1
|
Fujii R, Nambu Y, Sawant Shirikant N, Furube E, Morita M, Yoshimura R, Miyata S. Neuronal regeneration in the area postrema of adult mouse medulla oblongata following glutamate-induced neuronal elimination. Neuroscience 2024; 563:188-201. [PMID: 39521321 DOI: 10.1016/j.neuroscience.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neural stem cells and/or progenitor cells (NSCs/NPCs) in the subventricular and subgranular zones of the adult mammal forebrain generate new neurons and are involved in partial repair after injury. Recently, NSCs/NPCs were identified in the area postrema (AP) of the medulla oblongata of the hindbrain. In this study, we used the properties of fenestrate capillaries to observe specific neuronal elimination in the AP of adult mice and investigated subsequent neuronal regeneration by neurogenesis. Subcutaneous administration of monosodium glutamate (MSG) induced prominent Fos expression in HuC/D+ neurons in the AP 2 h after administration. MSG administration caused a marked decrease in HuC/D+ neuronal density by neuronal death 3 to 21 days after administration, which recovered to the control level 35 days later. After MSG administration, the density of TUNEL+ dying neurons and phagocytic microglia surrounding or engulfing neurons increased. Within 7 days of MSG administration, the number of BrdU+ Sox2+ and BrdU+ Math1+ cells increased markedly, and at least the BrdU+ Math1+ cells similarly increased for the next following 7 days. A remarkable number of HuC/D+ neurons with BrdU+ nuclei were observed 35 days after MSG administration. This study reveals that neurogenesis occurs in the AP of adult mice, recovering and maintaining normal neuronal density after neuronal death.
Collapse
Affiliation(s)
- Rena Fujii
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nitin Sawant Shirikant
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy, Asahikawa Medical University School of Medicine, Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
2
|
Furube E, Ohgidani M, Tanaka Y, Miyata S, Yoshida S. A high-fat diet influences neural stem and progenitor cell environment in the medulla of adult mice. Neuroscience 2024; 559:64-76. [PMID: 39209104 DOI: 10.1016/j.neuroscience.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
It has been widely established that neural stem cells (NSCs) exist in the adult mammalian brain. The area postrema (AP) and the ependymal cell layer of the central canal (CC) in the medulla were recently identified as NSC niches. There are two types of NSCs: astrocyte-like cells in the AP and tanycyte-like cells in the CC. However, limited information is currently available on the characteristics and functional significance of these NSCs and their progeny in the AP and CC. The AP is a part of the dorsal vagal complex (DVC), together with the nucleus of the solitary tract (Sol) and the dorsal motor nucleus of the vagus (10 N). DVC is the primary site for the integration of visceral neuronal and hormonal cues that act to inhibit food intake. Therefore, we examined the effects of high-fat diet (HFD) on NSCs and progenitor cells in the AP and CC. Eight-week-old male mice were fed HFD for short (1 week) and long periods (4 weeks). To detect proliferating cells, mice consecutively received intraperitoneal injections of BrdU for 7 days. Brain sections were processed with immunohistochemistry using various cell markers and BrdU antibodies. Our data demonstrated that adult NSCs and neural progenitor cells (NPCs) in the medulla responded more strongly to short-term HFD than to long-term HFD. HFD increased astrocyte density in the Sol and 10 N, and increased microglial/macrophage density in the AP and Sol. Furthermore, long-term HFD induced mild inflammation in the medulla, suggesting that it affected the proliferation of NSCs and NPCs.
Collapse
Affiliation(s)
- Eriko Furube
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.
| | - Masahiro Ohgidani
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Yusuke Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
3
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
4
|
Cabrera Zapata LE, Cambiasso MJ, Arevalo MA. Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner. Front Cell Dev Biol 2022; 10:937875. [PMID: 36268511 PMCID: PMC9577230 DOI: 10.3389/fcell.2022.937875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.
Collapse
Affiliation(s)
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
A Short-Term Sucrose Diet Impacts Cell Proliferation of Neural Precursors in the Adult Hypothalamus. Nutrients 2022; 14:nu14132564. [PMID: 35807744 PMCID: PMC9268421 DOI: 10.3390/nu14132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Radial glia-like cells in the hypothalamus and dorsal vagal complex are neural precursors (NPs) located near subventricular organs: median eminence and area postrema, respectively. Their strategic position can detect blood-borne nutrients, hormones, and mitogenic signals. Hypothalamic NPs increase their proliferation with a mechanism that involves hemichannel (HC) activity. NPs can originate new neurons in response to a short-term high-fat diet as a compensatory mechanism. The effects of high carbohydrate Western diets on adult neurogenesis are unknown. Although sugars are usually consumed as sucrose, more free fructose is now incorporated into food items. Here, we studied the proliferation of both types of NPs in Sprague Dawley rats exposed to a short-term high sucrose diet (HSD) and a control diet. In tanycyte cultures, we evaluated the effects of glucose and fructose and a mix of both hexoses on HC activity. In rats fed an HSD, we observed an increase in the proliferative state of both precursors. Glucose, either in the presence or absence of fructose, but not fructose alone, induced in vitro HC activity. These results should broaden the understanding of the nutrient monitoring capacity of NPs in reacting to changes in feeding behavior, specifically to high sugar western diets.
