1
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2025; 21:133-148. [PMID: 39004650 PMCID: PMC11958862 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
2
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2025; 21:113-131. [PMID: 38367178 PMCID: PMC11958884 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Zhu X, Huang Y, Ding J, Liu J, Cui C, Han G. Investigating the Impact of SN-38 on Mouse Brain Metabolism Based on Metabolomics. Drug Des Devel Ther 2024; 18:2435-2447. [PMID: 38915864 PMCID: PMC11195675 DOI: 10.2147/dddt.s457698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose SN-38 (7-ethyl-10-hydroxycamptothecin), the active metabolite of irinotecan, has been extensively studied in drug delivery systems. However, its impact on neural metabolism remains unclear. This study aims to investigate the toxic effects of SN-38 on mouse brain metabolism. Methods Male mice were divided into an SN-38 group and a control group. The SN-38 group received SN-38 (20 mg/kg/day) via intraperitoneal injection, while the control group was given an equal volume of a blank solvent mixture (DMSO and saline, ratio 1:9). Gas chromatography-mass spectrometry (GC-MS) was employed to analyze differential metabolites in the cortical and hippocampal regions of the SN-38-treated mice. Results SN-38 induced metabolic disturbances in the central nervous system. Eighteen differential metabolites were identified in the hippocampus and twenty-four in the cortex, with six common to both regions. KEGG pathway enrichment analysis revealed statistically significant alterations in six metabolic pathways in the hippocampus and ten in the cortex (P<0.05). Conclusion This study is the first to demonstrate the neurotoxicity of SN-38 in male mice through metabolomics. Differential metabolites in the hippocampal and cortical regions were closely linked to purine metabolism, pyrimidine metabolism, amino acid metabolism, and glyceride metabolism, indicating disruptions in the blood-brain barrier, energy metabolism, and central signaling pathways.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Ya Huang
- College of Traditional Chinese Medicine, Shandong Polytechnic College, Jining, 272000, People’s Republic of China
| | - Jia Ding
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Jianguo Liu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
5
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
6
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
7
|
Massari CM, Constantino LC, Tasca CI. Adenosine A 1 and A 2A receptors are involved on guanosine protective effects against oxidative burst and mitochondrial dysfunction induced by 6-OHDA in striatal slices. Purinergic Signal 2021; 17:247-254. [PMID: 33548045 PMCID: PMC8155135 DOI: 10.1007/s11302-021-09765-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson's disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 μM) prevented the 6-OHDA-induced damage in striatal slices. As the exact GUO mechanism of action remains unknown, the aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A1R antagonist prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding A2AR, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A2AR agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results reinforce previous evidence for a putative interaction of GUO with A1R-A2AR heteromer as its molecular target and clearly indicate a dependence on adenosine receptors modulation to GUO protective effect.
Collapse
Affiliation(s)
- C M Massari
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L C Constantino
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - C I Tasca
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Laboratório de Neuroquímica-4, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
8
|
Kundu D, Dubey VK. Purines and Pyrimidines: Metabolism, Function and Potential as Therapeutic Options in Neurodegenerative Diseases. Curr Protein Pept Sci 2021; 22:170-189. [PMID: 33292151 DOI: 10.2174/1389203721999201208200605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Various neurodegenerative disorders have various molecular origins but some common molecular mechanisms. In the current scenario, there are very few treatment regimens present for advanced neurodegenerative diseases. In this context, there is an urgent need for alternate options in the form of natural compounds with an ameliorating effect on patients. There have been individual scattered experiments trying to identify potential values of various intracellular metabolites. Purines and Pyrimidines, which are vital molecules governing various aspects of cellular biochemical reactions, have been long sought as crucial candidates for the same, but there are still many questions that go unanswered. Some critical functions of these molecules associated with neuromodulation activities have been identified. They are also known to play a role in foetal neurodevelopment, but there is a lacuna in understanding their mechanisms. In this review, we have tried to assemble and identify the importance of purines and pyrimidines, connecting them with the prevalence of neurodegenerative diseases. The leading cause of this class of diseases is protein misfolding and the formation of amyloids. A direct correlation between loss of balance in cellular homeostasis and amyloidosis is yet an unexplored area. This review aims at bringing the current literature available under one umbrella serving as a foundation for further extensive research in this field of drug development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| |
