1
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
2
|
Krutzek F, Donat CK, Stadlbauer S. Chelator impact: investigating the pharmacokinetic behavior of copper-64 labeled PD-L1 radioligands. EJNMMI Radiopharm Chem 2024; 9:14. [PMID: 38372838 PMCID: PMC10876507 DOI: 10.1186/s41181-024-00243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) plays a critical role in the tumor microenvironment and overexpression in several solid cancers has been reported. This was associated with a downregulation of the local immune response, specifically of T-cells. Immune checkpoint inhibitors showed a potential to break this localized immune paralysis, but only 30% of patients are considered responders. New diagnostic approaches are therefore needed to determine patient eligibility. Small molecule radiotracers targeting PD-L1, may serve as such diagnostic tools, addressing the heterogeneous PD-L1 expression between and within tumor lesions, thus aiding in therapy decisions. RESULTS Four biphenyl-based small-molecule PD-L1 ligands were synthesized using a convergent synthetic route with a linear sequence of up to eleven steps. As a chelator NODA-GA, CB-TE2A or DiAmSar was used to allow radiolabeling with copper-64 ([64Cu]Cu-14-[64Cu]Cu-16). In addition, a dimeric structure based on DiAmSar was synthesized ([64Cu]Cu-17). All four radioligands exhibited high proteolytic stability (> 95%) up to 48 h post-radiolabeling. Saturation binding yielded moderate affinities toward PD-L1, ranging from 100 to 265 nM. Real-time radioligand binding provided more promising KD values around 20 nM for [64Cu]Cu-14 and [64Cu]Cu-15. In vivo PET imaging in mice bearing both PC3 PD-L1 overexpressing and PD-L1-mock tumors was performed at 0-2, 4-5 and 24-25 h post injection (p.i.). This revealed considerably different pharmacokinetic profiles, depending on the substituted chelator. [64Cu]Cu-14, substituted with NODA-GA, showed renal clearance with low liver uptake, whereas substitution with the cross-bridged cyclam chelator CB-TE2A resulted in a primarily hepatobiliary clearance. Notably, the monomeric DiAmSar radioligand [64Cu]Cu-16 demonstrated a higher liver uptake than [64Cu]Cu-15, but was still renally cleared as evidenced by the lack of uptake in gall bladder and intestines. The dimeric structure [64Cu]Cu-17 showed extensive accumulation and trapping in the liver but was also cleared via the renal pathway. Of all tracer candidates and across all timepoints, [64Cu]Cu-17 showed the highest accumulation at 24 h p.i. in the PD-L1-overexpressing tumor of all timepoints and all radiotracers, indicating drastically increased circulation time upon dimerization of two PD-L1 binding motifs. CONCLUSIONS This study shows that chelator choice significantly influences the pharmacokinetic profile of biphenyl-based small molecule PD-L1 radioligands. The NODA-GA-conjugated radioligand [64Cu]Cu-14 exhibited favorable renal clearance; however, the limited uptake in tumors suggests the need for structural modifications to the binding motif for future PD-L1 radiotracers.
Collapse
Affiliation(s)
- Fabian Krutzek
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Cornelius K Donat
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Sven Stadlbauer
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069, Dresden, Germany.
| |
Collapse
|
3
|
Das S, Singh S, Chawla V, Chawla PA, Bhatia R. Surface plasmon resonance as a fascinating approach in target-based drug discovery and development. Trends Analyt Chem 2024; 171:117501. [DOI: 10.1016/j.trac.2023.117501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Weber J, Djurberg K, Lundsten Salomonsson S, Kamprath M, Hoehne A, Westin H, Vergara F, Bondza S. Modelling ligand depletion for simultaneous affinity and binding site quantification on cells and tissue. Sci Rep 2023; 13:10031. [PMID: 37340068 DOI: 10.1038/s41598-023-37015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
The quantification of the number of targets in biological systems is an important parameter to assess the suitability of surface markers as targets for drugs, drug delivery and medical imaging. Likewise, quantifying the interaction with the target in terms of affinity and binding kinetics is essential during drug development. Commonly used approaches to quantify membrane antigens on live cells are based on manual saturation techniques that are labour-intensive, require careful calibration of the generated signal and do not quantify the binding rates. Here, we present how measuring interactions in real-time on live cells and tissue under ligand depletion conditions can be used to simultaneously quantify the kinetic binding parameters as well as the number of available binding sites in a biological system. Suitable assay design was explored with simulated data and feasibility of the method verified with experimental data for exemplary low molecular weight peptide and antibody radiotracers as well as fluorescent antibodies. In addition to revealing the number of accessible target sites and improving the accuracy of binding kinetics and affinities, the presented method does not require knowledge about the absolute signal generated per ligand molecule. This enables a simplified workflow for use with both radioligands and fluorescent binders.
Collapse
Affiliation(s)
| | | | - Sara Lundsten Salomonsson
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Sina Bondza
- Ridgeview Instruments AB, Uppsala, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Bruce-Tagoe TA, Danquah MK. Bioaffinity Nanoprobes for Foodborne Pathogen Sensing. MICROMACHINES 2023; 14:1122. [PMID: 37374709 DOI: 10.3390/mi14061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
6
|
Krutzek F, Donat CK, Ullrich M, Zarschler K, Ludik MC, Feldmann A, Loureiro LR, Kopka K, Stadlbauer S. Design and Biological Evaluation of Small-Molecule PET-Tracers for Imaging of Programmed Death Ligand 1. Cancers (Basel) 2023; 15:cancers15092638. [PMID: 37174103 PMCID: PMC10177516 DOI: 10.3390/cancers15092638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Noninvasive molecular imaging of the PD-1/PD-L1 immune checkpoint is of high clinical relevance for patient stratification and therapy monitoring in cancer patients. Here we report nine small-molecule PD-L1 radiotracers with solubilizing sulfonic acids and a linker-chelator system, designed by molecular docking experiments and synthesized according to a new, convergent synthetic strategy. Binding affinities were determined both in cellular saturation and real-time binding assay (LigandTracer), revealing dissociation constants in the single digit nanomolar range. Incubation in human serum and liver microsomes proved in vitro stability of these compounds. Small animal PET/CT imaging, in mice bearing PD-L1 overexpressing and PD-L1 negative tumors, showed moderate to low uptake. All compounds were cleared primarily through the hepatobiliary excretion route and showed a long circulation time. The latter was attributed to strong blood albumin binding effects, discovered during our binding experiments. Taken together, these compounds are a promising starting point for further development of a new class of PD-L1 targeting radiotracers.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
7
|
Gaudreault J, Durocher Y, Henry O, De Crescenzo G. Multi-temperature experiments to ease analysis of heterogeneous binder solutions by surface plasmon resonance biosensing. Sci Rep 2022; 12:14401. [PMID: 36002549 PMCID: PMC9402583 DOI: 10.1038/s41598-022-18450-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Surface Plasmon Resonance (SPR) biosensing is a well-established tool for the investigation of binding kinetics between a soluble species and an immobilized (bio)molecule. While robust and accurate data analysis techniques are readily available for single species, methods to exploit data collected with a solution containing multiple interactants are scarce. In a previous study, our group proposed two data analysis algorithms for (1) the precise and reliable identification of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the composition of a given mixture, assuming that the kinetic parameters and the total concentration of all interactants are known. Here, we extend the first algorithm by reducing the number of necessary mixtures. This is achieved by conducting experiments at different temperatures. Through the Van't Hoff and Eyring equations, identifying the kinetic and thermodynamic parameters of N binders becomes possible with M mixtures with M comprised between 2 and N and at least N/M temperatures. The second algorithm is improved by adding the total analyte concentration as a supplementary variable to be identified in an optimization routine. We validated our analysis framework experimentally with a system consisting of mixtures of low molecular weight drugs, each competing to bind to an immobilized protein. We believe that the analysis of mixtures and composition estimation could pave the way for SPR biosensing to become a bioprocess monitoring tool, on top of expanding its already substantial role in drug discovery and development.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC, H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
