1
|
Van Valkenburgh J, Duro MVV, Burnham E, Chen Q, Wang S, Tran J, Kerman BE, Hwang SH, Liu X, Sta Maria NS, Zanderigo F, Croteau E, Rapoport SI, Cunnane SC, Jacobs RE, Yassine HN, Chen K. Radiosynthesis of 20-[ 18F]fluoroarachidonic acid for PET-MR imaging: Biological evaluation in ApoE4-TR mice. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102510. [PMID: 36341886 PMCID: PMC9888757 DOI: 10.1016/j.plefa.2022.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/02/2023]
Abstract
Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Marlon Vincent V Duro
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Erica Burnham
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Quan Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Shaowei Wang
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Jenny Tran
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY 10032, United States of America; Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Etienne Croteau
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stanley I Rapoport
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States of America
| | - Stephen C Cunnane
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
2
|
Abstract
Leptin for over 25 years has been a central theme in the study of appetite, obesity, and starvation. As the major site of leptin production is peripheral, and the site of action of greatest interest is the hypothalamus, how leptin accesses the central nervous system (CNS) and crosses the blood-brain barrier (BBB) has been of great interest. We review here the ongoing research that addresses fundamental questions such as the sites of leptin resistances in obesity and other conditions, the causes of resistances and their relations to one another, the three barrier sites of entry into the CNS, why recent studies using suprapharmacological doses cannot address these questions but give insight into nonsaturable entry of leptin into the CNS, and how that might be useful in using leptin therapeutically. The current status of the controversy of whether the short form of the leptin receptor acts as the BBB leptin transporter and how obesity may transform leptin transport is reviewed. Review of these and other topics summarizes in a new appreciation of what leptin may have actually evolved to do and what physiological role leptin resistance may play. © 2021 American Physiological Society. Compr Physiol 11:1-19, 2021.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Gopaldas M, Zanderigo F, Zhan S, Ogden RT, Miller JM, Rubin-Falcone H, Cooper TB, Oquendo MA, Sullivan G, Mann JJ, Sublette ME. Brain serotonin transporter binding, plasma arachidonic acid and depression severity: A positron emission tomography study of major depression. J Affect Disord 2019; 257:495-503. [PMID: 31319341 PMCID: PMC6886679 DOI: 10.1016/j.jad.2019.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Serotonin transporter (5-HTT) binding and polyunsaturated fatty acids (PUFAs) are implicated in major depressive disorder (MDD). Links between the two systems in animal models have not been investigated in humans. METHODS Using positron emission tomography (PET) and [11C]DASB, we studied relationships between 5-HTT binding potential and plasma levels of PUFAs docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) in medication-free MDD patients (n = 21). PUFAs were quantified using transesterification and gas chromatography. Binding potential BPP, and alternative outcome measures BPF and BPND, were determined for [11C]DASB in six a priori brain regions of interest (ROIs) using likelihood estimation in graphical analysis (LEGA) to calculate radioligand total distribution volume (VT), and a validated hybrid deconvolution approach (HYDECA) that estimates radioligand non-displaceable distribution volume (VND) without a reference region. Linear mixed models used PUFA levels as predictors and binding potential measures as outcomes across the specified ROIs; age and sex as fixed effects; and subject as random effect to account for across-region binding correlations. As nonlinear relationships were observed, a quadratic term was added to final models. RESULTS AA predicted both 5-HTT BPP and depression severity nonlinearly, described by an inverted U-shaped curve. 5-HTT binding potential mediated the relationship between AA and depression severity. LIMITATIONS Given the small sample and multiple comparisons, results require replication. CONCLUSIONS Our findings suggest that AA status may impact depression pathophysiology through effects on serotonin transport. Future studies should examine whether these relationships explain therapeutic effects of PUFAs in the treatment of MDD.
Collapse
Affiliation(s)
- Manesh Gopaldas
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Serena Zhan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - R. Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Thomas B. Cooper
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria A. Oquendo
- Psychiatry Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - J. John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Radiology, Columbia University, New York, NY, USA
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, Tel: 646 774-7514, Fax: 646 774-7589,
| |
Collapse
|
4
|
Zanderigo F, Kang Y, Kumar D, Nikolopoulou A, Mozley PD, Kothari PJ, He B, Schlyer D, Rapoport SI, Oquendo MA, Vallabhajosula S, Mann JJ, Sublette ME. [ 11 C]arachidonic acid incorporation measurement in human brain: Optimization for clinical use. Synapse 2017; 72. [PMID: 29144569 DOI: 10.1002/syn.22018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 01/06/2023]
Abstract
Arachidonic acid (AA) is involved in signal transduction, neuroinflammation, and production of eicosanoid metabolites. The AA brain incorporation coefficient (K*) is quantifiable in vivo using [11 C]AA positron emission tomography, although repeatability remains undetermined. We evaluated K* estimates obtained with population-based metabolite correction (PBMC) and image-derived input function (IDIF) in comparison to arterial blood-based estimates, and compared repeatability. Eleven healthy volunteers underwent a [11 C]AA scan; five repeated the scan 6 weeks later, simulating a pre- and post-treatment study design. For all scans, arterial blood was sampled to measure [11 C]AA plasma radioactivity. Plasma [11 C]AA parent fraction was measured in 5 scans. K* was quantified using both blood data and IDIF, corrected for [11 C]AA parent fraction using both PBMC (from published values) and individually measured values (when available). K* repeatability was calculated in the test-retest subset. K* estimates based on blood and individual metabolites were highly correlated with estimates using PBMC with arterial input function (r = 0.943) or IDIF (r = 0.918) in the subset with measured metabolites. In the total dataset, using PBMC, IDIF-based estimates were moderately correlated with arterial input function-based estimates (r = 0.712). PBMC and IDIF-based K* estimates were ∼6.4% to ∼11.9% higher, on average, than blood-based estimates. Average K* test-retest absolute percent difference values obtained using blood data or IDIF, assuming PBMC for both, were between 6.7% and 13.9%, comparable to other radiotracers. Our results support the possibility of simplified [11 C]AA data acquisition through eliminating arterial blood sampling and metabolite analysis, while retaining comparable repeatability and validity.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | - Yeona Kang
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | | | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Paresh J Kothari
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Bin He
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David Schlyer
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Maria A Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| | | | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York.,Department of Radiology, Columbia University, New York, New York
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University, New York, New York
| |
Collapse
|
5
|
Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder. Psychiatry Res 2017; 254:279-283. [PMID: 28500975 PMCID: PMC5524208 DOI: 10.1016/j.psychres.2017.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. HYPOTHESIS VCD like VPA will reduce brain AA turnover in unanaesthetized rats. METHODS A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1-14C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. RESULTS VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. CONCLUSIONS VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD.
Collapse
|
6
|
Eag1 K + Channel: Endogenous Regulation and Functions in Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7371010. [PMID: 28367272 PMCID: PMC5358448 DOI: 10.1155/2017/7371010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/27/2016] [Accepted: 01/31/2017] [Indexed: 02/04/2023]
Abstract
Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.
Collapse
|
7
|
Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety. Nucl Med Biol 2017; 45:43-50. [DOI: 10.1016/j.nucmedbio.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
8
|
Furman R, Murray IVJ, Schall HE, Liu Q, Ghiwot Y, Axelsen PH. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid. ACS Chem Neurosci 2016; 7:367-77. [PMID: 26800372 DOI: 10.1021/acschemneuro.5b00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease.
