1
|
Abdelhamed HG, Hassan AA, Sakraan AA, Al-Deeb RT, Mousa DM, Aboul Ezz HS, Noor NA, Khadrawy YA, Radwan NM. Brain interleukins and Alzheimer's disease. Metab Brain Dis 2025; 40:116. [PMID: 39891777 PMCID: PMC11787210 DOI: 10.1007/s11011-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
The central nervous system (CNS) is immune-privileged by several immuno-modulators as interleukins (ILs). ILs are cytokines secreted by immune cells for cell-cell signaling communications and affect the functions of the CNS. ILs were reported to orchestrate different molecular and cellular mechanisms of both physiological and pathological events, through overproduction or over-expression of their receptors. They interact with numerous receptors mediating pro-inflammatory and/or anti-inflammatory actions. Interleukins have been implicated to participate in neurodegenerative diseases. They play a critical role in Alzheimer's disease (AD) pathology which is characterized by the over-production of pro-inflammatory ILs. These may aggravate neurodegeneration, in addition to their contribution to detrimental mechanisms as oxidative stress, and excitotoxicity. However, recent research on the relation between ILs and AD revealed major discrepancies. Most of the major ILs were shown to play both pro- and anti-inflammatory roles in different experimental settings and models. The interactions between different ILs through shared pathways also add to the difficulty of drawing solid conclusions. In addition, targeting the different ILs has not yielded consistent results. The repeated failures of therapeutic drugs in treating AD necessitate the search for novel agents targeting multiple mechanisms of the disease pathology. In this context, the understanding of interleukins and their roles throughout the disease progression and interaction with other systems in the brain may provide promising therapeutic targets for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Heba G Abdelhamed
- Department of Zoology and Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Arwa A Hassan
- Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, Sinai, Egypt
| | - Alaa A Sakraan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Dalia M Mousa
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
3
|
Suay G, Garcia-Cañaveras JC, Aparisi F, Garcia J, Juan-Vidal O, Lahoz A. Immune checkpoint inhibitors as first-line treatment for brain metastases in stage IV NSCLC patients without driver mutations. Cancer Lett 2024; 606:217317. [PMID: 39489211 DOI: 10.1016/j.canlet.2024.217317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Immune checkpoint inhibitors (ICI) therapy with or without chemotherapy has been established as the first-line treatment for patients with non-oncogene addicted advanced Non-Small Cell Lung Cancer (NSCLC). Yet some clinical settings, such as the treatment sequence in patients with brain metastases, have barely been evidenced. Although ICIs cannot directly cross the blood-brain barrier (BBB), evidence suggests that BBB damage could allow ICIs into the central nervous system, or that they can have an indirect effect on the tumor immune microenvironment (TIME) and cause an anti-tumor response. Pivotal phase III trials have included a highly selected population but offer few data on these patients. Here we first review how ICIs can indirectly shape the brain metastases microenvironment through different mechanisms, and some possible causes of ICIs resistance. We also analyze the evidence reported in pivotal phase III trials and phase II trials focused on NSCLC brain metastases for first-line treatment, and the evidence for upfront or delayed local brain therapy. Finally, we discuss the best evidence-based approach to treat NSCLC patients with brain metastases and propose future research.
Collapse
Affiliation(s)
- Guillermo Suay
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | | | - Francisco Aparisi
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - José Garcia
- Medical Oncology Service, Hospital Arnau Vilanova, Valencia, Spain
| | - Oscar Juan-Vidal
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - Agustín Lahoz
- Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain.
| |
Collapse
|
4
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
5
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
6
|
Huang Q, Wu W, Wen Y, Lu S, Zhao C. Potential therapeutic natural compounds for the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155822. [PMID: 38909512 DOI: 10.1016/j.phymed.2024.155822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complicated neurodegenerative disease with cognitive impairment occurring in the older people, in which extracellular accumulation of β-amyloid and intracellular aggregation of hyperphosphorylated tau are regarded as the prevailing theories. However, the exact AD mechanism has not been determined. Moreover, there is no effective treatment available in phase III trials to eradicate AD, which is imperative to explore novel treatments. PURPOSE A number of up-to-date pre-clinical studies on cognitive impairment is beneficial to clarify the pathology of AD. This review recapitulates several advances in AD pathobiology and discusses the neuroprotective effects of natural compounds, such as phenolic compounds, natural polysaccharides and oligosaccharides, peptide, and lipids, underscoring the therapeutic potential for AD. METHODS Electronic databases involving PubMed, Web of Science, and Google Scholar were searched up to October 2023. Articles were conducted using the keywords like Alzheimer's disease, pathogenic mechanisms, natural compounds, and neuroprotection. RESULT This review summarized several AD pathologies and the neuroprotective effects of natural compounds such as natural polysaccharides and oligosaccharides, peptide, and lipids. CONCLUSION We have discussed the pathogenic mechanisms of AD and the effect natural products on neurodegenerative diseases particularly in treating AD. Specifically, we investigated the molecular pathways and links between natural compounds and Alzheimer's disease such as through NF-κB, Nrf2, and mTOR pathway. Further investigation is necessary in exploring the bioactivity and effectiveness of natural compounds in clinical trials, which may provide a promising treatment for AD patients.
Collapse
Affiliation(s)
- Qihui Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Zhu Y, Li M, Wang H, Yang F, Du R, Pang X, Bai J, Huang X. Mendelian Randomization Identifies Genetically Supported Drug Targets for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2024; 61:3809-3818. [PMID: 38019415 DOI: 10.1007/s12035-023-03817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Currently, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have no effective treatments. Drug repurposing offers a rapid method to meet therapeutic need for ALS and FTD. To identify therapeutic targets associated with ALS and FTD, Mendelian randomization (MR) analysis and colocalization were performed. Genetic instruments were based on transcriptomic and proteomic data for 422 actionable proteins targeted by approved drugs or clinical drug candidates. The publicly available ALS GWAS summary data (including a total of 20,806 ALS cases and 59,804 controls) and FTD GWAS summary data (including a total of 2154 patients with FTD and 4308 controls) were used. Using cis-expression quantitative trait loci and cis-protein quantitative trait loci genetic instruments, we identified several drug targets for repurposing (ALS: MARK3, false-discovery rate (FDR) = 0.043; LTBR, FDR = 0.068) (FTD: HLA-DRB1, FDR = 0.083; ADH5, FDR = 0.056). Our MR study analyzed the actionable druggable proteins and provided potential therapeutic targets for ALS and FTD. Future studies should further elucidate the underlying mechanism of corresponding drug targets in the pathogenesis of ALS and FTD.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - RongRong Du
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Xinyuan Pang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Jiongming Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Sun M, Rong J, Zhou M, Liu Y, Sun S, Liu L, Cai D, Liang F, Zhao L. Astrocyte-Microglia Crosstalk: A Novel Target for the Treatment of Migraine. Aging Dis 2024; 15:1277-1288. [PMID: 37450927 PMCID: PMC11081170 DOI: 10.14336/ad.2023.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Migraine is a pervasive neurologic disease closely related to neurogenic inflammation. The astrocytes and microglia in the central nervous system are vital in inducing neurogenic inflammation in migraine. Recently, it has been found that there may be a crosstalk phenomenon between microglia and astrocytes, which plays a crucial part in the pathology and treatment of Alzheimer's disease and other central nervous system diseases closely related to inflammation, thus becoming a novel hotspot in neuroimmune research. However, the role of the crosstalk between microglia and astrocytes in the pathogenesis and treatment of migraine is yet to be discussed. Based on the preliminary literature reports, we have reviewed relevant evidence of the crosstalk between microglia and astrocytes in the pathogenesis of migraine and summarized the crosstalk pathways, thereby hoping to provide novel ideas for future research and treatment.
