1
|
Jiang J, Jang KH, Ahn SY, Jo CH. Changes in Gene Expression of the Extracellular Matrix in Patients with Full-Thickness Rotator Cuff Tears of Varying Sizes. Clin Orthop Surg 2025; 17:138-147. [PMID: 39912080 PMCID: PMC11791492 DOI: 10.4055/cios24125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 02/07/2025] Open
Abstract
Backgroud This study aimed to investigate changes in gene expression related to matrix synthesis in individuals with full-thickness rotator cuff tears (RCTs) and normal tendon tissues. The study also aimed to examine the differences in gene expression according to 4 distinct tear sizes. Methods A total of 12 patients with full-thickness RCTs were included in the study, all of whom underwent arthroscopic rotator cuff repair. The RCTs were stratified by size into small, medium, large, and massive. Tendon samples were harvested from the midpoint between the lateral end of the torn tendon and the musculotendinous junction. Subsequent analysis of the tissue samples revealed the mRNA expression levels of 11 collagen types, 6 proteoglycans, and 8 glycoproteins through real-time polymerase chain reaction techniques. For control purposes, supraspinatus tendon tissue was sourced from 3 patients who had proximal humerus fractures but did not present with RCTs. Results Among the 11 collagens and 14 non-collagenous protein (NCP) genes examined in this study, COL3A1 and COL10A1 showed a significant increase, whereas COL4A1 and COL14A1 showed a tendency to decrease compared to those in the normal group. ACAN significantly increased by 8.92-fold (p < 0.001) compared to that in the normal group, whereas DCN and LUM showed a tendency to decrease. FN1 and TNC increased significantly by 3.47-fold (p = 0.003) and 5.38-fold (p = 0.005), respectively, and the genes ELN, LAMA2, and THBS1 were all significantly reduced compared to those in the normal group. In the NCPs, almost all the genes with increased expression levels had the highest level in small size RCTs, and gene expression decreased as the size increased. The 3 proteoglycans (ACAN, BGN, and FMOD) showed the highest levels of expression in small size RCTs compared to those in the normal group, and 5 glycoproteins (COMP, FBN1, FN1, HAPLN1, and TNC) also showed the highest expression in small size RCTs. Conclusions We confirmed that most of the detected extracellular matrix gene expression changes were related to the size of the full-thickness RCTs. In NCPs, gene expression was increased in small-size tears, and gene expression levels were significantly reduced when the size increased.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kwi-Hoon Jang
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Yong Ahn
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Hammerman M, Pierantoni M, Isaksson H, Eliasson P. Deprivation of loading during rat Achilles tendon healing affects extracellular matrix composition and structure, and reduces cell density and alignment. Sci Rep 2024; 14:23380. [PMID: 39379568 PMCID: PMC11461875 DOI: 10.1038/s41598-024-74783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Tendon healing involves mechanosensitive cells that adapt to mechanical stimuli through mechanotransduction, resulting in increased tissue strength. However, detailed insights into this process in response to different loads remain limited. We aimed to investigate how different loading regimes impact the spatial composition of elastin and collagens during Achilles tendon healing. Histological analysis was conducted on healing rat Achilles tendons exposed to (1) full loading, (2) reduced loading, or (3) minimal loading. Histological analysis included Hematoxylin & Eosin and immunohistochemical staining targeting elastin, Collagen 1, Collagen 3, and CD31. Our results showed that the impact of mechanical stimuli on healing tendons varied with the degree of loading. Unexpectedly, minimal loading led to higher staining intensity for collagens and elastin. However, tendons exposed to minimal loading appeared thinner and exhibited a less organized matrix structure, with fewer, less aligned, and more rounded cells. Additionally, our findings indicated an inverse correlation between angiogenesis and load level, with more blood vessels in tendons subjected to less loading. Tissue integrity improved by 12 weeks post-injury, but the healing process continued and did not regain the structure seen in intact tendons even after 20 weeks. This study reveals a load-dependent effect on matrix alignment, cell density, and cell alignment.
Collapse
Affiliation(s)
- Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Sahlgrenska University Hospital, Department of Orthopaedics, Mölndal, 341 80, Sweden.
| |
Collapse
|
3
|
Matsushima T, Hiroshi A. Molecular mechanisms of mechanosensing and plasticity of tendons and ligaments. J Biochem 2024; 176:263-269. [PMID: 38729213 PMCID: PMC11444931 DOI: 10.1093/jb/mvae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Tendons and ligaments, crucial components of the musculoskeletal system, connect muscles to bones. In the realm of sports, tendons and ligaments are vulnerable tissues, with injuries such as Achilles tendon rupture and anterior cruciate ligament tears directly impacting an athlete's career. Furthermore, repetitive trauma and tissue degeneration can lead to conditions like secondary osteoarthritis, ultimately affecting the overall quality of life. Recent research highlights the pivotal role of mechanical stress in maintaining homeostasis within tendons and ligaments. This review delves into the latest insights on the structure of tendons and ligaments and the plasticity of tendon tissue in response to mechanical loads.
