1
|
Nogueira-Recalde U, Lambertucci F, Montégut L, Motiño O, Chen H, Lachkar S, Anagnostopoulos G, Stoll G, Li S, Carbonier V, Saavedra Díaz E, Blanco FJ, van Tetering G, de Boer M, Maiuri MC, Caramés B, Martins I, Kroemer G. Neutralization of acyl CoA binding protein (ACBP) for the experimental treatment of osteoarthritis. Cell Death Differ 2025:10.1038/s41418-025-01474-y. [PMID: 40082721 DOI: 10.1038/s41418-025-01474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
The plasma concentrations of acyl CoA binding protein (ACBP) encoded by the gene diazepam binding inhibitor (DBI) are increased in patients with severe osteoarthritis (OA). Here, we show that knee OA induces a surge in plasma ACBP/DBI in mice subjected to surgical destabilization of one hind limb. Knockout of the Dbi gene or intraperitoneal (i.p.) injection of a monoclonal antibody (mAb) neutralizing ACBP/DBI attenuates OA progression in this model, supporting a pathogenic role for ACBP/DBI in OA. Furthermore, anti-ACBP/DBI mAb was also effective against OA after its intraarticular (i.a.) injection, as monitored by sonography, revealing the capacity of ACBP/DBI to locally reduce knee inflammation over time. In addition, i.a. anti-ACBP/DBI mAb improved functional outcomes, as indicated by the reduced weight imbalance caused by OA. At the anatomopathological level, i.a. anti-ACBP/DBI mAb mitigated histological signs of joint destruction and synovial inflammation. Of note, i.a. anti-ACBP/DBI mAb blunted the OA-induced surge of plasma ACBP/DBI, as well as that of other inflammatory factors including interleukin-1α, interleukin-33, and tumor necrosis factor. These findings are potentially translatable to OA patients because joints from OA patients express both ACBP/DBI and its receptor GABAARγ2. Moreover, a novel mAb against ACBP/DBI recognizing an epitope conserved between human and mouse ACBP/DBI demonstrated similar efficacy in mitigating OA as an anti-mouse ACBP/DBI-only mAb. In conclusion, ACBP/DBI might constitute a promising therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad de A Coruña (UDC), A Coruña, Spain
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Vincent Carbonier
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Ester Saavedra Díaz
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco J Blanco
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad de A Coruña (UDC), A Coruña, Spain
| | | | | | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Beatriz Caramés
- Unidad de Biología del Cartílago, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad de A Coruña (UDC), A Coruña, Spain
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
2
|
Martins LA, Berger M, Kotál J, Lu S, Sousa-Paula LC, Smith BJ, Zhang Y, Andersen JF, Tirloni L. Ixochymostatin, a trypsin inhibitor-like (TIL) protein from Ixodes scapularis, inhibits chymase and impairs vascular permeability. Int J Biol Macromol 2025; 284:137949. [PMID: 39579814 DOI: 10.1016/j.ijbiomac.2024.137949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Ticks obtain a blood meal by lacerating small blood vessels and ingesting the blood that flows to the feeding site, which triggers various host responses. However, ticks face the challenge of wound healing, a process involving hemostasis, inflammation, cell proliferation and migration, and remodeling, hindering blood acquisition. To overcome these obstacles, tick salivary glands produce an array of bioactive molecules. Here, we characterize ixochymostatin, an Ixodes scapularis protein belonging to the trypsin inhibitor-like (TIL) family. It is expressed in multiple developmental stages and in tick salivary glands and acts as a slow and tight-binding inhibitor of chymase, cathepsin G, and chymotrypsin. Predictions for the tertiary structure complex between ixochymostatin and chymase suggest a direct interaction between the inhibitor reactive site loop and protease active sites. In vitro, ixochymostatin protects the endothelial cell barrier against chymase degrading action, decreasing cell permeability. In vivo, it reduces vascular permeability induced by chymase and compound 48/80, a mast cell degranulator agonist, in a mouse model. Additionally, ixochymostatin inhibits the chymase-dependent generation of vasoconstrictor peptides. Antibodies against ixochymostatin neutralize its inhibitory properties, with epitope mapping identifying potential neutralization regions. Ixochymostatin emerges as a novel tick protein modulating host responses against tick feeding, facilitating blood acquisition.
Collapse
Affiliation(s)
- Larissa Almeida Martins
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA; Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic
| | - Stephen Lu
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Lucas C Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yixiang Zhang
- Protein Chemistry Section, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
3
|
de Albuquerque PMM, Kotál J, Juliano MA, Tirloni L, da Silva Vaz I. In vitro identification of neutralizing epitopes of Rhipicephalus microplus serpin 17 (RmS-17). Vaccine 2024; 42:126161. [PMID: 39060200 PMCID: PMC11456362 DOI: 10.1016/j.vaccine.2024.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Rhipicephalus microplus poses a significant problem for livestock worldwide and is primarily controlled with synthetic acaricides. The continuous use of acaricides results in the selection of resistance and causes environmental harm. Vaccination presents an alternative solution to this problem, although searching for the suitable antigen is still a work in progress. Salivary proteins hold promise for inclusion in vaccine formulation due to their roles in modulating host responses, assisting blood feeding and pathogen transmission. Serpins are a class of proteinase inhibitors and are among the molecules found in tick saliva that modulate host blood coagulation, inflammation, and adaptive immune responses. Previous studies have demonstrated the potential of R. microplus serpin 17 (RmS-17) to interfere with the host's defenses, and antibodies have been shown to neutralize its effects. This makes RmS-17 an putative target for vaccine development. METHODS Epitope mapping of RmS-17 was achieved using in silico approach combining linear B-cell epitope and antigenicity predictor. In addition, epitope mapping using overlapping peptides in an ELISA screening was used. The serpin tridimensional structure and the epitopes spatial location within the molecule were determined. Peptides were synthetized based on the predictions and used for the production of rabbit anti-sera. Purified IgG's were used to assess the antibodies capacity to neutralize RmS-17. RESULTS Through in silico mapping, nine potential B cell epitope regions were screened, with p1RmS-17 and p2RmS-17 selected for the experiment based on antigen prediction. In the ELISA screening using overlapping peptides, eight antibody-binding regions were identified, and p3RmS-17 and p4RmS-17 were chosen. Antibodies raised against p3RmS-17 and p4RmS-17 partially neutralized RmS-17 activity. CONCLUSION It was found that antibodies against a single epitope are sufficient to partially neutralize RmS-17 activity. These findings support the possibility of using an epitope-based vaccine for immunization against R. microplus.
Collapse
Affiliation(s)
- Pedro Machado Medeiros de Albuquerque
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Trier NH. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides. Methods Mol Biol 2024; 2821:179-193. [PMID: 38997489 DOI: 10.1007/978-1-0716-3914-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Characterization of peptide antibodies through identification of their target epitopes is of utmost importance, as information about epitopes provide important knowledge, among others, for discovery and development of new therapeutics, vaccines, and diagnostics.This chapter describes a strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies; (i) overlapping peptides, used to locate antigenic regions; (ii) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (iii) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening, resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for final epitope characterization and identification of critical hot spot residues. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-saving and straightforward approach for characterization of antibodies recognizing continuous epitopes, which applies to peptide antibodies and occasionally antibodies directed to larger proteins as well.
Collapse
|
5
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | | | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
6
|
Lempp FA, Volz T, Cameroni E, Benigni F, Zhou J, Rosen LE, Noack J, Zatta F, Kaiser H, Bianchi S, Lombardo G, Jaconi S, Vincenzetti L, Imam H, Soriaga LB, Passini N, Belnap DM, Schulze A, Lütgehetmann M, Telenti A, Cathcart AL, Snell G, Purcell LA, Hebner CM, Urban S, Dandri M, Corti D, Schmid MA. Potent broadly neutralizing antibody VIR-3434 controls hepatitis B and D virus infection and reduces HBsAg in humanized mice. J Hepatol 2023; 79:1129-1138. [PMID: 37459920 DOI: 10.1016/j.jhep.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.