8
|
Rasmussen M, Jin JP. Monoclonal Antibodies as Probes to Study Ligand-Induced Conformations of Troponin Subunits. Front Physiol 2022; 13:828144. [PMID: 35399275 PMCID: PMC8990283 DOI: 10.3389/fphys.2022.828144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Striated muscle contraction and relaxation is regulated by Ca2+ at the myofilament level via conformational modulations of the troponin complex. To understand the structure-function relationship of troponin in normal muscle and in myopathies, it is necessary to study the functional effects of troponin isoforms and mutations at the level of allosteric conformations of troponin subunits. Traditional methodologies assessing such conformational studies are laborious and require significant amounts of purified protein, while many current methodologies require non-physiological conditions or labeling of the protein, which may affect their physiological conformation and function. To address these issues, we developed a novel approach using site-specific monoclonal antibodies (mAb) as molecular probes to detect and monitor conformational changes of proteins. Here, we present examples for its application in studies of two subunits of troponin: the Ca2+-binding subunit, TnC, and the tropomyosin-binding/thin filament-anchoring subunit, TnT. Studies using a high-throughput microplate assay are compared with that using localized surface plasmon resonance (LSPR) to demonstrate the effectiveness of using mAb probes to assess ligand-induced conformations of troponin subunits in physiological conditions. The assays utilize relatively small amounts of protein and are free of protein modification, which may bias results. Detailed methodologies using various monoclonal antibodies (mAbs) are discussed with considerations for the optimization of assay conditions and the broader application in studies of other proteins as well as in screening of therapeutic reagents that bind a specific target site with conformational and functional effects.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
On the Use of Surface Plasmon Resonance-Based Biosensors for Advanced Bioprocess Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomanufacturers are being incited by regulatory agencies to transition from a quality by testing framework, where they extensively test their product after their production, to more of a quality by design or even quality by control framework. This requires powerful analytical tools and sensors enabling measurements of key process variables and/or product quality attributes during production, preferably in an online manner. As such, the demand for monitoring technologies is rapidly growing. In this context, we believe surface plasmon resonance (SPR)-based biosensors can play a role in enabling the development of improved bioprocess monitoring and control strategies. The SPR technique has been profusely used to probe the binding behavior of a solution species with a sensor surface-immobilized partner in an investigative context, but its ability to detect binding in real-time and without a label has been exploited for monitoring purposes and is promising for the near future. In this review, we examine applications of SPR that are or could be related to bioprocess monitoring in three spheres: biotherapeutics production monitoring, vaccine monitoring, and bacteria and contaminant detection. These applications mainly exploit SPR’s ability to measure solution species concentrations, but performing kinetic analyses is also possible and could prove useful for product quality assessments. We follow with a discussion on the limitations of SPR in a monitoring role and how recent advances in hardware and SPR response modeling could counter them. Mainly, throughput limitations can be addressed by multi-detection spot instruments, and nonspecific binding effects can be alleviated by new antifouling materials. A plethora of methods are available for cell growth and metabolism monitoring, but product monitoring is performed mainly a posteriori. SPR-based biosensors exhibit potential as product monitoring tools from early production to the end of downstream processing, paving the way for more efficient production control. However, more work needs to be done to facilitate or eliminate the need for sample preprocessing and to optimize the experimental protocols.
Collapse
|
10
|
Spiegelberg D, Stenberg J, Richalet P, Vanhove M. K D determination from time-resolved experiments on live cells with LigandTracer and reconciliation with end-point flow cytometry measurements. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:979-991. [PMID: 34302187 PMCID: PMC8448686 DOI: 10.1007/s00249-021-01560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Design of next-generation therapeutics comes with new challenges and emulates technology and methods to meet them. Characterizing the binding of either natural ligands or therapeutic proteins to cell-surface receptors, for which relevant recombinant versions may not exist, represents one of these challenges. Here we report the characterization of the interaction of five different antibody therapeutics (Trastuzumab, Rituximab, Panitumumab, Pertuzumab, and Cetuximab) with their cognate target receptors using LigandTracer. The method offers the advantage of being performed on live cells, alleviating the need for a recombinant source of the receptor. Furthermore, time-resolved measurements, in addition to allowing the determination of the affinity of the studied drug to its target, give access to the binding kinetics thereby providing a full characterization of the system. In this study, we also compared time-resolved LigandTracer data with end-point KD determination from flow cytometry experiments and hypothesize that discrepancies between these two approaches, when they exist, generally come from flow cytometry titration curves being acquired prior to full equilibration of the system. Our data, however, show that knowledge of the kinetics of the interaction allows to reconcile the data obtained by flow cytometry and LigandTracer and demonstrate the complementarity of these two methods.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Stenberg
- Ridgeview Instruments AB, Skillsta 4, 740 20, Vänge, Sweden.,A3P Biomedical AB, Vallongatan 1, 752 28, Uppsala, Sweden
| | | | - Marc Vanhove
- Marc Vanhove Consultancy, 4100, Boncelles, Belgium. .,Oxurion N.V., Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
11
|
Kiruthika S, Bhat R, Dash R, Rathore AS, Vivekanandan P, Jayaram B. A novel piperazine derivative that targets hepatitis B surface antigen effectively inhibits tenofovir resistant hepatitis B virus. Sci Rep 2021; 11:11723. [PMID: 34083665 PMCID: PMC8175705 DOI: 10.1038/s41598-021-91196-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global problem. The loss of hepatitis B surface antigen (HBsAg) in serum is a therapeutic end point. Prolonged therapy with nucleoside/nucleotide analogues targeting the HBV-polymerase may lead to resistance and rarely results in the loss of HBsAg. Therefore, inhibitors targeting HBsAg may have potential therapeutic applications. Here, we used computational virtual screening, docking, and molecular dynamics simulations to identify potential small molecule inhibitors against HBsAg. After screening a million molecules from ZINC database, we identified small molecules with potential anti-HBV activity. Subsequently, cytotoxicity profiles and anti-HBV activities of these small molecules were tested using a widely used cell culture model for HBV. We identified a small molecule (ZINC20451377) which binds to HBsAg with high affinity, with a KD of 65.3 nM, as determined by Surface Plasmon Resonance spectroscopy. Notably, the small molecule inhibited HBsAg production and hepatitis B virion secretion (10 μM) at low micromolar concentrations and was also efficacious against a HBV quadruple mutant (CYEI mutant) resistant to tenofovir. We conclude that this small molecule exhibits strong anti-HBV properties and merits further testing.