Collapse
Affiliation(s)
- Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Asahara Hiroshi
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Yang X, Tang H, He L, Peng T, Li J, Zhang J, Liu L, Zhou H, Chen Z, Zhao J, Zhang Y, Zhong M, Han M, Zhang M, Niu H, Xu K. Proteomic changes of botulinum neurotoxin injection on muscle growth in children with spastic cerebral palsy. Proteomics Clin Appl 2024; 18:e2300070. [PMID: 38456375 DOI: 10.1002/prca.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP). EXPERIMENTAL DESIGN A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection. In addition, 48 unrelated children were enrolled, among whom one group had never received BoNT-A injections and another group was sampled after their first BoNT-A injection. Differentially expressed proteins were identified using the data-independent acquisition (DIA) mass spectrometry approach. Gene Ontology (GO), protein-protein interaction network, and Kyoto Encyclopedia of Genes and Genome analysis were conducted to explore the function and relationship among differentially expressed proteins. The expression levels of target proteins were verified by quantitative real-time PCR and western blotting. RESULTS Analysis identified significant differential expression of 90 proteins across two time points, including 48 upregulated and 42 downregulated proteins. The upregulated thioredoxin, α-actinin-1, and aggrecan, and the downregulated integrin beta-1 may affect the growth of muscles affected by spasticity 3 months after BoNT-A injection. This effect is potentially mediated through the activation or inhibition of PI3K-Akt, focal adhesion, and regulation of actin cytoskeleton signaling pathways. CONCLUSION AND CLINICAL RELEVANCE BoNT-A injection could lead to a disruption of protein levels and signaling pathways, a condition subsequently associated with muscle growth. This finding might aid clinicians in optimizing the management of spasticity in children with CP.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Sport Rehabilitation, Shanghai University of Sport, shanghai, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingshan Han
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengqing Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd, Shanghai, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Lal MR, Agrawal DK. Chronic Adaptation of Achilles Tendon Tissues upon Injury to Rotator Cuff Tendon in Hyperlipidemic Swine. JOURNAL OF ORTHOPAEDICS AND SPORTS MEDICINE 2024; 6:80-88. [PMID: 38939871 PMCID: PMC11210446 DOI: 10.26502/josm.511500146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The biomechanical properties of the tendon are affected due to the changes in composition of the tendon extracellular matrix (ECM). Age, overuse, trauma and metabolic disorders are a few associated conditions that contribute to tendon abnormalities. Hyperlipidemia is one of the leading factors that contribute to the compromised biomechanical. Injury was made on infraspinatus tendon of hyperlipidemic swines. After 8 weeks (i) infraspinatus tendon from the injury site, (ii) infraspinatus tendon from the contralateral side and (iii) Achilles tendon, were collected and analyzed for ECM components that form the major part in biomechanical properties. Immunostaining of infraspinatus tendon on the injury site had higher staining collagen type-1 (COL1A1), biglycan, prolyl 4-hydroxylase and mohawk but lower staining for decorin than the control group. The Achilles tendon of the swines that had injury on infraspinatus tendon showed a chronic adaptation towards load which was evident from a more organized ECM with increased decorin, mohawk and decreased biglycan, scleraxis. The mechanism behind the collagen turnover and chronic adaptation to load need to be studied in detail with the biomechanical properties.
Collapse
Affiliation(s)
- Merlin Rajesh Lal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
6
|
Huang S, Rao Y, Ju AL, Ker DFE, Blocki AM, Wang DM, Tuan RS. Non-collagenous proteins, rather than the collagens, are key biochemical factors that mediate tenogenic bioactivity of tendon extracellular matrix. Acta Biomater 2024; 176:99-115. [PMID: 38142795 DOI: 10.1016/j.actbio.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Ying Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Adler Leigh Ju
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Anna M Blocki
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| |
Collapse
|
7
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Taguchi T, Lopez M, Takawira C. Viable tendon neotissue from adult adipose-derived multipotent stromal cells. Front Bioeng Biotechnol 2024; 11:1290693. [PMID: 38260742 PMCID: PMC10800559 DOI: 10.3389/fbioe.2023.1290693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Tendon healing is frequently prolonged, unpredictable, and results in poor tissue quality. Neotissue formed by adult multipotent stromal cells has the potential to guide healthy tendon tissue formation. Objectives: The objective of this study was to characterize tendon neotissue generated by equine adult adipose-derived multipotent stromal cells (ASCs) on collagen type I (COLI) templates under 10% strain in a novel bioreactor. The tested hypothesis was that ASCs assume a tendon progenitor cell-like morphology, express tendon-related genes, and produce more organized extracellular matrix (ECM) in tenogenic versus stromal medium with perfusion and centrifugal fluid motion. Methods: Equine ASCs on COLI sponge cylinders were cultured in stromal or tenogenic medium within bioreactors during combined perfusion and centrifugal fluid motion for 7, 14, or 21 days under 10% strain. Viable cell distribution and number, tendon-related gene expression, and micro- and ultra-structure were evaluated with calcein-AM/EthD-1 staining, resazurin reduction, RT-PCR, and light, transmission, and scanning electron microscopy. Fibromodulin was localized with immunohistochemistry. Cell number and gene expression were compared between culture media and among culture periods (p < 0.05). Results: Viable cells were distributed throughout constructs for up to 21 days of culture, and cell numbers were higher in tenogenic medium. Individual cells had a round or rhomboid shape with scant ECM in stromal medium in contrast to clusters of parallel, elongated cells surrounded by highly organized ECM in tenogenic medium after 21 days of culture. Transcription factor, extracellular matrix, and mature tendon gene expression profiles confirmed ASC differentiation to a tendon progenitor-like cell in tenogenic medium. Construct micro- and ultra-structure were consistent with tendon neotissue and fibromodulin was present in the ECM after culture in tenogenic medium. Conclusion: Long-term culture in custom bioreactors with combined perfusion and centrifugal tenogenic medium circulation supports differentiation of equine adult ASCs into tendon progenitor-like cells capable of neotissue formation.