Collapse
Affiliation(s)
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany
| | - Elisabetta Cameroni
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jiayi Zhou
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Laura E Rosen
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Julia Noack
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Hannah Kaiser
- Vir Biotechnology, San Francisco, California 94158, USA
| | - Siro Bianchi
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Lucia Vincenzetti
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Hasan Imam
- Vir Biotechnology, San Francisco, California 94158, USA
| | | | - Nadia Passini
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David M Belnap
- School of Biological Sciences and Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Andreas Schulze
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany; Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | | | - Gyorgy Snell
- Vir Biotechnology, San Francisco, California 94158, USA
| | | | | | - Stephan Urban
- German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany; Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems and Heidelberg Sites, Germany
| | - Davide Corti
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| |
Collapse
|
7
|
Iyamu U, Vinals DF, Tornyigah B, Arango E, Bhat R, Adra TR, Grewal S, Martin K, Maestre A, Overduin M, Hazes B, Yanow SK. A conserved epitope in VAR2CSA is targeted by a cross-reactive antibody originating from Plasmodium vivax Duffy binding protein. Front Cell Infect Microbiol 2023; 13:1202276. [PMID: 37396303 PMCID: PMC10312377 DOI: 10.3389/fcimb.2023.1202276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
During Plasmodium falciparum infection in pregnancy, VAR2CSA is expressed on the surface of infected erythrocytes (IEs) and mediates their sequestration in the placenta. As a result, antibodies to VAR2CSA are largely restricted to women who were infected during pregnancy. However, we discovered that VAR2CSA antibodies can also be elicited by P. vivax Duffy binding protein (PvDBP). We proposed that infection with P. vivax in non-pregnant individuals can generate antibodies that cross-react with VAR2CSA. To better understand the specificity of these antibodies, we took advantage of a mouse monoclonal antibody (3D10) raised against PvDBP that cross-reacts with VAR2CSA and identified the epitopes targeted by this antibody. We screened two peptide arrays that span the ectodomain of VAR2CSA from the FCR3 and NF54 alleles. Based on the top epitope recognized by 3D10, we designed a 34-amino acid synthetic peptide, which we call CRP1, that maps to a highly conserved region in DBL3X. Specific lysine residues are critical for 3D10 recognition, and these same amino acids are within a previously defined chondroitin sulfate A (CSA) binding site in DBL3X. We showed by isothermal titration calorimetry that the CRP1 peptide can bind directly to CSA, and antibodies to CRP1 raised in rats significantly blocked the binding of IEs to CSA in vitro. In our Colombian cohorts of pregnant and non-pregnant individuals, at least 45% were seroreactive to CRP1. Antibody reactivities to CRP1 and the 3D10 natural epitope in PvDBP region II, subdomain 1 (SD1), were strongly correlated in both cohorts. These findings suggest that antibodies arising from PvDBP may cross-react with VAR2CSA through the epitope in CRP1 and that CRP1 could be a potential vaccine candidate to target a distinct CSA binding site in VAR2CSA.
Collapse
Affiliation(s)
- Uwa Iyamu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | | - Bernard Tornyigah
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo de Enfermedades Infecciosas y Crónicas (GEINCRO), Fundación Universitaria San Martín, Sabaneta, Colombia
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Trixie Rae Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Simranjit Grewal
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kimberly Martin
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Rodrigues Martins D, Vandermeeren M, Van Kolen K, Brepoels E, Borgers M, Wintmolders C, Delay C, Bottelbergs A, Mercken M, Theunis C. Development and Characterization of Mouse-Specific Anti-Tau Monoclonal Antibodies: Relevance for Analysis of Murine Tau in Cerebrospinal Fluid. J Alzheimers Dis 2023; 93:151-167. [PMID: 36970909 DOI: 10.3233/jad-221266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin. OBJECTIVE We aimed to develop human and mouse tau-specific antibodies to discriminate between the endogenous tau and the introduced form in preclinical models. METHODS Using hybridoma technology, we developed human and mouse tau-specific antibodies that were then used to develop several assays to specifically detect mouse tau. RESULTS Four antibodies, mTau3, mTau5, mTau8, and mTau9, with a high degree of specificity for mouse tau were identified. Additionally, their potential application in highly sensitive immunoassays to measure tau in mouse brain homogenate and cerebrospinal fluid is illustrated, as well as their application for specific endogenous mouse tau aggregation detection. CONCLUSION The antibodies reported here can be very important tools to better interpret the results obtained from different model systems as well as to study the role of endogenous tau in tau aggregation and pathology observed in the diverse mouse models available.
Collapse
Affiliation(s)
- Dina Rodrigues Martins
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Eddy Brepoels
- Biologics Research, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Charlotte Delay
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Mercken
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
9
|
Santa-Coloma TA. Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochim Biophys Acta Gen Subj 2022; 1866:130153. [DOI: 10.1016/j.bbagen.2022.130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
10
|
Avril A, Tournier JN, Paucod JC, Fournes B, Thullier P, Pelat T. Antibodies against Anthrax Toxins: A Long Way from Benchlab to the Bedside. Toxins (Basel) 2022; 14:172. [PMID: 35324669 PMCID: PMC8955606 DOI: 10.3390/toxins14030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Anthrax is an acute disease caused by the bacterium Bacillus anthracis, and is a potential biowarfare/bioterrorist agent. Its pulmonary form, caused by inhalation of the spores, is highly lethal and is mainly related to injury caused by the toxins secretion. Antibodies neutralizing the toxins of B. anthracis are regarded as promising therapeutic drugs, and two are already approved by the Federal Drug Administration. We developed a recombinant human-like humanized antibody, 35PA83 6.20, that binds the protective antigen and that neutralized anthrax toxins in-vivo in White New Zealand rabbits infected with the lethal 9602 strain by intranasal route. Considering these promising results, the preclinical and clinical phase one development was funded and a program was started. Unfortunately, after 5 years, the preclinical development was cancelled due to industrial and scientific issues. This shutdown underlined the difficulty particularly, but not only, for an academic laboratory to proceed to clinical development, despite the drug candidate being promising. Here, we review our strategy and some preliminary results, and we discuss the issues that led to the no-go decision of the pre-clinical development of 35PA83 6.20 mAb. Our review provides general information to the laboratories planning a (pre-)clinical development.
Collapse
Affiliation(s)
- Arnaud Avril
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Jean-Nicolas Tournier
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Jean-Charles Paucod
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Bénédicte Fournes
- Laboratoire Français du Fractionnement et des Biotechnologies, 91940 Les Ulis, France;
| | - Philippe Thullier
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| | - Thibaut Pelat
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; (J.-N.T.); (J.-C.P.); (P.T.); (T.P.)
| |
Collapse
|
11
|
Microsphere Peptide-Based Immunoassay for the Detection of Recombinant Bovine Somatotropin in Injection Preparations. BIOSENSORS 2022; 12:bios12030138. [PMID: 35323408 PMCID: PMC8946150 DOI: 10.3390/bios12030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
The use of peptides in immunoassays can be favored over the use of the full protein when more cost effective or less toxic approaches are needed, or when access to the full protein is lacking. Due to restricted access to recombinant bovine somatotropin (rbST), a protein enhancing growth and lactating performances of livestock, which use has been banned in the EU, Canada and Australia (amongst others), we developed a peptide-based biorecognition assay on an imaging planar array analyzer. For this, we identified the rbST epitope that is responsible for binding to the rbST-targeting monoclonal antibody 4H12 (MAb 4H12) to be 115DLEEGILALMR125. This linear peptide was synthesized and coupled to microspheres, after which it was tested in a biorecognition competitive inhibition assay format. We observed IC50 values of approximately 0.11 μg mL−1, which are lower than observed for the full rbST protein (IC50 = 0.20 μg mL−1). Importantly, there was no binding with the scrambled peptide. Preliminary results of directly coupled peptides in a microsphere biorecognition assay for detection of rbST are presented. Real-life applicability for detection of somatotropins (STs) in injection preparations of bovine-, porcine- and equine ST are shown. This newly developed immunoassay strongly supports future developments of peptide-based immunoassays to circumvent the limited access to the full protein.
Collapse
|
12
|
Adayev T, LaFauci G, Xu W, Dobkin C, Kascsak R, Brown WT, Goodman JH. Development of a Quantitative FMRP Assay for Mouse Tissue Applications. Genes (Basel) 2021; 12:genes12101516. [PMID: 34680911 PMCID: PMC8535242 DOI: 10.3390/genes12101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome results from the absence of the FMR1 gene product—Fragile X Mental Retardation Protein (FMRP). Fragile X animal research has lacked a reliable method to quantify FMRP. We report the development of an array of FMRP-specific monoclonal antibodies and their application for quantitative assessment of FMRP (qFMRPm) in mouse tissue. To characterize the assay, we determined the normal variability of FMRP expression in four brain structures of six different mouse strains at seven weeks of age. There was a hierarchy of FMRP expression: neocortex > hippocampus > cerebellum > brainstem. The expression of FMRP was highest and least variable in the neocortex, whereas it was most variable in the hippocampus. Male C57Bl/6J and FVB mice were selected to determine FMRP developmental differences in the brain at 3, 7, 10, and 14 weeks of age. We examined the four structures and found a developmental decline in FMRP expression with age, except for the brainstem where it remained stable. qFMRPm assay of blood had highest values in 3 week old animals and dropped by 2.5-fold with age. Sex differences were not significant. The results establish qFMRPm as a valuable tool due to its ease of methodology, cost effectiveness, and accuracy.
