1
|
Bukovics P, Lőrinczy D. Deconvolution Analysis of G and F-Actin Unfolding: Insights into the Thermal Stability and Structural Modifications Induced by PACAP. Int J Mol Sci 2025; 26:3336. [PMID: 40244223 PMCID: PMC11989792 DOI: 10.3390/ijms26073336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to resolve overlapping thermal transitions in G- and F-actin unfolding. Our findings reveal that PACAP38 and PACAP6-38 significantly alter actin stability, increasing structural cooperativity in G-actin while reducing monomer-monomer interactions in F-actin. These thermodynamic changes suggest a potential role for PACAP in modulating actin polymerization and depolymerization dynamics, contributing to cytoskeletal remodeling.
Collapse
Affiliation(s)
- Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary;
| | | |
Collapse
|
2
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
3
|
Takeuchi S, Kawanai T, Yamauchi R, Chen L, Miyaoka T, Yamada M, Asano S, Hayata-Takano A, Nakazawa T, Yano K, Horiguchi N, Nakagawa S, Takuma K, Waschek JA, Hashimoto H, Ago Y. Activation of the VPAC2 Receptor Impairs Axon Outgrowth and Decreases Dendritic Arborization in Mouse Cortical Neurons by a PKA-Dependent Mechanism. Front Neurosci 2020; 14:521. [PMID: 32581681 PMCID: PMC7287155 DOI: 10.3389/fnins.2020.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Clinical studies have shown that microduplications at 7q36.3, containing VIPR2, confer significant risk for schizophrenia and autism spectrum disorder (ASD). VIPR2 gene encodes the VPAC2 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP-induced cAMP responsiveness, but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. We have previously found that repeated administration of a selective VPAC2 receptor agonist Ro25-1553 in the mouse during early postnatal development caused synaptic alterations in the prefrontal cortex and sensorimotor gating deficits. In this study, we aimed to clarify the effects of VPAC2 receptor activation on neurite outgrowth in cultured primary mouse cortical neurons. Ro25-1553 and VIP caused reductions in total numbers and lengths of both neuronal dendrites and axons, while PACAP38 facilitated elongation of dendrites, but not axons. These effects of Ro25-1553 and VIP were blocked by a VPAC2 receptor antagonist PG99-465 and abolished in VPAC2 receptor-deficient mice. Additionally, Ro25-1553-induced decreases in axon and dendritic outgrowth in wild-type mice were blocked by a protein kinase A (PKA) inhibitor H89, but not by a PKC inhibitor GF109203X or a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor U0126. PACAP38- induced facilitation of dendritic outgrowth was blocked by U0126. These results suggest that activation of the VPAC2 receptor impairs neurite outgrowth and decreases branching of cortical neurons by a PKA-dependent mechanism. These findings also imply that the VIPR2-linkage to mental health disorders may be due in part to deficits in neuronal maturation induced by VPAC2 receptor overactivation.
Collapse
Affiliation(s)
- Shuto Takeuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takuya Kawanai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ryosuke Yamauchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lu Chen
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tatsunori Miyaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Mei Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Koji Yano
- Neuroscience Department, Drug Discovery and Disease Research Laboratory, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Naotaka Horiguchi
- Neuroscience Department, Drug Discovery and Disease Research Laboratory, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Kazuhiro Takuma
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 2016; 46:876-899. [DOI: 10.1080/10408444.2016.1223014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci 2013; 51:503-13. [PMID: 23900722 DOI: 10.1007/s12031-013-0076-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/15/2013] [Indexed: 01/20/2023]
Abstract
Emerging evidence have suggested that calorie restriction (CR) is a reliable method to decrease cancer development since it produces changes in tumor microenvironment that interfere with cell proliferation, tissue invasion, and formation of metastases. Studies on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in cancer cells indicate that their influence on cell growth is either cell type specific or dependent on culture conditions. Evidence showing the effect of PACAP and VIP in glioma cells grown under conditions mimicking CR are currently unavailable. Therefore, we explored the effects of both PACAP and VIP in C6 glioma cells either grown in a normal growth medium or exposed to serum starvation, to resemble an acute condition of CR. Cell viability, expression of proteins related to cell proliferation (cyclin D1), apoptosis (Bcl2, p53, and cleaved caspase-3), and cell malignancy (GFAP and nestin) were assessed by MTT assay, immunoblot, and immunolocalization, respectively. Results demonstrated that CR significantly decreased cell proliferation, reduced levels of cyclin D1 and Bcl2, and increased the expression of p53 and cleaved caspase-3. Surprisingly, all of these CR-driven effects were further exacerbated by PACAP or VIP treatment. We also found that PACAP or VIP prevented GFAP decrease caused by CR and further reduced the expression of nestin, a prognostic marker of malignancy. In conclusion, these data demonstrate that PACAP and VIP possess antiproliferative properties against glioma cells that depend on the specific culture settings, further supporting the idea that CR might offer new avenues to improve peptide-oriented glioma cancer treatment.
