1
|
Vigil JJ, Tiemeier E, Orfila JE, Chalmers NE, Chang VN, Mitchell D, Veitch I, Falk M, Dietz RM, Herson PS, Quillinan N. Endogenous recovery of hippocampal function following global cerebral ischemia in juvenile female mice is influenced by neuroinflammation and circulating sex hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635301. [PMID: 39975306 PMCID: PMC11838352 DOI: 10.1101/2025.01.28.635301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cardiac arrest-induced global cerebral ischemia (GCI) in childhood often results in learning and memory deficits. We previously demonstrated in a murine cardiac arrest and cardiopulmonary resuscitation (CA/CPR) mouse model that a cellular mechanism of learning and memory, long-term potentiation (LTP), is acutely impaired in the hippocampus of juvenile males, correlating with deficits in memory tasks. However, little is known regarding plasticity impairments in juvenile females. We performed CA/CPR in juvenile (P21-25) female mice and used slice electrophysiology and hippocampal dependent behavior to assess hippocampal function. LTP was and contextual fear were impaired 7-days after GCI and endogenously recovered by 30-days. LTP remained impaired at 30 days in ovariectomized females, suggesting the surge in gonadal sex hormones during puberty mediates endogenous recovery. Unlike juvenile males, recovery of LTP in juvenile females was not associated with BDNF expression. NanoString transcriptional analysis revealed a potential role of neuroinflammatory processes, and specifically Cd68 pathways, in LTP impairment and hormone-dependent recovery. We were able to restore LTP in ovariectomized females with chronic and acute PPT administration, implicating estrogen receptor alpha in recovery mechanisms. This study supports a mechanism of endogenous LTP recovery after GCI in juvenile female mice which differs mechanistically from juvenile males and does not occur in adults of either sex.
Collapse
|
2
|
Nunes RR, Durán-Carabali LE, Ribeiro NH, Sirena DH, Tassinari ID, Netto CA, Paz AH, de Fraga LS. Impact of peripheral immune cells in experimental neonatal hypoxia-ischemia: A systematic review and meta-analysis. Int Immunopharmacol 2025; 145:113682. [PMID: 39637576 DOI: 10.1016/j.intimp.2024.113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Infiltration of peripheral immune cells into the brain following neonatal hypoxia-ischemia (HI) contributes to increased neuroinflammation and brain injury. However, the specific roles of different immune cell types in neonatal brain injury remain poorly understood. Although existing evidence suggests a potential role for sexual dimorphism in HI outcomes, this aspect has been insufficiently investigated. In this systematic review and meta-analysis, we examined the brain infiltration of peripheral immune cells in rodents of both sexes following neonatal HI. A total of 25 studies were included. Our analysis revealed significant increases in the infiltration of various subtypes of leukocytes after HI, along with increased brain injury, cell death, and neuroinflammation, and reduced neuronal survival. Notably, males exhibited a greater degree of immune cell infiltration and more pronounced neuroinflammation compared to females. These findings suggest that infiltrating leukocytes contribute significantly to the pathophysiology of neonatal HI, with sexually dimorphic responses further influencing the outcomes. It is crucial that future research focuses on elucidating the specific roles of immune cell subtypes to better understand the mechanisms underlying brain damage after HI and identify novel therapeutic targets. Moreover, the observed sex differences highlight the need to consider sex as a key factor when developing strategies for the treatment of neonatal HI.
Collapse
Affiliation(s)
- Ricardo Ribeiro Nunes
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luz Elena Durán-Carabali
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dienifer Hermann Sirena
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
| |
Collapse
|
3
|
Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, Chen C, Wu Y, Yang T, Ye Q, Wang H, Stetler RA, Chen J, Shi Y. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation 2023; 20:178. [PMID: 37516843 PMCID: PMC10385956 DOI: 10.1186/s12974-023-02860-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yaan Liu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Caixia Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Yun Wu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh, 3500 Terrace Street, S-510 BST, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
Liu J, Sato Y, Falcone-Juengert J, Kurisu K, Shi J, Yenari MA. Sexual dimorphism in immune cell responses following stroke. Neurobiol Dis 2022; 172:105836. [PMID: 35932990 DOI: 10.1016/j.nbd.2022.105836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/22/2022] Open
Abstract
Recent bodies of work in regard to stroke have revealed significant sex differences in terms of risk and outcome. While differences in sex hormones have been the focus of earlier research, the reasons for these differences are much more complex and require further identification. This review covers differences in sex related immune responses with a focus on differences in immune cell composition and function. While females are more susceptible to immune related diseases, they seem to have better outcomes from stroke at the experimental level with reduced pro-inflammatory responses. However, at the clinical level, the picture is much more complex with worse neurological outcomes from stroke. While the use of exogenous sex steroids can replicate some of these findings, it is apparent that many other factors are involved in the modulation of immune responses. As a result, more research is needed to better understand these differences and identify appropriate interventions and risk modification.
Collapse
Affiliation(s)
- Jialing Liu
- Dept Neurosurgery, UCSF and SF VAMC, San Francisco, CA, USA
| | - Yoshimichi Sato
- Dept Neurosurgery, UCSF and SF VAMC, San Francisco, CA, USA; Dept Neurosurgery, Tohoku University, Sendai, Japan
| | | | - Kota Kurisu
- Dept Neurosurgery, Hokkaido University, Sapporo, Japan
| | - Jian Shi
- Dept Neurology, UCSF and SF VAMC, San Francisco, CA, USA
| | | |
Collapse
|
5
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
7
|
Wu M, Rowe JM, Fleming SD. Complement Initiation Varies by Sex in Intestinal Ischemia Reperfusion Injury. Front Immunol 2021; 12:649882. [PMID: 33868287 PMCID: PMC8047102 DOI: 10.3389/fimmu.2021.649882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jennifer M. Rowe
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol 2021; 21:91. [PMID: 33632142 PMCID: PMC7908649 DOI: 10.1186/s12883-021-02116-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.
Collapse
|
9
|
Liu Y, Li S, Wang R, Pu H, Zhao Y, Ye Q, Shi Y. Inhibition of TGFβ-activated kinase 1 promotes inflammation-resolving microglial/macrophage responses and recovery after stroke in ovariectomized female mice. Neurobiol Dis 2021; 151:105257. [PMID: 33434616 DOI: 10.1016/j.nbd.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
TGFβ-activated kinase 1 (TAK1) is a master regulator that drives multiple cell death and proinflammatory signaling pathways, making it a promising therapeutic target to treat ischemic stroke. However, whether targeting TAK1 could improve stroke outcomes has never been tested in female subjects, hindering its potential translation into clinical use. Here we examined the therapeutic effect of 5Z-7-Oxozeaenol (OZ), a selective TAK1 inhibitor, in ovariectomized female mice after middle cerebral artery occlusion (MCAO). OZ significantly reduced neuronal cell death and axonal injury at the acute stage and mitigated neuroinflammation at the subacute stage after MCAO in ovariectomized female mice. Consistent with RNA sequencing analysis that TAK1 activation contributed to microglia/macrophage-mediated inflammatory responses in the post-stroke brain, inhibition of TAK1 with OZ caused phenotypic shift of microglia/macrophages toward an inflammation-resolving state. Furthermore, microglia/macrophage-specific TAK1 knockout (TAK1 mKO) reproduced OZ's effects, causally confirming the role of TAK1 in determining proinflammatory microglial/macrophage responses in post-stroke females. Post-stroke treatment with OZ for 5 days effectively promoted long-term neurological recovery and the integrity of both gray matter and white matter in female mice. Together, the TAK1 inhibitor OZ elicits long-lasting improvement of stroke outcomes in female mice, at least partially through enhancing beneficial microglial/macrophage responses and inflammation resolution. Given its therapeutic efficacy on both male and female rodents, TAK1 inhibitor is worth further investigation as a valid treatment to ischemic stroke.