Collapse
|
9
|
Belluardo N, Mudò G, Di Liberto V, Frinchi M, Condorelli DF, Traversa U, Ciruela F, Ciccarelli R, Di Iorio P, Giuliani P. Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms. Front Pharmacol 2021; 12:658806. [PMID: 33986683 PMCID: PMC8111303 DOI: 10.3389/fphar.2021.658806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 01/20/2023] Open
Abstract
Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors reduced but not abolished it. Importantly, GUO-mediated neuron-like cell differentiation was independent of adenosine receptor activation as it was not altered by the blockade of these receptors. Noteworthy, the neuritogenic activity of GUO was not affected by blocking the phosphoinositide 3-kinase pathway, while it was reduced by inhibitors of protein kinase C or soluble guanylate cyclase. Furthermore, the inhibitor of the enzyme heme oxygenase-1 but not that of nitric oxide synthase reduced GUO-induced neurite outgrowth. Interestingly, we found that GUO was largely metabolized into guanine by the purine nucleoside phosphorylase (PNP) enzyme released from cells. Taken together, our results suggest that GUO, promoting neuroblastoma cell differentiation, may represent a potential therapeutic agent; however, due to its spontaneous extracellular metabolism, the role played by the GUO-PNP-guanine system needs to be further investigated.
Collapse
Affiliation(s)
- Natale Belluardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Ugo Traversa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| |
Collapse
|
10
|
Massari CM, Zuccarini M, Di Iorio P, Tasca CI. Guanosine Mechanisms of Action: Toward Molecular Targets. Front Pharmacol 2021; 12:653146. [PMID: 33867993 PMCID: PMC8044438 DOI: 10.3389/fphar.2021.653146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Caio M Massari
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| | - Mariachiara Zuccarini
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carla I Tasca
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
11
|
Almeida RF, Nonose Y, Ganzella M, Loureiro SO, Rocha A, Machado DG, Bellaver B, Fontella FU, Leffa DT, Pettenuzzo LF, Venturin GT, Greggio S, da Costa JC, Zimmer ER, Elisabetsky E, Souza DO. Antidepressant-Like Effects of Chronic Guanosine in the Olfactory Bulbectomy Mouse Model. Front Psychiatry 2021; 12:701408. [PMID: 34421682 PMCID: PMC8371253 DOI: 10.3389/fpsyt.2021.701408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Yasmine Nonose
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samanta Oliveira Loureiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andréia Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Guilhermano Machado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Urruth Fontella
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Attention Deficit Hyperactivity Disorder Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Letícia Ferreira Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departament of Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
13
|
Massari CM, Constantino LC, Marques NF, Binder LB, Valle-León M, López-Cano M, Fernández-Dueñas V, Ciruela F, Tasca CI. Involvement of adenosine A 1 and A 2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signal 2020; 16:379-387. [PMID: 32725400 DOI: 10.1007/s11302-020-09716-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by assessing the role of adenosine A1 and A2A receptors (A1R and A2AR) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A2AR antagonist, precluded reserpine-induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the A2AR, thus suggesting an A2AR-independent mechanism of GUO-mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and antioxidant effects in reserpinized mice were A1R dependent but A2AR independent, thus suggesting a differential participation of adenosine receptors in GUO-mediated effects.
Collapse
Affiliation(s)
- C M Massari
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L C Constantino
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - N F Marques
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L B Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Valle-León
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - M López-Cano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - V Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - F Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultatde Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - C I Tasca
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
14
|
Piermartiri TCB, Dos Santos B, Barros-Aragão FGQ, Prediger RD, Tasca CI. Guanosine Promotes Proliferation in Neural Stem Cells from Hippocampus and Neurogenesis in Adult Mice. Mol Neurobiol 2020; 57:3814-3826. [PMID: 32592125 DOI: 10.1007/s12035-020-01977-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.