Collapse
|
6
|
Corales LG, Inada H, Hiraoka K, Araki S, Yamanaka S, Kikkawa T, Osumi N. The subcommissural organ maintains features of neuroepithelial cells in the adult mouse. J Anat 2022; 241:820-830. [PMID: 35638289 PMCID: PMC9358730 DOI: 10.1111/joa.13709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2/M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.
Collapse
Affiliation(s)
- Laarni Grace Corales
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shun Araki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinya Yamanaka
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Guselnikova VV, Razenkova VA, Sufieva DA, Korzhevskii DE. Microglia and putative macrophages of the subfornical organ: structural and functional features. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ is an important regulator of water-salt metabolism and energy balance of the body, involved in the control of the cardiovascular system and immune regulation. The organ comprises several cell populations, among which microglia and macrophages remain uncharacterized. This study aimed at structural, cytochemical, and functional characterization of microglia and macrophages of the subfornical organ in rats. Brain specimens were collected from mature male Wistar rats (n = 8). Microglia and macrophages were revealed by immunostaining with poly- and monoclonal antibodies against calcium-binding protein Iba1 and lysosomal protein CD68; the slides were examined by light and confocal laser microscopy. The study provides a comprehensive morphological characterization of microglial cells and macrophages of the subfornical organ. We demonstrate that the majority of Iba1-expressing cells in this area of the brain are microglial cells, not macrophages. Pre-activated state of the subfornical organ microglia may reflect structural and functional features of this organ and specific functions of local microglia. Subependymal microglial cells, the processes of which penetrate into the third ventricle of the brain, constitute a distinct subpopulation among the Iba1-expressing cells of the subfornical organ. Apart from microglial elements, the subfornical organ contains few tissue macrophages with characteristic strong expression of CD68 accompanied by undetectable or weak expression of Iba1.
Collapse
Affiliation(s)
- VV Guselnikova
- Institute of Experimental Medicine, St Petersburg, Russia
| | - VA Razenkova
- Institute of Experimental Medicine, St Petersburg, Russia
| | - DA Sufieva
- Institute of Experimental Medicine, St Petersburg, Russia
| | - DE Korzhevskii
- Institute of Experimental Medicine, St Petersburg, Russia
| |
Collapse
|
8
|
Dou Z, Son JE, Hui CC. Irx3 and Irx5 - Novel Regulatory Factors of Postnatal Hypothalamic Neurogenesis. Front Neurosci 2021; 15:763856. [PMID: 34795556 PMCID: PMC8593166 DOI: 10.3389/fnins.2021.763856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamus is a brain region that exhibits highly conserved anatomy across vertebrate species and functions as a central regulatory hub for many physiological processes such as energy homeostasis and circadian rhythm. Neurons in the arcuate nucleus of the hypothalamus are largely responsible for sensing of peripheral signals such as leptin and insulin, and are critical for the regulation of food intake and energy expenditure. While these neurons are mainly born during embryogenesis, accumulating evidence have demonstrated that neurogenesis also occurs in postnatal-adult mouse hypothalamus, particularly in the first two postnatal weeks. This second wave of active neurogenesis contributes to the remodeling of hypothalamic neuronal populations and regulation of energy homeostasis including hypothalamic leptin sensing. Radial glia cell types, such as tanycytes, are known to act as neuronal progenitors in the postnatal mouse hypothalamus. Our recent study unveiled a previously unreported radial glia-like neural stem cell (RGL-NSC) population that actively contributes to neurogenesis in the postnatal mouse hypothalamus. We also identified Irx3 and Irx5, which encode Iroquois homeodomain-containing transcription factors, as genetic determinants regulating the neurogenic property of these RGL-NSCs. These findings are significant as IRX3 and IRX5 have been implicated in FTO-associated obesity in humans, illustrating the importance of postnatal hypothalamic neurogenesis in energy homeostasis and obesity. In this review, we summarize current knowledge regarding postnatal-adult hypothalamic neurogenesis and highlight recent findings on the radial glia-like cells that contribute to the remodeling of postnatal mouse hypothalamus. We will discuss characteristics of the RGL-NSCs and potential actions of Irx3 and Irx5 in the regulation of neural stem cells in the postnatal-adult mouse brain. Understanding the behavior and regulation of neural stem cells in the postnatal-adult hypothalamus will provide novel mechanistic insights in the control of hypothalamic remodeling and energy homeostasis.