Collapse
Affiliation(s)
- Ran Furman
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian V. J. Murray
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
- Department
of Physiology and Neuroscience, St. George’s University, St. George’s, Grenada
| | - Hayley E. Schall
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Qiwei Liu
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yonatan Ghiwot
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Paul H. Axelsen
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Blanchard H, Chang L, Rezvani AH, Rapoport SI, Taha AY. Brain Arachidonic Acid Incorporation and Turnover are not Altered in the Flinders Sensitive Line Rat Model of Human Depression. Neurochem Res 2015; 40:2293-303. [PMID: 26404538 DOI: 10.1007/s11064-015-1719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022]
Abstract
Brain serotonergic signaling is coupled to arachidonic acid (AA)-releasing calcium-dependent phospholipase A2. Increased brain serotonin concentrations and disturbed serotonergic neurotransmission have been reported in the Flinders Sensitive Line (FSL) rat model of depression, suggesting that brain AA metabolism may be elevated. To test this hypothesis, (14)C-AA was intravenously infused to steady-state levels into control and FSL rats derived from the same Sprague-Dawley background strain, and labeled and unlabeled brain phospholipid and plasma fatty acid concentrations were measured to determine the rate of brain AA incorporation and turnover. Brain AA incorporation and turnover did not differ significantly between controls and FSL rats. Compared to controls, plasma unesterified docosahexaenoic acid was increased, and brain phosphatidylinositol AA and total lipid linoleic acid and n-3 and n-6 docosapentaenoic acid were significantly decreased in FSL rats. Several plasma esterified fatty acids differed significantly from controls. In summary, brain AA metabolism did not change in FSL rats despite reported increased levels of serotonin concentrations, suggesting possible post-synaptic dampening of serotonergic neurotransmission involving AA.
Collapse
Affiliation(s)
- Helene Blanchard
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Amir H Rezvani
- Department of Psychiatric and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, RMI North, Room 3162, Davis, CA, USA.
| |
Collapse
|
10
|
Trépanier MO, Kwong KM, Domenichiello AF, Chen CT, Bazinet RP, Burnham WM. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model. Epilepsy Behav 2015; 50:71-6. [PMID: 26141815 DOI: 10.1016/j.yebeh.2015.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022]
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in transient anticonvulsant effects which parallel unesterified DHA serum concentrations.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kei-Man Kwong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony F Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - W M Burnham
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Ramadan E, Blanchard H, Cheon Y, Fox MA, Chang L, Chen M, Ma K, Rapoport SI, Basselin M. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice. Prostaglandins Leukot Essent Fatty Acids 2014; 90:191-7. [PMID: 24529827 PMCID: PMC3981912 DOI: 10.1016/j.plefa.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would alter brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-(14)C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10mg/kg i.p.) or saline during postnatal days P4-P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca(2+)-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. These changes might contribute to reported altered behavior following early SSRI in rodents.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Helene Blanchard
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Meredith A Fox
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Yamamuro Y, Yamaguchi Y, Abe S, Takenaga F. Neurochemical and behavioural impact of C18 fatty acids in male mice postweaning. Exp Biol Med (Maywood) 2013; 238:658-67. [PMID: 23918877 DOI: 10.1177/1535370213489451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dietary components, particularly essential fatty acids, affect the expression and maintenance of normal physiological phenotypes. However, the influence of C18 fatty acids that are abundantly present in the normal diet is unclear. We focused on the behavioural and neurochemical effects of C18 fatty acids during postweaning development in male mice. An AIN-93G diet supplemented with 8% stearic acid (C18:0), 3% oleic acid (C18:1), 3% linoleic acid (C18:2) or 3% α-linolenic acid (C18:3) was provided from four weeks of age for eight weeks. At 12 weeks of age, novel exploratory behaviour and social interaction tests were carried out. One week after the last behavioural test, the brain of each mouse was removed. The frequency of social interactive behaviour was decreased by approximately 70% in the C18:0 group compared to the basal diet group, but there was no difference in cumulative time. The frequency of social interaction showed a positive correlation to cumulative time in mice fed with the experimental diets except for C18:0. Dietary C18 fatty acids following weaning had no impact on brain fatty acid composition except for the C18:3 diet. Furthermore, the neurochemical properties to be especially noted were that choline acetyltransferase activity was absolutely higher in C18:0 diet-fed mice than in the other groups, especially in the frontal cortex where it was 1.7-fold higher than in the basal diet-fed group. The present results reveal a significant possibility of neurochemical and behavioural effects of dietary fatty acids, and saturated fatty acids are of special importance during the postweaning period.
Collapse
Affiliation(s)
- Yutaka Yamamuro
- Department of Animal Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | | | | | | |
Collapse
|
14
|
Modi HR, Taha AY, Kim HW, Chang L, Rapoport SI, Cheon Y. Chronic clozapine reduces rat brain arachidonic acid metabolism by reducing plasma arachidonic acid availability. J Neurochem 2013; 124:376-87. [PMID: 23121637 PMCID: PMC3540173 DOI: 10.1111/jnc.12078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Chronic administration of mood stabilizers to rats down-regulates the brain arachidonic acid (AA) cascade. This down-regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E(2) concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1-(14) C]AA was infused intravenously for 5 min, arterial plasma was collected and high-energy microwaved brain was analyzed. CLZ increased incorporation coefficients ki * and decreased [corrected] rates J(in,i) of plasma unesterified AA into brain phospholipids. [corrected]. These effects disappeared after washout. Thus, CLZ and OLZ similarly down-regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down-regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section, National Institute on Aging, Laboratory of Neurosciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Rapoport SI. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. Prostaglandins Leukot Essent Fatty Acids 2013; 88:79-85. [PMID: 22766388 PMCID: PMC3467358 DOI: 10.1016/j.plefa.2012.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 01/30/2023]
Abstract
One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics on this role. This review discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metabolism is influenced by graded reductions in dietary n-3 PUFA content in unanesthetized rats. We also show how kinetic tracer techniques in rodents have helped to identify mechanisms of action of mood stabilizers used in bipolar disorder, how DHA participates in neurotransmission, and how brain DHA metabolism is regulated by calcium-independent iPLA₂β. In humans, regional rates of brain DHA metabolism can be quantitatively imaged with positron emission tomography following intravenous injection of [1-¹¹C]DHA.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S128, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Ramadan E, Basselin M, Chang L, Chen M, Ma K, Rapoport SI. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat. J Neuroimmune Pharmacol 2012; 7:701-13. [PMID: 22760927 PMCID: PMC3478068 DOI: 10.1007/s11481-012-9381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Ramadan E, Basselin M, Rao JS, Chang L, Chen M, Ma K, Rapoport SI. Lamotrigine blocks NMDA receptor-initiated arachidonic acid signalling in rat brain: implications for its efficacy in bipolar disorder. Int J Neuropsychopharmacol 2012; 15:931-43. [PMID: 21733229 PMCID: PMC3204186 DOI: 10.1017/s1461145711001003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An up-regulated brain arachidonic acid (AA) cascade and a hyperglutamatergic state characterize bipolar disorder (BD). Lamotrigine (LTG), a mood stabilizer approved for treating BD, is reported to interfere with glutamatergic neurotransmission involving N-methyl-d-aspartate receptors (NMDARs). NMDARs allow extracellular calcium into the cell, thereby stimulating calcium-dependent cytosolic phospholipase A2 (cPLA2) to release AA from membrane phospholipid. We hypothesized that LTG, like other approved mood stabilizers, would reduce NMDAR-mediated AA signalling in rat brain. An acute subconvulsant dose of NMDA (25 mg/kg) or saline was administered intraperitoneally to unanaesthetized rats that had been treated p.o. daily for 42 d with vehicle or a therapeutically relevant dose of LTG (10 mg/kg.d). Regional brain AA incorporation coefficients k* and rates J in, and AA signals, were measured using quantitative autoradiography after intravenous [1-14C]AA infusion, as were other AA cascade markers. In chronic vehicle-treated rats, acute NMDA compared to saline increased k* and J in in widespread regions of the brain, as well as prostaglandin (PG)E2 and thromboxane B2 concentrations. Chronic LTG treatment compared to vehicle reduced brain cyclooxygenase (COX) activity, PGE2 concentration, and DNA-binding activity of the COX-2 transcription factor, NF-κB. Pretreatment with chronic LTG blocked the acute NMDA effects on AA cascade markers. In summary, chronic LTG like other mood stabilizers blocks NMDA-mediated signalling involving the AA metabolic cascade. Since markers of the AA cascade and of NMDAR signalling are up-regulated in the post-mortem BD brain, mood stabilizers generally may be effective in BD by dampening NMDAR signalling and the AA cascade.