Collapse
Affiliation(s)
- Yaan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rongrong Wang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yongfang Zhao
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
10
|
Eicosanoid production varies by sex in mesenteric ischemia reperfusion injury. Clin Immunol 2020; 220:108596. [PMID: 32961332 DOI: 10.1016/j.clim.2020.108596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023]
Abstract
Intestinal ischemia/reperfusion (I/R)-induced injury is an inflammatory response with significant morbidity and mortality. The early inflammatory response includes neutrophil infiltration. However, the majority of rodent studies utilize male mice despite a sexual dimorphism in intestinal I/R-related diseases. We hypothesized that sex may alter inflammation by changing neutrophil infiltration and eicosanoid production. To test this hypothesis, male and female C57Bl/6 mice were subjected to sham treatment or 30 min intestinal ischemia followed by a time course of reperfusion. We demonstrate that compared to male mice, females sustain significantly less intestinal I/R-induced tissue damage and produced significant LTB4 concentrations. Male mice release PGE2. Finally, treatment with a COX-2 specific inhibitor, NS-398, attenuated I/R-induced injury, total peroxidase level, and PGE2 production in males, but not in similarly treated female mice. Thus, I/R-induced eicosanoid production and neutrophil infiltration varies between sexes suggesting that distinct therapeutic intervention may be needed in clinical ischemic diseases.
Collapse
|
11
|
Pénzes M, Túrós D, Máthé D, Szigeti K, Hegedűs N, Rauscher AÁ, Tóth P, Ivic I, Padmanabhan P, Pál G, Dobolyi Á, Gyimesi M, Málnási-Csizmadia A. Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics 2020; 10:5341-5356. [PMID: 32373216 PMCID: PMC7196296 DOI: 10.7150/thno.42077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Acute ischemic stroke treatment faces an unresolved obstacle as capillary reperfusion remains insufficient after thrombolysis and thrombectomy causing neuronal damage and poor prognosis. Hypoxia-induced capillary constriction is mediated by actomyosin contraction in precapillary smooth muscle cells (SMCs) therefore smooth muscle myosin-2 could be an ideal target with potentially high impact on reperfusion of capillaries. Methods: The myosin-2 inhibitor para-aminoblebbistatin (AmBleb) was tested on isolated human and rat arterioles to assess the effect of AmBleb on vasodilatation. Transient middle cerebral artery occlusion (MCAO) was performed on 38 male Wistar rats followed by local administration of AmBleb into the ischemic brain area. Development of brain edema and changes in cerebrovascular blood flow were assessed using MRI and SPECT. We also tested the neurological deficit scores and locomotor asymmetry of the animals for 3 weeks after the MCAO operation. Results: Our results demonstrate that AmBleb could achieve full relaxation of isolated cerebral arterioles. In living animals AmBleb recovered cerebral blood flow in 32 out of the 65 affected functional brain areas in MCAO operated rats, whereas only 8 out of the 67 affected areas were recovered in the control animals. Animals treated with AmBleb also showed significantly improved general and focal deficit scores in neurological functional tests and showed significantly ameliorated locomotor asymmetry. Conclusion: Direct inhibition of smooth muscle myosin by AmBleb in pre-capillary SMCs significantly contribute to the improvement of cerebral blood reperfusion and brain functions suggesting that smooth muscle myosin inhibition may have promising potential in stroke therapies as a follow-up treatment of physical or chemical removal of the occluding thrombus.
Collapse
|
12
|
Borgus JR, Puthongkham P, Venton BJ. Complex sex and estrous cycle differences in spontaneous transient adenosine. J Neurochem 2020; 153:216-229. [PMID: 32040198 DOI: 10.1111/jnc.14981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023]
Abstract
Adenosine is a ubiquitous neuromodulator that plays a role in sleep, vasodilation, and immune response and manipulating the adenosine system could be therapeutic for Parkinson's disease or ischemic stroke. Spontaneous transient adenosine release provides rapid neuromodulation; however, little is known about the effect of sex as a biological variable on adenosine signaling and this is vital information for designing therapeutics. Here, we investigate sex differences in spontaneous, transient adenosine release using fast-scan cyclic voltammetry to measure adenosine in vivo in the hippocampus CA1, basolateral amygdala, and prefrontal cortex. The frequency and concentration of transient adenosine release were compared by sex and brain region, and in females, the stage of estrous. Females had larger concentration transients in the hippocampus (0.161 ± 0.003 µM) and the amygdala (0.182 ± 0.006 µM) than males (hippocampus: 0.134 ± 0.003, amygdala: 0.115 ± 0.002 µM), but the males had a higher frequency of events. In the prefrontal cortex, the trends were reversed. Males had higher concentrations (0.189 ± 0.003 µM) than females (0.170 ± 0.002 µM), but females had higher frequencies. Examining stages of the estrous cycle, in the hippocampus, adenosine transients are higher concentration during proestrus and diestrus. In the cortex, adenosine transients were higher in concentration during proestrus, but were lower during all other stages. Thus, sex and estrous cycle differences in spontaneous adenosine are complex, and not completely consistent from region to region. Understanding these complex differences in spontaneous adenosine between the sexes and during different stages of estrous is important for designing effective treatments manipulating adenosine as a neuromodulator.
Collapse
Affiliation(s)
- Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
14
|
Aziz S, Sheikh Ghadzi SM, Abidin NE, Tangiisuran B, Zainal H, Looi I, Ibrahim KA, Sidek NN, Wei LK, Keng Yee L, Abdul Aziz Z, Harun SN. Gender Differences and Risk Factors of Recurrent Stroke in Type 2 Diabetic Malaysian Population with History of Stroke: The Observation from Malaysian National Neurology Registry. J Diabetes Res 2019; 2019:1794267. [PMID: 31886276 PMCID: PMC6927021 DOI: 10.1155/2019/1794267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus has been reported as a strong independent risk factor for stroke recurrence. Data on the modifiable factors contributing to the recurrence of stroke in type 2 diabetic Malaysian population with a history of stroke stratified by genders are lacking, and this supports the importance of this study. METHOD The data of 4622 patients with T2DM who had a history of stroke was obtained from the Malaysian National Stroke Registry. Univariate analysis was performed to differentiate between genders with and without stroke recurrence in terms of demographics, first stroke attack presentations, and other clinical characteristics. The significant factors determined from the univariate analysis were further investigated using logistic regression. RESULTS Ischemic heart diseases were found significantly associated with the stroke recurrence in males (OR = 1.738; 95% CI: 1.071-2.818) as well as female (OR = 5.859; 95% CI: 2.469-13.752) diabetic patients. The duration of hypertension, as well as the duration of diabetes, has been associated with the recurrence in both male and female subjects (p value < 0.05). Smoking status has an impact on the stroke recurrence in male subjects, while no significant association was observed among their peers. CONCLUSIONS Most of the predictive factors contributing to the recurrence of stroke in type 2 diabetic Malaysian population with a history of stroke are modifiable, in which IHD was the most prominent risk factor in both genders. The impact of optimizing the management of IHD as well as blood glucose control on stroke recurrence may need to be elucidated. No major differences in recurrent stroke predictors were seen between genders among the Malaysian population with type 2 diabetes mellitus who had a previous history of stroke.