Collapse
Affiliation(s)
- S Kiruthika
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India.
| | - B Jayaram
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, India.
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India.
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Delhi, New Delhi, India.
| |
Collapse
|
12
|
Kartal Ö, Andres F, Lai MP, Nehme R, Cottier K. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens with the Creoptix WAVEsystem. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:995-1003. [PMID: 34049465 DOI: 10.1177/24725552211013827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Surface-based biophysical methods for measuring binding kinetics of molecular interactions, such as surface plasmon resonance (SPR) or grating-coupled interferometry (GCI), are now well established and widely used in drug discovery. Increasing throughput is an often-cited need in the drug discovery process and this has been achieved with new instrument generations where multiple interactions are measured in parallel, shortening the total measurement times and enabling new application areas within the field. Here, we present the development of a novel technology called waveRAPID for a further-up to 10-fold-increase in throughput, consisting of an injection method using a single sample. Instead of sequentially injecting increasing analyte concentrations for constant durations, the analyte is injected at a single concentration in short pulses of increasing durations. A major advantage of the new method is its ability to determine kinetics from a single well of a microtiter plate, making it uniquely suitable for kinetic screening. We present the fundamentals of this approach using a small-molecule model system for experimental validation and comparing kinetic parameters to traditional methods. By varying experimental conditions, we furthermore assess the robustness of this new technique. Finally, we discuss its potential for improving hit quality and shortening cycle times in the areas of fragment screening, low-molecular-weight compound screening, and hit-to-lead optimization.
Collapse
|
13
|
Usuelli M, Meyer T, Mezzenga R, Mitsi M. VEGF and VEGFR2 bind to similar pH-sensitive sites on fibronectin, exposed by heparin-mediated conformational changes. J Biol Chem 2021; 296:100584. [PMID: 33771558 PMCID: PMC8102423 DOI: 10.1016/j.jbc.2021.100584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Physical interactions between vascular endothelial growth factor (VEGF), a central player in blood endothelial cell biology, and fibronectin, a major fibrillar protein of the extracellular matrix, are important determinants of angiogenic activity in health and disease. Conditions signaling the need for new blood vessel growth, such as hypoxia and low extracellular pH, increase VEGF–fibronectin interactions. These interactions can be further fine-tuned through changes in the availability of the VEGF-binding sites on fibronectin, regulated by conformational changes induced by heparin and heparan sulfate chains within the extracellular matrix. These interactions may alter VEGF bioavailability, generate gradients, or alter the way VEGF is recognized by and activates its cell-surface receptors. Here, using equilibrium and kinetic studies, we discovered that fibronectin can also interact with the extracellular domain of the VEGF receptor 2 (VEGFR2). The VEGFR2-binding sites on fibronectin show great similarity to the VEGF-binding sites, as they were also exposed upon heparin-induced conformational changes in fibronectin, and the interaction was enhanced at acidic pH. Kinetic parameters and affinities for VEGF and VEGFR2 binding to fibronectin were determined by surface plasmon resonance measurements, revealing two populations of fibronectin-binding sites for each molecule. Our data also suggest that a VEGF/VEGFR2/fibronectin triple complex may be formed by VEGF or VEGFR2 first binding to fibronectin and subsequently recruiting the third binding partner. The formation of such a complex may lead to the activation of distinct angiogenic signaling pathways, offering new possibilities for clinical applications that target angiogenesis.
Collapse
Affiliation(s)
- Mattia Usuelli
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Timmy Meyer
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Maria Mitsi
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Gaudreault J, Liberelle B, Durocher Y, Henry O, De Crescenzo G. Determination of the composition of heterogeneous binder solutions by surface plasmon resonance biosensing. Sci Rep 2021; 11:3685. [PMID: 33574483 PMCID: PMC7878517 DOI: 10.1038/s41598-021-83268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/01/2021] [Indexed: 12/01/2022] Open
Abstract
Surface plasmon resonance-based biosensors have been extensively applied to the characterization of the binding kinetics between purified (bio)molecules, thanks to robust data analysis techniques. However, data analysis for solutions containing multiple interactants is still at its infancy. We here present two algorithms for (1) the reliable and accurate determination of the kinetic parameters of N interactants present at different ratios in N mixtures and (2) the estimation of the ratios of each interactant in a given mixture, assuming that their kinetic parameters are known. Both algorithms assume that the interactants compete to bind to an immobilized ligand in a 1:1 fashion and necessitate prior knowledge of the total concentration of all interactants combined. The effectiveness of these two algorithms was experimentally validated with a model system corresponding to mixtures of four small molecular weight drugs binding to an immobilized protein. This approach enables the in-depth characterization of mixtures using SPR, which may be of considerable interest for many drug discovery or development applications, notably for protein glycovariant analysis.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada
| | - Yves Durocher
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC, H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
15
|
Macpherson A, Scott-Tucker A, Spiliotopoulos A, Simpson C, Staniforth J, Hold A, Snowden J, Manning L, van den Elsen J, Lawson ADG. Isolation of antigen-specific, disulphide-rich knob domain peptides from bovine antibodies. PLoS Biol 2020; 18:e3000821. [PMID: 32886672 PMCID: PMC7498065 DOI: 10.1371/journal.pbio.3000821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques. This study describes a method for the isolation of knob domains (a disulfide-rich domain found in the ultra-long CDRH3 of a subset of bovine antibodies) to create a uniquely small antibody fragment. With a molecular weight 3-6 KDa, the knob domain fragment is so small as to be considered a peptide. This approach uniquely harnesses the bovine immune system to affinity maturate peptides in vivo.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| | | | | | | | | | | | | | | | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
16
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Macpherson A, Liu X, Dedi N, Kennedy J, Carrington B, Durrant O, Heywood S, van den Elsen J, Lawson ADG. The rational design of affinity-attenuated OmCI for the purification of complement C5. J Biol Chem 2018; 293:14112-14121. [PMID: 30030376 PMCID: PMC6130949 DOI: 10.1074/jbc.ra118.004043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/03/2018] [Indexed: 12/04/2022] Open
Abstract
Complement component C5 is the target of the mAb eculizumab and is the focus of a sustained drug discovery effort to prevent complement-induced inflammation in a range of autoimmune diseases. The immune evasion protein OmCI binds to and potently inactivates C5; this tight-binding interaction can be exploited to affinity-purify C5 protein from serum, offering a vastly simplified protocol compared with existing methods. However, breaking the high-affinity interaction requires conditions that risk denaturing or activating C5. We performed structure-guided in silico mutagenesis to identify prospective OmCI residues that contribute significantly to the binding affinity. We tested our predictions in vitro, using site-directed mutagenesis, and characterized mutants using a range of biophysical techniques, as well as functional assays. Our biophysical analyses suggest that the C5–OmCI interaction is complex with potential for multiple binding modes. We present single mutations that lower the affinity of OmCI for C5 and combinations of mutations that significantly decrease or entirely abrogate formation of the complex. The affinity-attenuated forms of OmCI are suitable for affinity purification and allow elution under mild conditions that are nondenaturing or activating to C5. We present the rational design, biophysical characterization, and experimental validation of affinity-reduced forms of OmCI as tool reagents to enable the affinity purification of C5.