Collapse
Affiliation(s)
- Mingsheng Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengdi Zhou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiqi Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingjun Cai
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Zhao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Dahl J, Ormstad H, Aass HCD, Malt UF, Andreassen OA. Changes in pain during a depressive episode and relationship to cytokine levels in major depressive disorder. Nord J Psychiatry 2024; 78:181-188. [PMID: 38251060 DOI: 10.1080/08039488.2023.2290654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Depressed patients have an increased incidence of pain. A pathophysiological connection between depression and pain is still not revealed. Immunological activation has been found in both depression and pain. There are few studies of pain and immune activation in patients with depression, without inflammatory and autoimmune disorders. METHODS This is a naturalistic follow-up study of 50 patients with a major depressive disorder (MDD) depressive episode, without any inflammatory or autoimmune conditions. We have previously reported on the relationship between depression and cytokine levels. In this study, we obtained data of depression, pain and cytokine levels before and after 12 weeks of depression treatment. All patients were medication-free at inclusion. RESULTS At inclusion three out of four patients experienced pain, and the pain scores correlated with the depression scores. After treatment, as depression was relieved, the pain scores dropped significantly and were no longer correlated to the depression scores. There were no correlations between pain scores and cytokine levels. Pain level at inclusion did not correlate with depression treatment outcome. CONCLUSION Our findings indicate that pain is a feature of depression. Pain levels and cytokine values didn't correlate. Pain at inclusion did not predict depression treatment outcome.
Collapse
Affiliation(s)
- Johan Dahl
- Research Department, Modum Bad Research Institute, Vikersund, Norway
| | - Heidi Ormstad
- Department of Research and Innovation, University of South-Eastern Norway, Drammen, Norway
| | - Hans Christian D Aass
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Norway
| | - Ulrik Fredrik Malt
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Department of Research and Innovation, University of South-Eastern Norway, Drammen, Norway
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Li M, Chen J, Yu H, Zhang B, Hou X, Jiang H, Xie D, Chen L. Cerebrospinal fluid immunological cytokines predict intracranial tumor response to immunotherapy in non-small cell lung cancer patients with brain metastases. Oncoimmunology 2023; 13:2290790. [PMID: 38169917 PMCID: PMC10761018 DOI: 10.1080/2162402x.2023.2290790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Background Immunotherapy has shown intracranial efficacy in non-small cell lung cancer (NSCLC) patients with brain metastases. However, predictive biomarkers for intracranial response to immunotherapy are lacking. This post-hoc analysis aimed to explore the potential of immunological cytokines in cerebrospinal fluid (CSF) to predict intracranial tumor response to immunotherapy in patients with brain metastases. Methods Treatment-naive NSCLC patients with brain metastases who received camrelizumab plus chemotherapy were enrolled. Paired plasma and CSF samples were prospectively collected at baseline and the first treatment assessment. All samples were analyzed for 92 immuno-oncology cytokines using Olink's panels. Results A total of 28 patients were included in this analysis. At baseline, most immunological cytokines were significantly lower in CSF than in plasma, whereas a subset comprising CD83, PTN, TNFRSF21, TWEAK, ICOSLG, DCN, IL-8, and MCP-1, was increased in CSF. Baseline CSF levels of LAMP3 were significantly higher in patients with intracranial tumor response, while the levels of CXCL10, IL-12, CXCL11, IL-18, TIE2, HGF, and PDCD1 were significantly lower. Furthermore, the CXCL10, CXCL11, TIE2, PDCD1, IL-18, HGF, and LAMP3 in CSF were also significantly associated with intracranial progression-free survival for immunotherapy. The identified cytokines in CSF were decreased at the first treatment evaluation in patients with intracranial tumor response. The logistic CSF immuno-cytokine model yielded an AUC of 0.91, as compared to PD-L1 expression (AUC of 0.72). Conclusions Immunological cytokines in CSF could predict intracranial tumor response to immunotherapy in NSCLC patients with brain metastases, and the findings warrant validation in a larger prospective cohort study. Trial registration ClinicalTrials.gov identifier: NCT04211090.
Collapse
Affiliation(s)
- Meichen Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui Yu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Baishen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Honghua Jiang
- Department of Oncology, Southern Theater Air Force Hospital, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
12
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
13
|
Sun H, Xu L, Wang K, Li Y, Bai T, Dong S, Wu H, Yao Z. κ-Carrageenan Oligosaccharides Protect Nerves by Regulating Microglial Autophagy in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3540-3550. [PMID: 37650601 DOI: 10.1021/acschemneuro.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
κ-Carrageenan is a linear sulfated polysaccharide extracted from the cell wall of marine red algae, and its enzymatically digested oligosaccharides (KOS) can inhibit microglial hyperactivation. Alzheimer's disease (AD) is a common chronic neurodegenerative disease, characterized by cognitive and memory impairment accompanied by nerve cell damage. Microglia activation causing enhancement of proinflammatory effects and neurotoxicity is one of the early events in AD disease. In this study, whether KOS have therapeutic or preventive effects in the AD model prepared from APP/PS1 transgenic mice was determined. Learning and memory of AD mice were detected by water maze experiments, and microglial activation-related protein expression and deposition of APP and Aβ1-42 in the brain were examined. The effects of KOS on expressed inflammatory factors and inflammation-related proteins by microglia were tested by cell experiments. Transwell coculture was used to investigate the effect of microglia on neural cell activity after KOS treatment. The results showed that KOS could relieve the clinical symptoms in AD mice, and a decrease in the expression of inflammatory factors and inflammation-related proteins in brain tissue was detected. KOS alleviated nerve cell apoptosis by inhibiting the overactivation of microglia, thus exhibiting neuroprotective effects. Exploring the protective effect of KOS inhibition of microglia inflammation is expected to provide a theoretical basis for KOS as a therapeutic drug for neurodegenerative diseases.