Collapse
|
6
|
Chafai M, Basille M, Galas L, Rostene W, Gressens P, Vaudry H, Gonzalez B, Louiset E. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells. Neuroscience 2011; 199:103-15. [DOI: 10.1016/j.neuroscience.2011.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/28/2011] [Accepted: 09/26/2011] [Indexed: 01/11/2023]
|
7
|
Leung YM, Huang CF, Chao CC, Lu DY, Kuo CS, Cheng TH, Chang LY, Chou CH. Voltage-gated K+ channels play a role in cAMP-stimulated neuritogenesis in mouse neuroblastoma N2A cells. J Cell Physiol 2011; 226:1090-1098. [PMID: 20857407 DOI: 10.1002/jcp.22430] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuritogenesis is essential in establishing the neuronal circuitry. An important intracellular signal causing neuritogenesis is cAMP. In this report, we showed that an increase in intracellular cAMP stimulated neuritogenesis in neuroblastoma N2A cells via a PKA-dependent pathway. Two voltage-gated K(+) (Kv) channel blockers, 4-aminopyridine (4-AP) and tetraethylammonium (TEA), inhibited cAMP-stimulated neuritogenesis in N2A cells in a concentration-dependent manner that remarkably matched their ability to inhibit Kv currents in these cells. Consistently, siRNA knock down of Kv1.1, Kv1.4, and Kv2.1 expression reduced Kv currents and inhibited cAMP-stimulated neuritogenesis. Kv1.1, Kv1.4, and Kv2.1 channels were expressed in the cell bodies and neurites as shown by immunohistochemistry. Microfluorimetric imaging of intracellular [K(+)] demonstrated that [K(+)] in neurites was lower than that in the cell body. We also showed that cAMP-stimulated neuritogenesis may not involve voltage-gated Ca(2+) or Na(+) channels. Taken together, the results suggest a role of Kv channels and enhanced K(+) efflux in cAMP/PKA-stimulated neuritogenesis in N2A cells.
Collapse
Affiliation(s)
- Yuk-Man Leung
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cochaud S, Chevrier L, Meunier AC, Brillet T, Chadéneau C, Muller JM. The vasoactive intestinal peptide-receptor system is involved in human glioblastoma cell migration. Neuropeptides 2010; 44:373-83. [PMID: 20638719 DOI: 10.1016/j.npep.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/14/2010] [Accepted: 06/12/2010] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor in adults. This cancer has an infiltrative nature and the median survival of patients is about one year. Vasoactive intestinal peptide (VIP) belongs to a structurally related family of polypeptides and is a major regulatory factor in the central and peripheral nervous systems. VIP regulates proliferation of astrocytes and of numerous cancer cell lines and modulates migration in prostatic and colonic cancer cell lines. Little is known about the involvement of VIP and its receptors (VIP-receptor system) in proliferation or migration of GBM cells. The effects of VIP, PACAP and of synthetic VIP antagonists were tested in two human GBM cell lines, M059K and M059J, established from two different parts of a single tumor. In these cells, the data revealed that the VIP-receptor system did not affect proliferation but controlled cell migration. Indeed, in M059K cells which express components of the VIP receptor system, the VIP receptor antagonists and a PACAP antibody enhanced migration. The VIP receptor antagonists increased generation of typical migration-associated processes: filopodia and lamellipodia, and activation of Rac1 and Cdc42 GTPases. Reciprocally, in M059J cells which poorly express the VIP-receptor system, treatments with the agonists VIP and PACAP resulted in decreased cell migration. Furthermore, the peptides appeared to act through a subclass of binding sites displaying an uncommon very high affinity for these ligands. Taken together, these observations suggest that components of the VIP-receptor system negatively regulate cell migration, thus showing potential anti-oncogenic properties.