Collapse
Affiliation(s)
- Alex Macpherson
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and .,the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, United Kingdom
| | - Xiaofeng Liu
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Neesha Dedi
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | | | | | - Oliver Durrant
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Sam Heywood
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Jean van den Elsen
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, United Kingdom
| | | |
Collapse
|
18
|
Detecting ligand interactions in real time on living bacterial cells. Appl Microbiol Biotechnol 2018; 102:4193-4201. [PMID: 29550990 PMCID: PMC5895670 DOI: 10.1007/s00253-018-8919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 11/04/2022]
Abstract
Time-resolved analysis assays of receptor-ligand interactions are fundamental in basic research and drug discovery. Adequate methods are well developed for the analysis of recombinant proteins such as antibody-antigen interactions. However, assays for time-resolved ligand-binding processes on living cells are still rare, in particular within microbiology. In this report, the real-time cell-binding assay (RT-CBA) technology LigandTracer®, originally designed for mammalian cell culture, was extended to cover Gram-positive and Gram-negative bacteria. This required the development of new immobilization methods for bacteria, since LigandTracer depends on cells being firmly attached to a Petri dish. The evaluated Escherichia coli CJ236 and BL21 as well as Staphylococcus carnosus TM300 strains were immobilized to plastic Petri dishes using antibody capture, allowing us to depict kinetic binding traces of fluorescently labeled antibodies directed against surface-displayed bacterial proteins for as long as 10–15 h. Interaction parameters, such as the affinity and kinetic constants, could be estimated with high precision (coefficient of variation 9–44%) and the bacteria stayed viable for at least 16 h. The other tested attachment protocols were inferior to the antibody capture approach. Our attachment protocol is generic and could potentially also be applied to other assays and purposes.
Collapse
|
19
|
Performance qualification for reproducible Surface Plasmon Resonance analysis. Anal Biochem 2018; 544:108-113. [DOI: 10.1016/j.ab.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|
20
|
Bondza S, Björkelund H, Nestor M, Andersson K, Buijs J. Novel Real-Time Proximity Assay for Characterizing Multiple Receptor Interactions on Living Cells. Anal Chem 2017; 89:13212-13218. [PMID: 29160688 DOI: 10.1021/acs.analchem.7b02983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular receptor activity is often controlled through complex mechanisms involving interactions with multiple molecules, which can be soluble ligands and/or other cell surface molecules. In this study, we combine a fluorescence-based technology for real-time interaction analysis with fluorescence quenching to create a novel time-resolved proximity assay to study protein-receptor interactions on living cells. This assay extracts the binding kinetics and affinity for two proteins if they bind in proximity on the cell surface. One application of real-time proximity interaction analysis is to study relative levels of receptor dimerization. The method was primarily evaluated using the HER2 binding antibodies Trastuzumab and Pertuzumab and two EGFR binding antibodies including Cetuximab. Using Cetuximab and Trastuzumab, proximity of EGFR and HER2 was investigated before and after treatment of cells with the tyrosine-kinase inhibitor Gefitinib. Treated cells displayed 50% increased proximity signal, whereas the binding characteristics of the two antibodies were not significantly affected, implying an increase in the EGFR-HER2 dimer level. These results demonstrate that real-time proximity interaction analysis enables determination of the interaction rate constants and affinity of two ligands while simultaneously quantifying their relative colocalization on living cells.
Collapse
Affiliation(s)
- Sina Bondza
- Department of Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden.,Ridgeview Instruments AB , Dag Hammarskjölds väg 28, 75237 Uppsala, Sweden
| | - Hanna Björkelund
- Ridgeview Instruments AB , Dag Hammarskjölds väg 28, 75237 Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Karl Andersson
- Department of Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden.,Ridgeview Instruments AB , Dag Hammarskjölds väg 28, 75237 Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden.,Ridgeview Instruments AB , Dag Hammarskjölds väg 28, 75237 Uppsala, Sweden
| |
Collapse
|
21
|
Abstract
The use of optical biosensors for studying macromolecular interactions is gaining increasing popularity. In one study, 1514 papers that involved the application of biosensor data were identified for the year 2009 alone (Rich and Myszka, J Mol Recognit 24:892-914, 2011), the sheer volume and variety of which present a daunting task for the burgeoning biosensor user to accumulate and decipher. This chapter is designed to provide the reader with the tools necessary to prepare, design, and efficiently execute a kinetic experiment on Biacore. It is written to guide the Biacore user through basic theory, system maintenance, and assay setup while also offering some practical tips that we find useful for Biacore-based studies. Many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To highlight these procedures, this protocol describes the kinetic characterization of single chain Fv (scFv) antibody fragments from crude bacterial lysates using an antibody affinity capture approach. Even though we specifically describe the capture of HA-tagged scFv antibody fragments to an anti-HA tag monoclonal antibody-immobilized surface prior to kinetic analysis, the same methodologies are universally applicable and can be used for practically any affinity pair and most Biacore systems.
Collapse
Affiliation(s)
- Paul Leonard
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Hui Ma
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland.