Collapse
Affiliation(s)
- Haojian Sun
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Dalian University, Liaoning 116021, Dalian, China
| | - Kangkang Wang
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Yanfeng Li
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Tongning Bai
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Shuo Dong
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Haige Wu
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ziang Yao
- College of Life Science, Dalian Minzu University, No. 18 Liaohe West Road, Jinpu New Area, Liaoning 116600, Dalian, China
| |
Collapse
|
14
|
Wiener JP, Desire S, Garliyev V, Lyssenko III N, Praticò D, Lyssenko NN. Down-Regulation of ABCA7 in Human Microglia, Astrocyte and THP-1 Cell Lines by Cholesterol Depletion, IL-1β and TNFα, or PMA. Cells 2023; 12:2143. [PMID: 37681876 PMCID: PMC10486366 DOI: 10.3390/cells12172143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-β-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1β and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1β and TNFα inflammatory responses in human microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Eide S, Misztal M, Feng ZP. Interleukin-6 as a marker of Huntington's disease progression: Systematic review and meta-analysis. Brain Behav Immun Health 2023; 30:100635. [PMID: 37215308 PMCID: PMC10196779 DOI: 10.1016/j.bbih.2023.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Huntington's disease (HD) is a rare, inherited disorder with a broad spectrum of manifestations that vary with disease severity and progression. Although genetic testing can readily confirm the initial diagnosis of HD, markers sensitive to HD progression are needed to aid the development of individual treatment plans. The current analysis aims to identify plasma Interleukin-6 (IL-6) as a marker of disease progression in HD patients. A systematic search of PubMed and Medline from conception through October 2021 was conducted. Studies reporting plasma IL-6 levels of mutation-positive HD patients and healthy controls that met inclusion criteria were selected. The search strategy collected 303 studies, 9 of which met analysis inclusion criteria. From included studies, plasma IL-6 levels of 469 individuals with the HD mutation and 206 healthy controls were collected. Plasma IL-6 levels were meta-analytically compared between healthy controls and individuals with the confirmed HD mutation at all stages of disease and correlated to performance on standardized measures of total cognitive and motor function. Plasma IL-6 was significantly increased in HD groups compared to controls (g = 0.73, 95% CI = 0.31,1.16, P < 0.01) and increased significantly throughout most stages of disease progression, notably between pre-manifest and manifest (g = 0.31, 95% CI = 0.04,0.59, P < 0.05) and early and moderate HD stages (g = 0.52, 95% CI = 0.18,0.86, P < 0.01). Significant correlations between plasma IL-6 levels and HD symptomatic progression were identified, with increased cytokine levels associated with more severe motor impairments (r = 0.179, 95% CI = 0.0479,0.304, P = 0.008) and more extreme disabilities in activities of daily living and/or work tasks (r = -0.229, 95% CI = -0.334, -0.119, P < 0.001). Conclusively, plasma IL-6 levels correlate with disease and motor symptom progression and may act as a viable marker for clinical use. Analysis is limited by small study numbers and highlights the need for future work to identify definitive ranges or rates of change of plasma IL-6 levels that correlate to progressive HD disease states.
Collapse
Affiliation(s)
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
16
|
Abi-Ghanem C, Salinero AE, Kordit D, Mansour FM, Kelly RD, Venkataganesh H, Kyaw NR, Gannon OJ, Riccio D, Fredman G, Poitelon Y, Belin S, Kopec AM, Robison LS, Zuloaga KL. Sex differences in the effects of high fat diet on underlying neuropathology in a mouse model of VCID. Biol Sex Differ 2023; 14:31. [PMID: 37208759 PMCID: PMC10199629 DOI: 10.1186/s13293-023-00513-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Harini Venkataganesh
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Gabrielle Fredman
- Department Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Yannick Poitelon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Sophie Belin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Ashley M Kopec
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Lisa S Robison
- Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL, 33314, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
17
|
Lubec J, Hussein AM, Kalaba P, Feyissa DD, Arias-Sandoval E, Cybulska-Klosowicz A, Bezu M, Stojanovic T, Korz V, Malikovic J, Aher NY, Zehl M, Dragacevic V, Leban JJ, Sagheddu C, Wackerlig J, Pistis M, Correa M, Langer T, Urban E, Höger H, Lubec G. Low-Affinity/High-Selectivity Dopamine Transport Inhibition Sufficient to Rescue Cognitive Functions in the Aging Rat. Biomolecules 2023; 13:biom13030467. [PMID: 36979402 PMCID: PMC10046369 DOI: 10.3390/biom13030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Daniel Daba Feyissa
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | | - Anita Cybulska-Klosowicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology, 02093 Warsaw, Poland
| | - Mekite Bezu
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Nilima Y. Aher
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Vladimir Dragacevic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Johann Jakob Leban
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| | - Merce Correa
- Department of Psychobiology, Universitat Jaume I, 12006 Castelló, Spain
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, 2325 Himberg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-676-569-4816
| |
Collapse
|
18
|
Botto L, Lonati E, Russo S, Cazzaniga E, Bulbarelli A, Palestini P. Effects of PM2.5 Exposure on the ACE/ACE2 Pathway: Possible Implication in COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4393. [PMID: 36901403 PMCID: PMC10002082 DOI: 10.3390/ijerph20054393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM) is a harmful component of urban air pollution and PM2.5, in particular, can settle in the deep airways. The RAS system plays a crucial role in the pathogenesis of pollution-induced inflammatory diseases: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway counteracted by the ACE2/Ang(1-7)/MAS axis, which in turn triggers an anti-inflammatory and protective pathway. However, ACE2 acts also as a receptor through which SARS-CoV-2 penetrates host cells to replicate. COX-2, HO-1, and iNOS are other crucial proteins involved in ultrafine particles (UFP)-induced inflammation and oxidative stress, but closely related to the course of the COVID-19 disease. BALB/c male mice were subjected to PM2.5 sub-acute exposure to study its effects on ACE2 and ACE, COX-2, HO-1 and iNOS proteins levels, in the main organs concerned with the pathogenesis of COVID-19. The results obtained show that sub-acute exposure to PM2.5 induces organ-specific modifications which might predispose to greater susceptibility to severe symptomatology in the case of SARS-CoV-2 infection. The novelty of this work consists in using a molecular study, carried out in the lung but also in the main organs involved in the disease, to analyze the close relationship between exposure to pollution and the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Russo
- FIMP-Federazione Italiana Medici Pediatri, 00185 Rome, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Centre, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
19
|
Xie M, Su C. Microenvironment and the progress of immunotherapy in clinical practice of NSCLC brain metastasis. Front Oncol 2023; 12:1006284. [PMID: 36761422 PMCID: PMC9902941 DOI: 10.3389/fonc.2022.1006284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
One of the most frequent distant metastases of lung cancer occurs in the brain. The average natural survival duration for patients with lung cancer who have brain metastases is about 1 to 2 months. Knowledge about brain metastases is currently restricted since they are more difficult to acquire than other metastases. This review begins with an analysis of the immune microenvironment of brain metastases; focuses primarily on the functions of microglia, astrocytes, neurons, and tumor-infiltrating lymphocytes in the microenvironment of brain metastases; and offers an atlas of the immune microenvironment of brain metastases involving significant cells. In an effort to give researchers new research ideas, the study also briefly covers how immunotherapy for non-small cell lung cancer with brain metastases is currently faring.