Collapse
Affiliation(s)
- Tatyana Adayev
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Correspondence: ; Tel.: +1-718-494-5314
| | - Giuseppe LaFauci
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Weimin Xu
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Carl Dobkin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - Richard Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| | - W. Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
- Perkins Center, University of Sydney Camperdown, Sydney, NSW 2006, Australia
| | - Jeffrey H. Goodman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA; (G.L.); (W.X.); (C.D.); (R.K.); (W.T.B.); (J.H.G.)
| |
Collapse
|
13
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
14
|
Filbert EL, Björck PK, Srivastava MK, Bahjat FR, Yang X. APX005M, a CD40 agonist antibody with unique epitope specificity and Fc receptor binding profile for optimal therapeutic application. Cancer Immunol Immunother 2021; 70:1853-1865. [PMID: 33392713 PMCID: PMC8195934 DOI: 10.1007/s00262-020-02814-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Targeting CD40 with agonist antibodies is a promising approach to cancer immunotherapy. CD40 acts as a master regulator of immunity by mobilizing multiple arms of the immune system to initiate highly effective CD8 + T-cell-mediated responses against foreign pathogens and tumors. The clinical development of CD40 agonist antibodies requires careful optimization of the antibody to maximize therapeutic efficacy while minimizing adverse effects. Both epitope specificity and isotype are critical for CD40 agonist antibody mechanism of action and potency. We developed a novel antibody, APX005M, which binds with high affinity to the CD40 ligand-binding site on CD40 and is optimized for selective interaction with Fcγ receptors to enhance agonistic potency while limiting less desirable Fc-effector functions like antibody-dependent cellular cytotoxicity of CD40-expressing immune cells. APX005M is a highly potent inducer of innate and adaptive immune effector responses and represents a promising CD40 agonist antibody for induction of an effective anti-tumor immune response with a favorable safety profile.
Collapse
Affiliation(s)
- Erin L Filbert
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Pia K Björck
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Minu K Srivastava
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Frances R Bahjat
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA
| | - Xiaodong Yang
- Apexigen, Inc, 75 Shoreway Road, Suite C, San Carlos, CA, 94070, USA.
| |
Collapse
|
15
|
Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties. Int J Mol Sci 2021; 22:ijms22041611. [PMID: 33562633 PMCID: PMC7915549 DOI: 10.3390/ijms22041611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The sheer size and vast chemical space (i.e., diverse repertoire and spatial distribution of functional groups) underlie peptides’ ability to engage in specific interactions with targets of various structures. However, the inherent flexibility of the peptide chain negatively affects binding affinity and metabolic stability, thereby severely limiting the use of peptides as medicines. Imposing conformational constraints to the peptide chain offers to solve these problems but typically requires laborious structure optimization. Alternatively, libraries of constrained peptides with randomized modules can be screened for specific functions. Here, we present the properties of conformationally constrained peptides and review rigidification chemistries/strategies, as well as synthetic and enzymatic methods of producing macrocyclic peptides. Furthermore, we discuss the in vitro molecular evolution methods for the development of constrained peptides with pre-defined functions. Finally, we briefly present applications of selected constrained peptides to illustrate their exceptional properties as drug candidates, molecular recognition probes, and minimalist catalysts.
Collapse
|
16
|
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-Derived Opioid Peptides in Human Health: A Review. Int J Mol Sci 2020; 21:E8825. [PMID: 33233481 PMCID: PMC7700510 DOI: 10.3390/ijms21228825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
World Health Organization data suggest that stress, depression, and anxiety have a noticeable prevalence and are becoming some of the most common causes of disability in the Western world. Stress-related disorders are considered to be a challenge for the healthcare system with their great economic and social impact. The knowledge on these conditions is not very clear among many people, as a high proportion of patients do not respond to the currently available medications for targeting the monoaminergic system. In addition, the use of clinical drugs is also associated with various side effects such as vomiting, dizziness, sedation, nausea, constipation, and many more, which prevents their effective use. Therefore, opioid peptides derived from food sources are becoming one of the safe and natural alternatives because of their production from natural sources such as animals and plant proteins. The requirement for screening and considering dietary proteins as a source of bioactive peptides is highlighted to understand their potential roles in stress-related disorders as a part of a diet or as a drug complementing therapeutic prescription. In this review, we discussed current knowledge on opioid endogenous and exogenous peptides concentrating on their production, purification, and related studies. To fully understand their potential in stress-related conditions, either as a drug or as a therapeutic part of a diet prescription, the need to screen more dietary proteins as a source of novel opioid peptides is emphasized.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (A.T.); (E.B.-M.D.); (F.K.O.); (S.-J.Y.)
| |
Collapse
|
17
|
Generation of a Peptide Vaccine Candidate against Falciparum Placental Malaria Based on a Discontinuous Epitope. Vaccines (Basel) 2020; 8:vaccines8030392. [PMID: 32708370 PMCID: PMC7564767 DOI: 10.3390/vaccines8030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
In pregnant women, Plasmodium falciparum-infected red blood cells adhere to the placenta via the parasite protein VAR2CSA. Two vaccine candidates based on VAR2CSA are currently in clinical trials; however, these candidates failed to elicit strain-transcending antibody responses. We previously showed that a cross-reactive monoclonal antibody (3D10) raised against the P. vivax antigen PvDBP targets epitopes in VAR2CSA. We now aim to design a peptide vaccine against VAR2CSA based on the epitope that generated 3D10. We mapped the epitope to subdomain 1 (SD1) of PvDBP and identified a peptide that contained the minimal sequence. However, this peptide did not elicit cross-reactive VAR2CSA antibodies in mice. When tested against a broader, overlapping peptide array spanning SD1, 3D10 in fact recognized a discontinuous epitope consisting of three segments of SD1. These findings presented the challenge to generate this larger structural epitope as a synthetic peptide since it is stabilized by two pairs of disulfide bonds. We overcame this using a synthetic scaffold to conformationally constrain the SD1 peptide and coupled it to keyhole limpet hemocyanin (KLH). The SD1-KLH conjugate elicited antibodies in mice that cross-reacted with VAR2CSA. This strategy successfully recapitulated a discontinuous epitope with a synthetic peptide and represents the first heterologous vaccine candidate against VAR2CSA.
Collapse
|
18
|
Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids. Toxicon X 2020; 6:100038. [PMID: 32550593 PMCID: PMC7285918 DOI: 10.1016/j.toxcx.2020.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Scorpion and spider envenomation is treated with the appropriate antivenoms, prepared as described by Césaire Auguste Phisalix and Albert Calmette in 1894. Such treatment requires the acquisition and manipulation of arachnid venoms, both very complicated procedures. Most of the toxins in the venoms of spiders and scorpions are extremely stable cysteine-rich peptide neurotoxins. Many strategies have been developed to obtain synthetic immunogens to facilitate the production of antivenoms against these toxins. For example, whole peptide toxins can be synthesized by solid-phase peptide synthesis (SPPS). Also, epitopes of the toxins can be identified and after the chemical synthesis of these peptide epitopes by SPPS, they can be coupled to protein carriers to develop efficient immunogens. Moreover, multiple antigenic peptides with a polylysine core can be designed and synthesized. This review focuses on the strategies developed to obtain synthetic immunogens for the production of antivenoms against the toxic Cys-rich peptides of scorpions and spiders.
Collapse
|
19
|
Dreisbach A, Wang M, van der Kooi-Pol MM, Reilman E, Koedijk DGAM, Mars RAT, Duipmans J, Jonkman M, Benschop JJ, Bonarius HPJ, Groen H, Hecker M, Otto A, Bäsell K, Bernhardt J, Back JW, Becher D, Buist G, van Dijl JM. Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface. J Proteome Res 2020; 19:2997-3010. [DOI: 10.1021/acs.jproteome.0c00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A. T. Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Joris J. Benschop
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, 9727 DL Groningen, the Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Katrin Bäsell
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jaap Willem Back
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
20
|
Smith EL, Harrington K, Staehr M, Masakayan R, Jones J, Long TJ, Ng KY, Ghoddusi M, Purdon TJ, Wang X, Do T, Pham MT, Brown JM, De Larrea CF, Olson E, Peguero E, Wang P, Liu H, Xu Y, Garrett-Thomson SC, Almo SC, Wendel HG, Riviere I, Liu C, Sather B, Brentjens RJ. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med 2020; 11:11/485/eaau7746. [PMID: 30918115 DOI: 10.1126/scitranslmed.aau7746] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/14/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Early clinical results of chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) for multiple myeloma (MM) appear promising, but relapses associated with residual low-to-negative BCMA-expressing MM cells have been reported, necessitating identification of additional targets. The orphan G protein-coupled receptor, class C group 5 member D (GPRC5D), normally expressed only in the hair follicle, was previously identified as expressed by mRNA in marrow aspirates from patients with MM, but confirmation of protein expression remained elusive. Using quantitative immunofluorescence, we determined that GPRC5D protein is expressed on CD138+ MM cells from primary marrow samples with a distribution that was similar to, but independent of, BCMA. Panning a human B cell-derived phage display library identified seven GPRC5D-specific single-chain variable fragments (scFvs). Incorporation of these into multiple CAR formats yielded 42 different constructs, which were screened for antigen-specific and antigen-independent (tonic) signaling using a Nur77-based reporter system. Nur77 reporter screen results were confirmed in vivo using a marrow-tropic MM xenograft in mice. CAR T cells incorporating GPRC5D-targeted scFv clone 109 eradicated MM and enabled long-term survival, including in a BCMA antigen escape model. GPRC5D(109) is specific for GPRC5D and resulted in MM cell line and primary MM cytotoxicity, cytokine release, and in vivo activity comparable to anti-BCMA CAR T cells. Murine and cynomolgus cross-reactive CAR T cells did not cause alopecia or other signs of GPRC5D-mediated toxicity in these species. Thus, GPRC5D(109) CAR T cell therapy shows potential for the treatment of advanced MM irrespective of previous BCMA-targeted therapy.