Collapse
|
9
|
Wise BC, Mora KE, Lee W, Buckley MR. Murine Hind Limb Explant Model for Studying the Mechanobiology of Achilles Tendon Impingement. J Vis Exp 2023:10.3791/65801. [PMID: 38145383 PMCID: PMC11952120 DOI: 10.3791/65801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Tendon impingement upon bone generates a multiaxial mechanical strain environment with markedly elevated transverse compressive strain, which elicits a localized fibrocartilage phenotype characterized by accumulation of glycosaminoglycan (GAG)-rich matrix and remodeling of the collagen network. While fibrocartilage is a normal feature in impinged regions of healthy tendons, excess GAG deposition and disorganization of the collagen network are hallmark features of tendinopathy. Accordingly, impingement is clinically recognized as an important extrinsic factor in the initiation and progression of tendinopathy. Nevertheless, the mechanobiology underlying tendon impingement remains understudied. Prior efforts to elucidate the cellular response to tendon impingement have applied uniaxial compression to cells and excised tendon explants in vitro. However, isolated cells lack a three-dimensional extracellular environment crucial to mechanoresponse, and both in vitro and excised explant studies fail to recapitulate the multiaxial strain environment generated by tendon impingement in vivo, which depends on anatomical features of the impinged region. Moreover, in vivo models of tendon impingement lack control over the mechanical strain environment. To overcome these limitations, we present a novel murine hind limb explant model suitable for studying the mechanobiology of Achilles tendon impingement. This model maintains the Achilles tendon in situ to preserve local anatomy and reproduces the multiaxial strain environment generated by impingement of the Achilles tendon insertion upon the calcaneus during passively applied ankle dorsiflexion while retaining cells within their native environment. We describe a tissue culture protocol integral to this model and present data establishing sustained explant viability over 7 days. The representative results demonstrate enhanced histological GAG staining and decreased collagen fiber alignment secondary to impingement, suggesting elevated fibrocartilage formation. This model can easily be adapted to investigate different mechanical loading regimens and allows for the manipulation of molecular pathways of interest to identify mechanisms mediating phenotypic change in the Achilles tendon in response to impingement.
Collapse
Affiliation(s)
- Brian C Wise
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Keshia E Mora
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Whasil Lee
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center; Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center;
| |
Collapse
|
10
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Jeannerat A, Meuli J, Peneveyre C, Jaccoud S, Chemali M, Thomas A, Liao Z, Abdel-Sayed P, Scaletta C, Hirt-Burri N, Applegate LA, Raffoul W, Laurent A. Bio-Enhanced Neoligaments Graft Bearing FE002 Primary Progenitor Tenocytes: Allogeneic Tissue Engineering & Surgical Proofs-of-Concept for Hand Ligament Regenerative Medicine. Pharmaceutics 2023; 15:1873. [PMID: 37514060 PMCID: PMC10385025 DOI: 10.3390/pharmaceutics15071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 105 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.
Collapse
Affiliation(s)
- Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Joachim Meuli
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Sandra Jaccoud
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michèle Chemali
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Axelle Thomas
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Zhifeng Liao
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Wassim Raffoul
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
12
|
Ostadi Moghaddam A, Arshee MR, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Wagoner Johnson AJ. An indentation-based framework for probing the glycosaminoglycan-mediated interactions of collagen fibrils. J Mech Behav Biomed Mater 2023; 140:105726. [PMID: 36827935 PMCID: PMC10061372 DOI: 10.1016/j.jmbbm.2023.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Microscale deformation processes, such as reorientation, buckling, and sliding of collagen fibrils, determine the mechanical behavior and function of collagenous tissue. While changes in the structure and composition of tendon have been extensively studied, the deformation mechanisms that modulate the interaction of extracellular matrix (ECM) constituents are not well understood, partly due to the lack of appropriate techniques to probe the behavior. In particular, the role of glycosaminoglycans (GAGs) in modulating collagen fibril interactions has remained controversial. Some studies suggest that GAGs act as crosslinkers between the collagen fibrils, while others have not found such evidence and postulate that GAGs have other functions. Here, we introduce a new framework, relying on orientation-dependent indentation behavior of tissue and computational modeling, to evaluate the shear-mediated function of GAGs in modulating the collagen fibril interactions at a length scale more relevant to fibrils compared to bulk tests. Specifically, we use chondroitinase ABC to enzymatically deplete the GAGs in tendon; measure the orientation-dependent indentation response in transverse and longitudinal orientations; and infer the microscale deformation mechanisms and function of GAGs from a microstructural computational model and a modified shear-lag model. We validate the modeling approach experimentally and show that GAGs facilitate collagen fibril sliding with minimal crosslinking function. We suggest that the molecular reconfiguration of GAGs is a potential mechanism for their microscale, strain-dependent viscoelastic behavior. This study reveals the mechanisms that control the orientation-dependent indentation response by affecting the shear deformation and provides new insights into the mechanical function of GAGs and collagen crosslinkers in collagenous tissue.