Collapse
Affiliation(s)
- Stéphanie Cochaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 Avenue du Recteur Pineau, Poitiers F-86022, France
| | | | | | | | | | | |
Collapse
|
9
|
Kim DW, Kim KB, Kim JY, Lee KS, Seo SB. Negative regulation of neuronal cell differentiation by INHAT subunit SET/TAF-Iβ. Biochem Biophys Res Commun 2010; 400:419-25. [DOI: 10.1016/j.bbrc.2010.08.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
10
|
Kohta R, Kotake Y, Hosoya T, Hiramatsu T, Otsubo Y, Koyama H, Hirokane Y, Yokoyama Y, Ikeshoji H, Oofusa K, Suzuki M, Ohta S. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline binds with tubulin β, a substrate of parkin, and reduces its polyubiquitination. J Neurochem 2010; 114:1291-301. [DOI: 10.1111/j.1471-4159.2010.06576.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK, Zhang DD. Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med 2009; 47:867-79. [PMID: 19573594 PMCID: PMC2748111 DOI: 10.1016/j.freeradbiomed.2009.06.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
The transcription factor Nrf2 has emerged as a master regulator of the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate, two well-studied inducers of neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 in a dose- and time-dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M and microtubule-associated protein 2. Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation, whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to those from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tongde Wu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Alexandria Lau
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tao Jiang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Zheping Huang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Xiao-Jun Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Weimin Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Bourdeaut F, de Carli E, Timsit S, Coze C, Chastagner P, Sarnacki S, Delattre O, Peuchmaur M, Rubie H, Michon J. VIP hypersecretion as primary or secondary syndrome in neuroblastoma: A retrospective study by the Société Française des Cancers de l'Enfant (SFCE). Pediatr Blood Cancer 2009; 52:585-90. [PMID: 19143025 DOI: 10.1002/pbc.21912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuroblastic tumors (NTs) are occasionally associated with watery diarrhea, due to Vasoactive Intestinal Peptide (VIP) secretion. Most reports are single cases and suggest a great homogeny within this sub-group of NTs. PROCEDURES We conducted a retrospective analysis of the French experience of NTs associated with watery diarrhea due to VIP-secretion. VIP secretion was confirmed by seric dosage and/or immunohistochemistry. RESULTS Twenty-two patients met the diagnostic criteria between 1988 and 2007. Most of patients suffered from weight loss and metabolic disorders. In 16 cases, digestive symptoms preceded the diagnosis of the tumor ("Primary VIP secreting NTs"); 15 were localized and all showed a differentiated histology. Interestingly, in another 6 patients with high-risk NT, diarrhea occurred at the time of chemotherapy or retinoic acid therapy ("Secondary VIP secreting NTs"). Differentiation in response to treatment was documented in 4 cases. In all cases, only surgical excision of the tumor was able to control the digestive symptoms. Twenty children are alive and 13 are disease-free. CONCLUSION VIP secreting NTs are usually associated with differentiation; they can also secondarily arise from a high-risk tumor upon treatment. Primary surgery constitutes first-line treatment.