Collapse
Affiliation(s)
- Tetsade C B Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | | | - Rui D Prediger
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.,Departamento de Farmacologia, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
15
|
de Almeida RF, Pocharski CB, Rodrigues ALS, Elisabetsky E, Souza DO. Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model. Sci Rep 2020; 10:8429. [PMID: 32439951 PMCID: PMC7242421 DOI: 10.1038/s41598-020-65300-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the well-validated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD.
Collapse
Affiliation(s)
- Roberto Farina de Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Camila Barbosa Pocharski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Marques NF, Binder LB, Roversi K, Sampaio TB, Constantino LC, Prediger RD, Tasca CI. Guanosine prevents depressive-like behaviors in rats following bilateral dorsolateral striatum lesion induced by 6-hydroxydopamine. Behav Brain Res 2019; 372:112014. [DOI: 10.1016/j.bbr.2019.112014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
17
|
Sidorova YA, Volcho KP, Salakhutdinov NF. Neuroregeneration in Parkinson's Disease: From Proteins to Small Molecules. Curr Neuropharmacol 2019; 17:268-287. [PMID: 30182859 PMCID: PMC6425072 DOI: 10.2174/1570159x16666180905094123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostria-tal dopamine neurons. There is no cure for PD and current therapy is limited to supportive care that partially alleviates dis-ease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopamine neurons, drugs restoring these neurons may significantly improve treatment of PD. Method: A literature search was performed using the PubMed, Web of Science and Scopus databases to discuss the pro-gress achieved in the development of neuroregenerative agents for PD. Papers published before early 2018 were taken into account. Results: Here, we review several groups of potential agents capable of protecting and restoring dopamine neurons in cul-tures or animal models of PD including neurotrophic factors and small molecular weight compounds. Conclusion: Despite the promising results of in vitro and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients. Meanwhile, a few promising biologicals and small molecules have been identified. Their further clinical development can eventually give rise to disease-modifying drugs for PD. Thus, inten-sive research in the field is justified.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
18
|
Camargo A, Rodrigues ALS. Novel Targets for Fast Antidepressant Responses: Possible Role of Endogenous Neuromodulators. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019858083. [PMID: 32440595 PMCID: PMC7219953 DOI: 10.1177/2470547019858083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy, delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine's effect. In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses. Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with ketamine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is presented and discussed.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program,
Center of Biological Sciences, Universidade Federal de Santa Catarina,
Florianópolis, Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of
Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis,
Brazil
| |
Collapse
|
19
|
Marques NF, Massari CM, Tasca CI. Guanosine Protects Striatal Slices Against 6-OHDA-Induced Oxidative Damage, Mitochondrial Dysfunction, and ATP Depletion. Neurotox Res 2018; 35:475-483. [PMID: 30417317 DOI: 10.1007/s12640-018-9976-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta which induces severe motor symptoms. 6-OHDA is a neurotoxin widely used in PD animal models due to its high affinity by dopamine transporter, its rapid non-enzymatic auto-oxidation which generates reactive oxygen species (ROS), oxidative stress, and for induced mitochondrial dysfunction. We previously reported an in vitro protocol of 6-OHDA-induced toxicity in brain regions slices, as a simple and sensitive assay to screen for protective compounds related to PD. Guanosine (GUO), a guanine-based purine nucleoside, is a neuroprotective molecule that is showing promising effects as an antiparkinsonian agent. To investigate the mechanisms involved on GUO-induced neuroprotection, slices of cortex, striatum, and hippocampus were incubated with GUO in the presence of 6-OHDA (100 μM). 6-OHDA promoted a decrease in cellular viability and increased ROS generation in all brain regions. Disruption of mitochondrial potential, depletion in intracellular ATP levels, and increase in cell membrane permeabilization were evidenced in striatal slices. GUO prevented the increase in ROS generation, disruption in mitochondrial potential, and depletion of intracellular ATP induced by 6-OHDA in striatal slices. In conclusion, GUO was effective to prevent oxidative events before cell damage, such as mitochondrial disruption, intracellular ATP levels depletion, and ROS generation in striatal slices subjected to in vitro 6-OHDA-induced toxicity.
