Manni L, Mackie GO, Caicci F, Zaniolo G, Burighel P. Coronal organ of ascidians and the evolutionary significance of secondary sensory cells in chordates. J Comp Neurol 2006; 495:363-73. [PMID: 16485286 DOI: 10.1002/cne.20867] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new mechanoreceptor organ, the coronal organ, in the oral siphon of some ascidians belonging to the order Pleurogona has recently been described. In contrast to the known mechanoreceptor organs of ascidian atrium that consist of sensory neurons sending their own axons to the cerebral ganglion, coronal sensory cells are secondary mechanoreceptors, i.e., axonless cells forming afferent and efferent synapses with neurites of neurons located in the ganglion. Moreover, coronal cells exhibit an apical apparatus composed of a cilium accompanied or flanked by rod-like microvilli (stereovilli). Because of the resemblance of these cells to vertebrate hair cells, their ectodermal origin and location in a linear array bordering the bases of the oral tentacles and velum, the coronal organ has been proposed as a homologue to the vertebrate acousticolateralis system. Here we describe the morphology of the coronal organs of six ascidians belonging to the suborders Phlebobranchia and Aplousobranchia (order Enterogona). The sensory cells are ciliated, lack typical stereovilli, and at their bases form synapses with neurites. In two species, the sensory cells are accompanied by large cells involved in synthesis and secretion of protein. We hypothesize that the coronal organ with its secondary sensory cells represents a plesiomorphic feature of ascidians. We compare the coronal organ with other chordate sensory organs formed of secondary sensory cells, i.e., the ventral lip receptors of appendicularians, the oral secondary sensory cells of cephalochordates, and the acousticolateralis system of vertebrates, and we discuss their homologies at different levels of organization.
Collapse
Affiliation(s)
- Lucia Manni
- Dipartimento di Biologia, Università di Padova, I-35121 Padova, Italy.
| | | | | | | | | |
Collapse
|
31
|
Manni L, Burighel P. Common and divergent pathways in alternative developmental processes of ascidians. Bioessays 2006; 28:902-12. [PMID: 16937358 DOI: 10.1002/bies.20462] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Colonial ascidians offer opportunities to investigate how developmental events are integrated to generate the animal form, since they can develop similar individuals (oozooids from eggs, blastozooids from pluripotent somatic cells) through very different reproductive processes, i.e. embryogenesis and blastogenesis. Moreover, thanks to their key phylogenetic position, they can help in the understanding of the molecular mechanisms of morphogenesis and their evolution in chordates. We review organogenesis of the ascidian neural complex comparing embryos and buds in terms of topology, developmental mechanisms and terminology. We propose a new interpretation of bud territories, and reconsider nervous system development based on recent results suggesting that ascidians have vertebrate placodal and neural-crest-like cells. Comparing embryonic and blastogenic development in Botryllus schlosseri, we propose that the bud has territories with a placodal potentiality, suggesting that chordate ancestors possessed neurogenic placodes, and that the genetic pathways regulating neurogenic placode formation were co-opted for new developmental processes, such as blastogenesis.
Collapse
Affiliation(s)
- Lucia Manni
- Department of Biology, University of Padova, Italy.
| | | |
Collapse
|