Collapse
Affiliation(s)
- A Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - M R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Z Lin
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - M Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - H Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - B L McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL, 60612, USA
| | - K C Toussaint
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
14
|
Hart DA, Ahmed AS, Ackermann P. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front Sports Act Living 2023; 4:1081129. [PMID: 36685063 PMCID: PMC9853460 DOI: 10.3389/fspor.2022.1081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada,Correspondence: David A. Hart
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Szarek P, Pierce DM. A specialized protocol for mechanical testing of isolated networks of type II collagen. J Mech Behav Biomed Mater 2022; 136:105466. [PMID: 36183667 DOI: 10.1016/j.jmbbm.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
16
|
Beach ZM, Bonilla KA, Dekhne MS, Sun M, Adams TH, Adams SM, Weiss SN, Rodriguez AB, Shetye SS, Birk DE, Soslowsky LJ. Biglycan has a major role in maintenance of mature tendon mechanics. J Orthop Res 2022; 40:2546-2556. [PMID: 35171523 PMCID: PMC9378794 DOI: 10.1002/jor.25299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023]
Abstract
Decorin and biglycan are two small leucine-rich proteoglycans (SLRPs) that regulate collagen fibrillogenesis and extracellular matrix assembly in tendon. The objective of this study was to determine the individual roles of these molecules in maintaining the structural and mechanical properties of tendon during homeostasis in mature mice. We hypothesized that knockdown of decorin in mature tendons would result in detrimental changes to tendon structure and mechanics while knockdown of biglycan would have a minor effect on these parameters. To achieve this objective, we created tamoxifen-inducible mouse knockdown models targeting decorin or biglycan inactivation. This enables the evaluation of the roles of these SLRPs in mature tendon without the abnormal tendon development caused by conventional knockout models. Contrary to our hypothesis, knockdown of decorin resulted in minor alterations to tendon structure and no changes to mechanics while knockdown of biglycan resulted in broad changes to tendon structure and mechanics. Specifically, knockdown of biglycan resulted in reduced insertion modulus, maximum stress, dynamic modulus, stress relaxation, and increased collagen fiber realignment during loading. Knockdown of decorin and biglycan produced similar changes to tendon microstructure by increasing the collagen fibril diameter relative to wild-type controls. Biglycan knockdown also decreased the cell nuclear aspect ratio, indicating a more spindle-like nuclear shape. Overall, the extensive changes to tendon structure and mechanics after knockdown of biglycan, but not decorin, provides evidence that biglycan plays a major role in the maintenance of tendon structure and mechanics in mature mice during homeostasis.
Collapse
Affiliation(s)
- Zakary M. Beach
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Kelsey A. Bonilla
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Mihir S. Dekhne
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Thomas H. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Stephanie N. Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Ashley B. Rodriguez
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| |
Collapse
|
17
|
Freedman BR, Adu-Berchie K, Barnum C, Fryhofer GW, Salka NS, Shetye S, Soslowsky LJ. Nonsurgical treatment reduces tendon inflammation and elevates tendon markers in early healing. J Orthop Res 2022; 40:2308-2319. [PMID: 34935170 PMCID: PMC9209559 DOI: 10.1002/jor.25251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Operative treatment is assumed to provide superior outcomes to nonoperative (conservative) treatment following Achilles tendon rupture, however, this remains controversial. This study explores the effect of surgical repair on Achilles tendon healing. Rat Achilles tendons (n = 101) were bluntly transected and were randomized into groups receiving repair or non-repair treatments. By 1 week after injury, repaired tendons had inferior mechanical properties, which continued to 3- and 6-week post-injury, evidenced by decreased dynamic modulus and failure stress. Transcriptomics analysis revealed >7000 differentially expressed genes between repaired and non-repaired tendons after 1-week post-injury. While repaired tendons showed enriched inflammatory gene signatures, non-repaired tendons showed increased tenogenic, myogenic, and mechanosensitive gene signatures, with >200-fold enrichment in Tnmd expression. Analysis of gastrocnemius muscle revealed elevated MMP activity in tendons receiving repair treatment, despite no differences in muscle fiber morphology. Transcriptional regulation analysis highlighted that the highest expressed transcription factors in repaired tendons were associated with inflammation (Nfκb, SpI1, RelA, and Stat1), whereas non-repaired tendons expressed markers associated with tissue development and mechano-activation (Smarca1, Bnc2, Znf521, Fbn1, and Gli3). Taken together, these data highlight distinct differences in healing mechanism occurring immediately following injury and provide insights for new therapies to further augment tendons receiving repaired and non-repaired treatments.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Kwasi Adu-Berchie
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Carrie Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George W Fryhofer
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nabeel S Salka
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Snehal Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
19
|
Xue Z, Wang X, Xu D. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization. Phys Chem Chem Phys 2022; 24:18931-18942. [PMID: 35916012 DOI: 10.1039/d2cp02573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone is a typical inorganic-organic composite material with a multilevel hierarchical organization. In the lowest level of bone tissue, inorganic minerals, which are mainly composed of hydroxyapatite, are mineralized within the type I collagen fibril scaffold. Understanding the crystal prenucleation mechanism and growth of the inorganic phase is particularly important in the design and development of materials with biomimetic nanostructures. In this study, we built an all-atom human type I collagen fibrillar model with a 67 nm overlap/gap D-periodicity. Arginine residues were shown to serve as the dominant cross-linker to stabilize the fibril scaffold. Subsequently, the prenucleation mechanism of collagen intrafibrillar mineralization was investigated using a molecular dynamics approach. Considering the physiological pH of the human body (i.e., ∼7.4), HPO42- was initially used to simulate the protonation state of the phosphate ions. Due to the spatially constrained effects resulting from the overlap/gap structure of the collagen fibrils, calcium phosphate clusters formed mainly inside the hole zone but with different spatial distributions along the long axis direction; this indicated that the nucleation of calcium phosphate may be highly site-selective. Furthermore, the model containing both HPO42- and PO43- in the solution phase formed significantly larger clusters without any change in the nucleation sites. This phenomenon suggests that the existence of PO43- is beneficial for the mineralization process, and so the conversion of HPO42- to PO43- was considered a critical step during mineralization. Finally, we summarize the nucleation mechanism for collagen intrafibrillar mineralization, which could contribute to the fabrication of mineralized collagen biomimetic materials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
20
|
Rao Y, Zhu C, Suen HC, Huang S, Liao J, Ker DFE, Tuan RS, Wang D. Tenogenic induction of human adipose-derived stem cells by soluble tendon extracellular matrix: composition and transcriptomic analyses. Stem Cell Res Ther 2022; 13:380. [PMID: 35906661 PMCID: PMC9338462 DOI: 10.1186/s13287-022-03038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Tendon healing is clinically challenging largely due to its inferior regenerative capacity. We have previously prepared a soluble, DNA-free, urea-extracted bovine tendon-derived extracellular matrix (tECM) that exhibits strong pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, we aimed to elucidate the mechanism of tECM bioactivity via characterization of tECM protein composition and comparison of transcriptomic profiles of hASC cultures treated with tECM versus collagen type I (Col1) as a control ECM component.