Collapse
Affiliation(s)
- Naiani Ferreira Marques
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Caio Marcos Massari
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil. .,Departamento de Bioquímica, CCB, UFSC, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
20
|
Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F. Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Front Cell Neurosci 2018; 12:376. [PMID: 30459558 PMCID: PMC6232889 DOI: 10.3389/fncel.2018.00376] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
The function of guanine-based purines (GBPs) is mostly attributed to the intracellular modulation of heteromeric and monomeric G proteins. However, extracellular effects of guanine derivatives have also been recognized. Thus, in the central nervous system (CNS), a guanine-based purinergic system that exerts neuromodulator effects, has been postulated. The thesis that GBPs are neuromodulators emerged from in vivo and in vitro studies, in which neurotrophic and neuroprotective effects of these kinds of molecules (i.e., guanosine) were demonstrated. GBPs induce several important biological effects in rodent models and have been shown to reduce seizures and pain, stabilize mood disorder behavior and protect against gliomas and diseases related with aging, such as ischemia or Parkinson and Alzheimer diseases. In vitro studies to evaluate the protective and trophic effects of guanosine, and of the nitrogenous base guanine, have been fundamental for understanding the mechanisms of action of GBPs, as well as the signaling pathways involved in their biological roles. Conversely, although selective binding sites for guanosine have been identified in the rat brain, GBP receptors have not been still described. In addition, GBP neuromodulation may depend on the capacity of GBPs to interact with well-known membrane proteins in glutamatergic and adenosinergic systems. Overall, in this review article, we present up-to-date GBP biology, focusing mainly on the mechanisms of action that may lead to the neuromodulator role of GBPs observed in neurological disorders.
Collapse
Affiliation(s)
- Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Débora Lanznaster
- Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,UMR 1253, Team 2, INSERM/University of Tours, Tours, France
| | - Karen A Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Teixeira LV, Almeida RF, Rohden F, Martins LAM, Spritzer PM, de Souza DOG. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem Res 2018; 43:1476-1489. [PMID: 29855847 DOI: 10.1007/s11064-018-2562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023]
Abstract
Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28-35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.
Collapse
Affiliation(s)
- Luciele Varaschini Teixeira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francieli Rohden
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leo Anderson Meira Martins
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Poli Mara Spritzer
- Department of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Massari CM, López-Cano M, Núñez F, Fernández-Dueñas V, Tasca CI, Ciruela F. Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder. Front Pharmacol 2017; 8:700. [PMID: 29046640 PMCID: PMC5632808 DOI: 10.3389/fphar.2017.00700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 11/18/2022] Open
Abstract
Guanosine (GUO) is a guanine-based purine nucleoside with important trophic functions and promising neuroprotective properties. Although the neuroprotective effects of GUO have been corroborated in cellular models of Parkinson’s disease (PD), its efficacy as an antiparkinsonian agent has not been fully explored in PD animal models. Accordingly, we evaluated the effectiveness of GUO in reversing motor impairments in several rodent movement disorder models, including catalepsy, tremor, and hemiparkinsonism. Our results showed that orally administered GUO antagonized reserpine-mediated catalepsy, reduced reserpine-induced tremulous jaw movements, and potentiated the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine in unilaterally 6-hydroxidopamine-lesioned rats. In addition, at 5 and 7.5 mg/kg, GUO inhibited L-DOPA-induced dyskinesia in rats chronically treated with a pro-dopaminergic agent. Overall, we describe the therapeutic potential of GUO, which may be effective not only for reversing parkinsonian motor impairments but also for reducing dyskinesia induced by treatment for PD.