Collapse
|
13
|
Héraud C, Chevrier L, Meunier AC, Muller JM, Chadéneau C. Vasoactive intestinal peptide-induced neuritogenesis in neuroblastoma SH-SY5Y cells involves SNAP-25. Neuropeptides 2008; 42:611-21. [PMID: 18617262 DOI: 10.1016/j.npep.2008.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/24/2008] [Indexed: 12/11/2022]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide known to regulate proliferation and differentiation in normal and tumoral cells. We previously reported that VIP induced neuritogenesis in human neuroblastoma SH-SY5Y cells cultured in serum-free medium. This neuritogenesis was associated with a regulated expression of neuronal cytoskeleton markers. To further characterize the neuroblastic cell differentiation induced by VIP in human SH-SY5Y cells, we investigated expression of synaptosomal-associated protein of 25 kDa (SNAP-25), a protein implicated in exocytosis associated with different processes, including neurite outgrowth. Western immunoblotting and real-time RT-PCR analyses revealed that VIP increased expression of the SNAP-25 protein and the level of both SNAP-25a and SNAP-25b mRNA isoforms. Immunofluorescence experiments indicated that SNAP-25 was mainly located in neurites and at the plasma membrane in SH-SY5Y cells treated with VIP. RNA interference experiments demonstrated that SNAP-25 was involved in VIP-induced neuritogenesis. In conclusion, SNAP-25 is up-regulated and implicated in neuritogenesis in human neuroblastoma SH-SY5Y cells treated with the neuropeptide VIP.
Collapse
Affiliation(s)
- Céline Héraud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS UMR 6187, Pôle Biologie Santé, Faculté des Sciences Fondamentales et Appliquées, 40 Avenue du Recteur Pineau, Poitiers Cedex F-86022, France
| | | | | | | | | |
Collapse
|
14
|
Koh SWM, Chandrasekara K, Abbondandolo CJ, Coll TJ, Rutzen AR. VIP and VIP gene silencing modulation of differentiation marker N-cadherin and cell shape of corneal endothelium in human corneas ex vivo. Invest Ophthalmol Vis Sci 2008; 49:3491-8. [PMID: 18441300 PMCID: PMC2574685 DOI: 10.1167/iovs.07-1543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape. METHODS To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10(-12) to 10(-6) M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape. RESULTS VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10(-10) (1.47 +/- 0.06-fold; P = 0.002) and 10(-8) M VIP (1.48 +/- 0.18-fold; P = 0.012). VIP (10(-8) M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 +/- 0.28-fold (P = 0.005) and 1.17 +/- 0.10 (range, 0.91-1.87)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein. CONCLUSIONS Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
15
|
Effects of PACAP and VIP on cAMP-generating system and proliferation of C6 glioma cells. J Mol Neurosci 2008; 36:286-91. [PMID: 18491045 DOI: 10.1007/s12031-008-9071-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
An identification of PAC1- and VPAC-type receptors in a great number of neoplastic cells gave rise to intensive studies on the biochemical and physiological role of the mentioned peptides in cancers. Our earlier studies focused on effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) in C6 glioma cells have shown their stimulatory receptor-mediated action on the cyclic adenosine monophosphate (cAMP)-generating system. In the present study, we demonstrated that truncated peptides, i.e., PACAP6-38 and VIP6-28, both produced a significant inhibition of the VIP-induced increase in cAMP production, whereas only PACAP6-38 did antagonize the PACAP-38 effect. In contrast to the well-expressed PACAP-38 and VIP effects on cAMP production in C6 cells, helodermin and secretin were poorly active as cAMP stimulators in this cell line, displaying some activity only at a high 5-microM dose. PACAP-38 and, to a lesser extent VIP stimulated the proliferation of C6 glioma cells, which was shown by an increased incorporation of 3H-thymidine into the cells, and the effects of these two peptides were antagonized by PACAP6-38. The truncated PACAP (10 microM) by itself significantly inhibited C6 cell proliferation. The study with the use of forskolin and dibutyryl-cAMP revealed that the growth effects of PACAP were cAMP independent. Our findings suggest that glioma C6 cells possess PAC1- and VPAC-type receptors, but the density of PAC1 seems to be much larger than VPAC receptors. Although the proliferative activity of PACAP and VIP is mediated via the PAC1-type receptor, the signaling cascade underlying this phenomenon does not seem to involve cAMP.
Collapse
|
16
|
Messi E, Florian MC, Caccia C, Zanisi M, Maggi R. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression. BMC Cancer 2008; 8:30. [PMID: 18230156 PMCID: PMC2254429 DOI: 10.1186/1471-2407-8-30] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem.Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. METHODS We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. RESULTS Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. CONCLUSION a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness;b) Retinoic acid treatment reduces migration and invasiveness of the more aggressive cell components of SK-N-SH cells;c) The cells that after retinoic acid exposure show migration and invasive capability may be identified on the basis of doublecortin expression.