Collapse
|
20
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
22
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
23
|
Okusha Y, Lang BJ, Murshid A, Borges TJ, Holton KM, Clark-Matott J, Doshi S, Ikezu T, Calderwood SK. Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress Chaperones 2022; 27:461-478. [PMID: 35689138 PMCID: PMC9485360 DOI: 10.1007/s12192-022-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022] Open
Abstract
Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-β (fAβ) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAβ was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAβ was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAβ-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAβ-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAβ.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- JSPS Overseas Research Fellowship, Tokyo, 102-0083, Japan.
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Kristina M Holton
- Research Computing, Harvard Medical School, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sachin Doshi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Molecular NeuroTherapeutics Laboratory, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
24
|
Kobayashi N, Shinagawa S, Nagata T, Shigeta M, Kondo K. Suppressors of Cytokine Signaling Are Decreased in Major Depressive Disorder Patients. J Pers Med 2022; 12:jpm12071040. [PMID: 35887537 PMCID: PMC9315526 DOI: 10.3390/jpm12071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
There is strong evidence for an association between major depressive disorder (MDD) and inflammation. However, some studies have not observed an increase in inflammatory cytokines in MDD, and the mechanism behind this is unknown. In the present study, we evaluated MDD severity using the Montgomery–Åsberg Depression Rating Scale (MADRS) and quantified mRNA levels of the blood inflammatory cytokines interleukin (IL) 1β, IL-6 and tumor necrosis factor alpha (TNF-α), as well as negative regulators of cytokine signaling—comprising IL-10, IL-1RA, SOCS1, SOCS2 and SOCS3—in MDD patients (n = 36), with a focus on mild MDD, and normal controls (NC, n = 30). We also measured the serum levels of IL-1β and IL-6. Neither the blood mRNA nor the protein levels of inflammatory cytokines were significantly elevated in the MDD group compared with the NC group. However, we observed significant decreases in SOCS1, SOCS2 and SOCS3 mRNA in the MDD group compared to the NC group. A significant finding was a decrease in SOCS3 mRNA after remission from MDD, suggesting that SOCS3 is a trait marker in depressive symptoms. We consider that our findings would be useful in elucidating the pathophysiological mechanism of depression.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (S.S.); (T.N.); (M.S.)
- Correspondence: ; Tel.: +81-3-3433-1111; Fax: +81-3-5400-1305
| | - Shunichiro Shinagawa
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (S.S.); (T.N.); (M.S.)
| | - Tomoyuki Nagata
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (S.S.); (T.N.); (M.S.)
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (S.S.); (T.N.); (M.S.)
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
25
|
Long L, Zhong W, Guo L, Ji J, Nie H. Effect of Bufalin-PLGA Microspheres in the Alleviation of Neuropathic Pain via the CCI Model. Front Pharmacol 2022; 13:910885. [PMID: 35770074 PMCID: PMC9234216 DOI: 10.3389/fphar.2022.910885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neuropathic pain (NPP) is considered challenging, while the search for alternative medication is striving. NPP pathology is related with the expression of both the purinergic 2X7 (P2X7) receptor and the transient receptor potential vanilloid 1 receptor (TRPV1). Bufalin is a traditional Chinese medication derived from toad venom with pronounced antitumor, analgesic, and anti-inflammatory properties. However, poor solubility, rapid metabolism, and the knowledge gap on its pain alleviation mechanism have limited the clinical application of bufalin. Hence, the purpose of this study is to illustrate the NPP alleviation mechanism of bufalin via chronic constriction injury (CCI). To address the concern on fast metabolism, bufalin-PLGA microspheres (MS) were prepared via membrane emulsification to achieve prolonged pain-relieving effects. Western blot, real-time PCR, immunofluorescence, and molecular docking were employed to demonstrate the therapeutic action of bufalin on NPP. The results showed enhanced thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) after the administration of both bufalin and bufalin-PLGA MS in the CCI rats. Prolonged pain-relieving effects for up to 3 days with reduced dose frequency was achieved via bufalin-PLGA MS. In the CCI rats treated with bufalin-PLGA MS, the expression levels of protein and mRNA in TRPV1 and P2X7, both localized in the dorsal root ganglion (DRG), were reduced. Moreover, bufalin-PLGA MS effectively reduced the levels of IL-1β, IL-18, IL-6, and TNF-α in the CCI group. The results from molecular docking suggested a possible mechanism of NPP alleviation of bufalin through binding to P2X7 receptors directly. The administration of bufalin-PLGA MS prepared by membrane emulsification demonstrated promising applications for sustained effect on the alleviation of NPP.
Collapse
Affiliation(s)
- Lina Long
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenwei Zhong
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu, China
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| | - Liwei Guo
- Guangzhou Bio-Green Biotechnology Co., Ltd., Guangzhou, China
- National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangzhou, China
- Guangzhou Dayuan Studio of Membrane Science and Technology for Traditional Chinese Medicine, Guangzhou, China
| | - Jing Ji
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| |
Collapse
|
26
|
Opioid receptor activation suppresses the neuroinflammatory response by promoting microglial M2 polarization. Mol Cell Neurosci 2022; 121:103744. [PMID: 35660086 DOI: 10.1016/j.mcn.2022.103744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Activation of microglia is considered the most important component of neuroinflammation. Microglia can adopt a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. Opioid receptors (ORs) have been shown to control neurotransmission of various peptidergic neurons, but their potential role in regulating microglial function is largely unknown. Here, we aimed to investigate the effect of the OR agonists DAMGO, DADLE and U-50488 on the polarization of C8-B4 microglial cells. We observed that opioids suppressed lipopolysaccharide (LPS)-triggered M1 polarization and promoted M2 polarization. This was reflected in lower phagocytic activity, lower production of NO, lower expression of TNF-α, IL-1β, IL-6, IL-86 and IL-12 beta p40 together with higher migration rate, and increased expression of IL-4, IL-10, arginase 1 and CD 206 in microglia, compared to cells affected by LPS. We demonstrated that the effect of opioids on microglial polarization is mediated by the TREM2/NF-κB signaling pathway. These results provide new insights into the anti-inflammatory and neuroprotective effects of opioids and highlight their potential in combating neurodegenerative diseases.