Collapse
Affiliation(s)
- Sohail Aziz
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | - Nur Ezzati Abidin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Balamurugan Tangiisuran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
- Pusat Racun Negara, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Hadzliana Zainal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Irene Looi
- Clinical Research Centre, Seberang Jaya Hospital, Ministry of Health, Penang, Malaysia
| | - Khairul Azmi Ibrahim
- Clinical Research Centre, Hospital Sultanah Nur Zahirah, Ministry of Health, Terengganu, Malaysia
| | - Norsima Nazifah Sidek
- Clinical Research Centre, Hospital Sultanah Nur Zahirah, Ministry of Health, Terengganu, Malaysia
| | - Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Lee Keng Yee
- National Institutes of Health (NIH), Ministry of Health, Malaysia, Kuala Lumpur, Malaysia
| | - Zariah Abdul Aziz
- Clinical Research Centre, Hospital Sultanah Nur Zahirah, Ministry of Health, Terengganu, Malaysia
| | - Sabariah Noor Harun
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
15
|
Huang Y, Chen JQ, Lai XS, Tang CZ, Yang JJ, Chen H, Wu JX, Xiao HL, Qu SS, Zhang YD, Zhang ZJ. Lateralisation of Cerebral Response to Active Acupuncture in Patients with Unilateral Ischaemic Stroke: An Fmri Study. Acupunct Med 2018; 31:290-6. [DOI: 10.1136/acupmed-2012-010299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective Acupuncture is beneficial in treating stroke neuropsychiatric symptoms. The present study aimed to identify functional brain response to active acupuncture in patients with unilateral ischaemic stroke using functional MRI (fMRI). Methods A total of 10 patients aged 47–65 years with left hemispheric ischaemic stroke received single-session manual acupuncture at the TE5 point of the affected (right) forearm. A 6-min tactile control procedure in which an acupuncture needle tip was alternately touched and removed from the skin at the acupuncture point for 30 s each was performed first, followed by active acupuncture in a blocking paradigm consisting of six 30-s twist blocks of rotation interspersed between six 30-s blocks of rest. A whole brain scan was simultaneously conducted on a 3.0-T imager. Activated and deactivated brain regions during tactile stimulation and active acupuncture relative to rest were obtained via group analysis. Results Compared to tactile stimulation, needling with twist manipulation modulated many more widespread brain areas. All the brain areas activated and deactivated by active acupuncture relative to tactile stimulation were distributed in the primary sensorimotor and medial frontal cortex of the unaffected, but not the affected hemisphere. Conclusions Active acupuncture results in lateralisation of functional cerebral response to the contralateral unaffected hemisphere in patients with unilateral stroke. This lateralisation may represent an effect of acupuncture in enhancing a compensatory process by redistributing functions into the intact cortex, particularly in the unaffected hemisphere.
Collapse
Affiliation(s)
- Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun-Qi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin-Sheng Lai
- School of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- School of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jun-Jun Yang
- School of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Hua Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jun-Xian Wu
- Department of Acupuncture and Moxibustion, Shantou Central Hospital, Shantou, China
| | - Hui-Ling Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shan-Shan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Dan Zhang
- First Clinic Medical School, Southern Medical University, Guangzhou, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Dagenais L, Materassi M, Desnous B, Vinay MC, Doussau A, Sabeh P, Prud'homme J, BSc KG, Lenoir M, Charron MA, Nuyt AM, Poirier N, Beaulieu-Genest L, Carmant L, Birca A. Superior Performance in Prone in Infants With Congenital Heart Disease Predicts an Earlier Onset of Walking. J Child Neurol 2018; 33:894-900. [PMID: 30226082 DOI: 10.1177/0883073818798194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Infants with congenital heart disease are at risk of impaired neurodevelopment, which frequently manifests as motor delay during their first years of life. This delay is multifactorial in origin and environmental factors, such as a limited experience in prone, may play a role. In this study, we evaluated the motor development of a prospective cohort of 71 infants (37 males) with congenital heart disease at 4 months of age using the Alberta Infant Motor Scales (AIMS). We used regression analyses to determine whether the 4-month AIMS scores predict the ability to walk by 18 months. The influence of demographic and clinical variables was also assessed. Fifty-one infants (71.8%) were able to maintain the prone prop position (AIMS score of ≥3 in prone) at 4 months. Of those, 47 (92.2%) were able to walk by 18 months compared to only 12/20 (60%) of those who did not maintain the position. Higher AIMS scores were predictive of a greater likelihood of walking by 18 months ( P < .001), with the scores in prone having a higher predictive ability compared to those in other positions (Exp(B) 15.2 vs 4.0). Shorter hospital stays and female gender were also associated with an earlier onset of walking. In conclusion, our study demonstrates that early ventral performance in infants with congenital heart disease impacts the age of acquisition of walking and could be used to guide referral to rehabilitation.