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim HW, Cheon Y, Modi HR, Rapoport SI, Rao JS. Effects of chronic clozapine administration on markers of arachidonic acid cascade and synaptic integrity in rat brain. Psychopharmacology (Berl) 2012; 222:663-74. [PMID: 22414961 PMCID: PMC3478065 DOI: 10.1007/s00213-012-2671-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/13/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The mode of action of clozapine, an atypical antipsychotic approved for treating schizophrenia (SZ) and used for bipolar disorder (BD) mania, remains unclear. We tested for overlap with the actions of the mood stabilizers, lithium, carbamazepine and valproate, which downregulate arachidonic acid (AA) cascade markers in rat brain and upregulate BDNF. AA cascade markers are upregulated in BD and SZ postmortem BD brain in association with neuroinflammation and synaptic loss, while BDNF is decreased. METHODS Rats were injected intraperitoneally with a therapeutically relevant dose of clozapine (10 mg/kg/day) or with saline for 30 days, and AA cascade and synaptic markers and BDNF were measured in the brain. RESULTS Compared with saline-injected rats, chronic clozapine increased brain activity, mRNA and protein levels of docosahexaenoic acid (DHA)-selective calcium-independent phospholipase A₂ type VIA (iPLA₂), mRNA and protein levels of BDNF and of the postsynaptic marker, drebrin, while decreasing cyclooxygenase (COX) activity and concentration of prostaglandin E₂ (PGE₂), a proinflammatory AA metabolite. Activity and expression of AA-selective calcium-dependent cytosolic cPLA₂ type IVA and of secretory sPLA₂ Type II were unchanged. CONCLUSIONS These results show overlap with effects of mood stabilizers with regard to downregulation of COX activity and PGE₂ and to increased BDNF and suggest a common action against the reported neuropathology of BD and SZ. The increased iPLA₂ expression following clozapine suggests increased production of anti-inflammatory DHA metabolites, and, with increased BDNF and drebrin, clear neuroprotective action.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
19
|
Pichika R, Taha AY, Gao F, Kotta K, Cheon Y, Chang L, Kiesewetter D, Rapoport SI, Eckelman WC. The synthesis and in vivo pharmacokinetics of fluorinated arachidonic acid: implications for imaging neuroinflammation. J Nucl Med 2012; 53:1383-91. [PMID: 22851635 DOI: 10.2967/jnumed.112.105734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Arachidonic acid (AA) is found in high concentrations in brain phospholipids and is released as a second messenger during neurotransmission and much more so during neuroinflammation and excitotoxicity. Upregulated brain AA metabolism associated with neuroinflammation has been imaged in rodents using [1-(14)C]AA and with PET in Alzheimer disease patients using [1-(11)C]AA. Radiotracer brain AA uptake is independent of cerebral blood flow, making it an ideal tracer despite altered brain functional activity. However, the 20.4-min radioactive half-life of (11)C-AA and challenges of routinely synthesizing (11)C fatty acids limit their translational utility as PET biomarkers. METHODS As a first step to develop a clinically useful (18)F-fluoroarachidonic acid ((18)F-FAA) with a long radioactive half-life of 109.8 min, we report here a high-yield stereoselective synthetic method of nonradioactive 20-(19)F-FAA. We tested its in vivo pharmacokinetics by infusing purified nonradioactive (19)F-FAA intravenously for 5 min at 2 doses in unanesthetized mice and measured its plasma and brain distribution using gas chromatography-mass spectrometry. RESULTS Incorporation coefficients of injected (19)F-FAA into brain phospholipids (ratio of brain (19)F-FAA concentration to plasma input function) were 3- to 29-fold higher for choline glycerophospholipid and phosphatidylinositol than for ethanolamine glycerophospholipid and phosphatidylserine at each of the 2 tested doses. The selectivities and values of incorporation coefficients were comparable to those reported after [1-(14)C]AA (the natural arachidonate) infusion in mice. CONCLUSION These results suggest that it would be worthwhile to translate our stereoselective synthetic method for (19)F-FAA to synthesize positron-emitting (18)F-FAA for human brain AA metabolism in neuroinflammatory disorders such as Alzheimer disease.
Collapse
Affiliation(s)
- Rama Pichika
- Department of Radiology, UCSD Center for Molecular Imaging, University of California San Diego, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Igarashi M, Kim HW, Chang L, Ma K, Rapoport SI. Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat brain. J Neurochem 2012; 120:985-97. [PMID: 22117540 PMCID: PMC3296886 DOI: 10.1111/j.1471-4159.2011.07597.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
21
|
Sondermeijer BM, Klein Twennaar CF, Kastelein JJP, Franssen EJF, Hutten BA, Dallinga-Thie GM, Stroes ESG, Fliers E, Twickler MTB, Serlie MJ. Infusion of a lipid emulsion in healthy men decreases the serotonergic response. Neuroendocrinology 2012; 95:325-31. [PMID: 22327404 DOI: 10.1159/000333038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
Abstract
Subjects with obesity and insulin resistance display a low response to a serotonergic challenge test. One of the hallmarks of obesity and insulin resistance is elevated plasma free fatty acids (FFAs). We hypothesize that increasing plasma FFA by infusion of a lipid emulsion, may be a contributing component leading to decreased serotonergic responsivity in healthy young men. Ten lean healthy men, 23.6 ± 5.0 years and BMI 22.6 ± 1.9 kg/m(2), were included. Serotonergic responsivity was assessed using the prolactin response to infusion with citalopram, a selective serotonin reuptake inhibitor, which is a validated tool to assess serotonergic tone. All participants received a lipid/heparin emulsion (Intralipid) infusion during 6 h. Saline infusion was used as a control. To evaluate a possible effect of heparin per se on prolactin, four out of the ten subjects also received heparin only during 6 h without the serotonergic challenge test. Plasma prolactin increased by 74.3 ± 15.5% during saline infusion. Intralipid infusion increased plasma FFA from 0.5 ± 0.05 to 2.3 ± 0.2 mmol/l (p < 0.001). The increase in plasma prolactin during Intralipid infusion was significantly lower (39.3 ± 10%; p < 0.001 compared to saline infusion). Heparin infusion per se increased plasma prolactin by 14.0 ± 1.9%. We found that during the Intralipid infusion with concomitant high plasma FFA levels the serotonergic response was decreased in healthy young men. Higher FFA levels may be the mediator of the decreased serotonergic response reported in patients with insulin resistance and obesity.
Collapse
Affiliation(s)
- Brigitte M Sondermeijer
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramadan E, Basselin M, Taha AY, Cheon Y, Chang L, Chen M, Rapoport SI. Chronic valproate treatment blocks D2-like receptor-mediated brain signaling via arachidonic acid in rats. Neuropharmacology 2011; 61:1256-64. [PMID: 21839100 PMCID: PMC3190603 DOI: 10.1016/j.neuropharm.2011.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA. METHODS An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, J(in), markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-(14)C]AA infusion. Whole brain concentrations of prostaglandin (PG)E(2) and thromboxane (TX)B(2) also were measured. RESULTS Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE(2) in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE(2) and TXB(2), and blocked the quinpirole-induced increments in k* and PGE(2). CONCLUSION These results further provide evidence that mood stabilizers downregulate brain dopaminergic D(2)-like receptor signaling involving AA.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rapoport SI, Ramadan E, Basselin M. Docosahexaenoic acid (DHA) incorporation into the brain from plasma, as an in vivo biomarker of brain DHA metabolism and neurotransmission. Prostaglandins Other Lipid Mediat 2011; 96:109-13. [PMID: 21704722 PMCID: PMC3202024 DOI: 10.1016/j.prostaglandins.2011.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Docosahexaenoic acid (DHA) is critical for maintaining normal brain structure and function, and is considered neuroprotective. Its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, α-linolenic acid (α-LNA). We have developed an in vivo method in rats using quantitative autoradiography and intravenously injected radiolabeled DHA to image net incorporation into the brain of unesterified plasma DHA, and showed with this method that the incorporation rate of DHA equals the rate of brain metabolic DHA consumption. The method has been extended for use in humans with positron emission tomography (PET). Furthermore, imaging in unanesthetized rats using DHA incorporation as a biomarker in response to acute N-methyl-D-aspartate administration confirms that regional DHA signaling is independent of extracellular calcium, and likely mediated by a calcium-independent phospholipase A(2) (iPLA(2)). Studies in mice in which iPLA(2)-VIA (β) was knocked out confirmed that this enzyme is critical for baseline and muscarinic cholinergic signaling involving DHA. Thus, quantitative imaging of DHA incorporation from plasma into brain can be used as an in vivo biomarker of brain DHA metabolism and neurotransmission.