Methods The protein composition of tECM was characterized by SDS-PAGE, hydroxyproline assay, and proteomics analysis. To investigate tECM pro-tenogenic bioactivity and mechanism of action, differentiation of tECM-treated hASC cultures was compared to serum control medium or Col1-treated groups, as assessed via immunofluorescence for tenogenic markers and RNA Sequencing (RNA-Seq).
Results Urea-extracted tECM yielded consistent protein composition, including collagens (20% w/w) and at least 17 non-collagenous proteins (< 100 kDa) based on MS analysis. Compared to current literature, tECM included key tendon ECM components that are functionally involved in tendon regeneration, as well as those that are involved in similar principal Gene Ontology (GO) functions (ECM-receptor interaction and collagen formation) and signaling pathways (ECM-receptor interaction and focal adhesion). When used as a cell culture supplement, tECM enhanced hASC proliferation and tenogenic differentiation compared to the Col1 and FBS treatment groups based on immunostaining of tenogenesis-associated markers. Furthermore, RNA-Seq analysis revealed a total of 584 genes differentially expressed among the three culture groups. Specifically, Col1-treated hASCs predominantly exhibited expression of genes and pathways related to ECM-associated processes, while tECM-treated hASCs expressed a mixture of ECM- and cell activity-associated processes, which may explain in part the enhanced proliferation and tenogenic differentiation of tECM-treated hASCs. Conclusions Our findings showed that urea-extracted tECM contained 20% w/w collagens and is significantly enriched with other non-collagenous tendon ECM components. Compared to Col1 treatment, tECM supplementation enhanced hASC proliferation and tenogenic differentiation as well as induced distinct gene expression profiles. These findings provide insights into the potential mechanism of the pro-tenogenic bioactivity of tECM and support the development of future tECM-based approaches for tendon repair. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03038-0.
Collapse
Affiliation(s)
- Ying Rao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Chenxian Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Hoi Ching Suen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jinyue Liao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China.
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China.
| |
Collapse
|
21
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials 2022; 286:121606. [DOI: 10.1016/j.biomaterials.2022.121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
|
23
|
Abstract
Tendons are collagen-rich musculoskeletal tissues that possess the mechanical strength needed to transfer forces between muscles and bones. The mechanical development and function of tendons are impacted by collagen crosslinks. However, there is a limited understanding of how collagen crosslinking is regulated in tendon during development and aging. Therefore, the objective of the present review was to highlight potential regulators of enzymatic and non-enzymatic collagen crosslinking and how they impact tendon function. The main collagen crosslinking enzymes include lysyl oxidase (LOX) and the lysyl oxidase-like isoforms (LOXL), whereas non-enzymatic crosslinking is mainly mediated by the formation of advanced glycation end products (AGEs). Regulators of the LOX and LOXL enzymes may include mechanical stimuli, mechanotransducive cell signaling pathways, sex hormones, transforming growth factor (TGF)β family, hypoxia, and interactions with intracellular or extracellular proteins. AGE accumulation in tendon is due to diabetic conditions and aging, and can be mediated by diet and mechanical stimuli. The formation of these enzymatic and non-enzymatic collagen crosslinks plays a major role in tendon biomechanics and in the mechanisms of force transfer. A more complete understanding of how enzymatic and non-enzymatic collagen crosslinking is regulated in tendon will better inform tissue engineering and regenerative therapies aimed at restoring the mechanical function of damaged tendons.
Collapse
Affiliation(s)
- A.J. Ellingson
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N.M. Pancheri
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N.R. Schiele
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA,Address for correspondence: Nathan R. Schiele, Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID, USA. Telephone number: 208 8859063
| |
Collapse
|
24
|
Age-related differences in hamstring tendon used as autograft in reconstructive anterior cruciate ligament surgery. INTERNATIONAL ORTHOPAEDICS 2022; 46:845-853. [DOI: 10.1007/s00264-021-05285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
|
25
|
Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int J Mol Sci 2021; 22:ijms222413329. [PMID: 34948124 PMCID: PMC8706311 DOI: 10.3390/ijms222413329] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
Collapse
|
26
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
27
|
Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Ann Anat 2021; 240:151858. [PMID: 34798297 DOI: 10.1016/j.aanat.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| |
Collapse
|
28
|
Lagoutte P, Bettler E, Vadon-Le Goff S, Moali C. Procollagen C-proteinase enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. Matrix Biol Plus 2021; 11:100062. [PMID: 34435180 PMCID: PMC8377038 DOI: 10.1016/j.mbplus.2021.100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The correct balance between collagen synthesis and degradation is essential for almost every aspect of life, from development to healthy aging, reproduction and wound healing. When this balance is compromised by external or internal stress signals, it very often leads to disease as is the case in fibrotic conditions. Fibrosis occurs in the context of defective tissue repair and is characterized by the excessive, aberrant and debilitating deposition of fibril-forming collagens. Therefore, the numerous proteins involved in the biosynthesis of fibrillar collagens represent a potential and still underexploited source of therapeutic targets to prevent fibrosis. One such target is procollagen C-proteinase enhancer-1 (PCPE-1) which has the unique ability to accelerate procollagen maturation by BMP-1/tolloid-like proteinases (BTPs) and contributes to trigger collagen fibrillogenesis, without interfering with other BTP functions or the activities of other extracellular metalloproteinases. This role is achieved through a fine-tuned mechanism of action that is close to being elucidated and offers promising perspectives for drug design. Finally, the in vivo data accumulated in recent years also confirm that PCPE-1 overexpression is a general feature and early marker of fibrosis. In this review, we describe the results which presently support the driving role of PCPE-1 in fibrosis and discuss the questions that remain to be solved to validate its use as a biomarker or therapeutic target.