Collapse
Affiliation(s)
- Zhengchao Dou
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Nambu Y, Ohira K, Morita M, Yasumoto H, Kurganov E, Miyata S. Effects of leptin on proliferation of astrocyte- and tanycyte-like neural stem cells in the adult mouse medulla oblongata. Neurosci Res 2021; 173:44-53. [PMID: 34058263 DOI: 10.1016/j.neures.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Astrocyte- and tanycyte-like neural stem cells (NSCs) were recently detected in the area postrema (AP) and central canal (CC) of the adult medulla oblongata, respectively. The present study aimed to examine dynamical behaviors of the astrocyte- and tanycyte-like NSCs of the mouse medulla oblongata to leptin. The neurosphere assay identified astrocytes in the AP and tanycytes in the CC as NSCs based on their self-renewing neurospherogenic potential. Both NSCs in neurosphere cultures were multipotent cells that generate astrocytes, oligodendrocytes, and neurons. Astrocyte-like NSCs actively proliferated and tanycyte-like NSCs were quiescent under physiologically-relevant in vivo conditions. Chronic leptin treatment promoted proliferation of astrocyte-like NSCs in the AP both in vitro and in vivo. Leptin receptors were expressed in astrocyte-like, but not tanycyte-like NSCs. Food deprivation significantly diminished proliferation of astrocyte-like NSCs. Therefore, the present study indicates that proliferation of astrocyte-like, but not tanycyte-like NSCs is regulated by nutritional conditions.
Collapse
Affiliation(s)
- Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hiroki Yasumoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
10
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
11
|
Nambu Y, Horie K, Kurganov E, Miyata S. Chronic running and a corticosterone treatment attenuate astrocyte-like neural stem cell proliferation in the area postrema of the adult mouse brain. Neurosci Lett 2021; 748:135732. [PMID: 33592302 DOI: 10.1016/j.neulet.2021.135732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/25/2023]
Abstract
The discovery of neural stem cells (NSCs) in the adult mammalian brain has provided insights into an extra level of brain plasticity. The proliferation and differentiation of NSCs is modulated by various physiological, pathological, and pharmacological stimuli. NSCs were recently detected in the medulla oblongata of adult rodents and humans; however, their functional significance currently remains unknown. In the present study, we examined the effects of chronic wheel-running and a corticosterone (CORT) treatment on the proliferation of astrocyte-like NSCs in the area postrema (AP) and dentate gyrus (DG). Chronic running significantly decreased the number of bromodeoxyuridine (BrdU)-labeled astrocyte-like NSCs in the AP of adult mice, but markedly increased that of BrdU+ NSCs/neural progenitor cells in the DG. The chronic CORT treatment markedly reduced the number of BrdU+ astrocyte-like NSCs in the AP, but not in the DG. These results demonstrate that the proliferation of astrocyte-like NSCs in the medulla oblongata is decreased by chronic running and a CORT treatment.
Collapse
Affiliation(s)
- Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kohei Horie
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
12
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Neural stem cell phenotype of tanycyte-like ependymal cells in the circumventricular organs and central canal of adult mouse brain. Sci Rep 2020; 10:2826. [PMID: 32071335 PMCID: PMC7029029 DOI: 10.1038/s41598-020-59629-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Tanycyte is a subtype of ependymal cells which extend long radial processes to brain parenchyma. The present study showed that tanycyte-like ependymal cells in the organum vasculosum of the lamina terminalis, subfornical organ and central canal (CC) expressed neural stem cell (NSC) marker nestin, glial fibrillar acidic protein and sex determining region Y. Proliferation of these tanycyte-like ependymal cells was promoted by continuous intracerebroventricular infusion of fibroblast growth factor-2 and epidermal growth factor. Tanycytes-like ependymal cells in the CC are able to form self-renewing neurospheres and give rise mostly to new astrocytes and oligodendrocytes. Collagenase-induced small medullary hemorrhage increased proliferation of tanycyte-like ependymal cells in the CC. These results demonstrate that these tanycyte-like ependymal cells of the adult mouse brain are NSCs and suggest that they serve as a source for providing new neuronal lineage cells upon brain damage in the medulla oblongata.