Collapse
Affiliation(s)
- Lynn Dagenais
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Manuela Materassi
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Beatrice Desnous
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada.,2 Division of Neurology, Department of Neuroscience, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada
| | - Marie-Claude Vinay
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Amélie Doussau
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Pascale Sabeh
- 3 CHU Sainte-Justine Research Centre, University of Montréal, Montréal, Québec, Canada
| | - Joelle Prud'homme
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Karine Gagnon BSc
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada
| | - Marien Lenoir
- 4 Division of Cardiac Surgery, Department of Surgery, University of Montréal, Montréal, Québec, Canada
| | - Marc-Antoine Charron
- 3 CHU Sainte-Justine Research Centre, University of Montréal, Montréal, Québec, Canada
| | - Anne Monique Nuyt
- 3 CHU Sainte-Justine Research Centre, University of Montréal, Montréal, Québec, Canada.,5 Department of Pediatrics, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada
| | - Nancy Poirier
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada.,4 Division of Cardiac Surgery, Department of Surgery, University of Montréal, Montréal, Québec, Canada
| | - Laurence Beaulieu-Genest
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada.,5 Department of Pediatrics, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada
| | - Lionel Carmant
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada.,2 Division of Neurology, Department of Neuroscience, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada.,3 CHU Sainte-Justine Research Centre, University of Montréal, Montréal, Québec, Canada.,5 Department of Pediatrics, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada.,These authors contributed equally to this work
| | - Ala Birca
- 1 Clinique d'Investigation Neuro-Cardiaque (CINC), CHU Sainte-Justine, Montréal, Québec, Canada.,2 Division of Neurology, Department of Neuroscience, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada.,3 CHU Sainte-Justine Research Centre, University of Montréal, Montréal, Québec, Canada.,5 Department of Pediatrics, CHU Sainte-Justine and the University of Montréal, Montréal, Québec, Canada.,These authors contributed equally to this work
| |
Collapse
|
17
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
18
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
19
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
20
|
Dotson AL, Offner H. Sex differences in the immune response to experimental stroke: Implications for translational research. J Neurosci Res 2017; 95:437-446. [PMID: 27870460 DOI: 10.1002/jnr.23784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a leading cause of death and disability in the United States. It is known that males and females respond differently to stroke. Depending on age, the incidence, prevalence, mortality rate, and disability outcome of stroke differ between the sexes. Females generally have strokes at older ages than males and, therefore, have a worse stroke outcome. There are also major differences in how the sexes respond to stroke at the cellular level. Immune response is a critical factor in determining the progress of neurodegeneration after stroke and is fundamentally different for males and females. Additionally, females respond to stroke therapies differently from males, yet they are often left out of the basic research that is focused on developing those therapies. With a resounding failure to translate stroke therapies from the bench to the bedside, it is clearer than ever that inclusion of both sexes in stroke studies is essential for future clinical success. This Mini-Review examines sex differences in the immune response to experimental stroke and its implications for therapy development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abby L Dotson
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Portland Health Care System, Portland, Oregon
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
Choi H, Gim J, Won S, Kim YJ, Kwon S, Park C. Network analysis for count data with excess zeros. BMC Genet 2017; 18:93. [PMID: 29110633 PMCID: PMC5674822 DOI: 10.1186/s12863-017-0561-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Undirected graphical models or Markov random fields have been a popular class of models for representing conditional dependence relationships between nodes. In particular, Markov networks help us to understand complex interactions between genes in biological processes of a cell. Local Poisson models seem to be promising in modeling positive as well as negative dependencies for count data. Furthermore, when zero counts are more frequent than are expected, excess zeros should be considered in the model. METHODS We present a penalized Poisson graphical model for zero inflated count data and derive an expectation-maximization (EM) algorithm built on coordinate descent. Our method is shown to be effective through simulated and real data analysis. RESULTS Results from the simulated data indicate that our method outperforms the local Poisson graphical model in the presence of excess zeros. In an application to a RNA sequencing data, we also investigate the gender effect by comparing the estimated networks according to different genders. Our method may help us in identifying biological pathways linked to sex hormone regulation and thus understanding underlying mechanisms of the gender differences. CONCLUSIONS We have presented a penalized version of zero inflated spatial Poisson regression and derive an efficient EM algorithm built on coordinate descent. We discuss possible improvements of our method as well as potential research directions associated with our findings from the RNA sequencing data.
Collapse
Affiliation(s)
- Hosik Choi
- Department of Applied Statistics, Kyonggi University, Suwon, 16227 Korea
| | - Jungsoo Gim
- Institute of Health and Environment, Seoul National University, Seoul, 08826 Korea
| | - Sungho Won
- Graduate School of Public Health, Seoul National University, 08826Seoul, Korea
| | - You Jin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Korea
| | - Sunghoon Kwon
- Department of Applied Statistics, Konkuk University, Seoul, 05029 Korea
| | - Changyi Park
- Department of Statistics, University of Seoul, Seoul, 02504 Korea
| |
Collapse
|
22
|
Kaku SM, Dhiman V. Sex Chromosomes: Does it Affect the Way You Think? Indian J Psychol Med 2017; 39:549-551. [PMID: 28852264 PMCID: PMC5560018 DOI: 10.4103/ijpsym.ijpsym_107_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sowmyashree Mayur Kaku
- Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vikas Dhiman
- Division of Non-Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
23
|
|
24
|
Sohrabji F, Park MJ, Mahnke AH. Sex differences in stroke therapies. J Neurosci Res 2017; 95:681-691. [PMID: 27870437 PMCID: PMC5125551 DOI: 10.1002/jnr.23855] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Stroke is the fifth leading cause of death and acquired disability in aged populations. Women are disproportionally affected by stroke, having a higher incidence and worse outcomes than men. Numerous preclinical studies have discovered novel therapies for the treatment of stroke, but almost all of these have been shown to be unsuccessful in clinical trials. Despite known sex differences in occurrence and severity of stroke, few preclinical or clinical therapeutics take into account possible sex differences in treatment. Reanalysis of data from studies of tissue plasminogen activator (tPA), the only currently FDA-approved stroke therapy, has shown that tPA improves stroke outcomes for both sexes and also shows sexual dimorphism by more robust improvement in stroke outcome in females. Experimental evidence supports the inclusion of sex as a variable in the study of a number of novel stroke drugs and therapies, including preclinical studies of anti-inflammatory drugs (minocycline), stimulators of cell survival (insulin-like growth factor-1), and inhibitors of cell death pathways (pharmacological inhibition of poly[ADP-ribose] polymerase-1, nitric oxide production, and caspase activation) as well as in current clinical trials of stem cell therapy and cortical stimulation. Overall, study design and analysis in clinical trials as well as in preclinical studies must include both sexes equally, consider possible sex differences in the analyses, and report the differences/similarities in more systematic/structured ways to allow promising therapies for both sexes and increase stroke recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Min Jung Park
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amanda H Mahnke
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
25
|
|
26
|
Extended therapeutic window of a novel peptide inhibitor of TRPM2 channels following focal cerebral ischemia. Exp Neurol 2016; 283:151-6. [PMID: 27317297 DOI: 10.1016/j.expneurol.2016.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
INTRODUCTION TRPM2 channels have been suggested to play a role in ischemic neuronal injury, specifically in males. A major hindrance to TRPM2 research has been the lack of specific TRPM2 inhibitors. The current study characterized the specificity and neuroprotective efficacy of a novel TRPM2 inhibitor. METHODS Fluorescent calcium imaging (Fluo5F) was used to determine inhibitor efficacy of the TRPM2 peptide inhibitor (tat-M2NX) in HEK293 cells stably expressing hTRPM2. Adult (2-3months) and aged (18-20months) mice were subjected to 60min middle cerebral artery occlusion (MCAO) and injected with tat-M2NX, control scrambled peptide (tat-SCR) or clotrimazole (CTZ) either 20min prior or 3h after reperfusion. Infarct size was assessed using TTC staining. RESULTS TRPM2 inhibition by tat-M2NX was observed by decreased Ca(2+) influx following H2O2 exposure human TRPM2 expressing cells. Male mice pre-treated with tat-M2NX had smaller infarct volume compared to tat-SCR. No effect of tat-M2NX on infarct size was observed in female mice. Importantly, male TRPM2(-/-) mice were not further protected by tat-M2NX, demonstrating selectivity of tat-M2NX. Administration of tat-M2NX 3h after reperfusion provided significant protection to males when analyzed at 24h or 4days after MCAO. Finally, we observed that tat-M2NX reduced ischemic injury in aged male mice. CONCLUSIONS These data demonstrate the development of a new peptide inhibitor of TRPM2 channels that provides protection from ischemic stroke in young adult and aged male animals with a clinically relevant therapeutic window.