Collapse
Affiliation(s)
- Caio M Massari
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marc López-Cano
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Fabiana Núñez
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carla I Tasca
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Fairfield B, Mammarella N, Di Domenico A, D'Aurora M, Stuppia L, Gatta V. The ADRA2B gene in the production of false memories for affective information in healthy female volunteers. Behav Brain Res 2017; 333:218-224. [PMID: 28697904 DOI: 10.1016/j.bbr.2017.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
False memories are common memory distortions in everyday life and seem to increase with affectively connoted complex information. In line with recent studies showing a significant interaction between the noradrenergic system and emotional memory, we investigated whether healthy volunteer carriers of the deletion variant of the ADRA2B gene that codes for the α2b-adrenergic receptor are more prone to false memories than non-carriers. In this study, we collected genotype data from 212 healthy female volunteers; 91 ADRA2B carriers and 121 non-carriers. To assess gene effects on false memories for affective information, factorial mixed model analysis of variances (ANOVAs) were conducted with genotype as the between-subjects factor and type of memory error as the within-subjects factor. We found that although carriers and non-carriers made comparable numbers of false memory errors, they showed differences in the direction of valence biases, especially for inferential causal errors. Specifically, carriers produced fewer causal false memory errors for scripts with a negative outcome, whereas non-carriers showed a more general emotional effect and made fewer causal errors with both positive and negative outcomes. These findings suggest that putatively higher levels of noradrenaline in deletion carriers may enhance short-term consolidation of negative information and lead to fewer memory distortions when facing negative events.
Collapse
Affiliation(s)
- Beth Fairfield
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy.
| | - Nicola Mammarella
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy
| | - Marco D'Aurora
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy; CeSI-Met, University of Chieti, Chieti, Italy
| |
Collapse
|
24
|
Deng G, Qiu Z, Li D, Fang Y, Zhang S. Delayed administration of guanosine improves long‑term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep 2017; 15:3999-4004. [PMID: 28487988 PMCID: PMC5436205 DOI: 10.3892/mmr.2017.6521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Guanosine (GUO) is neuroprotective when administered acutely for the treatment of cerebral ischemia. The aim of the present study was to investigate whether delayed administration of GUO improved long‑term functional recovery following stroke, as well as to explore the potential underlying mechanisms. GUO (8 mg/kg) or a vehicle was administered intraperitoneally for 7 consecutive days beginning 24 h prior to photothrombosis‑induced stroke in male C57/B6J mice. Behaviour tests were performed at days 1, 3, 7, 14 and 28 post‑stroke. Infarct volume was measured using Nissl staining at day 7 post‑stroke. Neurogenesis and angiogenesis were evaluated by co‑labelling bromodeoxyuridine (BrdU) with doublecortin (DCX), neuronal nuclei (NeuN) and von Willebrand factor, in immunohistochemical studies. Brain‑derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) levels in the ipsilesional brain at day 28 post‑stroke were detected by western blot analysis. Delayed administration of GUO did not reduce infarct volume or affect neurological function at day 7 post‑stroke; however, it did improve functional recovery from day 14 post‑stroke, when compared with the vehicle group. GUO significantly increased the number of BrdU+ and BrdU+/DCX+ cells in the subventricular zone and subgranular zone at all examined time points, the number of Brdu+/NeuN+ cells in the peri‑infarction region at days 14 and 28 post‑stroke and microvessel density in the peri‑infarction region at day 28 post‑stroke compared with the vehicle group. In addition, the BDNF and VEGF levels in the ipsilesional brain were significantly elevated. Delayed administration of GUO at 24 h post‑stroke enhanced neurogenesis and angiogenesis, and increased BDNF and VEGF levels, which likely contributes to long‑term functional recovery following stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhandong Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dayong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Suming Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
25
|
Fairfield B, Colangelo M, Mammarella N, Di Domenico A, Cornoldi C. Affective false memories in Dementia of Alzheimer's Type. Psychiatry Res 2017; 249:9-15. [PMID: 28063401 DOI: 10.1016/j.psychres.2016.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022]
Abstract
This study examined the production of inferential false memories for complex pictorial stimuli and the implications of affective content in Alzheimer's disease (AD). A group of 24 AD patients and a group of 24 healthy older adults studied a sequence of pictures depicting stories that included positive, negative or neutral consequences of an unseen action, and then completed an old-new picture recognition test. The number of causal errors was higher in healthy older adults compared to AD patients but affective content attenuated the effect. Causal errors increased in AD patients when stories included affective (positive or negative) outcomes. In addition, negative content produced a larger number of errors than positive content across groups. This data confirms that although memory processing is poorer in AD, it is sensitive to affective content. Accordingly, the nature of affective false memory errors suggest the need to consider the use of affective information in the development of new cognitive training procedures.