Collapse
Affiliation(s)
- Elio Messi
- Institute of Endocrinology, Centre of Oncological Endocrinology, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
17
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 2007; 104:74-88. [PMID: 17995938 PMCID: PMC2230095 DOI: 10.1111/j.1471-4159.2007.05018.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC1 and VIP/PACAP receptor type 2 (VPAC2) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC1 receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC2 receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC1 receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2′,5′-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC1 receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.
Collapse
Affiliation(s)
- T K Monaghan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, Glasgow, UK
| | | | | | | |
Collapse
|
19
|
Leemhuis J, Henle F, Meyer DK. VIP induces the elongation of dendrites and axons in cultured hippocampal neurons: role of microtubules. Peptides 2007; 28:1700-5. [PMID: 17681403 DOI: 10.1016/j.peptides.2007.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/09/2007] [Accepted: 06/14/2007] [Indexed: 02/01/2023]
Abstract
In neurons from rat hippocampus, VIP induces the elongation of dendrites. In the present study, we have investigated in cultured hippocampal neurons whether VIP changed the actin and tubulin cytoskeleton in dendrites. VIP caused the elongation of dendrites and induced the outgrowth of microtubules, so that they extended up to the tips. In contrast, VIP reduced the F-actin content measured as total pixel after phalloidin staining in dendritic tips. These results suggest that VIP causes dendrite elongation by facilitating the outgrowth of microtubules into the newly formed extensions.
Collapse
Affiliation(s)
- J Leemhuis
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-University, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
20
|
Sarkanen JR, Nykky J, Siikanen J, Selinummi J, Ylikomi T, Jalonen TO. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem 2007; 102:1941-1952. [PMID: 17540009 DOI: 10.1111/j.1471-4159.2007.04676.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.
Collapse
Affiliation(s)
- Jertta-Riina Sarkanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jonna Nykky
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jutta Siikanen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Jyrki Selinummi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Timo Ylikomi
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| | - Tuula O Jalonen
- Cell Research Center, Medical School, University of Tampere, Tampere, FinlandDivision of Biochemistry, Department of Biological and Environmental Science and NanoScience Center, University of Jyväskylä, Jyväskylä, FinlandInstitute of Signal Processing, Tampere University of Technology, Tampere, FinlandDepartment of Clinical Chemistry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Muller JM, Philippe M, Chevrier L, Héraud C, Alleaume C, Chadéneau C. The VIP-receptor system in neuroblastoma cells. ACTA ACUST UNITED AC 2006; 137:34-41. [DOI: 10.1016/j.regpep.2006.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 12/12/2022]
|
22
|
The effects of PACAP on neural cell proliferation. ACTA ACUST UNITED AC 2006; 137:50-7. [PMID: 17011642 DOI: 10.1016/j.regpep.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/20/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
PACAP and its receptors are expressed in growth zones of the brain. By stimulating PAC(1)-receptors PACAP can enhance, as well as reduce, the proliferation rate in a cell-type dependent manner. PACAP can enhance the proliferation rate by activating phospholipase C and protein kinase C, although other signal transduction pathways may also be responsible. PACAP can suppress proliferation by inhibiting protein complexes of the cyclins D and E with the cyclin-dependent kinases 4/6 and 2, respectively, which are necessary for entry into the cell cycle. PACAP seems to exert these inhibitory effects by acting via the Sonic hedgehog glycoprotein and the small GTPase RhoA. Also, the activation of a cyclin-dependent kinase inhibitor has been suggested. The signal transduction pathways mediating the effects of PACAP on proliferation are discussed.