Collapse
Affiliation(s)
- Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Cheon Y, Park JY, Modi HR, Kim HW, Lee HJ, Chang L, Rao JS, Rapoport SI. Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E₂ concentration in rat brain. J Neurochem 2011; 119:364-76. [PMID: 21812779 PMCID: PMC3188676 DOI: 10.1111/j.1471-4159.2011.07410.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The atypical antipsychotic, olanzapine (OLZ), is used to treat bipolar disorder, but its therapeutic mechanism of action is not clear. Arachidonic acid (AA, 20:4n-6) plays a critical role in brain signaling and an up-regulated AA metabolic cascade was reported in postmortem brains from bipolar disorder patients. In this study, we tested whether, similar to the action of the mood stabilizers lithium, carbamazepine and valproate, chronic OLZ treatment would reduce AA turnover in rat brain. We administered OLZ (6 mg/kg/day) or vehicle i.p. to male rats once daily for 21 days. A washout group received 21 days of OLZ followed by vehicle on day 22. Two hours after the last injection, [1-¹⁴C]AA was infused intravenously for 5 min, and timed arterial blood samples were taken. After the rat was killed at 5 min, its brain was microwaved, removed and analyzed. Chronic OLZ decreased plasma unesterified AA concentration, AA incorporation rates and AA turnover in brain phospholipids. These effects were absent after washout. Consistent with reduced AA turnover, OLZ decreased brain cyclooxygenase activity and the brain concentration of the proinflammatory AA-derived metabolite, prostaglandin E₂, In view of up-regulated brain AA metabolic markers in bipolar disorder, the abilities of OLZ and the mood stabilizers to commonly decrease prostaglandin E₂, and AA turnover in rat brain phospholipids, albeit by different mechanisms, may be related to their efficacy against the disease.
Collapse
Affiliation(s)
- Yewon Cheon
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao F, Kim HW, Igarashi M, Kiesewetter D, Chang L, Ma K, Rapoport SI. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:484-9. [PMID: 21651989 DOI: 10.1016/j.bbalip.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/05/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022]
Abstract
The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(⁎) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans.
Collapse
Affiliation(s)
- Fei Gao
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Basselin M, Ramadan E, Igarashi M, Chang L, Chen M, Kraft AD, Harry GJ, Rapoport SI. Imaging upregulated brain arachidonic acid metabolism in HIV-1 transgenic rats. J Cereb Blood Flow Metab 2011; 31:486-93. [PMID: 20664612 PMCID: PMC2992106 DOI: 10.1038/jcbfm.2010.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human immunodeficiency virus (HIV)-associated infection involves the entry of virus-bearing monocytes into the brain, followed by microglial activation, neuroinflammation, and upregulated arachidonic acid (AA) metabolism. The HIV-1 transgenic (Tg) rat, a noninfectious HIV-1 model, shows neurologic and behavioral abnormalities after 5 months of age. We hypothesized that brain AA metabolism would be elevated in older HIV-1 Tg rats in vivo. Arachidonic acid incorporation from the plasma into the brain of unanesthetized 7-to-9-month-old rats was imaged using quantitative autoradiography, after [1-(14)C]AA infusion. Brain phospholipase (PLA(2)) activities and eicosanoid concentrations were measured, and enzymes were localized by immunostaining. AA incorporation coefficients k* and rates J(in), measures of AA metabolism, were significantly higher in 69 of 81 brain regions in HIV-1 Tg than in control rats, as were activities of cytosolic (c)PLA(2)-IV, secretory (s)PLA(2), and calcium independent (i)PLA(2)-VI, as well as prostaglandin E(2) and leukotriene B(4) concentrations. Immunostaining of somatosensory cortex showed elevated cPLA(2)-IV, sPLA(2)-IIA, and cyclooxygenase-2 in neurons. Brain AA incorporation and other markers of AA metabolism are upregulated in HIV-1 Tg rats, in which neurologic changes and neuroinflammation have been reported. Positron emission tomography with [1-(11)C]AA could be used to test whether brain AA metabolism is upregulated in HIV-1-infected patients, in relation to cognitive and behavioral disturbances.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M. Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 2010; 51:2334-40. [PMID: 20388940 PMCID: PMC2903827 DOI: 10.1194/jlr.m006262] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/13/2010] [Indexed: 11/20/2022] Open
Abstract
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca(2+)-independent phospholipase A(2) (iPLA(2)), Ca(2+)-independent plasmalogen PLA(2) or secretory PLA(2 (sPLA2)), but not by Ca(2+)-dependent cytosolic PLA(2) (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca(2+) into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca(2+)-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca(2+) and of cPLA(2). DHA signaling may be mediated by iPLA(2), plasmalogen PLA(2), or other enzymes insensitive to low concentrations of Ca(2+). Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Gao F, Kiesewetter D, Chang L, Rapoport SI, Igarashi M. Quantifying conversion of linoleic to arachidonic and other n-6 polyunsaturated fatty acids in unanesthetized rats. J Lipid Res 2010; 51:2940-6. [PMID: 20622136 DOI: 10.1194/jlr.m005595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isotope feeding studies report a wide range of conversion fractions of dietary shorter-chain polyunsaturated fatty acids (PUFAs) to long-chain PUFAs, which limits assessing nutritional requirements and organ effects of arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-3) acids. In this study, whole-body (largely liver) steady-state conversion coefficients and rates of circulating unesterified linoleic acid (LA, 18:2n-6) to esterified AA and other elongated n-6 PUFAs were quantified directly using operational equations, in unanesthetized adult rats on a high-DHA but AA-free diet, using 2 h of intravenous [U-(13)C]LA infusion. Unesterified LA was converted to esterified LA in plasma at a greater rate than to esterified gamma-linolenic (gamma-LNA, 18:3n-6), eicosatrienoic acid (ETA, 20:3n-6), or AA. The steady-state whole-body synthesis-secretion (conversion) coefficient k*(i) to AA equaled 5.4 x 10(-3) min(-1), while the conversion rate (coefficient x concentration) equaled 16.1 micromol/day. This rate exceeds the reported brain AA consumption rate by 27-fold. As brain and heart cannot synthesize significant AA from circulating LA, liver synthesis is necessary to maintain their homeostatic AA concentrations in the absence of dietary AA. The heavy-isotope intravenous infusion method could be used to quantify steady-state liver synthesis-secretion of AA from LA under different conditions in rodents and in humans.
Collapse
Affiliation(s)
- Fei Gao
- Brain Physiology and Metabolism Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
29
|
Lee HJ, Rao JS, Chang L, Rapoport SI, Kim HW. Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to 'switching' in bipolar disorder? Mol Psychiatry 2010; 15:602-14. [PMID: 18982003 PMCID: PMC2874651 DOI: 10.1038/mp.2008.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Agents effective against mania in bipolar disorder are reported to decrease turnover of arachidonic acid (AA) in phospholipids and expression of calcium-dependent AA-selective cytosolic phospholipase A(2) (cPLA(2)) in rat brain. In contrast, fluoxetine, an antidepressant that is reported to switch bipolar depressed patients to mania, increases cPLA(2) expression and AA turnover in rat brain. We therefore hypothesized that antidepressants that increase switching to mania generally increase cPLA(2) and AA turnover in brain. To test this hypothesis, adult male CDF-344 rats were administered imipramine and bupropion, with reported high and low switching rates, respectively, at daily doses of 10 and 30 mg kg(-1) i.p., respectively, or i.p. saline (control) for 21 days. Frontal cortex expression of different PLA(2) enzymes and AA turnover rates in brain when the rats were unanesthetized were measured. Compared with chronic saline, chronic imipramine but not bupropion significantly increased cortex cPLA(2) mRNA activity, protein and phosphorylation, expression of the cPLA(2) transcription factor, activator protein-2alpha (AP-2alpha) and AA turnover in phospholipids. Protein levels of secretory phospholipase A(2), calcium-independent phospholipase A(2), cyclooxygenase (COX)-1 and COX-2 were unchanged, and prostaglandin E(2) was unaffected. These results, taken with prior data on chronic fluoxetine in rats, suggest that antidepressants that increase the switching tendency of bipolar depressed patients to mania do so by increasing AA recycling and metabolism in brain. Mania in bipolar disorder thus may involve upregulated brain AA metabolism.