Collapse
Affiliation(s)
- Eric L Smith
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kim Harrington
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Mette Staehr
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Reed Masakayan
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jon Jones
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Thomas J Long
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Khong Y Ng
- Sloan Kettering Institute, New York, NY 10065, USA
| | - Majid Ghoddusi
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Terence J Purdon
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Trevor Do
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Minh Thu Pham
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Jessica M Brown
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Carlos Fernandez De Larrea
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain
| | - Eric Olson
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | | | - Pei Wang
- Eureka Therapeutics, Emeryville, CA 94608, USA
| | - Hong Liu
- Eureka Therapeutics, Emeryville, CA 94608, USA
| | - Yiyang Xu
- Eureka Therapeutics, Emeryville, CA 94608, USA
| | | | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cheng Liu
- Eureka Therapeutics, Emeryville, CA 94608, USA
| | - Blythe Sather
- Juno Therapeutics, A Celgene Company, Seattle, WA 98109, USA
| | - Renier J Brentjens
- Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Lawson NL, Dix CI, Scorer PW, Stubbs CJ, Wong E, Hutchinson L, McCall EJ, Schimpl M, DeVries E, Walker J, Williams GH, Hunt J, Barker C. Mapping the binding sites of antibodies utilized in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies. Mod Pathol 2020; 33:518-530. [PMID: 31558782 PMCID: PMC8075905 DOI: 10.1038/s41379-019-0372-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Programmed cell death ligand-1 (PD-L1) expression levels in patient tumor samples have proven clinical utility across various cancer types. Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available. Published studies using the VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1 IHC 22C3 pharmDx assay, Dako PD-L1 IHC 28-8 pharmDx assay, and laboratory-developed tests utilizing the E1L3N antibody (Cell Signaling Technology), have demonstrated differing levels of PD-L1 staining between assays, resulting in conjecture as to whether antibody-binding epitopes could be responsible for discordance between assays. Therefore, to understand the performance of different PD-L1 predictive immunohistochemistry assays, we aimed to distinguish the epitopes within the PD-L1 protein responsible for antibody binding. The sites at which antibody clones SP263, SP142, 22C3, 28-8, and E1L3N bind to recombinant PD-L1 were assessed using several methods, including conformational peptide array, surface plasmon resonance, and/or hydrogen/deuterium exchange mass spectrometry. Putative binding sites were confirmed by site-directed mutagenesis of PD-L1, followed by western blotting and immunohistochemical analysis of cell lines expressing mutant constructs. Our results demonstrate that clones SP263 and SP142 bind to an identical epitope in the cytoplasmic domain at the extreme C-terminus of PD-L1, distinct from 22C3 and 28-8. Using mutated PD-L1 constructs, an additional clone, E1L3N, was also found to bind to the cytoplasmic domain of PD-L1. The E1L3N binding epitope overlaps considerably with the SP263/SP142 binding site but is not identical. Clones 22C3 and 28-8 have binding profiles in the extracellular domain of PD-L1, which differ from one another. Despite identifying epitope binding variance among antibodies, evidence indicates that only the SP142 assay generates significantly discordant immunohistochemical staining, which can be resolved by altering the assay protocol. Therefore, inter-assay discordances are more likely attributable to tumor heterogeneity, assay, or platform variables rather than antibody epitope.
Collapse
Affiliation(s)
- Nicola L. Lawson
- grid.417815.e0000 0004 5929 4381Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Carly I. Dix
- grid.417815.e0000 0004 5929 4381Antibody Discovery and Protein Engineering (ADPE), R&D, AstraZeneca, Cambridge, UK
| | - Paul W. Scorer
- grid.417815.e0000 0004 5929 4381Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Christopher J. Stubbs
- grid.417815.e0000 0004 5929 4381Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Edmond Wong
- grid.417815.e0000 0004 5929 4381Antibody Discovery and Protein Engineering (ADPE), R&D, AstraZeneca, Cambridge, UK
| | - Liam Hutchinson
- grid.417815.e0000 0004 5929 4381Spirogen, AstraZeneca, London, UK
| | - Eileen J. McCall
- grid.417815.e0000 0004 5929 4381FM Operations, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Marianne Schimpl
- grid.417815.e0000 0004 5929 4381Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Emma DeVries
- grid.417815.e0000 0004 5929 4381Antibody Discovery and Protein Engineering (ADPE), R&D, AstraZeneca, Cambridge, UK
| | - Jill Walker
- grid.417815.e0000 0004 5929 4381Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - James Hunt
- grid.417815.e0000 0004 5929 4381Antibody Discovery and Protein Engineering (ADPE), R&D, AstraZeneca, Cambridge, UK
| | - Craig Barker
- Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
22
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
23
|
Zhang K, Elias M, Zhang H, Liu J, Kepley C, Bai Y, Metcalfe DD, Schiller Z, Wang Y, Saxon A. Inhibition of Allergic Reactivity through Targeting FcεRI-Bound IgE with Humanized Low-Affinity Antibodies. THE JOURNAL OF IMMUNOLOGY 2019; 203:2777-2790. [PMID: 31636239 DOI: 10.4049/jimmunol.1900112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
Options for effective prevention and treatment of epidemic allergic diseases remain limited, and particularly so for IgE-mediated food allergies. We previously found that mouse low-affinity anti-human IgE mAbs with KD in the 10-6-10-8 M range were capable of blocking allergic reactivity without triggering immediate allergic mediator release. In this study, we humanized three parent low affinity allergic response inhibitor (LARI) mouse anti-human IgE mAbs and characterized their biological and immunological features, refined the lead candidate for further clinical development, examined their safety profiles, determined their therapeutic efficiency, and explored the mechanism of action potentially responsible for their therapeutic effects. LARI profoundly blocked cat- and peanut-allergic IgE-mediated basophil activation, inhibited acute release of both prestored and newly synthesized mediator from human mast cells, suppressed peanut-specific IgE-mediated passive cutaneous anaphylaxis, and attenuated dansyl IgE-mediated systemic anaphylaxis in human FcεRIα transgenic mice. Safety testing demonstrated that concentrations of LARI well above therapeutic levels failed to trigger immediate release of prestored and newly synthesized allergic mediators, failed to promote robust cytokine/chemokine production from allergic effector cells, and did not elicit allergic reactivity in an animal model of cutaneous and systemic anaphylaxis. Mechanistic studies revealed that LARI downregulated surface FcεRI receptors and IgE via internalization of the IgE/FcεRI, promoted a partial mediator depletion pathway leading to slow release of small amount of mediators, and functioned as a partial antagonist to inhibit FcεRI signaling phosphorylation of Syk, Akt, Erk, and p38 MAPK. These studies demonstrate that targeting surface-bound IgE with LARI profoundly suppresses human allergic reactivity while displaying an excellent safety profile.
Collapse
Affiliation(s)
| | - Michael Elias
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401
| | | | | | - Christopher Kepley
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401
| | - Yun Bai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Zachary Schiller
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | | |
Collapse
|
24
|
Vandermeeren M, Borgers M, Van Kolen K, Theunis C, Vasconcelos B, Bottelbergs A, Wintmolders C, Daneels G, Willems R, Dockx K, Delbroek L, Marreiro A, Ver Donck L, Sousa C, Nanjunda R, Lacy E, Van De Casteele T, Van Dam D, De Deyn PP, Kemp JA, Malia TJ, Mercken MH. Anti-Tau Monoclonal Antibodies Derived from Soluble and Filamentous Tau Show Diverse Functional Properties in vitro and in vivo. J Alzheimers Dis 2019; 65:265-281. [PMID: 30040731 DOI: 10.3233/jad-180404] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.