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
22
|
Mehand MS, Srinivasan B, De Crescenzo G. Optimizing Multiple Analyte Injections in Surface Plasmon Resonance Biosensors with Analytes having Different Refractive Index Increments. Sci Rep 2015; 5:15855. [PMID: 26515024 PMCID: PMC4626837 DOI: 10.1038/srep15855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Surface plasmon resonance-based biosensors have been successfully applied to the study of the interactions between macromolecules and small molecular weight compounds. In an effort to increase the throughput of these SPR-based experiments, we have already proposed to inject multiple compounds simultaneously over the same surface. When specifically applied to small molecular weight compounds, such a strategy would however require prior knowledge of the refractive index increment of each compound in order to correctly interpret the recorded signal. An additional experiment is typically required to obtain this information. In this manuscript, we show that through the introduction of an additional global parameter corresponding to the ratio of the saturating signals associated with each molecule, the kinetic parameters could be identified with similar confidence intervals without any other experimentation.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| | - Bala Srinivasan
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal. P.O. Box 6079, Centre-ville Station, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
23
|
Garaicoechea L, Aguilar A, Parra GI, Bok M, Sosnovtsev SV, Canziani G, Green KY, Bok K, Parreño V. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One 2015; 10:e0133665. [PMID: 26267898 PMCID: PMC4534396 DOI: 10.1371/journal.pone.0133665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.
Collapse
Affiliation(s)
| | - Andrea Aguilar
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| | - Gabriel I. Parra
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marina Bok
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| | - Stanislav V. Sosnovtsev
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karin Bok
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Viviana Parreño
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| |
Collapse
|
24
|
Read T, Olkhov RV, Williamson ED, Shaw AM. Label-free Fab and Fc affinity/avidity profiling of the antibody complex half-life for polyclonal and monoclonal efficacy screening. Anal Bioanal Chem 2015; 407:7349-57. [PMID: 26187320 DOI: 10.1007/s00216-015-8897-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/02/2023]
Abstract
A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy.
Collapse
Affiliation(s)
- Thomas Read
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Rouslan V Olkhov
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - E Diane Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | - Andrew M Shaw
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
25
|
Automated functional characterization of radiolabeled antibodies: a time-resolved approach. Nucl Med Commun 2015; 35:767-76. [PMID: 24709981 DOI: 10.1097/mnm.0000000000000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The number of radiolabeled monoclonal antibodies (mAbs) used for medical imaging and cancer therapy is increasing. The required chemical modification for attaching a radioactive label and all associated treatment may lead to a damaged mAb subpopulation. This paper describes a novel method, concentration through kinetics (CTK), for rapid assessment of the concentration of immunoreactive mAb and the specific radioactivity, based on monitoring binding kinetics. METHODS The interaction of radiolabeled mAb with either the antigen or a general mAb binder such as Protein A was monitored in real time using the instrument LigandTracer. As the curvature of the binding trace has a distinct shape based on the interaction kinetics and concentration of the functional mAb, the immunoreactive mAb concentration could be calculated through reverse kinetic fitting of the binding curves, using software developed for this project. The specific activity, describing the degree of radioactive labeling, was determined through the use of calibrated signal intensities. RESULTS The performance of the CTK assay was evaluated on the basis of various mAb-based interaction systems and assay formats, and it was shown that the assay can provide accurate and repeatable results for immunoreactive concentration and specific activity, with both accuracy and relative SD values below 15%. CONCLUSION By applying reverse kinetics on real-time binding traces it is possible to estimate the functional concentration and specific activity of radiolabeled mAb. The CTK assay may in the future be included as a complement to current quality assessment methods of radiolabeled mAbs.
Collapse
|
26
|
Loyet KM, Good J, Davancaze T, Sturgeon L, Wang X, Yang J, Le KN, Wong M, Hass PE, van Lookeren Campagne M, Haughney PC, Morimoto A, Damico-Beyer LA, DeForge LE. Complement inhibition in cynomolgus monkeys by anti-factor d antigen-binding fragment for the treatment of an advanced form of dry age-related macular degeneration. J Pharmacol Exp Ther 2014; 351:527-37. [PMID: 25232192 DOI: 10.1124/jpet.114.215921] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Anti-factor D (AFD; FCFD4514S, lampalizumab) is a humanized IgG Fab fragment directed against factor D (fD), a rate-limiting serine protease in the alternative complement pathway (AP). Evaluation of AFD as a potential intravitreal (IVT) therapeutic for dry age-related macular degeneration patients with geographic atrophy (GA) is ongoing. However, it is unclear whether IVT administration of AFD can affect systemic AP activation and potentially compromise host-immune responses. We characterized the pharmacologic properties of AFD and assessed the effects of AFD administered IVT (2 or 20 mg) or intravenous (0.2, 2, or 20 mg) on systemic complement activity in cynomolgus monkeys. For the IVT groups, serum AP activity was reduced for the 20 mg dose group between 2 and 6 hours postinjection. For the intravenous groups, AFD inhibited systemic AP activity for periods of time ranging from 5 minutes (0.2 mg group) to 3 hours (20 mg group). Interestingly, the concentrations of total serum fD increased up to 10-fold relative to predose levels following administration of AFD. Furthermore, AFD was found to inhibit systemic AP activity only when the molar concentration of AFD exceeded that of fD. This occurred in cynomolgus monkeys at serum AFD levels ≥2 µg/ml, a concentration 8-fold greater than the maximum serum concentration observed following a single 10 mg IVT dose in a clinical investigation in patients with GA. Based on these findings, the low levels of serum AFD resulting from IVT administration of a clinically relevant dose are not expected to appreciably affect systemic AP activity.