Collapse
|
30
|
Gao F, Kiesewetter D, Chang L, Ma K, Rapoport SI, Igarashi M. Whole-body synthesis secretion of docosahexaenoic acid from circulating eicosapentaenoic acid in unanesthetized rats. J Lipid Res 2009; 50:2463-70. [PMID: 19571329 PMCID: PMC2781318 DOI: 10.1194/jlr.m900223-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/17/2009] [Indexed: 11/20/2022] Open
Abstract
Dietary docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) are considered important for maintaining normal heart and brain function, but little EPA is found in brain, and EPA cannot be elongated to DHA in rat heart due to the absence of elongase-2. Ingested EPA may have to be converted in the liver to DHA for it to be fully effective in brain and heart, but the rate of conversion is not agreed on. This rate was determined in male adult rats fed a standard n-3 PUFA, containing diet by infusing unesterified albumin-bound [U-(13)C]EPA intravenously for 2 h and measuring esterified [(13)C]labeled PUFAs in arterial plasma lipoproteins, as well as the specific activity of unesterified plasma EPA. Whole-body (presumably hepatic) synthesis secretion rates from circulating unesterified EPA, calculated from peak first derivatives of plasma esterified concentration x volume curves, equaled 2.61 micromol/day for docosapentaenoic acid (22:5n-3) and 5.46 micromol/day for DHA. The DHA synthesis rate was 24-fold greater than the reported brain DHA consumption rate in rats. Thus, dietary EPA could help to maintain brain and heart DHA homeostasis because it is converted at a relatively high rate in the liver to circulating DHA.
Collapse
Affiliation(s)
- Fei Gao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Green JT, Liu Z, Bazinet RP. Brain phospholipid arachidonic acid half-lives are not altered following 15 weeks of N-3 polyunsaturated fatty acid adequate or deprived diet. J Lipid Res 2009; 51:535-43. [PMID: 19661256 DOI: 10.1194/jlr.m000786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies have infused radiolabeled arachidonic acid (AA) into rat brains and followed AA esterification into phospholipids for up to 24 h; however, the half-life of AA in rat brain phospholipids is unknown. Eighteen day old rats were fed either an n-3 PUFA adequate or deprived diet for 15 weeks. Following the 15 weeks, 40 microCi of [(3)H] AA was injected intracerebroventricularly into the right lateral ventricle using stereotaxic surgery and returned to their dietary treatment. From 4-120 days after [(3)H] AA administration, brains were collected for chemical analyses. The half-life of AA in rat brain phospholipids was 44 +/- 4 days for the n-3 PUFA adequate group and 46 +/- 4 days for the n-3 PUFA deprived group, which closely approximates the predicted half-life previously reported, based on the rate of entry from the plasma unesterified pool, suggesting the plasma unesterified pool is a major contributor to brain uptake of AA. Furthermore, unlike a previous report in which the half-life of brain phospholipid docosahexaenoic acid (DHA) was increased in n-3 PUFA deprived rats, n-3 PUFA deprivation did not significantly alter the AA half-life, suggesting different mechanisms exist to maintain brain concentrations of AA and DHA.
Collapse
Affiliation(s)
- Joshua T Green
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
32
|
Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, Majchrzak S, Herscovitch P, Eckelman WC, Kurdziel KA, Salem N. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009; 50:1259-68. [PMID: 19112173 PMCID: PMC2694326 DOI: 10.1194/jlr.m800530-jlr200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
Docosahexaenoic acid (DHA; 22:6n-3) is a critical constituent of the brain, but its metabolism has not been measured in the human brain in vivo. In monkeys, using positron emission tomography (PET), we first showed that intravenously injected [1-(11)C]DHA mostly entered nonbrain organs, with approximately 0.5% entering the brain. Then, using PET and intravenous [1-(11)C]DHA in 14 healthy adult humans, we quantitatively imaged regional rates of incorporation (K*) of DHA. We also imaged regional cerebral blood flow (rCBF) using PET and intravenous [(15)O]water. Values of K* for DHA were higher in gray than white matter regions and correlated significantly with values of rCBF in 12 of 14 subjects despite evidence that rCBF does not directly influence K*. For the entire human brain, the net DHA incorporation rate J(in), the product of K*, and the unesterified plasma DHA concentration equaled 3.8 +/- 1.7 mg/day. This net rate is equivalent to the net rate of DHA consumption by brain and, considering the reported amount of DHA in brain, indicates that the half-life of DHA in the human brain approximates 2.5 years. Thus, PET with [1-(11)C]DHA can be used to quantify regional and global human brain DHA metabolism in relation to health and disease.
Collapse
Affiliation(s)
- John C Umhau
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gao F, Kiesewetter D, Chang L, Ma K, Bell JM, Rapoport SI, Igarashi M. Whole-body synthesis-secretion rates of long-chain n-3 PUFAs from circulating unesterified alpha-linolenic acid in unanesthetized rats. J Lipid Res 2009; 50:749-58. [PMID: 19074373 PMCID: PMC2656669 DOI: 10.1194/jlr.d800056-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/08/2008] [Indexed: 11/20/2022] Open
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), long-chain n-3 PUFAs important for brain and heart function, can be obtained from dietary fish products or by liver synthesis from alpha-linolenic acid (alpha-LNA). Their daily human dietary requirements are not clear, and their liver synthesis rates in humans and nonhumans are unknown. We estimated whole-body (presumably liver) synthesis rates in unanesthetized rats by infusing [U-(13)C]alpha-LNA intravenously for 2 h and measuring labeled and unlabeled n-3 PUFA in arterial plasma using negative chemical ionization GC-MS. Newly synthesized esterified [(13)C]DHA, [(13)C]EPA, and [(13)C]docosapentaenoic acid (DPA) appeared in arterial plasma after 60 min of infusion, then their concentrations rose in an S-shaped manner. Esterified concentration x plasma volume data were fit with a sigmoidal equation, whose peak first derivatives provided synthesis rates of unlabeled EPA, DPA, and DHA equal to 8.40, 6.27, and 9.84 mumol/day, respectively. The DHA synthesis rate exceeded the published daily rat brain DHA consumption rate by 30-fold, suggesting that liver synthesis from alpha-LNA could maintain brain DHA homeostasis were DHA absent from the diet. This stable isotope infusion method could be used to quantify whole-body DHA synthesis rates in human subjects.
Collapse
Affiliation(s)
- Fei Gao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Malcher-Lopes R, Buzzi M. Glucocorticoid-regulated crosstalk between arachidonic acid and endocannabinoid biochemical pathways coordinates cognitive-, neuroimmune-, and energy homeostasis-related adaptations to stress. VITAMINS AND HORMONES 2009; 81:263-313. [PMID: 19647116 DOI: 10.1016/s0083-6729(09)81011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arachidonic acid and its derivatives constitute the major group of signaling molecules involved in the innate immune response and its communication with all cellular and systemic aspects involved on homeostasis maintenance. Glucocorticoids spread throughout the organism their influences over key enzymatic steps of the arachidonic acid biochemical pathways, leading, in the central nervous system, to a shift favoring the synthesis of anti-inflammatory endocannabinoids over proinflammatory metabolites, such as prostaglandins. This shift modifies local immune-inflammatory response and neuronal activity to ultimately coordinate cognitive, behavioral, neuroendocrine, neuroimmune, physiological, and metabolic adjustments to basal and stress conditions. In the hypothalamus, a reciprocal feedback between glucocorticoids and arachidonate-containing molecules provides a mechanism for homeostatic control. This neurochemical switch is susceptible to fine-tuning by neuropeptides, cytokines, and hormones, such as leptin and interleukin-1beta, assuring functional integration between energy homeostasis control and the immune/stress response.