Collapse
|
27
|
Lee JH, Espinera AR, Chen D, Choi KE, Caslin AY, Won S, Pecoraro V, Xu GY, Wei L, Yu SP. Neonatal inflammatory pain and systemic inflammatory responses as possible environmental factors in the development of autism spectrum disorder of juvenile rats. J Neuroinflammation 2016; 13:109. [PMID: 27184741 PMCID: PMC4867541 DOI: 10.1186/s12974-016-0575-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/06/2016] [Indexed: 02/28/2023] Open
Abstract
Background Autism spectrum disorder (ASD) affects many children and juveniles. The pathogenesis of ASD is not well understood. Environmental factors may play important roles in the development of ASD. We examined a possible relationship of inflammatory pain in neonates and the development of ASD in juveniles. Methods Acute inflammation pain was induced by 5 % formalin (5 μl/day) subcutaneous injection into two hindpaws of postnatal day 3 to 5 (P3–P5) rat pups. Western blot, immunohistochemical, and behavioral examinations were performed at different time points after the insult. Results Formalin injection caused acute and chronic inflammatory responses including transient local edema, increased levels of inflammatory cytokines, TNF-α, and IL-1β in the blood as well as in the brain, and increased microglia in the brain. One day after the pain insult, there was significant cell death in the cortex and hippocampus. Two weeks later, although the hindpaw local reaction subsided, impaired axonal growth and demyelization were seen in the brain of P21 juvenile rats. The number of bromodeoxyuridine (BrdU) and doublecortin (DCX) double-positive cells in the hippocampal dentate gyrus of P21 rats was significantly lower than that in controls, indicating reduced neurogenesis. In the P21 rat’s brain of the formalin group, the expression of autism-related gene neurexin 1 (NRXN1), fragile X mental retardation 1 (FMR1), and oxytocin was significantly downregulated, consistent with the gene alteration in ASD. Juvenile rats in the formalin group showed hyperalgesia, repetitive behaviors, abnormal locomotion, sleep disorder, and distinct deficits in social memory and social activities. These alterations in neuroinflammatory reactions, gene expression, and behaviors were more evident in male than in female rats. Importantly, an anti-inflammation treatment using indomethacin (10 mg/kg, i.p.) at the time of formalin injections suppressed inflammatory responses and neuronal cell death and prevented alterations in ASD-related genes and the development of abnormal behaviors. Conclusions These novel observations indicate that severe inflammatory pain in neonates and persistent inflammatory reactions may predispose premature infants to development delays and psychiatric disorders including ASD. The prevention of pain stimuli and prompt treatments of inflammation during development appear vitally important in disrupting possible evolution of ASD syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0575-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alyssa R Espinera
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,The Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ko-Eun Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Asha Yoshiko Caslin
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Soonmi Won
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Valentina Pecoraro
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guang-Yin Xu
- The Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, GA, 30033, USA. .,Emory University School of Medicine, 101 Woodruff Circle, WMB Suite 620, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
The impact of gender on stroke pathology and treatment. Neurosci Biobehav Rev 2015; 67:119-24. [PMID: 26657813 DOI: 10.1016/j.neubiorev.2015.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 11/21/2022]
Abstract
Cerebral ischemic stroke is a leading cause of mortality and functional disability. However, unfortunately few effective treatments exist to counteract the deleterious pathological mechanisms triggered following an ischemic event. Epidemiological and experimental studies have revealed a significant difference in the vulnerability of males versus females to both the incidence of stroke and amount of resulting pathology following an ischemic stroke which is also dependent on the stage of lifespan. Here we review the evidence for gender differences in both the overall pathology and cellular mechanisms of injury following ischemic stroke. In addition, we discuss the evidence for any gender differences that may occur in the effectiveness of treatments and how this supports the need for the investigation and development of gender-specific therapies.
Collapse
|
29
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
30
|
Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 2015; 64:2194-206. [PMID: 25552599 DOI: 10.2337/db14-1192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022]
Abstract
Long-term use of glucocorticoids (GCs) causes numerous adverse effects, including glucose/lipid abnormalities, osteoporosis, and muscle wasting. The pathogenic mechanism, however, is not completely understood. In this study, we used plasminogen activator inhibitor-1 (PAI-1)-deficient mice to explore the role of PAI-1 in GC-induced glucose/lipid abnormalities, osteoporosis, and muscle wasting. Corticosterone markedly increased the levels of circulating PAI-1 and the PAI-1 mRNA level in the white adipose tissue of wild-type mice. PAI-1 deficiency significantly reduced insulin resistance and glucose intolerance but not hyperlipidemia induced by GC. An in vitro experiment revealed that active PAI-1 treatment inhibits insulin-induced phosphorylation of Akt and glucose uptake in HepG2 hepatocytes. However, this was not observed in 3T3-L1 adipocytes and C2C12 myotubes, indicating that PAI-1 suppressed insulin signaling in hepatocytes. PAI-1 deficiency attenuated the GC-induced bone loss presumably via inhibition of apoptosis of osteoblasts. Moreover, the PAI-1 deficiency also protected from GC-induced muscle loss. In conclusion, the current study indicated that PAI-1 is involved in GC-induced glucose metabolism abnormality, osteopenia, and muscle wasting in mice. PAI-1 may be a novel therapeutic target to mitigate the adverse effects of GC.
Collapse
Affiliation(s)
- Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osakasayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kinki University Hospital, Osakasayama, Japan
| | - Osamu Matsuo
- Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
31
|
Kim TH, Vemuganti R. Effect of sex and age interactions on functional outcome after stroke. CNS Neurosci Ther 2015; 21:327-36. [PMID: 25404174 PMCID: PMC6495347 DOI: 10.1111/cns.12346] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/18/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Experimental and clinical studies showed that sex and age play an important role in deciding the outcome after stroke. At younger ages, males were shown to have a higher risk for stroke than females. However, this trend reverses in older ages particularly when females reach menopause. Many preclinical studies indicate that steroid hormones modulate the age-dependent differential stroke outcome. In addition, patterns of cell death pathways activated following cerebral ischemia are distinct between males and females, but independent of steroid hormones. Recent studies also indicate that microRNAs play important roles in mediating sex-specific stroke outcome by regulating stroke-related genes. This review discusses the contribution of sex and age to outcome after stroke with particular emphasis on the experimental studies that examined the effects of steroid hormones, differential cell death pathways, and involvement of sex-specific microRNAs following cerebral ischemia. Current understanding of the role of thrombolytic agents in stroke therapy is also discussed.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
32
|
Sex-associated differences in the modulation of vascular risk in patients with asymptomatic carotid stenosis. J Cereb Blood Flow Metab 2015; 35:684-8. [PMID: 25586143 PMCID: PMC4420889 DOI: 10.1038/jcbfm.2014.248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022]
Abstract
In this study, we aimed to identify determinants of the different sex-related stroke risk in subjects with asymptomatic internal carotid artery (ICA) stenosis. In all, 492 women (44.4%) and 617 men (55.6%), with unilateral ⩾ 60% asymptomatic ICA stenosis, were prospectively evaluated with a median follow-up of 37 months (interquartile range, 26 to 43). Vascular risk profile, plaque characteristics, stenosis progression, and common carotid artery intima-media thickness were investigated. Outcome measure was the occurrence of ischemic stroke ipsilateral to ICA stenosis. Myocardial infarction, contralateral stroke and transient ischemic attack were considered as competing events. The incidence rate of ipsilateral stroke over the entire follow-up period was 0.16%: 0.09% (95% confidence interval (CI) 0.05 to 0.15) in women and 0.22% (95% CI 0.17 to 0.29) in men (log-rank test, P<0.001). Stenosis progression significantly influenced the risk of ipsilateral stroke in both men (subhazard ratio, SHR, 8.99) and women (SHR 4.89). Stenosis degree (71% to 90%, SHR 2.35; 91% to 99%, SHR 3.38) and irregular plaque surface (SHR 2.32) were relevant risk factors for ipsilateral stroke only in men. Our findings suggest that characteristics of the stenosis and plaque exert a different effect in modulating vascular risk in the two sexes. Understanding sex differences in cardiovascular disease could help to target sex-specific future therapies.