Collapse
|
14
|
Kawai S, Kurganov E, Miyata S. Transient increase of microglial C1q expression in the circumventricular organs of adult mouse during LPS-induced inflammation. Cell Biochem Funct 2020; 38:392-400. [PMID: 31904875 DOI: 10.1002/cbf.3477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/14/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022]
Abstract
The circumventricular organs (CVOs) are the brain regions that lack the blood-brain barrier and allow free entry of blood-derived molecules, offering specialized niche to initiate rapid and early neuroinflammatory responses in the brain. Complement component 1q (C1q) is shown to be the first recognition component of the complement pathway and has a crucial function in the brain under pathological conditions. In the present study, we found that C1q expression in CX3CR1-positive microglia was increased in the CVOs and their neighbouring brain regions of adult mice at 1 day after a single administration of 1 mg/kg lipopolysaccharide (LPS), whereas it returned to control levels at 3 days after LPS stimulation. C1q expression was also seen to localize at synapsin-positive presynaptic axonal terminals in various brain regions. Thus, the present study demonstrates a transient upregulation of microglial C1q expression in the CVOs and their adjacent brain regions, indicating that a transient upregulation of C1q is possibly concerned with physiological responses at early phase of brain inflammation. SIGNIFICANCE OF THE STUDY: The circumventricular organs (CVOs) are specialized brain regions that lack the blood-brain barrier (BBB) and initiate neuroinflammatory responses in the brains. The present study showed that the expression of complement protein C1q was highly increased in microglia of the CVOs and their adjacent brain regions. Moreover, C1q expression was observed to localize specifically at presynaptic axonal terminals in the CVOs and their neighbouring brain regions. Thus, the present study indicates that C1q is possibly correlated with physiological responses at early phase of brain inflammation.
Collapse
Affiliation(s)
- Shintaro Kawai
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
15
|
Abstract
The blood-brain barrier (BBB) protects the vertebrate central nervous system from harmful blood-borne, endogenous and exogenous substances to ensure proper neuronal function. The BBB describes a function that is established by endothelial cells of CNS vessels in conjunction with pericytes, astrocytes, neurons and microglia, together forming the neurovascular unit (NVU). Endothelial barrier function is crucially induced and maintained by the Wnt/β-catenin pathway and requires intact NVU for proper functionality. The BBB and the NVU are characterized by a specialized assortment of molecular specializations, providing the basis for tightening, transport and immune response functionality.The present chapter introduces state-of-the-art knowledge of BBB structure and function and highlights current research topics, aiming to understanding in more depth the cellular and molecular interactions at the NVU, determining functionality of the BBB in health and disease, and providing novel potential targets for therapeutic BBB modulation. Moreover, we highlight recent advances in understanding BBB and NVU heterogeneity within the CNS as well as their contribution to CNS physiology, such as neurovascular coupling, and pathophysiology, is discussed. Finally, we give an outlook onto new avenues of BBB research.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio Pulmonary System (CPI), Partner Site Frankfurt, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
16
|
Kálmán M, Oszwald E, Pócsai K. Three-plane description of astroglial populations of OVLT subdivisions in rat: Tanycyte connections to distant parts of third ventricle. J Comp Neurol 2019; 527:2793-2812. [PMID: 31045238 DOI: 10.1002/cne.24707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/07/2022]
Abstract
This study demonstrates glial and gliovascular markers of organon vasculosum laminae terminalis (OVLT) in three planes. The distribution of glial markers displayed similarities to the subfornical organ. There was an inner part with vimentin- and nestin-immunopositive glia whereas GFAP and the water-channel aquaporin 4 were found at the periphery. This separation indicates different functions of the two regions. The presence of nestin may indicate stem cell-capabilities whereas aquaporin 4 has been reported to promote the osmoreceptor function. Glutamine synthetase immunoreactivity was sparse like in the area postrema and subfornical organ. The laminin and β-dystroglycan immunolabelings altered along the vessels such as in the subfornical organ indicating altering gliovascular relations. The different subdivisions of OVLT received glial processes of different origins. The posterior periventricular zone contained short vimentin-immunopositive processes from the ependyma of the adjacent surface of the third ventricle. The lateral periventricular zone received forceps-like process systems from the anterolateral part of the third ventricle. Most interestingly, the "dorsal cap" received a mixed group of long GFAP- and vimentin-immunopositive processes from a distant part of the third ventricle. The processes may have two functions: a guidance for newly produced cells like radial glia in immature brain and/or a connection between distant parts of the third ventricle and OVLT.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Károly Pócsai
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Korzh V, Kondrychyn I. Origin and development of circumventricular organs in living vertebrate. Semin Cell Dev Biol 2019; 102:13-20. [PMID: 31706729 DOI: 10.1016/j.semcdb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