Collapse
Affiliation(s)
- Marc Vandermeeren
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Marianne Borgers
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Bruno Vasconcelos
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Guy Daneels
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Roland Willems
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Koen Dockx
- Discovery Sciences, Janssen Research and Development, Beerse, Belgium
| | - Lore Delbroek
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - André Marreiro
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Luc Ver Donck
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Cristiano Sousa
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Rupesh Nanjunda
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Eilyn Lacy
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | | | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - John A Kemp
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium.,Syndesi therapeutics, Belgium
| | - Thomas J Malia
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Marc H Mercken
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
25
|
Bartz R, Fukuchi K, Ohtsuka T, Lange T, Gruner K, Watanabe I, Hayashi S, Oda Y, Kawaida R, Komori H, Kashimoto Y, Wirtz P, Mayer JPA, Redondo-Müller M, Saito S, Takahashi M, Hanzawa H, Imai E, Martinez A, Hanai M, Häussinger D, Chapman RW, Agatsuma T, Bange J, Abraham R. Preclinical Development of U3-1784, a Novel FGFR4 Antibody Against Cancer, and Avoidance of Its On-target Toxicity. Mol Cancer Ther 2019; 18:1832-1843. [PMID: 31350344 DOI: 10.1158/1535-7163.mct-18-0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/31/2018] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
The FGFR4/FGF19 signaling axis is overactivated in 20% of liver tumors and currently represents a promising targetable signaling mechanism in this cancer type. However, blocking FGFR4 or FGF19 has proven challenging due to its physiological role in suppressing bile acid synthesis which leads to increased toxic bile acid plasma levels upon FGFR4 inhibition. An FGFR4-targeting antibody, U3-1784, was generated in order to investigate its suitability as a cancer treatment without major side effects.U3-1784 is a high-affinity fully human antibody that was obtained by phage display technology and specifically binds to FGFR4. The antibody inhibits cell signaling by competing with various FGFs for their FGFR4 binding site thereby inhibiting receptor activation and downstream signaling via FRS2 and Erk. The inhibitory effect on tumor growth was investigated in 10 different liver cancer models in vivo The antibody specifically slowed tumor growth of models overexpressing FGF19 by up to 90% whereas tumor growth of models not expressing FGF19 was unaffected. In cynomolgus monkeys, intravenous injection of U3-1784 caused elevated serum bile acid and liver enzyme levels indicating potential liver damage. These effects could be completely prevented by the concomitant oral treatment with the bile acid sequestrant colestyramine, which binds and eliminates bile acids in the gut. These results offer a new biomarker-driven treatment modality in liver cancer without toxicity and they suggest a general strategy for avoiding adverse events with FGFR4 inhibitors.
Collapse
Affiliation(s)
- René Bartz
- U3 Pharma GmbH/Daiichi-Sankyo, Martinsried, Germany
| | - Keisuke Fukuchi
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiaki Ohtsuka
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tanja Lange
- U3 Pharma GmbH/Daiichi-Sankyo, Martinsried, Germany
| | | | - Ichiro Watanabe
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinko Hayashi
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoko Oda
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Reimi Kawaida
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Peter Wirtz
- U3 Pharma GmbH/Daiichi-Sankyo, Martinsried, Germany
| | | | | | - Shuntaro Saito
- Analytical & Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Emi Imai
- Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | | | - Masaharu Hanai
- Global Project Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Toshinori Agatsuma
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
26
|
Cretich M, Gori A, D'Annessa I, Chiari M, Colombo G. Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays. Antibodies (Basel) 2019; 8:E23. [PMID: 31544829 PMCID: PMC6640701 DOI: 10.3390/antib8010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
Peptides and peptidomimetics have attracted revived interest regarding their applications in chemical biology over the last few years. Their chemical versatility, synthetic accessibility and the ease of storage and management compared to full proteins have made peptides particularly interesting in diagnostic applications, where they proved to efficiently recapitulate the molecular recognition properties of larger protein antigens, and were proven to be able to capture antibodies circulating in the plasma and serum of patients previously exposed to bacterial or viral infections. Here, we describe the development, integration and application of strategies for computational prediction and design, advanced chemical synthesis, and diagnostic deployment in multiplexed assays of peptide-based materials which are able to bind antibodies of diagnostic as well as therapeutic interest. By presenting successful applications of such an integrated strategy, we argue that they will have an ever-increasing role in both basic and clinical realms of research, where important advances can be expected in the next few years.
Collapse
Affiliation(s)
- Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Ilda D'Annessa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
27
|
Requirements for Empirical Immunogenicity Trials, Rather than Structure-Based Design, for Developing an Effective HIV Vaccine. HIV/AIDS: IMMUNOCHEMISTRY, REDUCTIONISM AND VACCINE DESIGN 2019. [PMCID: PMC7122000 DOI: 10.1007/978-3-030-32459-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
|
28
|
Stewart L, D M Edgar J, Blakely G, Patrick S. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol 2018; 194:153-165. [PMID: 30076785 PMCID: PMC6194340 DOI: 10.1111/cei.13195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/18/2018] [Accepted: 07/28/2018] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin is highly conserved across eukaryotes and is essential for normal eukaryotic cell function. The bacterium Bacteroides fragilis is a member of the normal human gut microbiota, and the only bacterium known to encode a homologue of eukaryotic ubiquitin. The B. fragilis gene sequence indicates a past horizontal gene transfer event from a eukaryotic source. It encodes a protein (BfUbb) with 63% identity to human ubiquitin which is exported from the bacterial cell. The aim of this study was (i) to determine if there was antigenic cross‐reactivity between B. fragilis ubiquitin and human ubiquitin and (ii) to determine if humans produced antibodies to BfUbb. Molecular model comparisons of BfUbb and human ubiquitin predicted a high level (99·8% confidence) of structural similarity. Linear epitope mapping identified epitopes in BfUbb and human ubiquitin that cross‐react. BfUbb also has epitope(s) that do not cross‐react with human ubiquitin. The reaction of human serum (n = 474) to BfUbb and human ubiquitin from the following four groups of subjects was compared by enzyme‐linked immunosorbent assay (ELISA): (1) newly autoantibody‐positive patients, (2) allergen‐specific immunoglobulin (Ig)E‐negative patients, (3) ulcerative colitis patients and (4) healthy volunteers. We show that the immune system of some individuals has been exposed to BfUbb which has resulted in the generation of IgG antibodies. Serum from patients referred for first‐time testing to an immunology laboratory for autoimmune disease are more likely to have a high level of antibodies to BfUbb than healthy volunteers. Molecular mimicry of human ubiquitin by BfUbb could be a trigger for autoimmune disease.
Collapse
Affiliation(s)
- L Stewart
- School School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - J D M Edgar
- Regional Immunology Laboratory, Belfast Health and Social Care Trust, Belfast, UK.,The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - G Blakely
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Patrick
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
29
|
Colley CS, England E, Linley JE, Wilkinson TCI. Screening Strategies for the Discovery of Ion Channel Monoclonal Antibodies. ACTA ACUST UNITED AC 2018; 82:e44. [DOI: 10.1002/cpph.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - John E. Linley
- Neuroscience, IMED Biotech Unit, AstraZeneca; Cambridge United Kingdom
| | | |
Collapse
|
30
|
Sola L, Gagni P, D’Annessa I, Capelli R, Bertino C, Romanato A, Damin F, Bergamaschi G, Marchisio E, Cuzzocrea A, Bombaci M, Grifantini R, Chiari M, Colombo G, Gori A, Cretich M. Enhancing Antibody Serodiagnosis Using a Controlled Peptide Coimmobilization Strategy. ACS Infect Dis 2018; 4:998-1006. [PMID: 29570266 DOI: 10.1021/acsinfecdis.8b00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen immunoreactivity is often determined by surface regions defined by the 3D juxtapositions of amino acids stretches that are not continuous in the linear sequence. As such, mimicking an antigen immunoreactivity by means of putative linear peptide epitopes for diagnostic purposes is not trivial. Here we present a straightforward and robust method to extend the reach of immune-diagnostic probes design by copresenting peptides belonging to the same antigenic surface. In this case study focused on a computationally predicted Zika virus NS1 protein putative antigenic region, we reached a diagnostic confidence by the oriented and spatially controlled coimmobilization of peptide sequences found adjacent within the protein fold, that cooperatively interacted to provide enhanced immunoreactivity with respect to single linear epitopes. Through our method, we were able to differentiate Zika infected individuals from healthy controls. Remarkably, our strategy fits well with the requirements to build high-throughput screening platforms of linear and mixed peptide libraries, and it could possibly facilitate the rapid identification of conformational immunoreactive regions.