Collapse
|
27
|
Guo S, Cázarez-Márquez F, Jiao H, Foppen E, Korpel NL, Grootemaat AE, Liv N, Gao Y, van der Wel N, Zhou B, Nie G, Yi CX. Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5066-5079. [PMID: 35041392 PMCID: PMC8815040 DOI: 10.1021/acsami.1c22434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Shanshan Guo
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernando Cázarez-Márquez
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Han Jiao
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ewout Foppen
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nikita L. Korpel
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nalan Liv
- Section
Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Yuanqing Gao
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nicole van der Wel
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bing Zhou
- Institute
of Synthetic Biology, Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangjun Nie
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chun-Xia Yi
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, Zhang CM, Liang Y, Srinath A, Zhang X, Xia J, Olszewski M, Zhang X, Schipma MJ, Chang EB, Tanzi RE, Gilbert JA, Sisodia SS. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J Exp Med 2022; 219:e20200895. [PMID: 34854884 PMCID: PMC8647415 DOI: 10.1084/jem.20200895] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated that lifelong antibiotic (ABX) perturbations of the gut microbiome in male APPPS1-21 mice lead to reductions in amyloid β (Aβ) plaque pathology and altered phenotypes of plaque-associated microglia. Here, we show that a short, 7-d treatment of preweaned male mice with high-dose ABX is associated with reductions of Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes at 9 wk of age in male mice only. More importantly, fecal microbiota transplantation (FMT) from transgenic (Tg) or WT male donors into ABX-treated male mice completely restored Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes. Transcriptomic studies revealed significant differences between vehicle versus ABX-treated male mice and FMT from Tg mice into ABX-treated mice largely restored the transcriptome profiles to that of the Tg donor animals. Finally, colony-stimulating factor 1 receptor (CSF1R) inhibitor-mediated depletion of microglia in ABX-treated male mice failed to reduce cerebral Aβ amyloidosis. Thus, microglia play a critical role in driving gut microbiome-mediated alterations of cerebral Aβ deposition.
Collapse
Affiliation(s)
- Hemraj B. Dodiya
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Holly L. Lutz
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | - Ian Q. Weigle
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL
| | | | | | | | - Yingxia Liang
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Abhinav Srinath
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xulun Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Jessica Xia
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Monica Olszewski
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xiaoqiong Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | | | - Eugene B. Chang
- Department of Digestive Diseases, The University of Chicago, Chicago, IL
| | | | - Jack A. Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | | |
Collapse
|
30
|
Zhang X, Zou M, Wu Y, Jiang D, Wu T, Zhao Y, Wu D, Cui J, Li G. Regulation of the Late Onset alzheimer's Disease Associated HLA-DQA1/DRB1 Expression. Am J Alzheimers Dis Other Demen 2022; 37:15333175221085066. [PMID: 35341343 PMCID: PMC10581112 DOI: 10.1177/15333175221085066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(Genome-wide Association Studies) GWAS have identified ∼42 late-onset Alzheimer's disease (LOAD)-associated loci, each of which contains multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) and most of these SNPs are in the non-coding region of human genome. However, how these SNPs regulate risk gene expression remains unknown. In this work, by using a set of novel techniques, we identified 6 functional SNPs (fSNPs) rs9271198, rs9271200, rs9281945, rs9271243, and rs9271247 on the LOAD-associated HLA-DRB1/DQA1 locus and 42 proteins specifically binding to five of these 6 fSNPs. As a proof of evidence, we verified the allele-specific binding of GATA2 and GATA3, ELAVL1 and HNRNPA0, ILF2 and ILF3, NFIB and NFIC, as well as CUX1 to these five fSNPs, respectively. Moreover, we demonstrate that all these nine proteins regulate the expression of both HLA-DQA1 and HLA-DRB1 in human microglial cells. The contribution of HLA class II to the susceptibility of LOAD is discussed.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meijaun Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuwei Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Wu
- Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Aramideh JA, Vidal-Itriago A, Morsch M, Graeber MB. Cytokine Signalling at the Microglial Penta-Partite Synapse. Int J Mol Sci 2021; 22:ijms222413186. [PMID: 34947983 PMCID: PMC8708012 DOI: 10.3390/ijms222413186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.
Collapse
Affiliation(s)
- Jason Abbas Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andres Vidal-Itriago
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
32
|
Sustained microglial activation in the area postrema of collagen-induced arthritis mice. Arthritis Res Ther 2021; 23:273. [PMID: 34715926 PMCID: PMC8556992 DOI: 10.1186/s13075-021-02657-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Central nervous system (CNS)-mediated symptoms, such as fatigue, depression, and hyperalgesia, are common complications among patients with rheumatoid arthritis (RA). However, it remains unclear how the peripheral pathology of RA spreads to the brain. Accumulated evidence showing an association between serum cytokine levels and aberrant CNS function suggests that humoral factors participate in this mechanism. In contrast to the well-known early responses of microglia (CNS-resident immune cells) in the area postrema [AP; a brain region lacking a blood–brain barrier (BBB)] to experimental inflammation, microglial alterations in the AP during chronic inflammation like RA remain unclear. Therefore, to determine whether microglia in the AP can react to persistent autoimmune-arthritis conditions, we analyzed these cells in a mouse model of collagen-induced arthritis (CIA). Methods Microglial number and morphology were analyzed in the AP of CIA and control mice (administered Freund’s adjuvant or saline). Immunostaining for ionized calcium-binding adaptor molecule-1 was performed at various disease phases: “pre-onset” [post-immunization day (PID) 21], “establishment” (PID 35), and “chronic” (PID 56 and 84). Quantitative analyses of microglial number and morphology were performed, with principal component analysis used to classify microglia. Interleukin-1β (IL-1β) mRNA expression was analyzed by multiple fluorescent in situ hybridization and real-time polymerase chain reaction. Behavioral changes were assessed by sucrose preference test. Results Microglia in the AP significantly increased in density and exhibited changes in morphology during the establishment and chronic phases, but not the pre-onset phase. Non-subjective clustering classification of cell morphology (CIA, 1,256 cells; saline, 852 cells) showed that the proportion of highly activated microglia increased in the CIA group during establishment and chronic phases. Moreover, the density of IL-1β-positive microglia, a hallmark of functional activation, was increased in the AP. Sucrose preferences in CIA mice negatively correlated with IL-1β expression in brain regions containing the AP. Conclusions Our findings demonstrate that microglia in the AP can sustain their activated state during persistent autoimmune arthritis, which suggests that chronic inflammation, such as RA, may affect microglia in brain regions lacking a BBB and have various neural consequences. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02657-x.