The circumventricular organs (CVOs) function by mediating chemical communication between blood and brain across the blood-brain barrier. Their origin and developmental mechanisms involved are not understood in enough detail due to a lack of molecular markers common for CVOs. These rather small and inconspicuous organs are found in close vicinity to the third and fourth brain ventricles suggestive of ancient evolutionary origin. Recently, an integrated approach based on analysis of CVOs development in the enhancer-trap transgenic zebrafish led to an idea that almost all of CVOs could be highlighted by GFP expression in this transgenic line. This in turn suggested that an enhancer along with a set of genes it regulates may illustrate the first common element of developmental regulation of CVOs. It seems to be related to a mechanism of suppression of the canonical Wnt/ β-catenin signaling that functions in development of fenestrated capillaries typical for CVOs. Based on that observation the common molecular elements of the putative developmental mechanism of CVOs will be discussed in this review.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | |
Collapse
|
18
|
Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, Mazwi NL, Camargo EC, Black-Schaffer R, Fregni F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Front Neurosci 2017; 11:637. [PMID: 29200995 PMCID: PMC5696576 DOI: 10.3389/fnins.2017.00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of the neuromodulation not only because of their anti-depressive effects but also due to their ability to promote plasticity and enhance motor recovery in patients with stroke. Recent studies showed that fluoxetine promotes motor recovery after stroke through its effects on the serotonergic system enhancing motor outputs and facilitating long term potentiation, key factors in motor neural plasticity. However, little is known in regards of the exact mechanisms underlying these effects and several aspects of it remain poorly understood. In this manuscript, we discuss evidence supporting the hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and that this modulation enhances reorganization and reestablishment of excitatory-inhibitory control; these effects play a key role in learning induced plasticity in neural circuits involved in the promotion of motor recovery after stroke. This discussion aims to provide important insights and rationale for the development of novel strategies for stroke motor rehabilitation.
Collapse
Affiliation(s)
- Camila B. Pinto
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Faddi G. Saleh Velez
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Fernanda Lopes
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Polyana V. de Toledo Piza
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Severe Patients, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Qing M. Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Nicole L. Mazwi
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Erica C. Camargo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Randie Black-Schaffer
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
19
|
Takagi S, Furube E, Nakano Y, Morita M, Miyata S. Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol 2017; 331:74-86. [PMID: 29107327 DOI: 10.1016/j.jneuroim.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Microglia are the primary resident immune cells of the brain parenchyma and transform into the amoeboid form in the "activated state" under pathological conditions from the ramified form in the "resting state" under physiologically healthy conditions. In the present study, we found that microglia in the circumventricular organs (CVOs) of adult mice displayed the amoeboid form with fewer branched cellular processes even under normal conditions; however, those in other brain regions showed the ramified form, which is characterized by well-branched and dendritic cellular processes. Moreover, microglia in the CVOs showed the strong protein expression of the M1 markers CD16/32 and CD86 and M2 markers CD206 and Ym1 without any pathological stimulation. Thus, the present results indicate that microglia in the CVOs of adult mice are morphologically and functionally activated under normal conditions, possibly due to the specialized features of the CVOs, namely, the entry of blood-derived molecules into parenchyma through fenestrated capillaries and the presence of neural stem cells.
Collapse
Affiliation(s)
- Shohei Takagi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
20
|
Recabal A, Caprile T, García-Robles MDLA. Hypothalamic Neurogenesis as an Adaptive Metabolic Mechanism. Front Neurosci 2017; 11:190. [PMID: 28424582 PMCID: PMC5380718 DOI: 10.3389/fnins.2017.00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
In the adult brain, well-characterized neurogenic niches are located in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampus. In both regions, neural precursor cells (NPCs) share markers of embryonic radial glia and astroglial cells, and in vitro clonal expansion of these cells leads to neurosphere formation. It has also been more recently demonstrated that neurogenesis occurs in the adult hypothalamus, a brain structure that integrates peripheral signals to control energy balance and dietary intake. The NPCs of this region, termed tanycytes, are ependymal-glial cells, which comprise the walls of the infundibular recess of the third ventricle and contact the median eminence. Thus, tanycytes are in a privileged position to detect hormonal, nutritional and mitogenic signals. Recent studies reveal that in response to nutritional signals, tanycytes are capable of differentiating into orexigenic or anorexigenic neurons, suggesting that these cells are crucial for control of feeding behavior. In this review, we discuss evidence, which suggests that hypothalamic neurogenesis may act as an additional adaptive mechanism in order to respond to changes in diet.