Collapse
Affiliation(s)
- Laura Sola
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Riccardo Capelli
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Camilla Bertino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Alessandro Romanato
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Francesco Damin
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Greta Bergamaschi
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Edoardo Marchisio
- Diagnostic Bioprobes s.r.l. (DiaPro), via G. Carducci 27, 20090 Sesto San Giovanni, Italy
| | - Angela Cuzzocrea
- Diagnostic Bioprobes s.r.l. (DiaPro), via G. Carducci 27, 20090 Sesto San Giovanni, Italy
| | - Mauro Bombaci
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Via Francesco Sforza. 35, 20122 Milano, Italy
| | - Renata Grifantini
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Via Francesco Sforza. 35, 20122 Milano, Italy
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
31
|
Di Bonaventura I, Baeriswyl S, Capecchi A, Gan BH, Jin X, Siriwardena TN, He R, Köhler T, Pompilio A, Di Bonaventura G, van Delden C, Javor S, Reymond JL. An antimicrobial bicyclic peptide from chemical space against multidrug resistant Gram-negative bacteria. Chem Commun (Camb) 2018; 54:5130-5133. [PMID: 29717727 DOI: 10.1039/c8cc02412j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We used the concept of chemical space to explore a virtual library of bicyclic peptides formed by double thioether cyclization of a precursor linear peptide, and identified an antimicrobial bicyclic peptide (AMBP) with remarkable activity against several MDR strains of Acinetobacter baumannii and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ivan Di Bonaventura
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses. Antimicrob Agents Chemother 2018; 62:AAC.02269-17. [PMID: 29507069 PMCID: PMC5923107 DOI: 10.1128/aac.02269-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/12/2023] Open
Abstract
Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients.
Collapse
|
33
|
St. Louis LE, Rodriguez TM, Waters ML. A study of 2-component i, i + 3 peptide stapling using thioethers. Bioorg Med Chem 2018; 26:1203-1205. [DOI: 10.1016/j.bmc.2017.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
|
34
|
Sun S, Compañón I, Martínez‐Sáez N, Seixas JD, Boutureira O, Corzana F, Bernardes GJL. Enhanced Permeability and Binding Activity of Isobutylene-Grafted Peptides. Chembiochem 2018; 19:48-52. [PMID: 29105291 PMCID: PMC5813187 DOI: 10.1002/cbic.201700586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/09/2023]
Abstract
We present a new peptide-macrocyclization strategy with an isobutylene graft. The reaction is mild and proceeds rapidly and efficiently both for linear and cyclic peptides. The resulting isobutylene-grafted peptides possess improved passive membrane permeability due to the shielding of the polar backbone of the amides, as demonstrated by NMR spectroscopy and molecular dynamics simulations. The isobutylene-stapled structures are fully stable in human plasma and in the presence of glutathione. This strategy can be applied to bioactive cyclic peptides such as somatostatin. Importantly, we found that structural preorganization forced by the isobutylene graft leads to a significant improvement in binding. The combined advantages of directness, selectivity, and smallness could allow application to peptide macrocyclization based on this attachment of the isobutylene graft.
Collapse
Affiliation(s)
- Shuang Sun
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ismael Compañón
- Departamento de QuímicaCentro de Investigación en Síntesis QuímicaUniversidad de La RiojaMadre de Dios, 5326006LogroñoSpain
| | - Nuria Martínez‐Sáez
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - João D. Seixas
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Omar Boutureira
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Francisco Corzana
- Departamento de QuímicaCentro de Investigación en Síntesis QuímicaUniversidad de La RiojaMadre de Dios, 5326006LogroñoSpain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
35
|
Abstract
Antibodies are protein molecules used routinely for therapeutic, diagnostic, and research purposes due to their exquisite ability to selectively recognize and bind a given antigen. The particular area of the antigen recognized by the antibody is called the epitope, and for proteinaceous antigens the epitope can be of complex nature. Information about the binding epitope of an antibody can provide important mechanistic insights and indicate for what applications an antibody might be useful. Therefore, a variety of epitope mapping techniques have been developed to localize such regions. Although the real picture is even more complex, epitopes in protein antigens are broadly grouped into linear or discontinuous epitopes depending on the positioning of the epitope residues in the antigen sequence and the requirement of structure. Specialized methods for mapping of the two different classes of epitopes, using high-throughput or high-resolution methods, have been developed. While different in their detail, all of the experimental methods rely on assessing the binding of the antibody to the antigen or a set of antigen mimics. Early approaches utilizing sets of truncated proteins, small numbers of synthesized peptides, and structural analyses of antibody-antigen complexes have been significantly refined. Current state-of-the-art methods involve combinations of mutational scanning, protein display, and high-throughput screening in conjunction with bioinformatic analyses of large datasets.
Collapse
Affiliation(s)
- Johan Nilvebrant
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, Protein Engineering, Stockholm, Sweden.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Johan Rockberg
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, Protein Technology, Stockholm, Sweden.
| |
Collapse
|
36
|
Boschert V, Frisch C, Back JW, van Pee K, Weidauer SE, Muth EM, Schmieder P, Beerbaum M, Knappik A, Timmerman P, Mueller TD. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6. Open Biol 2017; 6:rsob.160120. [PMID: 27558933 PMCID: PMC5008011 DOI: 10.1098/rsob.160120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/25/2016] [Indexed: 11/12/2022] Open
Abstract
The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure-function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- V Boschert
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - C Frisch
- Bio-Rad AbD Serotec, Zeppelinstr. 4, 82178 Puchheim, Germany
| | - J W Back
- Pepscan Therapeutics, Zuidersluisweg 2, 8203RC, Lelystad, The Netherlands
| | - K van Pee
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - S E Weidauer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - E-M Muth
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - P Schmieder
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - M Beerbaum
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - A Knappik
- Bio-Rad AbD Serotec, Zeppelinstr. 4, 82178 Puchheim, Germany
| | - P Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8203RC, Lelystad, The Netherlands
| | - T D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| |
Collapse
|
37
|
Abstract
The remarkable growth of therapeutic peptide development in the past decade has led to a large number of market approvals and the market value is expected to hit $25 billion by 2018. This significant market increase is driven by the increasing incidences of metabolic and cardiovascular diseases and technological advancements in peptide synthesis. For this reason, the search for bioactive peptides has also increased exponentially. Many bioactive peptides from food and nonfood sources have shown positive health effects yet, obstacles such as the need to implement efficient and cost-effective strategies for industrial scale production, good manufacturing practices as well as well-designed clinical trials to provide robust evidence for supporting health claims continue to exist. Several other factors such as the possibility of allergenicity, toxicity and the stability of biological functions of the peptides during gastrointestinal digestion would need to be addressed.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Byong H Lee
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea.,b Department of Microbiology/Immunology , McGill University , Montreal , QC , H3A 2B4 , Canada
| | - Deog H Oh
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| |
Collapse
|
38
|
Heineke MH, van der Steen LPE, Korthouwer RM, Hage JJ, Langedijk JPM, Benschop JJ, Bakema JE, Slootstra JW, van Egmond M. Peptide mimetics of immunoglobulin A (IgA) and FcαRI block IgA-induced human neutrophil activation and migration. Eur J Immunol 2017; 47:1835-1845. [PMID: 28736835 PMCID: PMC5659136 DOI: 10.1002/eji.201646782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
The cross‐linking of the IgA Fc receptor (FcαRI) by IgA induces release of the chemoattractant LTB4, thereby recruiting neutrophils in a positive feedback loop. IgA autoantibodies of patients with autoimmune blistering skin diseases therefore induce massive recruitment of neutrophils, resulting in severe tissue damage. To interfere with neutrophil mobilization and reduce disease morbidity, we developed a panel of specific peptides mimicking either IgA or FcαRI sequences. CLIPS technology was used to stabilize three‐dimensional structures and to increase peptides’ half‐life. IgA and FcαRI peptides reduced phagocytosis of IgA‐coated beads, as well as IgA‐induced ROS production and neutrophil migration in in vitro and ex vivo (human skin) experiments. Since topical application would be the preferential route of administration, Cetomacrogol cream containing an IgA CLIPS peptide was developed. In the presence of a skin permeation enhancer, peptides in this cream were shown to penetrate the skin, while not diffusing systemically. Finally, epitope mapping was used to discover sequences important for binding between IgA and FcαRI. In conclusion, a cream containing IgA or FcαRI peptide mimetics, which block IgA‐induced neutrophil activation and migration in the skin may have therapeutic potential for patients with IgA‐mediated blistering skin diseases.
Collapse
Affiliation(s)
- Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lydia P E van der Steen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rianne M Korthouwer
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - J Joris Hage
- Department of Plastic and Reconstructive Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Joris J Benschop
- Pepscan Therapeutics, Zuidersluisweg 2, Lelystad, The Netherlands
| | - Jantine E Bakema
- Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
He R, Di Bonaventura I, Visini R, Gan BH, Fu Y, Probst D, Lüscher A, Köhler T, van Delden C, Stocker A, Hong W, Darbre T, Reymond JL. Design, crystal structure and atomic force microscopy study of thioether ligated d,l-cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa. Chem Sci 2017; 8:7464-7475. [PMID: 29163899 PMCID: PMC5676089 DOI: 10.1039/c7sc01599b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/02/2017] [Indexed: 11/30/2022] Open
Abstract
A new family of cyclic antimicrobial peptides is reported targeting multidrug resistant Pseudomonas aeruginosa by membrane disruption.