Collapse
Affiliation(s)
- Renato Malcher-Lopes
- Laboratory of Mass Spectrometry, EMBRAPA-Center for Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
35
|
Basselin M, Nguyen HN, Chang L, Bell JM, Rapoport SI. Acute but not chronic donepezil increases muscarinic receptor-mediated signaling via arachidonic acid in unanesthetized rats. J Alzheimers Dis 2009; 17:369-82. [PMID: 19363262 PMCID: PMC2790024 DOI: 10.3233/jad-2009-1058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Donepezil, an acetylcholinesterase (AChE) inhibitor used for treating Alzheimer's disease patients, is thought to act by increasing brain extracellular acetylcholine (ACh), and ACh binding to cholinergic receptors. Muscarinic receptors are coupled to cytosolic phospholipase A2 (cPLA2) activation and arachidonic acid (AA) release from synaptic membrane phospholipid. This activation can be imaged in rodents as an AA incorporation coefficient k*, using quantitative autoradiography. Acute and chronic effects of donepezil on the AA signal, k* for AA, were measured in 81 brain regions of unanesthetized rats. Twenty min after a single oral dose (3.0 mg/kg) of donepezil, k* was increased significantly in 37 brain regions, whereas k* did not differ from control 7 h afterwards or following chronic (21 days) of donepezil. Pretreatment with atropine prevented the 20-min increments in k* following donepezil. Donepezil also increased the brain ACh concentration and reduced brain AChE activity, but did not change cPLA2 activity, regardless of administration regimen. These results show that donepezil acutely increases the brain AA signal that is mediated by ACh acting at muscarinic receptors, but that this signal is rapidly desensitized despite continued elevated brain ACh concentration. In contrast, the AA signal in response to arecoline was not altered following donepezil.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
36
|
Bhattacharjee AK, Chang L, Chen M, White L, Bell JM, Bazinet RP, Rapoport SI. Chronic d-amphetamine depresses an imaging marker of arachidonic acid metabolism in rat brain. Int J Neuropsychopharmacol 2008; 11:957-69. [PMID: 18570702 PMCID: PMC2676692 DOI: 10.1017/s1461145708008833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute d-amphetamine (d-Amph) administration to rats leads to the release of arachidonic acid (AA, 20:4n-6) as a second messenger following indirect agonism at dopamine D2-like receptors in the brain. We hypothesized that chronically administered d-Amph in rats also would alter brain AA metabolism and signalling. To test this, adult male rats were injected i.p. daily for 2 wk with saline or 2.5 mg/kg d-Amph. After a 1-d washout, the unanaesthetized rats were injected acutely with i.v. saline, 1 mg/kg quinpirole (a D2-like receptor agonist) or 5.0 mg/kg SKF-38393 (a D1-like receptor agonist), followed by i.v. [1-14C]AA. The AA incorporation coefficient k* (brain radioactivity/integrated plasma radioactivity), a marker of AA signalling and metabolism, was quantified using autoradiography in each of 62 brain regions. Compared with chronic saline, chronic d-Amph widely decreased baseline values of k* in brain regions having D2-like receptors. On the other hand, chronic amphetamine did not alter the k* responses to quinpirole seen in chronic saline-treated rats. SKF-38393 had minimal effects on k* in both chronic saline-treated and amphetamine-treated rats, consistent with D1-like receptors not being coupled to AA signalling. The ability of chronic d-Amph after 1-d washout to down-regulate baseline values of k* probably reflects neuroplastic changes in brain AA signalling, and may correspond to depressive behaviours noted following withdrawal from chronic amphetamine in humans and in rats.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacokinetics
- Autoradiography
- Biomarkers/analysis
- Biomarkers/metabolism
- Brain Chemistry/drug effects
- Central Nervous System Stimulants/administration & dosage
- Central Nervous System Stimulants/pharmacology
- Depression, Chemical
- Dextroamphetamine/administration & dosage
- Dextroamphetamine/pharmacology
- Dopamine Agonists/pharmacology
- Fatty Acids, Nonesterified/blood
- Half-Life
- Image Processing, Computer-Assisted
- Injections, Intraperitoneal
- Male
- Quinpirole/pharmacology
- Rats
- Rats, Inbred F344
- Receptors, Dopamine D2/agonists
- Receptors, Phospholipase A2/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Abesh K Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Basselin M, Chang L, Chen M, Bell JM, Rapoport SI. Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 2008; 33:2229-40. [PMID: 18461450 PMCID: PMC2564799 DOI: 10.1007/s11064-008-9700-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/03/2008] [Indexed: 01/12/2023]
Abstract
Evidence that brain glutamatergic activity is pathologically elevated in bipolar disorder suggests that mood stabilizers are therapeutic in the disease in part by downregulating glutamatergic activity. Such activity can involve the second messenger, arachidonic acid (AA, 20:4n - 6). We tested this hypothesis with regard to valproic acid (VPA), when stimulating glutamatergic N-methyl-D: -aspartate (NMDA) receptors in rat brain and measuring AA and related responses. An acute subconvulsant dose of NMDA (25 mg/kg i.p.) or saline was administered to unanesthetized rats that had been treated i.p. daily with VPA (200 mg/kg) or vehicle for 30 days. Quantitative autoradiography following intravenous [1-(14)C]AA infusion was used to image regional brain AA incorporation coefficients k*, markers of AA signaling. In chronic vehicle-pretreated rats, NMDA compared with saline significantly increased k* in 41 of 82 examined brain regions, many of which have high NMDA receptor densities, and also increased brain concentrations of the AA metabolites, prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)). VPA pretreatment reduced baseline concentrations of PGE(2) and TXB(2), and blocked the NMDA induced increases in k* and in eicosanoid concentrations. These results, taken with evidence that carbamazepine and lithium also block k* responses to NMDA in rat brain, suggest that mood stabilizers act in bipolar disorder in part by downregulating glutamatergic signaling involving AA.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg 9, Room 1S126, MSC 0947, 9 Memorial Drive, Bethesda, MD, 20892, USA.
| | | | | | | | | |
Collapse
|
38
|
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583:322-39. [PMID: 18295199 DOI: 10.1016/j.ejphar.2007.12.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/16/2007] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-containing endocannabinoids biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX(2)) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response.