Collapse
Affiliation(s)
- Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile.,Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Teresa Caprile
- Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - María de Los Angeles García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| |
Collapse
|
21
|
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47. [DOI: 10.1016/j.jconrel.2016.05.044] [Citation(s) in RCA: 917] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
|
22
|
Liberini CG, Borner T, Boyle CN, Lutz TA. The satiating hormone amylin enhances neurogenesis in the area postrema of adult rats. Mol Metab 2016; 5:834-843. [PMID: 27688997 PMCID: PMC5034493 DOI: 10.1016/j.molmet.2016.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Adult neurogenesis in the subgranular zone and subventricular zone is generally accepted, but its existence in other brain areas is still controversial. Circumventricular organs, such as the area postrema (AP) have recently been described as potential neurogenic niches in the adult brain. The AP is the major site of action of the satiating hormone amylin. Amylin has been shown to promote the formation of neuronal projections originating from the AP in neonatal rodents but the role of amylin in adult neurogenesis remains unknown. METHODS To test this, we first performed an RNA-sequencing of the AP of adult rats acutely injected with either amylin (20 μg/kg), amylin plus the amylin receptor antagonist AC187 (500 μg/kg) or vehicle. Second, animals were subcutaneously equipped with minipumps releasing either amylin (50 μg/kg/day) or vehicle for 3 weeks to assess cell proliferation and differentiation with the 5'-bromo-2-deoxyuridine (BrdU) technique. RESULTS Acute amylin injections affected genes involved in pathways and processes that control adult neurogenesis. Amylin consistently upregulated NeuroD1 transcript and protein in the adult AP, and this effect was blocked by the co-administration of AC187. Further, chronic amylin treatment increased the number of newly proliferated AP-cells and significantly promoted their differentiation into neurons rather than astrocytes. CONCLUSION Our findings revealed a novel role of the satiating hormone amylin in promoting neurogenesis in the AP of adult rats.
Collapse
Key Words
- AP, area postrema
- Adult neurogenesis
- Amylin
- Area postrema
- BrdU
- BrdU, 5′-bromo-2-deoxyuridine
- CR, calretinin
- CTR, calcitonin receptor
- CVO, circumventricular organs
- Circumventricular organs
- ERK1/2, extracellular signal-regulated kinase 1 and 2
- EphRs, ephrin receptors
- FDR, false discovery rate
- GO, gene ontology
- ME, median eminence
- NGS, next generation sequencing
- NSC, neural stem cells
- NeuroD, neuronal differentiation
- NeuroD1, neuronal differentiation-1
- RAMP, receptor activity-modifying protein
- Wnt, Wingless-Type MMTV Integration Site Family
- bHLH, basic helix-loop-helix
Collapse
Affiliation(s)
- Claudia G Liberini
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland; Zurich Centre for Clinical Studies, Vetsuisse Faculty University of Zurich, 8057 Zurich, Switzerland
| | - Tito Borner
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci 2016; 10:289. [PMID: 27445662 PMCID: PMC4921504 DOI: 10.3389/fnins.2016.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating exogenous and, probably, endogenous CNTF.
Collapse
Affiliation(s)
- Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
- Center of Obesity, Università Politecnica delle Marche-United HospitalsAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
24
|
Miyata S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 2015; 9:390. [PMID: 26578857 PMCID: PMC4621430 DOI: 10.3389/fnins.2015.00390] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of which affect vascular permeability. Thus, recent findings advocate novel concepts for the CVOs, which have the dynamic features of vascular and parenchymal tissues.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
25
|
Fukushima S, Nishikawa K, Furube E, Muneoka S, Ono K, Takebayashi H, Miyata S. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation. Brain Res 2015; 1627:52-69. [PMID: 26385416 DOI: 10.1016/j.brainres.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/27/2023]
Abstract
Evidence have been accumulated that continuous oligodendrogenesis occurs in the adult mammalian brain. The fornix, projection and commissure pathway of hippocampal neurons, carries signals from the hippocampus to other parts of the brain and has critical role in memory and learning. However, basic characterization of adult oligodendrogenesis in this brain region is not well understood. In the present study, therefore, we aimed to examine the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) and the effect of acute inflammatory stimulation on oligodendrogenesis in the fornix of adult mouse. We demonstrated the proliferation of OPCs and a new generation of mature oligodendrocytes by using bromodeoxyuridine and Ki67 immunohistochemistry. Oligodendrogenesis of adult fornix was also demonstrated by using oligodendrocyte transcription factor 2 transgenic mouse. A single systemic administration of lipopolysaccharide (LPS) attenuated proliferation of OPCs in the fornix together with reduced proliferation of hippocampal neural stem/progenitor cells. Time course analysis showed that a single administration of LPS attenuated the proliferation of OPCs during 24-48 h. On the other hand, consecutive administration of LPS did not suppress proliferation of OPCs. The treatment of LPS did not affect differentiation of OPCs into mature oligodendrocytes. Treatment of a microglia inhibitor minocycline significantly attenuated basal proliferation of OPCs under normal condition. In conclusion, the present study indicates that continuous oligodendrogenesis occurs and a single administration of LPS transiently attenuates proliferation of OPCs without changing differentiation in the fornix of the adult mouse brains.