Here we report a new family of cyclic antimicrobial peptides (CAMPs) targeting MDR strains of Pseudomonas aeruginosa. These CAMPs are cyclized via a xylene double thioether bridge connecting two cysteines placed at the ends of a linear amphiphilic alternating d,l-sequence composed of lysines and tryptophans. Investigations by transmission electron microscopy (TEM), dynamic light scattering and atomic force microscopy (AFM) suggest that these peptide macrocycles interact with the membrane to form lipid–peptide aggregates. Amphiphilic conformations compatible with membrane disruption are observed in high resolution X-ray crystal structures of fucosylated derivatives in complex with lectin LecB. The potential for optimization is highlighted by N-methylation of backbone amides leading to derivatives with similar antimicrobial activity but lower hemolysis.
Collapse
Affiliation(s)
- Runze He
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Ivan Di Bonaventura
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Ricardo Visini
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Bee-Ha Gan
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Yongchun Fu
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Daniel Probst
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Alexandre Lüscher
- Department of Microbiology and Molecular Medicine , University of Geneva , Service of Infectious Diseases , University Hospital of Geneva , Geneva , Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine , University of Geneva , Service of Infectious Diseases , University Hospital of Geneva , Geneva , Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine , University of Geneva , Service of Infectious Diseases , University Hospital of Geneva , Geneva , Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Wenjing Hong
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland . .,State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Tamis Darbre
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| |
Collapse
|
40
|
Koedijk DGAM, Pastrana FR, Hoekstra H, Berg SVD, Back JW, Kerstholt C, Prins RC, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies. Sci Rep 2017; 7:8141. [PMID: 28811514 PMCID: PMC5557936 DOI: 10.1038/s41598-017-08182-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022] Open
Abstract
The immunodominant staphylococcal antigen A (IsaA) is a potential target for active or passive immunization against the important human pathogen Staphylococcus aureus. Consistent with this view, monoclonal antibodies against IsaA were previously shown to be protective against S. aureus infections in mouse models. Further, patients with the genetic blistering disease epidermolysis bullosa (EB) displayed high IsaA-specific IgG levels that could potentially be protective. Yet, mice actively immunized with IsaA were not protected against S. aureus infection. The present study was aimed at explaining these differences in IsaA-specific immune responses. By epitope mapping, we show that the protective human monoclonal antibody (humAb) 1D9 recognizes a conserved 62-residue N-terminal domain of IsaA. The same region of IsaA is recognized by IgGs in EB patient sera. Further, we show by immunofluorescence microscopy that this N-terminal IsaA domain is exposed on the S. aureus cell surface. In contrast to the humAb 1D9 and IgGs from EB patients, the non-protective IgGs from mice immunized with IsaA were shown to predominantly bind the C-terminal domain of IsaA. Altogether, these observations focus attention on the N-terminal region of IsaA as a potential target for future immunization against S. aureus.
Collapse
Affiliation(s)
- Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Hedzer Hoekstra
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Carolien Kerstholt
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Rianne C Prins
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
41
|
Mitchell DAJ, Dupuy LC, Sanchez-Lockhart M, Palacios G, Back JW, Shimanovskaya K, Chaudhury S, Ripoll DR, Wallqvist A, Schmaljohn CS. Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus the antibody response in mice. Hum Vaccin Immunother 2017; 13:2883-2893. [PMID: 28699812 PMCID: PMC5718802 DOI: 10.1080/21645515.2017.1347740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed epitope mapping studies on the major surface glycoprotein (GP) of Ebola virus (EBOV) using Chemically Linked Peptides on Scaffolds (CLIPS), which form linear and potential conformational epitopes. This method identified monoclonal antibody epitopes and predicted additional epitopes recognized by antibodies in polyclonal sera from animals experimentally vaccinated against or infected with EBOV. Using the information obtained along with structural modeling to predict epitope accessibility, we then constructed 2 DNA vaccines encoding immunodominant and subdominant epitopes predicted to be accessible on EBOV GP. Although a construct designed to produce a membrane-bound oligopeptide was poorly immunogenic, a construct generating a secreted oligopeptide elicited strong antibody responses in mice. When this construct was administered as a boost to a DNA vaccine expressing the complete EBOV GP gene, the resultant antibody response was focused largely toward the less immunodominant epitopes in the oligopeptide. Taken together, the results of this work suggest a utility for this method for immune focusing of antibody responses elicited by vaccination.
Collapse
Affiliation(s)
- Daniel A J Mitchell
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Lesley C Dupuy
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Mariano Sanchez-Lockhart
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Gustavo Palacios
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| | - Jaap W Back
- b Pepscan Presto BV , Lelystad , the Netherlands
| | | | - Sidhartha Chaudhury
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Daniel R Ripoll
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Anders Wallqvist
- c Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- a United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Fort Detrick , MD , USA
| |
Collapse
|
42
|
Vicari AP, Schoepfer AM, Meresse B, Goffin L, Léger O, Josserand S, Guégan N, Yousefi S, Straumann A, Cerf-Bensussan N, Simon HU, Chvatchko Y. Discovery and characterization of a novel humanized anti-IL-15 antibody and its relevance for the treatment of refractory celiac disease and eosinophilic esophagitis. MAbs 2017; 9:927-944. [PMID: 28581883 DOI: 10.1080/19420862.2017.1332553] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-15 (IL-15) is a critical regulator of immune responses, especially at mucosal interfaces within the gastro-intestinal tract. Here, we describe the discovery and characterization of a humanized antibody to IL-15. Data from its epitope and mode of action, cell biology and primate pharmacology, as well as translational studies in human samples and in vivo proof-of-concept experiments in mouse models demonstrate the therapeutic potential of this new antibody targeting IL-15 for refractory celiac disease and eosinophilic esophagitis.
Collapse
Affiliation(s)
| | - Alain M Schoepfer
- b Division of Gastroenterology, Centre Hospitalier Universitaire Vaudois (CHUV) , Lausanne , Switzerland
| | | | | | | | | | | | - Shida Yousefi
- f Institute of Pharmacology, University of Bern, Inselspital , Bern , Switzerland
| | - Alex Straumann
- g Swiss EoE Clinic and EoE Research Network , Olten , Switzerland
| | | | - Hans-Uwe Simon
- f Institute of Pharmacology, University of Bern, Inselspital , Bern , Switzerland
| | | |
Collapse
|
43
|
Naik AS, Owsianka A, Palmer BA, O’Halloran CJ, Walsh N, Crosbie O, Kenny-Walsh E, Patel AH, Fanning LJ. Reverse epitope mapping of the E2 glycoprotein in antibody associated hepatitis C virus. PLoS One 2017; 12:e0175349. [PMID: 28558001 PMCID: PMC5448734 DOI: 10.1371/journal.pone.0175349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
The humoral immune system responds to chronic hepatitis C virus (HCV) infection by producing neutralising antibodies (nAb). In this study we generated three HCV pseudoparticles in which E1E2 glycoprotein sequence was targeted by the host humoral immune system. We used patient derived virus free Fabs (VF-Fabs) obtained from HCV genotype 1a (n = 3), genotype 1b (n = 7) and genotype 3a (n = 1) for neutralisation of HCVpp produced in this study both individually and in combination. Based on the available anti-HCV monoclonal nAb mapping information we selected amino acid region 384-619 for conformational epitope mapping. Amongst our notable findings, we observed significant reduction in HCVpp infectivity (p<0.05) when challenged with a combination of inter genotype and subtype VF-Fabs. We also identified five binding motifs targeted by patient derived VF-Fab upon peptide mapping, of which two shared the residues with previously reported epitopes. One epitope lies within an immunodominant HVR1 and two were novel. In summary, we used a reverse epitope mapping strategy to identify preferred epitopes by the host humoral immune system. Additionally, we have combined different VF-Fabs to further reduce the HCVpp infectivity. Our data indicates that combining the antigen specificity of antibodies may be a useful strategy to reduce (in-vitro) infectivity.
Collapse
Affiliation(s)
- Amruta S. Naik
- Department of Medicine, University College Cork, Cork, Ireland
| | - Ania Owsianka
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Nicole Walsh
- Department of Medicine, University College Cork, Cork, Ireland
| | - Orla Crosbie
- Department of Hepatology, Cork University Hospital, Cork, Ireland
| | | | - Arvind H. Patel
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
- APC-Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Peraro L, Zou Z, Makwana KM, Cummings AE, Ball HL, Yu H, Lin YS, Levine B, Kritzer JA. Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy. J Am Chem Soc 2017; 139:7792-7802. [PMID: 28414223 PMCID: PMC5473019 DOI: 10.1021/jacs.7b01698] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Autophagy
is an essential pathway by which cellular and foreign
material are degraded and recycled in eukaryotic cells. Induction
of autophagy is a promising approach for treating diverse human diseases,
including neurodegenerative disorders and infectious diseases. Here,
we report the use of a diversity-oriented stapling approach to produce
autophagy-inducing peptides that are intrinsically cell-penetrant.