Collapse
Affiliation(s)
- Beth Fairfield
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy.
| | - Mirco Colangelo
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological Sciences, School of Medicine and Health Sciences, University of Chieti, Chieti, Italy
| | - Cesare Cornoldi
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
26
|
Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI. Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders. Aging Dis 2016; 7:657-679. [PMID: 27699087 PMCID: PMC5036959 DOI: 10.14336/ad.2016.0208] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Guanosine is a purine nucleoside with important functions in cell metabolism and a protective role in response to degenerative diseases or injury. The past decade has seen major advances in identifying the modulatory role of extracellular action of guanosine in the central nervous system (CNS). Evidence from rodent and cell models show a number of neurotrophic and neuroprotective effects of guanosine preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson’s and Alzheimer’s diseases. The present review describes the findings of in vivo and in vitro studies and offers an update of guanosine effects in the CNS. We address the protein targets for guanosine action and its interaction with glutamatergic and adenosinergic systems and with calcium-activated potassium channels. We also discuss the intracellular mechanisms modulated by guanosine preventing oxidative damage, mitochondrial dysfunction, inflammatory burden and modulation of glutamate transport. New and exciting avenues for future investigation into the protective effects of guanosine include characterization of a selective guanosine receptor. A better understanding of the neuromodulatory action of guanosine will allow the development of therapeutic approach to brain diseases.
Collapse
Affiliation(s)
- Débora Lanznaster
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tharine Dal-Cim
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Tetsadê C B Piermartiri
- 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil; 3CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 70040-020, Brazil
| | - Carla I Tasca
- 1Departamento de Bioquímica,; 2Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
27
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
28
|
Di Liberto V, Mudò G, Garozzo R, Frinchi M, Fernandez-Dueñas V, Di Iorio P, Ciccarelli R, Caciagli F, Condorelli DF, Ciruela F, Belluardo N. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Front Pharmacol 2016; 7:158. [PMID: 27378923 PMCID: PMC4911385 DOI: 10.3389/fphar.2016.00158] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Roberta Garozzo
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Víctor Fernandez-Dueñas
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| |
Collapse
|
29
|
Bettio LEB, Neis VB, Pazini FL, Brocardo PS, Patten AR, Gil-Mohapel J, Christie BR, Rodrigues ALS. The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur J Neurosci 2016; 43:1006-15. [PMID: 26779605 DOI: 10.1111/ejn.13172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Guanosine is a purine nucleoside that occurs naturally in the central nervous system, exerting trophic effects. Given its neuroprotective properties, the potential of guanosine as an antidepressant has been recently examined. Within this context, the present study sought to investigate the effects of chronic treatment with guanosine on the tail suspension test (TST), open field test and adult hippocampal neurogenesis. Swiss mice were administered guanosine for 21 days (5 mg/kg/day, p.o.) and subsequently submitted to the TST and open-field test. Following behavioural testing, animals were killed and the brains were processed for immunohistochemical analyses of hippocampal cell proliferation and neuronal differentiation. Animals treated with guanosine showed a reduction in immobility time in the TST without alterations in locomotor activity, confirming the antidepressant-like effect of this compound. Quantitative microscopic analysis did not reveal significant alterations in the numbers of Ki-67- and proliferating cell nuclear antigen (PCNA)-positive cells in the hippocampal dentate gyrus (DG) of guanosine-treated mice. However, guanosine treatment resulted in a significant increase in the number of immature neurons, as assessed by immunohistochemistry for the neurogenic differentiation protein. Interestingly, this effect was localized to the ventral hippocampal DG, a functionally distinct region of this structure known to regulate emotional and motivational behaviours. Taken together, our results suggest that the antidepressant-like effect of chronic guanosine treatment is associated with an increase in neuronal differentiation, reinforcing the notion that this nucleoside may be an endogenous mood modulator.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC, Brazil.,Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC, Brazil