Collapse
Affiliation(s)
- Shohei Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazunori Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiori Muneoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Shimogamohangicho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
26
|
Furube E, Morita M, Miyata S. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res 2015; 362:347-65. [PMID: 25994374 DOI: 10.1007/s00441-015-2201-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
Although evidence has accumulated that neurogenesis and gliogenesis occur in the subventricular zone (SVZ) and subgranular zone (SGZ) of adult mammalian brains, recent studies indicate the presence of neural stem cells (NSCs) in adult brains, particularly the circumventricular regions. In the present study, we aimed to determine characterization of NSCs and their progenitor cells in the sensory circumventricular organs (CVOs), including organum vasculosum of the lamina terminalis, subfornical organ, and area postrema of adult mouse. There were two types of NSCs: tanycyte-like ependymal cells and astrocyte-like cells. Astrocyte-like NSCs proliferated slowly and oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) actively divided. Molecular marker protein expression of NSCs and their progenitor cells were similar to those reported in the SVZ and SGZ, except that astrocyte-like NSCs expressed S100β. These circumventricular NSCs possessed the capacity to give rise to oligodendrocytes and sparse numbers of neurons and astrocytes in the sensory CVOs and adjacent brain regions. The inhibition of vascular endothelial growth factor (VEGF) signaling by using a VEGF receptor-associated tyrosine kinase inhibitor AZD2171 largely suppressed basal proliferation of OPCs. A single systemic administration of lipopolysaccharide attenuated proliferation of OPCs and induced remarkable proliferation of microglia. The present study indicates that sensory circumventricular NSCs provide new neurons and glial cells in the sensory CVOs and adjacent brain regions.
Collapse
Affiliation(s)
- Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|
27
|
Fukushima S, Furube E, Itoh M, Nakashima T, Miyata S. Robust increase of microglia proliferation in the fornix of hippocampal axonal pathway after a single LPS stimulation. J Neuroimmunol 2015. [PMID: 26198916 DOI: 10.1016/j.jneuroim.2015.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microglia are resident immunocompetent cells having important roles in innate immunity in the brains. In the present study, we found that a single lipopolysaccharide (LPS) administration significantly increased microglial proliferation in the fornix and dentate gyrus (DG) but not the cerebral cortex and corpus callosum of adult mice. LPS-induced microglial proliferation was especially robust at the white matter of the fornix. The density of microglia increased in the fornix and DG for roughly one week and returned to basal levels at least 20days after a single LPS administration. Consecutive LPS administration did not induce such dramatic increase of microglial proliferation in the fornix. The inhibition of vascular endothelial growth factor signaling by AZD2171 largely suppressed LPS-induced increase of microglial proliferation in the fornix. In conclusion, the present study indicates that the hippocampal neuronal system has a higher proliferative microglial capability against LPS-induced inflammatory administration compared with other brain regions.
Collapse
Affiliation(s)
- Shohei Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshihiro Nakashima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
28
|
Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain. Cell Tissue Res 2015; 359:865-84. [DOI: 10.1007/s00441-014-2080-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
|
29
|
Abstract
BACKGROUND Chronic treatment with antidepressants has been shown to enhance neurogenesis in the adult mammalian brain. Although this effect was initially reported to be restricted to the hippocampus, recent work has suggested that fluoxetine, a selective serotonin reuptake inhibitor, also promotes neurogenesis in the cortex. However, whether antidepressants target neural progenitor cells in other brain regions has not been examined. METHODS Here, we used BrdU labeling and immunohistochemistry with a transgenic mouse line in which nestin+ neural progenitor cells can be inducibly labeled with the fluorescent protein, Tomato, following tamoxifen administration. We investigated the effects of chronic fluoxetine on cell proliferation and nestin+ progenitor cells in periventricular areas in the medial hypothalamus and medial habenula, two brain areas involved in stress and anxiety responses. RESULTS Our data provide the first in vivo evidence that fluoxetine promotes cell proliferation and neurogenesis and increases the mRNA levels of BDNF in the hypothalamus and habenula. CONCLUSIONS By identifying novel cellular targets of fluoxetine, our results may provide new insight into the mechanisms underlying antidepressant responses.