Collapse
|
33
|
Murphy SJ, Lusardi TA, Phillips JI, Saugstad JA. Sex differences in microRNA expression during development in rat cortex. Neurochem Int 2014; 77:24-32. [PMID: 24969725 PMCID: PMC4177314 DOI: 10.1016/j.neuint.2014.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
Abstract
There are important sex differences in the risk and outcome of conditions and diseases between males and females. For example, stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage following an ischemic event compared to females. Studies suggest that the difference in male and female susceptibility to ischemia may be triggered by innate variations in gene regulation and protein expression between the sexes that are independent of post-natal exposure to sex hormones. We have shown that there are differences in microRNA (miRNA) expression in adult male and female brain following focal cerebral ischemia in mouse cortex. Herein we examine a role for differential expression of miRNAs during development in male and female rat cortex as potential effectors of the phenotype that leads to sex differences to ischemia. Expression studies in male and female cortices isolated from postnatal day 0 (P0), postnatal day 7 (P7), and adult rats using TaqMan Low Density miRNA arrays and NanoString nCounter analysis revealed differential miRNA levels between males and females at each developmental stage. We focused on the miR-200 family of miRNAs that showed higher levels in females at P0, but higher levels in males at P7 that persisted into adulthood, and validated the expression of miR-200a, miR-200b, and miR-429 by individual qRT-PCR as these are clustered on chromosome 5 and may be transcriptionally co-regulated. Prediction analysis of the miR-200 miRNAs revealed that genes within the Gonadotropin releasing hormone receptor pathway are the most heavily targeted. These studies support that developmental changes in miRNA expression may influence phenotypes in adult brain that underlie sexually dimorphic responses to disease, including ischemia.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Theresa A Lusardi
- Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Jay I Phillips
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
34
|
Frewen J, Savva GM, Boyle G, Finucane C, Kenny RA. Cognitive performance in orthostatic hypotension: findings from a nationally representative sample. J Am Geriatr Soc 2014; 62:117-22. [PMID: 25180380 DOI: 10.1111/jgs.12592] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To compare the cognitive profile of a population representative sample with orthostatic hypotension (OH) with the profile of a sample without. DESIGN Cross-sectional analysis of a prospective nationally representative population study. SETTING The Irish Longitudinal Study on Ageing (TILDA). PARTICIPANTS TILDA participants (N = 5,936; mean age 63 ± 9, 54% female). MEASUREMENTS OH was defined as a drop of 20 mmHg or more in systolic blood pressure or of 10 mmHg or more in diastolic blood pressure on standing from a seated position. Cognitive performance was assessed using comprehensive cognitive tests measuring domains of global function, executive function, processing speed, attention, and memory, from which composite standardized scores were computed. Multivariate analysis controlling for potential confounders was performed to compare cognitive performance according to OH status. RESULTS Prevalence of OH was 6.1% (95% confidence interval = 5.4-6.7%). A significant negative association between OH status and global cognitive function (b = 0.21, P = .01) and memory (b = 0.26, P = .002) was found in women aged 65 and older after adjustment for demographic characteristics, mental health, cardiovascular disease, and medications (antihypertensive and antipsychotic), but other specific cognitive domains were not affected. CONCLUSION OH was associated with poorer global cognitive function and poorer memory, independent of potential confounders, in women in a large population-based sample of older adults. Longitudinal studies with concomitant assessment of cerebral perfusion are needed to determine causal relationships.
Collapse
|
35
|
Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, Zaidi SK, Fagan SC, Hess DC. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res 2014; 5:484-90. [PMID: 24385308 PMCID: PMC4092232 DOI: 10.1007/s12975-013-0318-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 01/20/2023]
Abstract
Remote ischemic conditioning is neuroprotective in young male rodents after experimental stroke. However, it has never been tested in females whom remain at higher risk of stroke injury after menopause. We tested remote ischemic perconditioning therapy (RIPerC) at 2 h after embolic stroke in ovariectomized (OVX) female mice with and without intravenous tissue plasminogen activator (IV-tPA) treatment. We assessed cerebral blood flow (CBF), neurobehavioral outcomes, infarction, hemorrhage, edema, and survival. RIPerC therapy with and without IV-tPA improved the CBF and neurobehavioral outcomes and reduced the infarction, hemorrhage, and edema significantly. Late IV-tPA alone at 4 h post-stroke neither improved the neurobehavior nor reduced the infarction but aggravated hemorrhage and mortality in OVX mice. RIPerC therapy prevented the increased mortality during late IV-tPA. Our study demonstrates for the first time that RIPerC therapy is effective in OVX females.
Collapse
Affiliation(s)
- Md Nasrul Hoda
- Department of Medical Laboratory, Imaging and Radiologic Sciences, Georgia Regents University, Augusta, GA USA
- Department of Neurology, Georgia Regents University, 1120 15th St, CA 1014, Augusta, GA 30912 USA
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA USA
- Charlie Norwood VA Medical Center, Augusta, GA USA
| | - Kanchan Bhatia
- Department of Medicine, Georgia Regents University, Augusta, GA USA
| | - Sherif S. Hafez
- Department of Physiology, Georgia Regents University, Augusta, GA USA
| | | | - Shahneela Siddiqui
- Department of Neurology, Georgia Regents University, 1120 15th St, CA 1014, Augusta, GA 30912 USA
| | - Adviye Ergul
- Department of Physiology, Georgia Regents University, Augusta, GA USA
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA USA
- Charlie Norwood VA Medical Center, Augusta, GA USA
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdul Abdulaziz University, PO Box 80216, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Susan C. Fagan
- Department of Neurology, Georgia Regents University, 1120 15th St, CA 1014, Augusta, GA 30912 USA
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA USA
- Charlie Norwood VA Medical Center, Augusta, GA USA
| | - David C. Hess
- Department of Neurology, Georgia Regents University, 1120 15th St, CA 1014, Augusta, GA 30912 USA
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA USA
| |
Collapse
|
36
|
Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS One 2014; 9:e102550. [PMID: 25036109 PMCID: PMC4103830 DOI: 10.1371/journal.pone.0102550] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
AIMS Epidemiological studies suggest that sex has a role in the pathogenesis of cardioembolic stroke. Since stroke is a vascular disease, identifying sexually dimorphic gene expression changes in blood leukocytes can inform on sex-specific risk factors, response and outcome biology. We aimed to examine the sexually dimorphic immune response following cardioembolic stroke by studying the differential gene expression in peripheral white blood cells. METHODS AND RESULTS Blood samples from patients with cardioembolic stroke were obtained at ≤3 hours (prior to treatment), 5 hours and 24 hours (after treatment) after stroke onset (n = 23; 69 samples) and compared with vascular risk factor controls without symptomatic vascular diseases (n = 23, 23 samples) (ANCOVA, false discovery rate p≤0.05, |fold change| ≥1.2). mRNA levels were measured on whole-genome Affymetrix microarrays. There were more up-regulated than down-regulated genes in both sexes, and females had more differentially expressed genes than males following cardioembolic stroke. Female gene expression was associated with cell death and survival, cell-cell signaling and inflammation. Male gene expression was associated with cellular assembly, organization and compromise. Immune response pathways were over represented at ≤3, 5 and 24 h after stroke in female subjects but only at 24 h in males. Neutrophil-specific genes were differentially expressed at 3, 5 and 24 h in females but only at 5 h and 24 h in males. CONCLUSIONS There are sexually dimorphic immune cell expression profiles following cardioembolic stroke. Future studies are needed to confirm the findings using qRT-PCR in an independent cohort, to determine how they relate to risk and outcome, and to compare to other causes of ischemic stroke.