Collapse
|
33
|
Abd El-Hameed AM, Abuelsaad ASA, Khalil A. Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model. Metab Brain Dis 2021; 36:2047-2058. [PMID: 34138441 DOI: 10.1007/s11011-021-00766-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Bee venom (BV) is applied in different traditional medicinal therapies and is used worldwide to prevent and treat many acute and chronic diseases. Epilepsy has various neurological effects, e.g., epileptogenic insults; thus, it is considered a life-threatening condition. Seizures and their effects add to the burden of epilepsy because they can have health effects including residual disability and even premature mortality. The use of antiinflammatory drugs to treat epilepsy is controversial; therefore, the alternative nonchemical apitherapy benefits of BV were evaluated in the present study by assessing neuroinflammatory changes in a pilocarpine-induced epilepticus model. Levels of electrolytes, neurotransmitters, and mRNA expression for some gate channels were determined. Moreover, ELISA assays were conducted to detect pro- and anti-inflammatory cytokines, whereas RT-PCR was performed to assess mRNA expression of Foxp3 and CTLA-4. BV ameliorated the interruption in electrolytes and ions through voltage- and ligand-gated ion channels, and it limited neuronal excitability via rapid repolarization of action potentials. In addition, BV inhibited the high expression of proinflammatory cytokines. Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters, and modulates the levels of pro- and anti-inflammatory cytokines. Thus, BV could reduce the progression of epileptogenesis as a cotherapy with other antiepileptic drugs.
Collapse
Affiliation(s)
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Abdelwahab Khalil
- Medical Entomology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
34
|
Kobelev E, Bergen TA, Tarkova AR, Vasiltseva OY, Kamenskaya OV, Usov VY, Chernyavsky AM. COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a poorly understood and dangerous medical problem. COVID-19-related pulmonary vessels involvement is a complex set of interrelated pathophysiological processes associated with vascular endothelial dysfunction and accompanied by thrombosis of various localization, vasomotor disorders, severe respiratory failure, as well as pulmonary embolism (PE) resulting in chronic thromboembolic pulmonary hypertension (CTEPH). According to computed tomographic pulmonary angiography, the incidence of PE in patients with COVID-19 ranges from 23 to 30%. The aim of this work was to focus the doctors' attention on the risk of pulmonary hypertension in patients after COVID-19.Despite the ability of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) to infect various organs and systems, the main and most serious complications are pulmonary infiltration, acute respiratory distress syndrome, acute respiratory failure and PE, which in some cases becomes the triggering mechanism for CTEPH development. The literature review presents data on main pathological abnormalities developing in target organs during COVID-19 and playing an important role in increasing the CTEPH risk. The paper describes the main methods of instrumental investigations of CTEPH and an algorithm for its use in COVID-19 survivors.The revealed data demonstrated that the absence of obvious signs of pulmonary hypertension/CTEPH, the cardiopulmonary system abnormalities cannot be ruled out. Therefore, it seems appropriate to actively follow up COVID-19 survivors. A thoroughly, purposefully collected anamnesis, pulmonary function tests and stress echocardiography in an ambiguous clinical situation will play a leading role as they identify cardiopulmonary disorders and provide the doctor with basic information for further planning of patient management.
Collapse
Affiliation(s)
- E. Kobelev
- Meshalkin National Medical Research Center
| | | | | | | | | | - V. Yu. Usov
- Cardiology Research Institute, Tomsk National Research Medical Center
| | | |
Collapse
|
35
|
Rasmusson AJ, Gallwitz M, Soltanabadi B, Ciuculete DM, Mengel-From J, Christensen K, Nygaard M, Soerensen M, Boström AE, Fredriksson R, Freyhult E, Mwinyi J, Czamara D, Binder EB, Schiöth HB, Cunningham JL. Toll-like receptor 4 methylation grade is linked to depressive symptom severity. Transl Psychiatry 2021; 11:371. [PMID: 34226490 PMCID: PMC8257733 DOI: 10.1038/s41398-021-01481-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study explores potential associations between the methylation of promoter-associated CpG sites of the toll-like receptor (TLR)-family, plasma levels of pro-inflammatory proteins and depressive symptoms in young female psychiatric patients. Ratings of depressive symptoms and blood samples were obtained from 92 young women seeking psychiatric care. Methylation of 32 promoter-associated CpG sites in TLR1 to TLR10 was analysed using the Illumina Infinium Methylation EPIC BeadChip. Expression levels of 91 inflammatory proteins were determined by proximity extension assay. Statistical correlations between depressive state, TLR1-10 methylation and inflammatory proteins were investigated. Four additional cohorts were studied to evaluate the generalizability of the findings. In the discovery cohort, methylation grade of cg05429895 (TLR4) in blood was inversely correlated with depressive symptoms score in young adults. After correction for multiple testing, plasma levels of macrophage inflammatory protein 1β (MIP-1β/CCL4) were associated with both TLR4 methylation and depressive symptom severity. A similar inverse association between TLR4 methylation in blood and affective symptoms score was also found in a cohort of 148 both males and females (<40 years of age) from the Danish Twin Registry. These findings were not, however, replicated in three other external cohorts; which differed from the first two cohorts by a higher age and mixed ethnicities, thus limiting the generalizability of our findings. However, TLR4 methylation inversely correlated with TLR4 mRNA expression in the Danish Twin Study indicating a functional significance of methylation at this particular CpG. Higher depression scores in young Scandinavian adults was associated with decreased methylation of TLR4 in blood.
Collapse
Affiliation(s)
- Annica J Rasmusson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Maike Gallwitz
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Bardia Soltanabadi
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Jonas Mengel-From
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden.
| |
Collapse
|
36
|
Do changes in microglial status underlie neurogenesis impairments and depressive-like behaviours induced by psychological stress? A systematic review in animal models. Neurobiol Stress 2021; 15:100356. [PMID: 34355047 PMCID: PMC8319800 DOI: 10.1016/j.ynstr.2021.100356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Stress may have a negative effect on mental health and is the primary environmental risk factor in the aetiology of depression. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The hippocampus is a target structure of the adverse effects of stress, and hippocampal neurogenesis plays a crucial role. However, we do not know the mechanisms by which stress impacts neurogenesis. Recent studies indicate that changes in neuroinflammation, primarily via microglial cells, may play an essential role in this process. However, the relationship between stress, microglial changes, and alterations in neurogenesis and their involvement in the development of depression is poorly characterized. For this reason, this systematic review aims to synthesise and evaluate current studies that have investigated the relationship between these variables. Taken together, the revised data, although not entirely conclusive, seem to suggest that microglial changes induced by psychological stress regulate neurogenesis and in turn may be responsible for the development of depressive-like behaviours, but other factors that influence these stressful experiences should not be dismissed.
Collapse
|
37
|
Davoli-Ferreira M, Thomson CA, McCoy KD. Microbiota and Microglia Interactions in ASD. Front Immunol 2021; 12:676255. [PMID: 34113350 PMCID: PMC8185464 DOI: 10.3389/fimmu.2021.676255] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Khezri MR, Zolbanin NM, Ghasemnejad-Berenji M, Jafari R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur J Pharmacol 2021; 905:174191. [PMID: 34015317 PMCID: PMC8127529 DOI: 10.1016/j.ejphar.2021.174191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several investigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, azithromycin may directly inhibit viral load as well as its replication, or it could demonstrate indirect inhibitory impacts that might be associated with the expression of antiviral genes. Currently, coronavirus disease 2019 (COVID-19) is an extra urgent issue affecting the entire world, and it is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute respiratory distress syndrome (ARDS), which is associated with hyper inflammation due to cytokine release, is among the leading causes of death in COVID-19 patients with critical conditions. The present paper aims to review the immunomodulatory and antiviral properties of azithromycin as well as its potential clinical applications in the management of COVID-19 patients.