Collapse
Affiliation(s)
- Benjamin D Sachs
- Department of Cell Biology, Duke University Medical Center, Durham, NC (Drs Sachs and Caron); Department of Neurobiology, Duke University Medical Center, Durham, NC (Dr Caron)
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC (Drs Sachs and Caron); Department of Neurobiology, Duke University Medical Center, Durham, NC (Dr Caron).
| |
Collapse
|
30
|
Nakano Y, Furube E, Morita S, Wanaka A, Nakashima T, Miyata S. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol 2015; 278:144-58. [DOI: 10.1016/j.jneuroim.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 12/26/2022]
|
31
|
Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 2014; 26:753-60. [PMID: 25131689 DOI: 10.1111/jne.12191] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 01/07/2023]
Abstract
The central regulation of energy balance relies on the ability of the brain to promptly and efficiently sense variations of metabolic state. To achieve this, circulating hormonal and metabolic signals have to cross the blood-brain interface, where unusual glial cells named tanycytes have been described to play a key role in this process. Tanycytes are specialised polarised ependymoglial cells that line the floor of the third ventricle and send a single process to contact hypothalamic neurones and blood vessels. Although their role in the regulation of energy balance via the modulation of neuronal activity or their chemosensitivity has been already described, recent studies ascribe a new function to tanycytes in the regulation of energy homeostasis as a result of their capacity to regulate the access of metabolic signals to the hypothalamus. This review discusses the peculiar place of tanycytes within the blood-hypothalamus interface, as well as a striking capacity to remodel their own interface to ensure an adaptive metabolic response to energy imbalances.
Collapse
Affiliation(s)
- F Langlet
- Inserm, Jean-Pierre Aubert Research Centre, U837, Development and Plasticity of the Postnatal Brain, Lille, France; UDSL, School of Medicine, Lille, France; Université de Lille, Institut de Médecine Prédictive et de Recherche Thérapeutique, Lille, France
| |
Collapse
|
32
|
Balthazart J, Ball GF. Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 2014; 522:4100-20. [PMID: 25131458 DOI: 10.1002/cne.23661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU.
Collapse
|
33
|
Lee DA, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci 2014; 8:157. [PMID: 24982613 PMCID: PMC4056383 DOI: 10.3389/fnins.2014.00157] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/26/2014] [Indexed: 11/26/2022] Open
Abstract
The hypothalamus is the central regulator of a broad range of homeostatic and instinctive physiological processes, such as the sleep-wake cycle, food intake, and sexually dimorphic behaviors. These behaviors can be modified by various environmental and physiological cues, although the molecular and cellular mechanisms that mediate these effects remain poorly understood. Recently, it has become clear that both the juvenile and adult hypothalamus exhibit ongoing neurogenesis, which serve to modify homeostatic neural circuitry. In this report, we share new findings on the contributions of sex-specific and dietary factors to regulating neurogenesis in the hypothalamic mediobasal hypothalamus, a recently identified neurogenic niche. We report that high fat diet (HFD) selectively activates neurogenesis in the median eminence (ME) of young adult female but not male mice, and that focal irradiation of the ME in HFD-fed mice reduces weight gain in females but not males. These results suggest that some physiological effects of high fat diet are mediated by the stimulation of ME neurogenesis in a sexually dimorphic manner. We discuss these results in the context of recent advances in understanding the cellular and molecular mechanisms that regulate neurogenesis in postnatal and adult hypothalamus.
Collapse
Affiliation(s)
- Daniel A Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Division of Biology and Biomedical Engineering, California Institute of Technology Pasadena, CA, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Thomas Pak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Juan Salvatierra
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Susan Aja
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
34
|
Sharif A, Ojeda SR, Prevot V. Neurogenesis and Gliogenesis in the Postnatal Hypothalamus: A New Level of Plasticity for the Regulation of Hypothalamic Function? ENDOGENOUS STEM CELL-BASED BRAIN REMODELING IN MAMMALS 2014. [DOI: 10.1007/978-1-4899-7399-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Abstract
During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
36
|
Morita S, Hourai A, Miyata S. Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation. Cell Biochem Funct 2013; 32:51-61. [PMID: 23629811 DOI: 10.1002/cbf.2971] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) is a barrier that prevents free access of blood-derived substances to the brain through the tight junctions and maintains a specialized brain environment. Circumventricular organs (CVOs) lack the typical BBB. The fenestrated vasculature of the sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows parenchyma cells to sense a variety of blood-derived information, including osmotic ones. In the present study, we utilized immunohistochemistry to examine changes in the expression of NG2 and platelet-derived growth factor receptor beta (PDGFRB) in the OVLT, SFO and AP of adult mice during chronic osmotic stimulation. The expression of NG2 and PDGFRB was remarkably prominent in pericytes, although these angiogenesis-associated proteins are highly expressed at pericytes of developing immature vasculature. The chronic salt loading prominently increased the expression of NG2 in the OVLT and SFO and that of PDGFRB in the OVLT, SFO and AP. The vascular permeability of low-molecular-mass tracer fluorescein isothiocyanate was increased significantly by chronic salt loading in the OVLT and SFO but not AP. In conclusion, the present study demonstrates changes in pericyte expression of NG2 and PDGFRB and vascular permeability in the sensory CVOs by chronic osmotic stimulation, indicating active participation of the vascular system in osmotic homeostasis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan; Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | | | | |
Collapse
|