Collapse
|
23
|
Biton S, Dar I, Mittelman L, Pereg Y, Barzilai A, Shiloh Y. Nuclear ataxia-telangiectasia mutated (ATM) mediates the cellular response to DNA double strand breaks in human neuron-like cells. J Biol Chem 2006; 281:17482-17491. [PMID: 16627474 DOI: 10.1074/jbc.m601895200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein kinase ATM (ataxia-telangiectasia mutated) activates the cellular response to double strand breaks (DSBs), a highly cytotoxic DNA lesion. ATM is activated by DSBs and in turn phosphorylates key players in numerous damage response pathways. ATM is missing or inactivated in the autosomal recessive disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, genomic instability, radiation sensitivity, and cancer predisposition. The predominant symptom of A-T is a progressive loss of movement coordination due to ongoing degeneration of the cerebellar cortex and peripheral neuropathy. A major deficiency in understanding A-T is the lack of information on the role of ATM in neurons. It is unclear whether the ATM-mediated DSB response operates in these cells similarly to proliferating cells. Furthermore, ATM was reported to be cytoplasmic in neurons and suggested to function in these cells in capacities other than the DNA damage response. Recently we obtained genetic molecular evidence that the neuronal degeneration in A-T does result from defective DNA damage response. We therefore undertook to investigate this response in a model system of human neuron-like cells (NLCs) obtained by neuronal differentiation in culture. ATM was largely nuclear in NLCs, and their ATM-mediated responses to DSBs were similar to those of proliferating cells. Knocking down ATM did not interfere with neuronal differentiation but abolished ATM-mediated damage responses in NLCs. We concluded that nuclear ATM mediates the DSB response in NLCs similarly to in proliferating cells. Attempts to understand the neurodegeneration in A-T should be directed to investigating the DSB response in the nervous system.
Collapse
Affiliation(s)
- Sharon Biton
- The David and Inez Myers Laboratory for Genetic Research, Department of Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Dar
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leonid Mittelman
- Interdepartmental Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaron Pereg
- The David and Inez Myers Laboratory for Genetic Research, Department of Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ari Barzilai
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
24
|
Selinummi J, Sarkanen JR, Niemistö A, Linne ML, Ylikomi T, Yli-Harja O, Jalonen TO. Quantification of vesicles in differentiating human SH-SY5Y neuroblastoma cells by automated image analysis. Neurosci Lett 2006; 396:102-7. [PMID: 16356645 DOI: 10.1016/j.neulet.2005.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/26/2005] [Accepted: 11/08/2005] [Indexed: 11/23/2022]
Abstract
A new automated image analysis method for quantification of fluorescent dots is presented. This method facilitates counting the number of fluorescent puncta in specific locations of individual cells and also enables estimation of the number of cells by detecting the labeled nuclei. The method is here used for counting the AM1-43 labeled fluorescent puncta in human SH-SY5Y neuroblastoma cells induced to differentiate with all-trans retinoic acid (RA), and further stimulated with high potassium (K+) containing solution. The automated quantification results correlate well with the results obtained manually through visual inspection. The manual method has the disadvantage of being slow, labor-intensive, and subjective, and the results may not be reproducible even in the intra-observer case. The automated method, however, has the advantage of allowing fast quantification with explicitly defined methods, with no user intervention. This ensures objectivity of the quantification. In addition to the number of fluorescent dots, further development of the method allows its use for quantification of several other parameters, such as intensity, size, and shape of the puncta, that are difficult to quantify manually.