Collapse
Affiliation(s)
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
39
|
Garcia-Contreras M, Thakor AS. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov 2021; 7:98. [PMID: 33972507 PMCID: PMC8110535 DOI: 10.1038/s41420-021-00471-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD), are driven by neuroinflammation triggered by activated microglial cells; hence, the phenotypic regulation of these cells is an appealing target for intervention. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) may be a potential therapeutic candidate to treat NDs given their immunomodulatory properties. Evidence suggests that the mechanism of action of hAD-MSCs is through their secretome, which includes secreted factors such as cytokines, chemokines, or growth factors as well as extracellular vesicles (EVs). Recently, EVs have emerged as important mediators in cell communication given, they can transfer proteins, lipids, and RNA species (i.e., miRNA, mRNA, and tRNAs) to modulate recipient cells. However, the therapeutic potential of hAD-MSCs and their secreted EVs has not been fully elucidated with respect to human microglia. In this study, we determined the therapeutic potential of different hAD-MSCs doses (200,000, 100,000, and 50,000 cells) or their secreted EVs (50, 20, or 10 µg/ml), on human microglial cells (HMC3) that were activated by lipopolysaccharides (LPS). Upregulation of inducible nitric oxide synthase (iNOS), an activation marker of HMC3 cells, was prevented when they were cocultured with hAD-MSCs and EVs. Moreover, hAD-MSCs inhibited the secretion of proinflammatory factors, such as IL-6, IL-8, and MCP-1, while their secreted EVs promoted the expression of anti-inflammatory mediators such as IL-10 or TIMP-1 in activated microglia. The present data therefore support a role for hAD-MSCs and their secreted EVs, as potential therapeutic candidates for the treatment of NDs.
Collapse
Affiliation(s)
- Marta Garcia-Contreras
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
40
|
Lanza M, Casili G, Campolo M, Paterniti I, Colarossi C, Mare M, Giuffrida R, Caffo M, Esposito E, Cuzzocrea S. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci 2021; 11:brainsci11040466. [PMID: 33917013 PMCID: PMC8067679 DOI: 10.3390/brainsci11040466] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). Microglia substantially contribute to the growth and invasion of tumor mass in brain tumors including glioblastoma (GB). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors. Large numbers of glioma associated microglia and macrophages (GAMs) can accumulate within the tumor where they appear to have an important role in prognosis. GAMs constitute the largest portion of tumor infiltrating cells, contributing up to 30% of the entire glioma mass and upon interaction with neoplastic cells. GAMs acquire a unique phenotype of activation, including both M1 and M2 specific markers. It has been demonstrated that microglia possess a dual role: on one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Concluding, as microglia significantly may contribute to glioma biology, favoring tumor growth and invasiveness, these cells represent a valuable alternative/additional target for the development of more effective treatments for gliomas.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Cristina Colarossi
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | | | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| |
Collapse
|
41
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
42
|
A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110136. [PMID: 33045321 DOI: 10.1016/j.pnpbp.2020.110136] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mood disorders (major depressive disorder, MDD, and bipolar disorder, BD) are considered leading causes of life-long disability worldwide, where high rates of no response to treatment or relapse and delays in receiving a proper diagnosis (~60% of depressed BD patients are initially misdiagnosed as MDD) contribute to a growing personal and socio-economic burden. The immune system may represent a new target to develop novel diagnostic and therapeutic procedures but reliable biomarkers still need to be found. METHODS In our study we predicted the differential diagnosis of mood disorders by considering the plasma levels of 54 cytokines, chemokines and growth factors of 81 BD and 127 MDD depressed patients. Clinical diagnoses were predicted also against 32 healthy controls. Elastic net models, including 5000 non-parametric bootstrapping procedure and inner and outer 10-fold nested cross-validation were performed in order to identify the signatures for the disorders. RESULTS Results showed that the immune-inflammatory signature classifies the two disorders with a high accuracy (AUC = 97%), specifically 92% and 86% respectively for MDD and BD. MDD diagnosis was predicted by high levels of markers related to both pro-inflammatory (i.e. IL-1β, IL-6, IL-7, IL-16) and regulatory responses (IL-2, IL-4, and IL-10), whereas BD by high levels of inflammatory markers (CCL3, CCL4, CCL5, CCL11, CCL25, CCL27, CXCL11, IL-9 and TNF-α). CONCLUSIONS Our findings provide novel tools for early diagnosis of BD, strengthening the impact of biomarkers research into clinical practice, and new insights for the development of innovative therapeutic strategies for depressive disorders.
Collapse
|
43
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
44
|
Ruzafa N, Pereiro X, Fonollosa A, Araiz J, Acera A, Vecino E. The Effect of Plasma Rich in Growth Factors on Microglial Migration, Macroglial Gliosis and Proliferation, and Neuronal Survival. Front Pharmacol 2021; 12:606232. [PMID: 33716738 PMCID: PMC7953148 DOI: 10.3389/fphar.2021.606232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma rich in growth factors (PRGF) is a subtype of platelet-rich plasma that has being employed in the clinic due to its capacity to accelerate tissue regeneration. Autologous PRGF has been used in ophthalmology to repair a range of retinal pathologies with some efficiency. In the present study, we have explored the role of PRGF and its effect on microglial motility, as well as its possible pro-inflammatory effects. Organotypic cultures from adult pig retinas were used to test the effect of the PRGF obtained from human as well as pig blood. Microglial migration, as well as gliosis, proliferation and the survival of retinal ganglion cells (RGCs) were analyzed by immunohistochemistry. The cytokines present in these PRGFs were analyzed by multiplex ELISA. In addition, we set out to determine if blocking some of the inflammatory components of PRGF alter its effect on microglial migration. In organotypic cultures, PRGF induces microglial migration to the outer nuclear layers as a sign of inflammation. This phenomenon could be due to the presence of several cytokines in PRGF that were quantified here, such as the major pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Heterologous PRGF (human) and longer periods of cultured (3 days) induced more microglia migration than autologous porcine PRGF. Moreover, the migratory effect of microglia was partially mitigated by: 1) heat inactivation of the PRGF; 2) the presence of dexamethasone; or 3) anti-cytokine factors. Furthermore, PRGF seems not to affect gliosis, proliferation or RGC survival in organotypic cultures of adult porcine retinas. PRGF can trigger an inflammatory response as witnessed by the activation of microglial migration in the retina. This can be prevented by using autologous PRGF or if this is not possible due to autoimmune diseases, by mitigating its inflammatory effect. In addition, PRGF does not increase either the proliferation rate of microglial cells or the survival of neurons. We cannot discard the possible positive effect of microglial cells on retinal function. Further studies should be performed to warrant the use of PRGF on the nervous system.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Alex Fonollosa
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
- Department of Ophthalmology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Javier Araiz
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Biodonostia Health Research Institute, Donostia Hospital, San Sebastian, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE, www-ehu.eus/GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| |
Collapse
|
45
|
Vitiello A, Pelliccia C, Ferrara F. Drugs acting on the renin-angiotensin system and SARS-CoV-2. Drug Discov Today 2021; 26:870-874. [PMID: 33486116 PMCID: PMC7825840 DOI: 10.1016/j.drudis.2021.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global Coronavirus 2019 (COVID-19) pandemic, resulting in thousands of deaths worldwide and representing a health challenge with few precedents in human history. Angiotensin-converting enzyme 2 (ACE-2) facilitates the access of SARS-CoV-2 to cells. Therapeutic agents acting on the renin–angiotensin system (RAS) might be able to modulate the concentration of ACE-2 and the various components of the system. Here, we discuss current pharmacological, molecular, and clinical evidence to investigate whether drugs acting on RAS with modulation of the ACE-2 concentration have added value in combating SARS-CoV-2 infection. We also highlight the possible deleterious action of the ACE/Ang-II/AT-1r axis and possible beneficial role of the ACE-2/Ang 1-7/MasR axis in acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2, discussing the possibility of addressing the various RAS components with drug treatments to improve clinical outcomes.