Collapse
|
37
|
Abstract
Studies of sex effects on neurodevelopment have traditionally focused on animal models investigating hormonal influences on brain anatomy. However, more recent evidence suggests that sex chromosomes may also have direct upstream effects that act independently of hormones. Sex chromosome aneuploidies provide ideal models to examine this framework in humans, including Turner syndrome (TS), where females are missing one X-chromosome (45X), and Klinefelter syndrome (KS), where males have an additional X-chromosome (47XXY). As these disorders essentially represent copy number variants of the sex chromosomes, investigation of brain structure across these disorders allows us to determine whether sex chromosome gene dosage effects exist. We used voxel-based morphometry to investigate this hypothesis in a large sample of children in early puberty, to compare regional gray matter volumes among individuals with one (45X), two (typically developing 46XX females and 46XY males), and three (47XXY) sex chromosomes. Between-group contrasts of TS and KS groups relative to respective sex-matched controls demonstrated highly convergent patterns of volumetric differences with the presence of an additional sex chromosome being associated with relatively decreased parieto-occipital gray matter volume and relatively increased temporo-insular gray matter volumes. Furthermore, z-score map comparisons between TS and KS cohorts also suggested that this effect occurs in a linear dose-dependent fashion. We infer that sex chromosome gene expression directly influences brain structure in children during early stages of puberty, extending our understanding of genotype-phenotype mechanisms underlying sex differences in the brain.
Collapse
|
38
|
Cox-Limpens KEM, Gavilanes AWD, Zimmermann LJI, Vles JSH. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 2014; 1564:85-100. [PMID: 24713346 DOI: 10.1016/j.brainres.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2nd largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight into molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
Collapse
Affiliation(s)
- K E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - L J I Zimmermann
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - J S H Vles
- Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|
39
|
Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, Guida E, Evans MA, Miller AA, Arumugam TV, Drummond GR, Sobey CG. Sex-Dependent Effects of G Protein–Coupled Estrogen Receptor Activity on Outcome After Ischemic Stroke. Stroke 2014; 45:835-41. [DOI: 10.1161/strokeaha.113.001499] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background and Purpose—
Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein–coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that GPER activation may have a greater neuroprotective effect in males than in females after stroke.
Methods—
Vehicle (dimethyl sulfoxide), a GPER agonist (G-1, 30 μg/kg), or a GPER antagonist (G-15, 300 μg/kg) were administered alone or in combination to young or aged male mice, or young intact or ovariectomized female mice, 1 hour before or 3 hours after cerebral ischemia-reperfusion. Some mice were treated with a combination of G-1 and the pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-V
D
-OPh), 1 hour before stroke. We evaluated functional and histological end points of stroke outcome up to 72 hours after ischemia-reperfusion. In addition, apoptosis was examined using cleaved caspase-3 immunohistochemistry.
Results—
Surprisingly, G-1 worsened functional outcomes and increased infarct volume in males poststroke, in association with an increased expression of cleaved caspase-3 in peri-infarct neurons. These effects were blocked by G-15 or Q-V
D
-OPh. Conversely, G-15 improved functional outcomes and reduced infarct volume after stroke in males, whether given before or after stroke. In contrast to findings in males, G-1 reduced neurological deficit, apoptosis, and infarct volume in ovariectomized females, but had no significant effect in intact females.
Conclusions—
Future therapies for acute stroke could exploit the modulation of GPER activity in a sex-specific manner.
Collapse
Affiliation(s)
- Brad R.S. Broughton
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Vanessa H. Brait
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Hyun Ah Kim
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Seyoung Lee
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Hannah X. Chu
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Chantelle V. Gardiner-Mann
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Elizabeth Guida
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Megan A. Evans
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Alyson A. Miller
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Thiruma V. Arumugam
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Grant R. Drummond
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| | - Christopher G. Sobey
- From the Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (B.R.S.B., V.H.B., H.A.K., S.L., H.X.C., C.V.G.-M., E.G., M.A.E., A.A.M., G.R.D., C.G.S.); and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia (T.V.A.)
| |
Collapse
|
40
|
Lusardi TA, Murphy SJ, Phillips JI, Chen Y, Davis CM, Young JM, Thompson SJ, Saugstad JA. MicroRNA responses to focal cerebral ischemia in male and female mouse brain. Front Mol Neurosci 2014; 7:11. [PMID: 24574964 PMCID: PMC3920114 DOI: 10.3389/fnmol.2014.00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022] Open
Abstract
Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA) expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.
Collapse
Affiliation(s)
- Theresa A Lusardi
- Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Stephanie J Murphy
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Jay I Phillips
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Yingxin Chen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Jennifer M Young
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Simon J Thompson
- Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | - Julie A Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
41
|
Fairbanks SL, Vest R, Verma S, Traystman RJ, Herson PS. Sex stratified neuronal cultures to study ischemic cell death pathways. J Vis Exp 2013:e50758. [PMID: 24378980 DOI: 10.3791/50758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Collapse
Affiliation(s)
- Stacy L Fairbanks
- Department of Anesthesiology, University of Colorado School of Medicine
| | | | | | | | | |
Collapse
|
42
|
Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab 2013; 33:1355-61. [PMID: 23756694 PMCID: PMC3764377 DOI: 10.1038/jcbfm.2013.102] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
Cerebral stroke continues to be a major cause of death and the leading cause of long-term disability in developed countries. Evidence reviewed here suggests that gender influences various aspects of the clinical spectrum of ischemic stroke, in terms of influencing how a patients present with ischemic stroke through to how they respond to treatment. In addition, this review focuses on discussing the various pathologic mechanisms of ischemic stroke that may differ according to gender and compares how intrinsic and hormonal mechanisms may account for such gender differences. All clinical trials to date investigating putative neuroprotective treatments for ischemic stroke have failed, and it may be that our understanding of the injury cascade initiated after ischemic injury is incomplete. Revealing aspects of the pathophysiological consequences of ischemic stroke that are gender specific may enable gender relevant and effective neuroprotective strategies to be identified. Thus, it is possible to conclude that gender does, in fact, have an important role in ischemic stroke and must be factored into experimental and clinical investigations of ischemic stroke.
Collapse
|
43
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
44
|
NAD+ and nicotinamide: sex differences in cerebral ischemia. Neuroscience 2013; 237:223-31. [PMID: 23403179 DOI: 10.1016/j.neuroscience.2013.01.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by the activation of poly(ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. PURPOSE This study examined stroke-induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. METHODS Mice were subjected to middle cerebral artery occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation were assessed 6h after ischemia. In additional cohorts, Nicotinamide (500 mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24h after ischemia. RESULTS Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke-induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. CONCLUSIONS Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes.