Collapse
Affiliation(s)
- Jyrki Selinummi
- Institute of Signal Processing, Tampere University of Technology, FIN-33101 Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Martin B, Lopez de Maturana R, Brenneman R, Walent T, Mattson MP, Maudsley S. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med 2005; 7:3-36. [PMID: 16052036 PMCID: PMC2636744 DOI: 10.1385/nmm:7:1-2:003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs-adenylate cyclase-cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Ageing Intramural Research Program, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R. Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 2005; 31:193-209. [PMID: 16226889 DOI: 10.1016/j.mcn.2005.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 08/24/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
Expression of VPAC and PAC1 receptor isoforms was determined in six neuroblastoma cell lines as well as in human embryonic and adult brain using reverse transcriptase PCR and quantitative PCR. PAC1 receptor splice variants missing a 21 amino acid sequence in the amino terminal domain were found to be the major receptor variants in the neuroblastoma cell lines and also were highly expressed in embryonic brain compared to adult brain. In four of the neuroblastoma cell lines, VIP and PACAP stimulated cyclic AMP production with different potencies and levels of maximal stimulation. High potency and greatest maximal stimulation of cyclic AMP for each peptide were recorded in SH-SY5Y cells, indicating the presence of high affinity VIP and PACAP receptors. Further characterization of specific VPAC and PAC1 receptor isoforms was carried out in the SH-SY5Y cell line, where along with known PAC1 receptor splice variants and the VPAC2 receptor, a number of novel PAC1 receptor splice variants were identified. The comparatively low level expression of the VPAC2 receptor along with the poor responsiveness of SH-SY5Y cells to the VPAC2 receptor-specific agonist Ro 25-1553 indicated that this receptor did not contribute significantly to the observed VIP responses. When the individual PAC1 receptor isoforms were expressed in COS 7 cells, the ability of VIP to activate cyclic AMP production was increased more than 50-fold at the majority of the PAC1 receptor variants lacking the 21 amino acid amino terminal domain sequence compared to those with the complete domain. Smaller changes were seen in the potency of PACAP-38. Similar trends were seen with inositol phosphate responses, where in each case agonist potencies were lower than for cyclic AMP production. The results of this study show that the combination of different amino terminal and intracellular loop 3 splicing variants in the PAC1 receptor dictates the ability of agonists, particularly VIP, to activate signaling pathways. VIP has considerably greater potency at most PAC1 receptors with the short amino terminal domain, and these therefore may mediate physiological effects of both VIP and PACAP. Furthermore, there may be a phenotypic switch in the expression of different PAC1 receptor amino terminal splice variants between embryonic and mature nervous system, indicating that regulation of this event may have an important role in VIP/PACAP function, particularly in the developing nervous system.
Collapse
Affiliation(s)
- E M Lutz
- Molecular Signalling Group, Department of Bioscience, University of Strathclyde, Royal College, 204 George St., Glasgow G1 1XW, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci U S A 2005; 102:2637-42. [PMID: 15695581 PMCID: PMC549011 DOI: 10.1073/pnas.0409681102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 01/29/2023] Open
Abstract
During neuronal migration, cells that do not reach their normal destination or fail to establish proper connections are eliminated through an apoptotic process. Recent studies have shown that the proinflammatory cytokine tumor necrosis factor alpha (and its second messengers ceramides) and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) play a pivotal role in the histogenesis of the cerebellar cortex. However, the effects of ceramides and PACAP on migration of cerebellar granule cells have never been investigated. Time-lapse videomicroscopy recording showed that C2-ceramide, a cell-permeable ceramide analog, and PACAP induced opposite effects on cell motility and neurite outgrowth. C2-ceramide markedly stimulated cell movements during the first hours of treatment and inhibited neuritogenesis, whereas PACAP reduced cell migration and promoted neurite outgrowth. These actions of C2-ceramide on cell motility and neurite outgrowth were accompanied by a disorganization of the actin filament network, depolarization of tubulin, and alteration of the microtubule-associated protein Tau. In contrast, PACAP strengthened the polarization of actin at the emergence cone, increased Tau phosphorylation, and abolished C2-ceramide-evoked alterations of the cytoskeletal architecture. The caspase-inhibitor Z-VAD-FMK, like PACAP, suppressed the "dance of the death" provoked by C2-ceramide. Finally, Z-VAD-FMK and the PP2A inhibitor okadaic acid both prevented the impairment of Tau phosphorylation induced by C2-ceramide. Taken together, these data indicate that the reverse actions of C2-ceramide and PACAP on cerebellar granule cell motility and neurite outgrowth are attributable to their opposite effects on actin distribution, tubulin polymerization, and Tau phosphorylation.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinares sur les Peptides 23), Institut National de la Santé et de la Recherche Médicale U413, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Alleaume C, Eychène A, Harnois T, Bourmeyster N, Constantin B, Caigneaux E, Muller JM, Philippe M. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway. Exp Cell Res 2004; 299:511-24. [PMID: 15350548 DOI: 10.1016/j.yexcr.2004.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/15/2004] [Indexed: 11/28/2022]
Abstract
Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells.
Collapse
Affiliation(s)
- Céline Alleaume
- Equipe Neuropeptides, Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers-Pôle Biologie Santé, 86022 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|