Collapse
Key Words
- ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs
- AS, aortic valve stenosis
- BMP, bone morphogenetic protein
- Biomarker
- CKD, chronic kidney disease
- CP, C-propeptide
- CUB, complement, Uegf, BMP-1
- CVD, cardiovascular disease
- Collagen
- DMD, Duchenne muscular dystrophy
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- Fibrillogenesis
- Fibrosis
- HDL, high-density lipoprotein
- HSC, hepatic stellate cell
- HTS, hypertrophic scar
- IPF, idiopathic pulmonary fibrosis
- LDL, low-density lipoprotein
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- NASH, nonalcoholic steatohepatitis
- NTR, netrin
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A)-binding protein nuclear 1
- PCP, procollagen C-proteinase
- PCPE, procollagen C-proteinase enhancer
- PNP, procollagen N-proteinase
- Proteolysis
- SPC, subtilisin proprotein convertase
- TGF-β, transforming growth-factor β
- TIMP, tissue inhibitor of metalloproteinases
- TSPN, thrombospondin-like N-terminal
- Therapeutic target
- eGFR, estimated glomerular filtration rate
- mTLD, mammalian tolloid
- mTLL, mammalian tolloid-like
Collapse
Affiliation(s)
- Priscillia Lagoutte
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Emmanuel Bettler
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| |
Collapse
|
29
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Ristaniemi A, Regmi D, Mondal D, Torniainen J, Tanska P, Stenroth L, Finnilä MAJ, Töyräs J, Korhonen RK. Structure, composition and fibril-reinforced poroviscoelastic properties of bovine knee ligaments and patellar tendon. J R Soc Interface 2021; 18:20200737. [PMID: 33499766 DOI: 10.1098/rsif.2020.0737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue-level stress-relaxation of ligaments and tendons in the toe region is characterized by fast and long-term relaxations and an increase in relaxation magnitude with strain. Characterizing the compositional and structural origins of these phenomena helps in the understanding of mechanisms of ligament and tendon function and adaptation in health and disease. A three-step tensile stress-relaxation test was conducted on dumbbell-shaped pieces of bovine knee ligaments and patellar tendon (PT) (n = 10 knees). Their mechanical behaviour was characterized by a fibril-reinforced poroviscoelastic material model, able to describe characteristic times and magnitudes of fast and long-term relaxations. The crimp angle and length of tissues were measured with polarized light microscopy, while biochemical contents were determined by colorimetric biochemical methods. The long-term relaxation time was longer in the anterior cruciate ligament (ACL) and PT compared with collateral ligaments (p < 0.05). High hydroxyproline content predicted greater magnitude and shorter time of both fast and long-term relaxation. High uronic acid content predicted longer time of long-term relaxation, whereas high crimp angle predicted higher magnitude of long-term relaxation. ACL and PT are better long-term stabilizers than collateral ligaments. The long-term relaxation behaviour is affected or implied by proteoglycans and crimp angle, possibly relating to slow structural reorganization of the tissue.
Collapse
Affiliation(s)
- Aapo Ristaniemi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Dristi Regmi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Diponkor Mondal
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
31
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Tam V, Chen P, Yee A, Solis N, Klein T, Kudelko M, Sharma R, Chan WC, Overall CM, Haglund L, Sham PC, Cheah KSE, Chan D. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 2020; 9:64940. [PMID: 33382035 PMCID: PMC7857729 DOI: 10.7554/elife.64940] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key directional trends spanning the lateral and anteroposterior axes were derived from high-resolution spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific profiles of regulatory activities and displayed potential paths of deconstruction in the level- and location-matched aged cadaveric discs. Machine learning methods predicted a ‘hydration matrisome’ that connects extracellular matrix with MRI intensity. Importantly, the static proteome used as point-references can be integrated with dynamic proteome (SILAC/degradome) and transcriptome data from multiple clinical samples, enhancing robustness and clinical relevance. The data, findings, and methodology, available on a web interface (http://www.sbms.hku.hk/dclab/DIPPER/), will be valuable references in the field of IVD biology and proteomic analytics. The backbone of vertebrate animals consists of a series of bones called vertebrae that are joined together by disc-like structures that allow the back to move and distribute forces to protect it during daily activities. It is common for these intervertebral discs to degenerate with age, resulting in back pain and severely reducing quality of life. The mechanical features of intervertebral discs are the result of their proteins. These include extracellular matrix proteins, which form the external scaffolding that binds cells together in a tissue, and signaling proteins, which allow cells to communicate. However, how the levels of different proteins in each region of the disc vary with time has not been fully examined. To establish how protein composition changes with age, Tam, Chen et al. quantified the protein levels and gene activity (which leads to protein production) of intervertebral discs from young and old deceased individuals. They found that the position of different mixtures of proteins in the intervertebral disc changes with age, and that young people have high levels of extracellular matrix proteins and signaling proteins. Levels of these proteins decreased as people got older, as did the amount of proteins produced. To determine which region of the intervertebral disc different proteins were in, Tam, Chen et al. also performed magnetic resonance imaging (MRI) of the samples to correlate image intensity (which represents water content) with the corresponding protein signature. The data obtained provides a high-quality map of how the location of different proteins changes with age, and is available online under the name DIPPER. This database is an informative resource for research into skeletal biology, and it will likely advance the understanding of intervertebral disc degeneration in humans and animals, potentially leading to the development of new treatment strategies for this condition.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| | - Peikai Chen
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Anita Yee
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Nestor Solis
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Theo Klein
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Mateusz Kudelko
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong
| | - Wilson Cw Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China.,Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China
| | - Christopher M Overall
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Canada
| | - Pak C Sham
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong
| | | | - Danny Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
33
|
Zamboulis DE, Thorpe CT, Ashraf Kharaz Y, Birch HL, Screen HR, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix. eLife 2020; 9:58075. [PMID: 33063662 PMCID: PMC7593091 DOI: 10.7554/elife.58075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mature connective tissues demonstrate highly specialised properties, remarkably adapted to meet their functional requirements. Tissue adaptation to environmental cues can occur throughout life and poor adaptation commonly results in injury. However, the temporal nature and drivers of functional adaptation remain undefined. Here, we explore functional adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned biological composite, in which the collagen (fascicle) and surrounding predominantly non-collagenous matrix (interfascicular matrix) can be interrogated independently. Using an equine model of late development, we report the first phase-specific analysis of biomechanical, structural, and compositional changes seen in functional adaptation, demonstrating adaptation occurs postnatally, following mechanical loading, and is almost exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine adaptation in connective tissue, highlighting the fundamental importance of non-collagenous matrix and suggesting that regenerative medicine strategies should change focus from the fibrous to the non-collagenous matrix of tissue.