Collapse
Affiliation(s)
- Kelly M Loyet
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Jeremy Good
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Teresa Davancaze
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Lizette Sturgeon
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Xiangdan Wang
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Jihong Yang
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Kha N Le
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Maureen Wong
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Philip E Hass
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Menno van Lookeren Campagne
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Peter C Haughney
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Alyssa Morimoto
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Lisa A Damico-Beyer
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| | - Laura E DeForge
- Departments of Biochemical and Cellular Pharmacology (K.M.L., L.S., L.E.D.), Assay Development and Technologies (J.G., T.D., M.W., A.M.), BioAnalytical Sciences (X.W., J.Y.), Pharmacokinetics and Pharmacodynamics (K.N.L., P.C.H., L.A.D.-B.), Protein Chemistry (P.E.H.), and Immunology (M.v.L.C.), Genentech, South San Francisco, California
| |
Collapse
|
27
|
Si Mehand M, De Crescenzo G, Srinivasan B. On-line kinetic model discrimination for optimized surface plasmon resonance experiments. J Mol Recognit 2014; 27:276-84. [PMID: 24700594 DOI: 10.1002/jmr.2358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 01/15/2023]
Abstract
In order to improve the throughput of surface plasmon resonance-based biosensors, an on-line iterative optimization algorithm has been presented aiming at reducing experimental time and material consumption without any loss of confidence on kinetic parameters [De Crescenzo (2008) J. Mol Recognit., 21, 256-66.]. This algorithm was based on a simple Langmuirian model to compute the confidence and predict optimal injections. However, this kinetic model is not suitable for all interactions, as it does not include mass transfer limitation that may occur for fast interaction kinetics. If a simple model was to be used when this phenomenon influenced the interactions, kinetic parameters would be biased. On the other hand, we show in this paper that data analysis with a kinetic model including a mass transfer limitation step would lead to longer experiments and poorer confidence if the interactions were simple. So, in this manuscript, we present an on-line model discrimination and optimization approach to increase the throughput of surface plasmon resonance biosensors.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, H3C 3A7, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Bondza S, Stenberg J, Nestor M, Andersson K, Björkelund H. Conjugation Effects on Antibody–Drug Conjugates: Evaluation of Interaction Kinetics in Real Time on Living Cells. Mol Pharm 2014; 11:4154-63. [DOI: 10.1021/mp500379d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sina Bondza
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Jonas Stenberg
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Marika Nestor
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Section
of Otolaryngology and Head and Neck Surgery, Department of Surgical
Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Karl Andersson
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Hanna Björkelund
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| |
Collapse
|
29
|
Zavyalova E, Kopylov A. How does association process affect fibrinogen hydrolysis by thrombin? Biochimie 2014; 107 Pt B:216-22. [PMID: 25239831 DOI: 10.1016/j.biochi.2014.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022]
Abstract
Thrombin, a key enzyme in the blood coagulation cascade, hydrolyzes fibrinogen into fibrin, which specifically associates into the fibers that build up a thrombus scaffold. The assembly of fibrin involves a set of stepwise reactions, for which a complete and detailed kinetic portrait is needed. Existing kinetic models focus on particular parts of the process, for example the mechanism of enzyme action itself or the kinetics of formation of fibrin assemblies. The current study considers a thorough model of the process from fibrinogen hydrolysis to the assembly of fibrin. Composing the model requires taking into account several reaction intermediates, stepwise removal of fibrinopeptides, and association of partially hydrolyzed fibrin, in particular desAA fibrin. The model is versatile enough to adopt new data both on fibrinogen hydrolysis and fibrin association. In addition, the model could be considered as an example of a kinetic description of other complex enzyme systems having several intermediates and feedbacks, such as the blood coagulation cascade and signal transduction.
Collapse
Affiliation(s)
- Elena Zavyalova
- Chemistry Department, M.V. Lomonosov Moscow State University and LTD 'APTO-PHARM', Leninskie gory 1-3, Moscow 119991, Russian Federation.
| | - Alexey Kopylov
- Chemistry Department, M.V. Lomonosov Moscow State University and LTD 'APTO-PHARM', Leninskie gory 1-3, Moscow 119991, Russian Federation
| |
Collapse
|
30
|
Frenzel D, Willbold D. Kinetic titration series with biolayer interferometry. PLoS One 2014; 9:e106882. [PMID: 25229647 PMCID: PMC4167697 DOI: 10.1371/journal.pone.0106882] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/03/2014] [Indexed: 11/18/2022] Open
Abstract
Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.
Collapse
Affiliation(s)
- Daniel Frenzel
- Forschungszentrum Jülich, ICS-6 Structural Biochemistry, Jülich, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6 Structural Biochemistry, Jülich, Germany
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
31
|
Pedersen GK, Höschler K, Øie Solbak SM, Bredholt G, Pathirana RD, Afsar A, Breakwell L, Nøstbakken JK, Raae AJ, Brokstad KA, Sjursen H, Zambon M, Cox RJ. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination. Vaccine 2014; 32:4550-4557. [DOI: 10.1016/j.vaccine.2014.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
32
|
Barta P, Andersson K, Trejtnar F, Buijs J. Exploring Time-Resolved Characterization of the Heterogeneity and Dynamics of Ligand-Receptor Interactions on Living Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.6000/1927-7229.2014.03.02.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
33
|
Tolmachev V, Orlova A, Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol Biol 2014; 1060:309-30. [PMID: 24037848 DOI: 10.1007/978-1-62703-586-6_16] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of radionuclide labels allows to study the pharmacokinetics of monoclonal antibodies, to control the specificity of their targeting and to monitor the response to an antibody treatment with high accuracy. Selection of label depends on the processing of an antibody after binding to an antigen, and on the character of information to be derived from the study (distribution of antibody in the extracellular space, target occupancy or determination of sites of metabolism). This chapter provides protocols for labelling of antibodies with iodine-125 (suitable also for other radioisotopes of iodine) and with indium-111. Since radiolabelling might damage and reduce the immunoreactive fraction and/or affinity of an antibody, the methods for assessment of these characteristics of an antibody are provided for control.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Wang X, Quarmby V, Ng C, Chuntharapai A, Shek T, Eigenbrot C, Kelley RF, Shia S, McCutcheon KM, Lowe J, Leddy C, Coachman K, Cain G, Chu F, Hotzel I, Maia M, Wakshull E, Yang J. Generation and characterization of a unique reagent that recognizes a panel of recombinant human monoclonal antibody therapeutics in the presence of endogenous human IgG. MAbs 2013; 5:540-54. [PMID: 23774668 PMCID: PMC3906308 DOI: 10.4161/mabs.24822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/20/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This "panel-specific" feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/chemistry
- Antibodies, Anti-Idiotypic/immunology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Humans
- Hybridomas
- Mice
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Xiangdan Wang
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Valerie Quarmby
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Carl Ng
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | | | - Theresa Shek
- Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Charles Eigenbrot
- Antibody Engineering; Genentech; South San Francisco, CA USA
- Structural Biology, Genentech, South San Francisco, CA USA
| | | | - Steven Shia
- Structural Biology, Genentech, South San Francisco, CA USA
| | | | - John Lowe
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Cecilia Leddy
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Kyle Coachman
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Gary Cain
- Safety Assessment; Genentech; South San Francisco, CA USA
| | - Felix Chu
- Pathology; Genentech; South San Francisco, CA USA
| | - Isidro Hotzel
- Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Mauricio Maia
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Eric Wakshull
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| | - Jihong Yang
- BioAnalytical Sciences; Genentech; South San Francisco, CA USA
| |
Collapse
|
35
|
Ba L, Li P, Zhang H, Duan Y, Lin Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnol Bioeng 2013; 110:2815-25. [DOI: 10.1002/bit.24960] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lina Ba
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Pan Li
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Hui Zhang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Yan Duan
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| | - Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes; Tsinghua University; One Tsinghua Garden Road Beijing 100084 China
| |
Collapse
|
36
|
Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ, McLoughlin RM. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 2012; 8:e1003092. [PMID: 23300445 PMCID: PMC3531522 DOI: 10.1371/journal.ppat.1003092] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the “dock, lock and latch” mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB+S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor−/−) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB− mutant colonised wild-type mice less efficiently than the parental ClfB+ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB− mutant in the Lor−/− mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor−/− mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal colonisation by S. aureus. Staphylococcus aureus is an important human commensal, present permanently in the noses of about 20% of the population and representing a significant risk factor for infection. The host and bacterial factors that facilitate nasal colonisation remain to be fully characterised. S. aureus adheres to the squamous epithelial cells found in the nose. Proteins expressed on the surface of S. aureus, including clumping factor B (ClfB), are responsible for this interaction. We demonstrate that loricrin, a major component of the squamous epithelial cell envelope, represents the primary ligand for ClfB and that the interaction between ClfB and loricrin is required for efficient nasal colonisation by S. aureus. Using purified proteins we have demonstrated that ClfB binds loricrin and propose a mechanism by which this binding occurs. We have established a murine model of S. aureus nasal colonisation and have demonstrated reduced colonisation in loricrin-deficient mice compared to wild-type mice which is dependent upon ClfB. Using Lactococcus lactis as a surrogate host expressing ClfB, we could show that the interaction between ClfB and loricrin in the nares is sufficient to support nasal colonisation. Cumulatively, these data show that the ClfB-loricrin interaction is crucial for nasal colonisation by S. aureus.