| | - Anna R Patten
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis-SC, Brazil
| |
Collapse
|
30
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Current perspectives on the antidepressant-like effects of guanosine. Neural Regen Res 2016; 11:1411-1413. [PMID: 27857738 PMCID: PMC5090837 DOI: 10.4103/1673-5374.191209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| |
Collapse
|
31
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
32
|
Guanosine Protects Glial Cells Against 6-Hydroxydopamine Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 837:23-33. [DOI: 10.1007/5584_2014_73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Connell BJ, Di Iorio P, Sayeed I, Ballerini P, Saleh MC, Giuliani P, Saleh TM, Rathbone MP, Su C, Jiang S. Guanosine protects against reperfusion injury in rat brains after ischemic stroke. J Neurosci Res 2012; 91:262-72. [PMID: 23151946 DOI: 10.1002/jnr.23156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 12/27/2022]
Abstract
After ischemic stroke, early thrombolytic therapy to reestablish tissue perfusion improves outcome but triggers a cascade of deleterious cellular and molecular events. Using a collaborative approach, our groups examined the effects of guanosine (Guo) in response to ischemic reperfusion injury in vitro and in vivo. In a transient middle cerebral artery occlusion (MCAO) in rats, Guo significantly reduced infarct volume in a dose-dependent manner when given systemically either immediately before or 30 min, but not 60 min, after the onset of the 5.5-hr reperfusion period. In a separate experiment, Guo significantly reduced infarct volume after 24 hr of reperfusion when administered 5 min before reperfusion. Western blot analysis did not reveal any significant changes either in endoplasmic reticulum (ER) stress proteins (GRP 78 and 94) or HSP 70 or in levels of m-calpain. In vitro oxygen and glucose deprivation (OGD) significantly increased production of both reactive oxygen species (ROS) and interleukin-8 (IL-8) in the primary astrocytes. Guo did not alter ROS or IL-8 production when given to the astrocytes before OGD. However, Guo when added to the cells prior to or 30 min after reperfusion significantly reduced IL-8 release but not ROS formation. Our study revealed a dose- and time-dependent protective effect of Guo on reperfusion injury in vitro and vivo. The mechanisms by which Guo exerts its effect are independent of unfolded proteins in ER or the level of intracellular calcium or ROS formation. However, the effect may be induced, at least partially, by inhibiting IL-8, a marker of reperfusion-triggered proinflammatory events.
Collapse
Affiliation(s)
- Barry J Connell
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rathbone MP, Saleh TM, Connell BJ, Chang R, Su C, Worley B, Kim M, Jiang S. Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res 2011; 1407:79-89. [PMID: 21774919 DOI: 10.1016/j.brainres.2011.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 02/01/2023]
Abstract
Previously we have found that extracellular guanosine (Guo) has neuroprotective properties in in vitro and in vivo. Moreover, extracellular Guo significantly increased in the ipsilateral hemisphere within 2h following focal stroke in rats, and remained elevated for one week. Therefore, we hypothesized that Guo could be a potential candidate for a non-toxic neuroprotective agent. In the present study, we examined the effects of Guo on rats following permanent middle cerebral artery occlusion (MCAO). We also determined whether Guo can precondition neurons by modulating endoplasmic reticulum (ER) stress proteins. As most therapies employ a combination treatment regimen, we optimized the neuroprotection by combining pre- and post-MCAO treatments with Guo, attempting to reduce both ischemic cell death and improve functional recovery. A combination of 4mg/kg Guo given 30min pre-stroke and 8mg/kg Guo given 3, 24 and 48h post-stroke exerted the most significant decrease in infarct volume and sustainable improvement in neurological function. Moreover, these effects are not attributable to Guo metabolites. Measurements taken 6h post-MCAO from animals pre-treated with Guo did not reveal any significant changes in ER stress proteins (GRP 78 and 94) or HSP 70, but did reveal significantly increased levels of m-calpain. Thus, our data indicate that there is a treatment regimen for Guo as a neuroprotectant following ischemic stroke. The mechanism by which Guo confers neuroprotection may involve an increase in m-calpain, possibly resulting from a mild increase in intracellular calcium. M-calpain may be involved in the preconditioning response to ischemia by upregulating endogenous pro-survival mechanisms in neurons.