These peptides induce autophagy at micromolar concentrations in vitro,
have aggregate-clearing activity in a cellular model of Huntington’s
disease, and induce autophagy in vivo. Unexpectedly, the solution
structure of the most potent stapled peptide, DD5-o, revealed an α-helical
conformation in methanol, stabilized by an unusual (i,i+3) staple which cross-links two d-amino
acids. We also developed a novel assay for cell penetration that reports
exclusively on cytosolic access and used it to quantitatively compare
the cell penetration of DD5-o and other autophagy-inducing peptides.
These new, cell-penetrant autophagy inducers and their molecular details
are critical advances in the effort to understand and control autophagy.
More broadly, diversity-oriented stapling may provide a promising
alternative to polycationic sequences as a means for rendering peptides
more cell-penetrant.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Kamlesh M Makwana
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | - Ashleigh E Cummings
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Hongtao Yu
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Joshua A Kritzer
- Department of Chemistry, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Wang Y, Bruno BJ, Cornillie S, Nogieira JM, Chen D, Cheatham TE, Lim CS, Chou DHC. Application of Thiol-yne/Thiol-ene Reactions for Peptide and Protein Macrocyclizations. Chemistry 2017; 23:7087-7092. [DOI: 10.1002/chem.201700572] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanxiang Wang
- Department of Biochemistry; University of Utah; 15 N, Medical Drive East 4100 Salt Lake City UT 84112 USA
| | - Benjamin J. Bruno
- Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; 30 S 2000 E, Rm 2916 Salt Lake City UT 84112 USA
| | - Sean Cornillie
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E, Rm 4914 Salt Lake City UT 84112 USA
| | - Jason M. Nogieira
- Department of Biochemistry; University of Utah; 15 N, Medical Drive East 4100 Salt Lake City UT 84112 USA
| | - Diao Chen
- Department of Biochemistry; University of Utah; 15 N, Medical Drive East 4100 Salt Lake City UT 84112 USA
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E, Rm 4914 Salt Lake City UT 84112 USA
| | - Carol S. Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; 30 S 2000 E, Rm 2916 Salt Lake City UT 84112 USA
| | - Danny Hung-Chieh Chou
- Department of Biochemistry; University of Utah; 15 N, Medical Drive East 4100 Salt Lake City UT 84112 USA
| |
Collapse
|
46
|
Maskus DJ, Królik M, Bethke S, Spiegel H, Kapelski S, Seidel M, Addai-Mensah O, Reimann A, Klockenbring T, Barth S, Fischer R, Fendel R. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1. Sci Rep 2016; 6:39462. [PMID: 28000709 PMCID: PMC5175200 DOI: 10.1038/srep39462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.
Collapse
Affiliation(s)
- Dominika J. Maskus
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michał Królik
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| |
Collapse
|
47
|
Pérez-Gamarra S, Hattara L, Batra G, Saviranta P, Lamminmäki U. Array-in-well binding assay for multiparameter screening of phage displayed antibodies. Methods 2016; 116:43-50. [PMID: 27956240 DOI: 10.1016/j.ymeth.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Phage display is a well-established and powerful tool for the development of recombinant antibodies. In a standard phage display selection process using a high quality antibody phage library, a large number of unique antibody clones can be generated in short time. However, the pace of the antibody discovery project eventually depends on the methodologies used in the next screening phase to identify the clones with the most promising binding characteristics e.g., in terms of specificity, affinity and epitope. Here, we report an array-in-well binding assay, a miniaturized and multiplexed immunoassay that integrates the epitope mapping to the evaluation of the binding activity of phage displayed antibody fragments in a single well. The array-in-well assay design used here incorporates a set of partially overlapping 15-mer peptides covering the complete primary sequence of the target antigen, the intact antigen itself and appropriate controls printed as an array with 10×10 layout at the bottom of a well of a 96-well microtiter plate. The streptavidin-coated surface of the well facilitates the immobilization of the biotinylated analytes as well-confined spots. Phage displayed antibody fragments bound to the analyte spots are traced using anti-phage antibody labelled with horseradish peroxidase for tyramide signal amplification based highly sensitive detection. In this study, we generated scFv antibodies against HIV-1 p24 protein using a synthetic antibody phage library, evaluated the binders with array-in-well binding assay and further classified them into epitopic families based on their capacity to recognize linear epitopes. The array-in-well assay enables the integration of epitope mapping to the screening assay for early classification of antibodies with simplicity and speed of a standard ELISA procedure to advance the antibody development projects.
Collapse
Affiliation(s)
- Susan Pérez-Gamarra
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Liisa Hattara
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Gaurav Batra
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 122001, India
| | - Petri Saviranta
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland.
| |
Collapse
|
48
|
Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity. Proc Natl Acad Sci U S A 2016; 113:12532-12537. [PMID: 27791128 DOI: 10.1073/pnas.1610258113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic targeting of the VEGF signaling axis by the VEGF-neutralizing monoclonal antibody bevacizumab has clearly demonstrated clinical benefit in cancer patients. To improve this strategy using a polyclonal approach, we developed a vaccine targeting VEGF using 3D-structured peptides that mimic the bevacizumab binding site. An in-depth study on peptide optimization showed that the antigen's 3D structure is essential to achieve neutralizing antibody responses. Peptide 1 adopts a clear secondary, native-like structure, including the typical cysteine-knot fold, as evidenced by CD spectroscopy. Binding and competition studies with bevacizumab in ELISA and surface plasmon resonance analysis revealed that peptide 1 represents the complete bevacizumab binding site, including the hairpin loop (β5-turn-β6) and the structure-supporting β2-α2-β3 loop. Vaccination with peptide 1 elicited high titers of cross-reactive antibodies to VEGF, with potent neutralizing activity. Moreover, vaccination-induced antisera displayed strong angiostatic and tumor-growth-inhibiting properties in a preclinical mouse model for colorectal carcinoma, whereas antibodies raised with peptides exclusively encompassing the β5-turn-β6 loop (peptides 15 and 20) did not. Immunization with peptide 1 or 7 (murine analog of 1) in combination with the potent adjuvant raffinose fatty acid sulfate ester (RFASE) showed significant inhibition of tumor growth in the B16F10 murine melanoma model. Based on these data, we conclude that this vaccination technology, which is currently being investigated in a phase I clinical trial (NCT02237638), can potentially outperform currently applied anti-VEGF therapeutics.
Collapse
|
49
|
Misasi J, Gilman MSA, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351:1343-6. [PMID: 26917592 PMCID: PMC5241105 DOI: 10.1126/science.aad6117] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA
| | - Morgan S A Gilman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - James Cunningham
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China.
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
50
|
Gori A, Peri C, Quilici G, Nithichanon A, Gaudesi D, Longhi R, Gourlay L, Bolognesi M, Lertmemongkolchai G, Musco G, Colombo G. Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the Burkholderia pseudomallei BPSL2765 Pal3 Epitope. ACS Infect Dis 2016; 2:221-30. [PMID: 27623032 DOI: 10.1021/acsinfecdis.5b00118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides seldom retain stable conformations if separated from their native protein structure. In an immunological context, this potentially affects the development of selective peptide-based bioprobes and, from a vaccine perspective, poses inherent limits in the elicitation of cross-reactive antibodies by candidate epitopes. Here, a 1,4-disubstituted-1,2,3-triazole-mediated stapling strategy was used to stabilize the native α-helical fold of the Pal3 peptidic epitope from the protein antigen PalBp (BPSL2765) from Burkholderia pseudomallei, the etiological agent of melioidosis. Whereas Pal3 shows no propensity to fold outside its native protein context, the engineered peptide (Pal3H) forms a stable α-helix, as assessed by MD, NMR, and CD structural analyses. Importantly, Pal3H shows an enhanced ability to discriminate between melioidosis patient subclasses in immune sera reactivity tests, demonstrating the potential of the stapled peptide for diagnostic purposes. With regard to antibody elicitation and related bactericidal activities, the linear peptide is shown to elicit a higher response. On these bases, we critically discuss the implications of epitope structure engineering for diagnostic- and vaccine-oriented applications.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Arnone Nithichanon
- Center for Research and Development of
Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical
Sciences, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Davide Gaudesi
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Louise Gourlay
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- CNR-IBF and Cimaina,
c/o Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of
Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical
Sciences, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Giovanna Musco
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| |
Collapse
|