Collapse
|
46
|
Bratosiewicz-Wąsik J, Wąsik TJ. Does Virus-Receptor Interplay Influence Human Coronaviruses Infection Outcome? Med Sci Monit 2020; 26:e928572. [PMID: 33311429 PMCID: PMC7745603 DOI: 10.12659/msm.928572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the third (following SARS-CoV and Middle East Respiratory Syndrome-CoV) zoonotic coronavirus that has crossed the species barrier in the 21st century, resulting in the development of serious human infection. The punishing effect of the recent outbreak of pandemic disease termed COVID-19 (coronavirus disease-19) caused by SARS-CoV-2 impelled us to gather the facts about the nature of coronaviruses. First, we introduce the basic information about coronavirus taxonomy, structure, and replication process to create the basis for more advanced consideration. In the following part of this review, we focused on interactions between the virus and the receptor on the host cell, as this stage is the critical process determining the species and tissue tropism, as well as clinical course of infection. We also illuminate the molecular basis of the strategy used by coronaviruses to cross the species barrier. We give special attention to the cellular receptor's interaction with S protein of different CoVs (dipeptidyl peptidase IV and angiotensin-converting enzyme 2), as well as the cellular proteases involved in proteolysis of this protein. These factors determine the virus entry and replication; thus, even fine quantitative or qualitative differences in their expression may crucially affect outcomes of infection. Understanding virus biology and characterization of the host factors involved in coronavirus transmission and pathogenesis may offer novel options for development of efficient therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Tomasz J. Wąsik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
47
|
Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol 2020; 51:613-628. [PMID: 33011887 PMCID: PMC7533045 DOI: 10.1007/s10735-020-09915-3] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in December 2019 form Wuhan, China leads to coronavirus disease 2019 (COVID-19) pandemic. While the common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. The involvement of different organs in severe patients results in lengthening the hospitalization duration and increasing the mortality rate. In this review, we aimed to investigate the involvement of different organs in COVID-19 patients, particularly in severe cases. Also, we tried to define the potential underlying mechanisms of SARS-CoV2 induced multiorgan failure. The multi-organ dysfunction is characterized by acute lung failure, acute liver failure, acute kidney injury, cardiovascular disease, and as well as a wide spectrum of hematological abnormalities and neurological disorders. The most important mechanisms are related to the direct and indirect pathogenic features of SARS-CoV2. Although the presence of angiotensin-converting enzyme 2, a receptor of SARS-CoV2 in the lung, heart, kidney, testis, liver, lymphocytes, and nervous system was confirmed, there are controversial findings to about the observation of SARS-CoV2 RNA in these organs. Moreover, the organ failure may be induced by the cytokine storm, a result of increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs. Therefore, further investigations are needed to detect the exact mechanisms of pathogenesis. Since the involvement of several organs in COVID-19 patients is important for clinicians, increasing their knowledge may help to improve the outcomes and decrease the rate of mortality and morbidity.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Neda Ghaffari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atousa Yarahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghomareza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
48
|
Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
|
49
|
Gallo M, Street ME, Guerra F, Fanos V, Marcialis MA. A review of current knowledge on Pollution, Cigarette Smoking and COVID-19 diffusion and their relationship with inflammation. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020148. [PMID: 33525222 PMCID: PMC7927491 DOI: 10.23750/abm.v91i4.10263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the newly discovered coronavirus, Sars-Cov-2. This infection can cause mild to very severe respiratory and systemic illness mainly related with a cytokine storm. The epidemiology of COVID-19 is under continuous evolution, and studies are ongoing aiming at identifying the possible factors facilitating the diffusion of this infection. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Manuela Gallo
- School of Pediatrics, University of Cagliari, Italy.
| | | | | | - Vassilios Fanos
- Department of Surgery, University of Cagliari, Italy; Neonatal Intensive Care Unit, AOU Cagliari, Italy.
| | | |
Collapse
|
50
|
Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Gazor R, Rostampour M, Taleghani BK. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020; 394:112814. [PMID: 32707137 DOI: 10.1016/j.bbr.2020.112814] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Neuro-inflammation is responsible for cognitive impairments and neurodegenerative diseases such as Alzheimer's disease. In this study, we aimed to investigate the enriched environment (EE) effect on learning and memory impairment as well as on pro-inflammatory cytokines changes induced by lipopolysaccharide (LPS). LPS injection (1 mg/kg/i.p, days 1, 3, 5, and 7) was used to develop the animal model of neuro-inflammation. Twenty-eight male Wistar rats were used in the experiment and randomly divided into 4 groups: 1) sham (S), 2) sham + enriched environment (SE), 3) LPS (L), and 4) LPS + EE (LE). Two different housing conditions, including standard environment (SE) and enriched environment, were used. The Morris Water Maze (MWM) test was used to examine animals learning and memory. IL-1β, IL-10, and TNF-α levels were measured in the brain using ELISA. We found that LPS significantly impaired learning and memory (p < 0.05) in the MWM task, but EE could significantly improve learning and memory impairment (p < 0.05). IL-1 and IL-10 levels dramatically increased in the LPS group (P < 0.05), whereas EE could decrease and increase IL-1β and IL-10 values in the LPS + EE group (P < 0.05), respectively. TNF-α levels were traced but had not detectable values in the hippocampus. Thus, we can conclude that EE has healing effects on LPS induced neuro-inflammation and can improve learning and memory deficit; however, further studies are needed to support the findings of our study.
Collapse
Affiliation(s)
- Arman Keymoradzadeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rohollah Gazor
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour Taleghani
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|