Collapse
Affiliation(s)
- Michelle E. Mulcahy
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ian R. Monk
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kate M. O'Keeffe
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evelyn J. Walsh
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
37
|
The design of microfluidic affinity chromatography systems for the separation of bioanalytes. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 910:163-71. [DOI: 10.1016/j.jchromb.2012.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/24/2012] [Accepted: 09/28/2012] [Indexed: 01/23/2023]
|
38
|
Altschuh D, Björkelund H, Strandgård J, Choulier L, Malmqvist M, Andersson K. Deciphering complex protein interaction kinetics using Interaction Map. Biochem Biophys Res Commun 2012; 428:74-9. [PMID: 23063847 DOI: 10.1016/j.bbrc.2012.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Cellular receptor systems are expected to present complex ligand interaction patterns that cannot be evaluated assuming a simple one ligand:one receptor interaction model. We have previously evaluated heterogeneous interactions using an alternative method to regression analysis, called Interaction Map (IM). IM decomposes a time-resolved binding curve into its separate components. By replacing the reductionistic, scalar kinetic association rate constant k(a) and dissociation rate constant k(d) with a two-dimensional distribution of k(a) and k(d), it is possible to display heterogeneous data as a map where each peak corresponds to one of the components that contribute to the cumulative binding curve. Here we challenge the Interaction Map approach by artificially generating heterogeneous data from two known interactions, on either LigandTracer or Surface Plasmon Resonance devices. We prove the ability of IM to accurately decompose these man-made heterogeneous binding curves composed of two different interactions. We conclude that the Interaction Map approach is well suited for the analysis of complex binding data and forecast that it has a potential to resolve previously uninterpretable data, in particular those generated in cell-based assays.
Collapse
Affiliation(s)
- Danièle Altschuh
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, Irebs-ESBS, Boulevard Sébastien Brant, 67412 Illkirch, France.
| | | | | | | | | | | |
Collapse
|
39
|
Nilvebrant J, Kuku G, Björkelund H, Nestor M. Selection and in vitro characterization of human CD44v6-binding antibody fragments. Biotechnol Appl Biochem 2012; 59:367-80. [PMID: 23586913 DOI: 10.1002/bab.1033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
The cluster of differentiation (CD) 44v6 antigen has been suggested to be involved in tumor formation, invasion, and metastasis formation, and has been observed in a majority of primary and metastatic squamous cell carcinomas of the head and neck. Probes specifically binding to this region may be utilized as tools for the challenging tasks of early detection and targeted treatments of small residual disease. In this project, an epitope-guided phage display selection of human fragment antigen-binding (Fab) fragments with affinity to the v6 sequence was performed. A selected set of Fab fragments was shown to specifically recognize increasingly complex forms of the target sequence, both in the form of a short synthetic or recombinant peptide and in the context of a purified extracellular domain of CD44. The binding was independent of known v6-sequence variation and posttranslational modifications that are common in the CD44 protein family. Furthermore, real-time interaction measurements on antibody fragments labeled with ¹²⁵I showed specific and high-affinity binding to the antigen present on cultured head and neck squamous cell carcinoma cells. There was no cross-reactivity toward cells that lack the target protein. As hypothesized, characterization of the interaction between Fab fragments and the targets using the mathematical tool Interaction Map revealed more heterogeneous interactions on cells than with pure proteins analyzed by surface plasmon resonance. One main candidate Fab fragment with optimal affinity for all forms of the target sequence was identified. The flexible recombinant source of the Fab fragments might aid the development of tailored molecules adapted for therapeutic or diagnostic applications in the future.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Mehand MS, De Crescenzo G, Srinivasan B. Increasing throughput of surface plasmon resonance-based biosensors by multiple analyte injections. J Mol Recognit 2012; 25:208-15. [PMID: 22434710 DOI: 10.1002/jmr.2172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Surface plasmon resonance-based biosensors are now acknowledged as robust and reliable instruments to determine the kinetic parameters related to the interactions between biomolecules. These kinetic parameters are used in screening campaigns: there is a considerable interest in reducing the experimental time, thus improving the throughput of the surface plasmon resonance assays. Kinetic parameters are typically obtained by analyzing data from several injections of a given analyte at different concentrations over a surface where its binding partner has been immobilized. It has been already proven that an iterative optimization approach aiming at determining optimal analyte injections to be performed online can significantly reduce the experimentation time devoted to kinetic parameter determination, without any detrimental effect on their standard errors. In this study, we explore the potential of this iterative optimization approach to further reduce experiment duration by combining it with the simultaneous injection of two analytes.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal, PO Box 6079, Centre-ville Station, Montréal, Québec, Canada H3C 3A7
| | | | | |
Collapse
|
41
|
Canziani GA, Melero JA, Lacy ER. Characterization of neutralizing affinity-matured human respiratory syncytial virus F binding antibodies in the sub-picomolar affinity range. J Mol Recognit 2012; 25:136-46. [PMID: 22407977 DOI: 10.1002/jmr.2149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the human adaptation and optimization of a mouse anti-human respiratory syncytial virus neutralizing antibody, affinity assessment was crucial to distinguish among potential candidates and to evaluate whether this correlated with function in vitro and in vivo. This affinity assessment was complicated by the trimeric nature of the antigen target, respiratory syncytial virus F (RSV-F) glycoprotein. In the initial affinity screen, surface plasmon resonance was used to determine the intrinsic binding affinities of anti-RSV-F Fab and immunoglobulin G (IgG) to the extracellular domain of RSV-F. This assessment required minimal biotinylation of the RSV-F protein and design of a capture strategy to minimize avidity effects. Approximately 30 Fabs were selected from three optimization phage display libraries on the basis of an initial ELISA screen. Surface plasmon resonance analysis demonstrated the success of optimization with some candidates from the screened libraries having low picomolar dissociation constants, more than 700-fold tighter than the parental monoclonal antibody (B21M). The affinities of these antibodies were further evaluated by a kinetic exclusion assay, a solution binding technology. One IgG (monoclonal antibody 029) displayed a low picomolar K(D) comparable with that of motavizumab, an RSV antibody in clinical study. Kinetic exclusion assay showed that two other of the matured IgGs (011 and 019) had sub-picomolar dissociation constants that could not be resolved further. We discuss the relevance of these interaction analysis results in the light of recently published data on the mechanism of F-driven viral fusion during paramyxoviral infection and 101F epitope conservation revealed from the recent crystal structure of RSV-F in the post-fusion state.