Collapse
|
39
|
Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP. Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J Lipid Res 2007; 49:162-8. [PMID: 17957090 DOI: 10.1194/jlr.m700406-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Whereas antibipolar drug administration to rats reduces brain arachidonic acid turnover, excessive N-methyl-d-aspartate (NMDA) signaling is thought to contribute to bipolar disorder symptoms and may increase arachidonic acid turnover in rat brain phospholipids. To determine whether chronic NMDA would increase brain arachidonic acid turnover, rats were daily administered NMDA (25 mg/kg, ip) or vehicle for 21 days. In unanesthetized rats, on day 21, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was euthanized at 5 min and its microwaved brain was subjected to chemical and radiotracer analysis. Using equations from our in vivo fatty acid model, we found that compared with controls, chronic NMDA increased the net rate of incorporation of plasma unesterified arachidonic acid into brain phospholipids (25-34%) as well as the turnover of arachidonic acid within brain phospholipids (35-58%). These changes were absent at 3 h after a single NMDA injection. The changes, opposite to those after chronic administration of antimanic drugs to rats, suggest that excessive NMDA signaling via arachidonic acid may be a model of upregulated arachidonic acid turnover in brain phospholipids.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Basselin M, Villacreses NE, Chen M, Bell JM, Rapoport SI. Chronic carbamazepine administration reduces N-methyl-D-aspartate receptor-initiated signaling via arachidonic acid in rat brain. Biol Psychiatry 2007; 62:934-43. [PMID: 17628508 PMCID: PMC2131715 DOI: 10.1016/j.biopsych.2007.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 01/16/2023]
Abstract
BACKGROUND Lithium and carbamazepine (CBZ) are used to treat mania in bipolar disorder. When given chronically to rats, both agents reduce arachidonic acid (AA) turnover in brain phospholipids and downstream AA metabolism. Lithium in rats also attenuates brain N-methyl-D-aspartic acid receptor (NMDAR) signaling via AA. We hypothesized that, like chronic lithium, chronic CBZ administration to rats would reduce NMDAR-mediated signaling via AA. METHODS We used our fatty acid method with quantitative autoradiography to image the regional brain incorporation coefficient k* of AA, a marker of AA signaling, in unanesthetized rats that had been given 25 mg/kg/day I.P. CBZ or vehicle for 30 days, then injected with NMDA (25 mg/kg I.P.) or saline. We also measured brain concentrations of two AA metabolites, prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)). RESULTS In chronic vehicle-treated rats, NMDA compared with saline increased k* significantly in 69 of 82 brain regions examined, but did not change k* significantly in any region in CBZ-treated rats. In vehicle- but not CBZ-treated rats, NMDA also increased brain concentrations of PGE(2) and TXB(2). CONCLUSIONS Chronic CBZ administration to rats blocks increments in the AA signal k*, and in PGE(2) and TXB(2) concentrations that are produced by NMDA in vehicle-treated rats. The clinical action of antimanic drugs might involve inhibition of brain NMDAR-mediated signaling involving AA and its metabolites.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
41
|
Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP. Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 2007; 193:467-74. [PMID: 17487474 DOI: 10.1007/s00213-007-0803-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/11/2007] [Indexed: 12/27/2022]
Abstract
RATIONALE Drugs that are effective in treating the manic phase of bipolar disorder (lithium, carbamazepine, and valproate) upon chronic administration to rats decrease the turnover of arachidonic acid in their brain phospholipids. Lamotrigine may not be effective in the manic phase, but is effective in delaying the depressive phase and for treating rapid cycling bipolar disorder. Thus, lamotrigine provides a pharmacological tool to differentiate if downregulation of arachidonic acid turnover is specific to drugs effective in the manic phase of bipolar disorder. MATERIALS AND METHODS To test this hypothesis, rats were administered lamotrigine (10 mg kg(-1) day(-1)) or vehicle intragastrically once daily for 42 days. In the unanesthetized rat, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was killed at 5 min, and its microwaved brain was subjected to chemical and radiotracer analysis. RESULTS Using equations from our fatty acid model, we found that chronic lamotrigine compared with vehicle did not alter the net incorporation rate of plasma arachidonic acid into brain phospholipids, nor did it alter the turnover of arachidonic acid within brain phospholipids. CONCLUSION Chronic lamotrigine, which is effective in the depressive phase or rapid cycling bipolar disorder does not alter brain arachidonic acid turnover in the unanesthetized rat. These results are consistent with the hypothesis that drugs effective in treating the manic phase of bipolar disorder decrease brain arachidonic acid turnover.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI. Flurbiprofen, A Cyclooxygenase Inhibitor, Reduces the Brain Arachidonic Acid Signal in Response to the Cholinergic Muscarinic Agonist, Arecoline, in Awake Rats. Neurochem Res 2007; 32:1857-67. [PMID: 17562170 DOI: 10.1007/s11064-007-9372-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
Cholinergic muscarinic receptors, when stimulated by arecoline, can activate cytosolic phospholipase A(2) (cPLA(2)) to release arachidonic acid (AA) from membrane phospholipid. This signal can be imaged in the brain in vivo using quantitative autoradiography following the intravenous injection of radiolabeled AA, as an increment in a regional brain AA incorporation coefficient k*. Arecoline increases k* significantly in brain regions having muscarinic M(1,3,5) receptors in wild-type but not in cyclooxygenase (COX)-2 knockout mice. To further clarify the roles of COX enzymes in the AA signal, in this paper we imaged k* following arecoline (5 mg/kg i.p.) or saline in each of 81 brain regions of unanesthetized rats pretreated 6 h earlier with the non-selective COX inhibitor flurbiprofen (FB, 60 mg/kg s.c.) or with vehicle. Baseline values of k* were unaffected by FB treatment, which however reduced by 80% baseline brain concentrations of prostaglandin E(2) (PGE(2)) and thromboxane B(2) (TXB(2)), eicosanoids preferentially derived from AA via COX-2 and COX-1, respectively. In vehicle-pretreated rats, arecoline increased the brain PGE(2) but not TXB(2) concentration, as well as values for k* in 77 of the 81 brain regions. FB-pretreatment prevented these arecoline-provoked changes. These results and those reported in COX-2 knockout mice suggest that the AA released in brain following muscarinic receptor-mediated activation is lost via COX-2 to PGE(2) but not via COX-1 to TXB(2), and that increments in k* following arecoline largely represent replacement by unesterified plasma AA of this loss.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg 9, Room 1S126, MSC 0947, 9 Memorial Drive, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
43
|
Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP. Chronic fluoxetine increases cytosolic phospholipase A(2) activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2007; 190:103-15. [PMID: 17093977 DOI: 10.1007/s00213-006-0582-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/28/2006] [Indexed: 01/08/2023]
Abstract
RATIONALE Fluoxetine is used to treat unipolar depression and is thought to act by increasing the concentration of serotonin (5-HT) in the synaptic cleft, leading to increased serotonin signaling. The 5-HT(2A/2C) receptor subtypes are coupled to a phospholipase A(2) (PLA(2)). We hypothesized that chronic fluoxetine would increase the brain activity of PLA(2) and the turnover rate of arachidonic acid (AA) in phospholipids of the unanesthetized rat. MATERIALS AND METHODS To test this hypothesis, rats were administered fluoxetine (10 mg/kg) or vehicle intraperitoneally daily for 21 days. In the unanesthetized rat, [1-(14)C]AA was infused intravenously and arterial blood plasma was sampled until the animal was killed at 5 min and its brain was subjected to chemical, radiotracer, or enzyme analysis. RESULTS Using equations from our fatty acid model, we found that chronic fluoxetine compared with vehicle increased the turnover rate of AA within several brain phospholipids by 75-86%. The activity and protein levels of brain cytosolic PLA(2) (cPLA(2)) but not of secretory or calcium-independent PLA(2) were increased in rats administered fluoxetine. In a separate group of animals that received chronic fluoxetine followed by a 3-day saline washout, the turnover of AA and activity and protein levels of cPLA(2) were not significantly different from controls. The protein levels of cyclooxygenases 1 and 2 as well as the concentration of prostaglandin E(2) in rats chronically administered fluoxetine did not differ significantly from controls. CONCLUSION The results support the hypothesis that fluoxetine increases the cPLA(2)-mediated turnover of AA within brain phospholipids.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
44
|
Channing MA, Simpson N. Radiosynthesis of 1-[11C] polyhomoallylic fatty acids. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580330611] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2006; 31:1659-74. [PMID: 16292331 DOI: 10.1038/sj.npp.1300920] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been proposed that lithium is effective in bipolar disorder (BD) by inhibiting glutamatergic neurotransmission, particularly via N-methyl-D-aspartate receptors (NMDARs). To test this hypothesis and to see if the neurotransmission could involve the NMDAR-mediated activation of phospholipase A2 (PLA2), to release arachidonic acid (AA) from membrane phospholipid, we administered subconvulsant doses of NMDA to unanesthetized rats fed a chronic control or LiCl diet. We used quantitative autoradiography following the intravenous injection of radiolabeled AA to measure regional brain incorporation coefficients k* for AA, which reflect receptor-mediated activation of PLA2. In control diet rats, NMDA (25 and 50 mg/kg i.p.) compared with i.p. saline increased k* significantly in 49 and 67 regions, respectively, of the 83 brain regions examined. The regions affected were those with reported NMDARs, including the neocortex, hippocampus, caudate-putamen, thalamus, substantia nigra, and nucleus accumbens. The increases could be blocked by pretreatment with the specific noncompetitive NMDA antagonist MK-801 ((5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate) (0.3 mg/kg i.p.), as well by a 6-week LiCl diet sufficient to produce plasma and brain lithium concentrations known to be effective in BD. MK-801 alone reduced baseline values for k* in many brain regions. The results show that it is possible to image NMDA signaling via PLA2 activation and AA release in vivo, and that chronic lithium blocks this signaling, consistent with its suggested mechanism of action in BD.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
46
|
Nagatsugi F, Hokazono J, Sasaki S, Maeda M. Synthesis of 20-[18F]fluoroarachidonic acid: A potential phospholipid metabolic agent. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580341202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ. Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 2006; 59:401-7. [PMID: 16182257 DOI: 10.1016/j.biopsych.2005.07.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/12/2005] [Accepted: 07/23/2005] [Indexed: 12/18/2022]
Abstract
BACKGROUND The basis for carbamazepine's efficacy in treating bipolar disorder is not agreed on. One hypothesis is that, similar to lithium and valproate (antibipolar drugs), carbamazepine might selectively decrease the kinetics of arachidonic acid (AA) in brain phospholipids. METHODS To assess whether it targets brain AA kinetics, we administered carbamazepine (25 mg/kg/day, IP) to rats for 30 days and then determined its effect compared with that of vehicle on incorporation and turnover rates of AA and docosahexaenoic acid (DHA) in brain phospholipids. In unanesthetized rats that had received carbamazepine or vehicle, [1-14C]AA or [1-14C]DHA was infused intravenously, and arterial blood plasma was sampled until the animal was killed at 5 min and its brain, after being microwaved, was used for acyl-coenzyme A (acyl-CoA) and phospholipid fatty acid analysis. RESULTS Chronic carbamazepine, compared with vehicle, decreased the rate of incorporation of AA-CoA (27%-29%) and turnover of AA (25%-27%) but not of DHA-CoA or DHA in brain phospholipids. CONCLUSIONS The results, which are comparable to published findings after chronic administration of lithium and valproic acid to rats, support the hypothesis that drugs effective against mania in bipolar disorder act by selectively downregulating the incorporation rate of AA-CoA and turnover of AA in brain phospholipids.