Collapse
Affiliation(s)
- Danae E Zamboulis
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, United Kingdom
| | - Yalda Ashraf Kharaz
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Helen L Birch
- University College London, Department of Orthopaedics and Musculoskeletal Science, Stanmore Campus, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Hazel Rc Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
34
|
Stanley S, Balic Z, Hubmacher D. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann N Y Acad Sci 2020; 1490:57-76. [PMID: 32880985 DOI: 10.1111/nyas.14465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Acromelic dysplasias are a group of rare musculoskeletal disorders that collectively present with short stature, pseudomuscular build, stiff joints, and tight skin. Acromelic dysplasias are caused by mutations in genes (FBN1, ADAMTSL2, ADAMTS10, ADAMTS17, LTBP2, and LTBP3) that encode secreted extracellular matrix proteins, and in SMAD4, an intracellular coregulator of transforming growth factor-β (TGF-β) signaling. The shared musculoskeletal presentations in acromelic dysplasias suggest that these proteins cooperate in a biological pathway, but also fulfill distinct roles in specific tissues that are affected in individual disorders of the acromelic dysplasia group. In addition, most of the affected proteins directly interact with fibrillin microfibrils in the extracellular matrix and have been linked to the regulation of TGF-β signaling. Together with recently developed knockout mouse models targeting the affected genes, novel insights into molecular mechanisms of how these proteins regulate musculoskeletal development and homeostasis have emerged. Here, we summarize the current knowledge highlighting pathogenic mechanisms of the different disorders that compose acromelic dysplasias and provide an overview of the emerging biological roles of the individual proteins that are compromised. Finally, we develop a conceptual model of how these proteins may interact and form an "acromelic dysplasia complex" on fibrillin microfibrils in connective tissues of the musculoskeletal system.
Collapse
Affiliation(s)
- Sarah Stanley
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerina Balic
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
35
|
O Bortolazzo F, D Lucke L, de Oliveira Fujii L, Marqueti RDC, Vieira Ramos G, Theodoro V, Bombeiro AL, Felonato M, A Dalia R, D Carneiro G, Pontes Vicente C, A M Esquisatto M, A S Mendonça F, T Dos Santos GM, R Pimentel E, de Aro AA. Microcurrent and adipose-derived stem cells modulate genes expression involved in the structural recovery of transected tendon of rats. FASEB J 2020; 34:10011-10026. [PMID: 32558993 DOI: 10.1096/fj.201902942rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023]
Abstract
Tendon injuries are common and have a high incidence of re-rupture that can cause loss of functionality. Therapies with adipose-derived stem cells (ASC) and the microcurrent (low-intensity electrical stimulation) application present promising effects on the tissue repair. We analyzed the expression of genes and the participation of some molecules potentially involved in the structural recovery of the Achilles tendon of rats, in response to the application of both therapies, isolated and combined. The tendons were distributed in five groups: normal (N), transected (T), transected and ASC (C) or microcurrent (M) or with ASC, and microcurrent (MC). Microcurrent therapy was beneficial for tendon repair, as it was observed a statistically significant increase in the organization of the collagen fibers, with involvement of the TNC, CTGF, FN, FMDO, and COL3A1 genes as well as PCNA, IL-10, and TNF-α. ASC therapy significantly increased the TNC and FMDO genes expression with no changes in the molecular organization of collagen. With the association of therapies, a significant greater collagen fibers organization was observed with involvement of the FMOD gene. The therapies did not affect the expression of COL1A1, SMAD2, SMAD3, MKX, and EGR1 genes, nor did they influence the amount of collagen I and III, caspase-3, tenomodulin (Tnmd), and hydroxyproline. In conclusion, the application of the microcurrent isolated or associated with ASC increased the organization of the collagen fibers, which can result in a greater biomechanical resistance in relation to the tendons treated only with ASC. Future studies will be needed to demonstrate the biological effects of these therapies on the functional recovery of injured tendons.