Collapse
Affiliation(s)
- Michel P Rathbone
- Department of Medicine (Neurology, Neurobiochemistry), Health Sciences Centre, Room 4E15, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Oses JP, Batassini C, Pochmann D, Böhmer AE, Vuaden FC, Silvestrin RB, Oliveira A, Bonan CD, Bogo MR, Souza DO, Portela LVC, Sarkis JJDF, Mello e Souza T. The hydrolysis of striatal adenine- and guanine-based purines in a 6-hydroxydopamine rat model of Parkinson's disease. Neurochem Res 2010; 36:215-22. [PMID: 21046237 DOI: 10.1007/s11064-010-0305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive neurodegeneration in the substantia nigra and a striatal dopamine decrease. Striatal extracellular adenosine and ATP modulate the dopaminergic neurotransmission whereas guanosine has a protective role in the brain. Therefore, the regulation of their levels by enzymatic activity may be relevant to the clinical feature of PD. Here it was evaluated the extracellular nucleotide hydrolysis from striatal slices 4 weeks after a unilateral infusion with 6-OHDA into the medial forebrain bundle. This infusion increased ADP, AMP, and GTP hydrolysis by 15, 25, and 41%, respectively, and decreased GDP hydrolysis by 60%. There was no change in NTPDases1, 2, 3, 5, 6, and 5'-nucleotidase transcription. Dopamine depletion changes nucleotide hydrolysis and, therefore, alters the regulation of striatal nucleotide levels. These changes observed in 6-OHDA-lesioned animals may contribute to the symptoms observed in the model and provide evidence to indicate that extracellular purine hydrolysis is a key factor in understanding PD, giving hints for new therapies.
Collapse
Affiliation(s)
- Jean Pierre Oses
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ipata PL, Balestri F, Camici M, Tozzi MG. Molecular mechanisms of nucleoside recycling in the brain. Int J Biochem Cell Biol 2010; 43:140-5. [PMID: 20974280 DOI: 10.1016/j.biocel.2010.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 01/28/2023]
Abstract
A major role of plasma membrane bound ectonucleotidases is the modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability in the extracellular space at their respective receptors. We have recently shown that an ATP driven uridine-UTP cycle is operative in the brain, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolized to UTP in the cytosol, and converted back to uridine in the extracellular space by the action of ectonucleotidases (Ipata et al. Int J Biochem Cell Biol 2010;42:932-7). In this paper we show that a similar cytidine-CTP cycle exists in rat brain. Since (i) brain relies on imported preformed nucleosides for the synthesis of nucleotides, RNA, nuclear and mitochondrial DNA, coenzymes, pyrimidine sugar- and lipid-conjugates and (ii) no specific pyrimidinergic receptors have been identified for cytidine and their nucleotides, our results, taken together with previous studies on the intra- and extracellular metabolic network of ATP, GTP, UTP, and their nucleosides in the brain (Barsotti and Ipata. Int J Biochem Cell Biol 2004;36:2214-25; Balestri et al. Neurochem Int 2007;50:517-23), strongly suggest that, apart from the modulation of ligand availability, ectonucleotidases may serve the process of local nucleoside recycling in the brain.
Collapse
Affiliation(s)
- Piero Luigi Ipata
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno, 51, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
37
|
Potential therapeutic advantages of guanosine over inosine in multiple sclerosis. Med Hypotheses 2009; 73:627-8. [PMID: 19564082 DOI: 10.1016/j.mehy.2009.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 05/30/2009] [Accepted: 06/04/2009] [Indexed: 11/23/2022]
|