Collapse
Affiliation(s)
- Richard P Bazinet
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Glaser ST, Gatley SJ, Gifford AN. Ex vivo imaging of fatty acid amide hydrolase activity and its inhibition in the mouse brain. J Pharmacol Exp Ther 2006; 316:1088-97. [PMID: 16278311 DOI: 10.1124/jpet.105.094748] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is recent behavioral evidence that fatty acid amide hydrolase (FAAH) inhibitors produce a subset of cannabinoid receptor agonist effects, suggesting both anandamide-specific behavioral functions and possible regional differences in FAAH inhibitory effects. Here, we introduce a novel imaging method to quantify regional differences in brain FAAH activity. Upon intravenous [3H]anandamide administration, brain FAAH activity generates [3H]arachidonic acid, which is promptly trapped in membrane phospholipids. As a result, wild-type (WT) brains accumulate tritium in a regionally specific manner that is dependent upon regional FAAH activity, whereas brains from FAAH knockout (KO) mice show a uniform [3H]anandamide distribution. Increasing doses of anandamide + [3H]anandamide fail to alter regional tritium accumulation, suggesting insensitivity toward this process by anandamide-induced changes in regional cerebral blood flow. Regional tritiated metabolite levels in WT brains were highest in the somatosensory and visual cortices and the thalamus. Treatment with methylarachidonyl fluorophosphonate (MAFP) (1 mg/kg i.p.) reduced regional tritium accumulation in the somatosensory and visual cortices (p < 0.01), and at higher doses, the thalamus (p < 0.05). The selective FAAH inhibitor 1-oxazolo[4,5-b]pyridin-2-yl-1-dodecanone (CAY10435), although having similar efficacy as MAFP in reducing tritium in the thalamus and somatosensory and visual cortices, also reduces caudate putamen and cerebellum (p < 0.01) activity. These data indicate FAAH activity generates heterogeneous regional accumulation of [3H]anandamide and metabolites, and they suggest the modulation of endocannabinoid tone by FAAH inhibitors depends upon not only the dose and compound used but also on the degree of FAAH expression in the brain regions examined. This imaging method determines regionally specific FAAH inhibition and can elucidate the in vivo effects of pharmacological agents targeting anandamide inactivation.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Center for Translational Neuroimaging, Medical Department, Bldg. 490, 30 Bell Ave., Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | |
Collapse
|
49
|
Basselin M, Villacreses NE, Langenbach R, Ma K, Bell JM, Rapoport SI. Resting and arecoline-stimulated brain metabolism and signaling involving arachidonic acid are altered in the cyclooxygenase-2 knockout mouse. J Neurochem 2006; 96:669-79. [PMID: 16405503 DOI: 10.1111/j.1471-4159.2005.03612.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract Studies were performed to determine if cyclooxygenase (COX)-2 regulates muscarinic receptor-initiated signaling involving brain phospholipase A2 (PLA2) activation and arachidonic acid (AA; 20 : 4n-6) release. AA incorporation coefficients, k* (brain [1-14C]AA radioactivity/integrated plasma radioactivity), representing this signaling, were measured following the intravenous injection of [1-14C]AA using quantitative autoradiography, in each of 81 brain regions in unanesthetized COX-2 knockout (COX-2(-/-)) and wild-type (COX-2(+/+)) mice. Mice were administered arecoline (30 mg/kg i.p.), a non-specific muscarinic receptor agonist, or saline i.p. (baseline control). At baseline, COX-2(-/-) compared with COX-2(+/+) mice had widespread and significant elevations of k*. Arecoline increased k* significantly in COX-2(+/+) mice compared with saline controls in 72 of 81 brain regions, but had no significant effect on k* in any region in COX-2(-/-) mice. These findings, when related to net incorporation rates of AA from brain into plasma, demonstrate enhanced baseline brain metabolic loss of AA in COX-2(-/-) compared with COX-2(+/+) mice, and an absence of a normal k* response to muscarinic receptor activation. This response likely reflects selective COX-2-mediated conversion of PLA2-released AA to prostanoids.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda,MD 20892-0947, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ. Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2005; 182:180-5. [PMID: 15986187 DOI: 10.1007/s00213-005-0059-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/28/2005] [Indexed: 01/06/2023]
Abstract
RATIONALE It has been reported that each of three drugs effective in treating bipolar disorder (lithium, carbamazepine, and valproate) decreases the turnover of arachidonic acid (AA, 20:4n-6) in brain phospholipids of the awake rat. It is also known that lithium and carbamazepine do so without decreasing the turnover of docosahexaenoic acid (DHA, 22:6n-3). OBJECTIVE The aim of this study was to see whether valproate also specifically targets the turnover of AA but not of DHA in brain phospholipids. METHODS Valproate was administered (200 mg kg(-1), i.p.) to rats for 30 days to produce a therapeutically relevant plasma concentration and then determine its effect compared with that of vehicle on incorporation and turnover rates of DHA in brain phospholipids. In unanesthetized rats that had received valproate or vehicle, [1-14C]DHA was infused intravenously, and arterial blood plasma was sampled until the animal was killed at 5 min; and its brain, after being microwaved, was subjected to chemical and radiotracer analysis. RESULTS Using equations derived from our fatty acid model, it was found that chronic valproate compared with vehicle did not alter the rate of incorporation or turnover of DHA in brain phospholipids. Valproate-treated animals had higher concentrations of linoleic acid (18:2n-6) in several brain phospholipids, supporting the hypothesis that it alters brain n-6 fatty acid metabolism. CONCLUSIONS The results, comparable to published findings following chronic administration of lithium and carbamazepine to rats, support the hypothesis that drugs are effective against mania in bipolar disorder act by downregulating incorporation and turnover of AA, but not of DHA, in brain phospholipids.
Collapse
Affiliation(s)
- Richard P Bazinet
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 1S 128, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|