Collapse
Affiliation(s)
- Fernanda O Bortolazzo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Letícia D Lucke
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Lucas de Oliveira Fujii
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Graduate Program of rehabilitation science and Graduate Program of Sciences and Technology of Health and Rehabilitation Sciences, University of Brasilia (UnB), Brasília, Brazil
| | | | - Viviane Theodoro
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - André L Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Maíra Felonato
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Rodrigo A Dalia
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Giane D Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Marcelo A M Esquisatto
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Fernanda A S Mendonça
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Gláucia Maria T Dos Santos
- Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| | - Edson R Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Andrea A de Aro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil.,Biomedical Sciences Graduate Program, University Center of Herminio Ometto Foundation/FHO, São Paulo, Brazil
| |
Collapse
|
36
|
Magerle R, Dehnert M, Voigt D, Bernstein A. Nanomechanical 3D Depth Profiling of Collagen Fibrils in Native Tendon. Anal Chem 2020; 92:8741-8749. [PMID: 32484331 DOI: 10.1021/acs.analchem.9b05582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connective tissue displays a large compositional and structural complexity that involves multiple length scales. In particular, on the molecular and the nanometer level, the elementary processes that determine the biomechanics of collagen fibrils in connective tissues are still poorly understood. Here, we use atomic force microscopy (AFM) to determine the three-dimensional (3D) depth profiles of the local nanomechanical properties of collagen fibrils and their embedding interfibrillar matrix in native (unfixed), hydrated Achilles tendon of sheep and chickens. AFM imaging in air with controlled humidity preserves the tissue's water content, allowing the assembly of collagen fibrils to be imaged in high resolution beneath an approximately 5-10 nm thick layer of the fluid components of the interfibrillar matrix. We collect pointwise force-distance (FD) data and amplitude-phase-distance (APD) data, from which we construct 3D depth profiles of the local tip-sample interaction forces. The 3D images reveal the nanomechanical morphology of unfixed, hydrated collagen fibrils in native tendon with a 0.1 nm depth resolution and a 10 nm lateral resolution. We observe a diversity in the nanomechanical properties among individual collagen fibrils in their adhesive and in their repulsive, viscoelastic mechanical response as well as among the contact points between adjacent collagen fibrils. This sheds new light on the role of interfibrillar bonds and the mechanical properties of the interfibrillar matrix in the biomechanics of tendon.
Collapse
Affiliation(s)
- Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Diana Voigt
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg and Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
37
|
Kataoka K, Kurimoto R, Tsutsumi H, Chiba T, Kato T, Shishido K, Kato M, Ito Y, Cho Y, Hoshi O, Mimata A, Sakamaki Y, Nakamichi R, Lotz MK, Naruse K, Asahara H. In vitro Neo-Genesis of Tendon/Ligament-Like Tissue by Combination of Mohawk and a Three-Dimensional Cyclic Mechanical Stretch Culture System. Front Cell Dev Biol 2020; 8:307. [PMID: 32671057 PMCID: PMC7326056 DOI: 10.3389/fcell.2020.00307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Tendons and ligaments are pivotal connective tissues that tightly connect muscle and bone. In this study, we developed a novel approach to generate tendon/ligament-like tissues with a hierarchical structure, by introducing the tendon/ligament-specific transcription factor Mohawk (MKX) into the mesenchymal stem cell (MSC) line C3H10T1/2 cells, and by applying an improved three-dimensional (3D) cyclic mechanical stretch culture system. In our developed protocol, a combination of stable Mkx expression and cyclic mechanical stretch synergistically affects the structural tendon/ligament-like tissue generation and tendon related gene expression. In a histological analysis of these tendon/ligament-like tissues, an organized extracellular matrix (ECM), containing collagen type III and elastin, was observed. Moreover, we confirmed that Mkx expression and cyclic mechanical stretch, induced the alignment of structural collagen fibril bundles that were deposited in a fibripositor-like manner during the generation of our tendon/ligament-like tissues. Our findings provide new insights for the tendon/ligament biomaterial fields.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Tsutsumi
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Kato
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Shishido
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mariko Kato
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichiro Cho
- Anatomy and Physiological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Hoshi
- Anatomy and Physiological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Mimata
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Nakamichi
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Martin K. Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
38
|
Wunderli SL, Blache U, Snedeker JG. Tendon explant models for physiologically relevant invitro study of tissue biology - a perspective. Connect Tissue Res 2020; 61:262-277. [PMID: 31931633 DOI: 10.1080/03008207.2019.1700962] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Tendon disorders increasingly afflict our aging society but we lack the scientific understanding to clinically address them. Clinically relevant models of tendon disease are urgently needed as established small animal models of tendinopathy fail to capture essential aspects of the disease. Two-dimensional and three-dimensional cell and tissue culture models are similarly limited, lacking many physiological extracellular matrix cues required to maintain tissue homeostasis or guide matrix remodeling. These cues reflect the biochemical and biomechanical status of the tissue, and encode information regarding the mechanical and metabolic competence of the tissue. Tendon explants overcome some of these limitations and have thus emerged as a valuable tool for the discovery and study of mechanisms associated with tendon homeostasis and pathophysiology. Tendon explants retain native cell-cell and cell-matrix connections, while allowing highly reproducible experimental control over extrinsic factors like mechanical loading and nutritional availability. In this sense tendon explant models can deliver insights that are otherwise impossible to obtain from in vivo animal or in vitro cell culture models. Purpose: In this review, we aimed to provide an overview of tissue explant models used in tendon research, with a specific focus on the value of explant culture systems for the controlled study of the tendon core tissue. We discuss their advantages, limitations and potential future utility. We include suggestions and technical recommendations for the successful use of tendon explant cultures and conclude with an outlook on how explant models may be leveraged with state-of-the-art biotechnologies to propel our understanding of tendon physiology and pathology.
Collapse
Affiliation(s)
- Stefania L Wunderli
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ulrich Blache
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|