Collapse
Affiliation(s)
- Gabriela A Canziani
- Biologics Research, Janssen Research & Development LLC, Radnor, PA 19087, USA
| | | | | |
Collapse
|
42
|
Braddick LM, Garland PJ, Praeger MF, Butement J, Friedrich D, Morgan DJ, Melvin T. Uniform aligned bioconjugation of biomolecule motifs for integration within microfabricated microfluidic devices. Anal Biochem 2012; 424:195-205. [DOI: 10.1016/j.ab.2012.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
|
43
|
Mehand MS, Srinivasan B, De Crescenzo G. Estimation of analyte concentration by surface plasmon resonance-based biosensing using parameter identification techniques. Anal Biochem 2011; 419:140-4. [PMID: 21945965 DOI: 10.1016/j.ab.2011.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
Surface plasmon resonance-based biosensors have been applied to the determination of macromolecule concentration. Up to now, the proposed experimental approaches have relied either on the generation of a calibration curve that exploits only a few data points from each sensorgram or on multiple injections of the unknown sample at various flow rates. In this article, we show that prior knowledge of the kinetic parameters related to the interaction of the species with a given partner could advantageously reduce the number of injections required by both aforementioned methods, thereby reducing experimental time while maintaining a good level of confidence on the determined concentrations.
Collapse
Affiliation(s)
- Massinissa Si Mehand
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C 3A7
| | | | | |
Collapse
|
44
|
Šípová H, Vrba D, Homola J. Analytical Value of Detecting an Individual Molecular Binding Event: The Case of the Surface Plasmon Resonance Biosensor. Anal Chem 2011; 84:30-3. [DOI: 10.1021/ac202774k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hana Šípová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská
57, 182 51 Prague, Czech Republic
| | - David Vrba
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská
57, 182 51 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská
57, 182 51 Prague, Czech Republic
| |
Collapse
|
45
|
Quinn JG. Modeling Taylor dispersion injections: determination of kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal Biochem 2011; 421:391-400. [PMID: 22197421 DOI: 10.1016/j.ab.2011.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/14/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022]
Abstract
A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates.
Collapse
Affiliation(s)
- John G Quinn
- FLIR/ICx Nomadics, Oklahoma City, OK 73104, USA.
| |
Collapse
|
46
|
Quinn JG. Evaluation of Taylor dispersion injections: determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing. Anal Biochem 2011; 421:401-10. [PMID: 22197422 DOI: 10.1016/j.ab.2011.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/14/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022]
Abstract
In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values.
Collapse
Affiliation(s)
- John G Quinn
- FLIR/ICx Nomadics, Oklahoma City, OK 73104, USA.
| |
Collapse
|
47
|
Gustafsson SS, Vrang L, Terelius Y, Danielson UH. Quantification of interactions between drug leads and serum proteins by use of “binding efficiency”. Anal Biochem 2011; 409:163-75. [DOI: 10.1016/j.ab.2010.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 12/20/2022]
|
48
|
Abstract
The use of optical biosensors for studying macromolecular interactions is gaining increasing popularity. In one study, 1,179 papers that involved the application of biosensor data were identified for the year 2007 alone (Rich and Myszka, J Mol Recognit 21:355-400, 2008), the sheer volume and variety of which present a daunting task for the burgeoning biosensor user to accumulate and decipher. This chapter is designed to provide the reader with the tools necessary to prepare, design, and efficiently execute a kinetic experiment on Biacore. It is written to guide the Biacore user through basic theory, system maintenance, and assay set-up while also offering some practical tips that we find useful for Biacore-based studies. Many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To highlight these procedures, this protocol describes the kinetic characterisation of single chain Fv (scFv) antibody fragments from crude bacterial lysates using an antibody affinity capture approach. Even though we specifically describe the capture of HA-tagged scFv antibody fragments to an anti-HA tag monoclonal antibody-immobilised surface prior to kinetic analysis, the same methodologies are universally applicable and can be used for practically any affinity pair and most Biacore systems.
Collapse
Affiliation(s)
- Paul Leonard
- School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
49
|
Geitmann M, Retra K, de Kloe GE, Homan E, Smit AB, de Esch IJP, Danielson UH. Interaction Kinetic and Structural Dynamic Analysis of Ligand Binding to Acetylcholine-Binding Protein. Biochemistry 2010; 49:8143-54. [DOI: 10.1021/bi1006354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kim Retra
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Evert Homan
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - U. Helena Danielson
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
50
|
Inhibition of HIV-1 by non-nucleoside reverse transcriptase inhibitors via an induced fit mechanism-Importance of slow dissociation and relaxation rates for antiviral efficacy. Biochem Pharmacol 2010; 80:1133-40. [PMID: 20599774 DOI: 10.1016/j.bcp.2010.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 11/22/2022]
Abstract
The importance of slow dissociation of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for antiviral effect has been investigated. The kinetic characteristics of a series of NNRTIs interacting with wild type and drug resistant variants of HIV-1 RT (EC 2.7.7.49) were analyzed by SPR biosensor technology. The antiviral effect was determined in MT-4 and peripheral blood mononuclear cells. Due to extremely slow dissociation rates and a complex interaction mechanism, rate constants could not be quantified. Instead, interaction characteristics were qualitatively analyzed using simulated sensorgrams. The simplest model describing these interactions adequately was an induced fit mechanism, i.e. a mechanism involving the formation of an initial enzyme-inhibitor complex subsequently transformed into a more stable complex. Differences in rates of dissociation from the initial complex and rates of relaxation from the induced complex explained (1) the differences in the amounts of formed complex, (2) the stability of the complex and (3) the antiviral efficacies of the compounds. The effect of NNRTI binding site mutations also correlated with these kinetic characteristics. MIV-170 was the most effective inhibitor of wild type and mutant HIV-1 in cell culture, a property that was associated with the formation of the largest amount of complex and the slowest relaxation and dissociation rates. This study supports the hypothesis that the efficacy of anti-HIV drugs is dependent on slow dissociation from the target, thereby maximizing the duration of the inhibitory effect. It also illustrates the strength of simulating interaction data for qualitative analysis of tight-binding drugs and the importance of resolving the kinetic mechanism of drug-target interactions.
Collapse
|