Collapse
|
45
|
Ritzel RM, Capozzi LA, McCullough LD. Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm Behav 2013; 63:238-53. [PMID: 22561337 PMCID: PMC3426619 DOI: 10.1016/j.yhbeh.2012.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/05/2023]
Abstract
Stroke is the third leading cause of death and the primary cause of disability in the developed world. Experimental and clinical data indicate that stroke is a sexually dimorphic disease, with males demonstrating an enhanced intrinsic sensitivity to ischemic damage throughout most of their lifespan. The neuroprotective role of estrogen in the female brain is well established, however, estrogen exposure can also be deleterious, especially in older women. The mechanisms for this remain unclear. Our current understanding is based on studies examining estrogen as it relates to neuronal injury, yet cerebral ischemia also induces a robust sterile inflammatory response involving local and systemic immune cells. Despite the potent anti-inflammatory effects of estrogen, few studies have investigated the contribution of estrogen to sex differences in the inflammatory response to stroke. This review examines the potential role for estrogen-mediated immunoprotection in ischemic injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- University of Connecticut Health Center, Department of Neuroscience, Farmington, CT 06030, USA
| | | | | |
Collapse
|
46
|
Abstract
Epigenetic remodeling and modifications of chromatin structure by DNA methylation and histone modifications represent central mechanisms for the regulation of neuronal gene expression during brain development, higher-order processing, and memory formation. Emerging evidence implicates epigenetic modifications not only in normal brain function, but also in neuropsychiatric disorders. This review focuses on recent findings that disruption of chromatin modifications have a major role in the neurodegeneration associated with ischemic stroke and epilepsy. Although these disorders differ in their underlying causes and pathophysiology, they share a common feature, in that each disorder activates the gene silencing transcription factor REST (repressor element 1 silencing transcription factor), which orchestrates epigenetic remodeling of a subset of 'transcriptionally responsive targets' implicated in neuronal death. Although ischemic insults activate REST in selectively vulnerable neurons in the hippocampal CA1, seizures activate REST in CA3 neurons destined to die. Profiling the array of genes that are epigenetically dysregulated in response to neuronal insults is likely to advance our understanding of the mechanisms underlying the pathophysiology of these disorders and may lead to the identification of novel therapeutic strategies for the amelioration of these serious human conditions.
Collapse
|
47
|
Abstract
Women continue to be underrepresented in clinical trials, particularly in Phases I and II of experimental drug studies in spite of legislative guidelines in the USA, Canada, the European Union, Australia, and Japan requiring the inclusion of women in clinical trials. As such, women remain a vulnerable population subject to the adverse effects of pharmacological therapies. Thus, women experience higher rates of adverse drug reactions than do men and for women of reproductive age or who may be pregnant, therapeutic options may be limited. This chapter provides a brief history of inclusion of sex and gender as variables in clinical trials, summarizes governmental legislation for consideration of sex and gender in clinical trials and provides specific examples of drugs which have been withdrawn from the market because of side effects in women. Additional information related to sex and gender in preclinical testing, trial design, challenges to recruitment of women for clinical trials and statistical methods for analysis of data also is considered.
Collapse
|
48
|
Zuloaga KL, Swift SN, Gonzales RJ, Wu TJ, Handa RJ. The androgen metabolite, 5α-androstane-3β,17β-diol, decreases cytokine-induced cyclooxygenase-2, vascular cell adhesion molecule-1 expression, and P-glycoprotein expression in male human brain microvascular endothelial cells. Endocrinology 2012; 153:5949-60. [PMID: 23117931 PMCID: PMC3512076 DOI: 10.1210/en.2012-1316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
P-glycoprotein (Pgp), a multiple drug resistance transporter expressed by vascular endothelial cells, is a key component of the blood-brain barrier and has been shown to increase after inflammation. The nonaromatizable androgen, dihydrotestosterone (DHT), decreases inflammatory markers in vascular smooth muscle cells, independent of androgen receptor (AR) stimulation. The principal metabolite of DHT, 5α-androstane-3β,17β-diol (3β-diol), activates estrogen receptor (ER)β and similarly decreases inflammatory markers in vascular cells. Therefore, we tested the hypothesis that either DHT or 3β-diol decrease cytokine-induced proinflammatory mediators, vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2), to regulate Pgp expression in male primary human brain microvascular endothelial cells (HBMECs). Using RT-qPCR, the mRNAs for AR, ERα, and ERβ and steroid metabolizing enzymes necessary for DHT conversion to 3β-diol were detected in male HBMECs demonstrating that the enzymes and receptors for production of and responsiveness to 3β-diol are present. Western analysis showed that 3β-diol reduced COX-2 and Pgp expression; the effect on Pgp was inhibited by the ER antagonist, ICI-182,780. IL-1β-caused an increase in COX-2 and VCAM-1 that was reduced by either DHT or 3β-diol. 3β-diol also decreased cytokine-induced Pgp expression. ICI-182,780 blocked the effect of 3β-diol on COX-2 and VCAM-1, but not Pgp expression. Therefore, in cytokine-stimulated male HBMECs, the effect of 3β-diol on proinflammatory mediator expression is ER dependent, whereas its effect on Pgp expression is ER independent. These studies suggest a novel role of 3β-diol in regulating blood-brain barrier function and support the concept that 3β-diol can be protective against proinflammatory mediator stimulation.
Collapse
Affiliation(s)
- Kristen L Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Phoenix, AZ 85004-2157, USA
| | | | | | | | | |
Collapse
|
49
|
LU ZHONGQIAN, DENG YIJUN, LU JIANXIA. Effect of aloe polysaccharide on caspase-3 expression following cerebral ischemia and reperfusion injury in rats. Mol Med Rep 2012; 6:371-4. [DOI: 10.3892/mmr.2012.927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/24/2012] [Indexed: 11/06/2022] Open
|
50
|
Koss WA, Sadowski RN, Sherrill LK, Gulley JM, Juraska JM. Effects of ethanol during adolescence on the number of neurons and glia in the medial prefrontal cortex and basolateral amygdala of adult male and female rats. Brain Res 2012; 1466:24-32. [PMID: 22627163 DOI: 10.1016/j.brainres.2012.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/13/2012] [Accepted: 05/12/2012] [Indexed: 01/01/2023]
Abstract
Human adolescents often consume alcohol in a binge-like manner at a time when changes are occurring within specific brain structures, such as the medial prefrontal cortex (mPFC) and the basolateral nucleus of the amygdala (BLN). In particular, the number of neurons and glia is changing in both of these areas in the rat between adolescence and adulthood (Markham et al., 2007; Rubinow and Juraska, 2009). The current study investigated the effects of ethanol exposure during adolescence on the number of neurons and glia in the adult mPFC and BLN in Long-Evans male and female rats. Saline or 3g/kg ethanol was administered between postnatal days (P) 35-45 in a binge-like pattern, with 2days of injections followed by 1 day without an injection. Stereological analyses of the ventral mPFC (prelimbic and infralimbic areas) and the BLN were performed on brains from rats at 100 days of age. Neuron and glia densities were assessed with the optical disector and then multiplied by the volume to calculate the total number of neurons and glia. In the adult mPFC, ethanol administration during adolescence resulted in a decreased number of glia in males, but not females, and had no effect on the number of neurons. Adolescent ethanol exposure had no effects on glia or neuron number in the BLN. These results suggest that glia cells in the prefrontal cortex are particularly sensitive to binge-like exposure to ethanol during adolescence in male rats only, potentially due to a decrease in proliferation in males or protective mechanisms in females.
Collapse
Affiliation(s)
- W A Koss
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | | | | | | | |
Collapse
|