1
|
Li Y, Liu X, Lu F, Li H, Zhang J, Zhang Y, Li W, Wang W, Yang M, Ma Z, Zhang H, Zhou X, Xu Y, He Z, Sun J, Zhang T, Jiang Q. Natural Amino Acid-Bearing Carbamate Prodrugs of Daidzein Increase Water Solubility and Improve Phase II Metabolic Stability for Enhanced Oral Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8618-8631. [PMID: 38569082 DOI: 10.1021/acs.jafc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Eastern Road, Shenyang, Liaoning 110032, China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Huichao Li
- Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, P.R. China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yawei Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Miaomiao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhining Ma
- Kangya of Ningxia Pharmaceutical Co., Ltd., Ningxia 750002, P.R. China
| | - Hui Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomian Zhou
- School of Life and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youjun Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Watanabe S, Haruyama R, Umezawa K, Tomioka I, Nakamura S, Katayama S, Mitani T. Genistein enhances NAD + biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J Nutr Biochem 2023; 121:109433. [PMID: 37648097 DOI: 10.1016/j.jnutbio.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A decrease in the NAD+ level in adipocytes causes adipose-tissue dysfunction, leading to systemic glucose, and lipid metabolism failure. Therefore, it is necessary to develop small molecules and nutraceuticals that can increase NAD+ levels in adipocytes. Genistein, a nutraceutical derived from soybeans, has various physiological activities and improves glucose and lipid metabolism. In this study, we aimed to unravel the effects of genistein on the NAD+ level in adipocytes and the underlying molecular mechanisms. Genistein enhanced NAD+ biosynthesis by increasing the expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis. A pull-down assay using genistein-immobilized beads revealed prohibitin 1 (PHB1) as a target protein of genistein. The knockdown of Phb1 suppressed the genistein-induced increase in NAMPT expression and NAD+ level in adipocytes. Genistein-bound PHB1 contributed to the stabilization of the transcription factor CCAAT/enhancer-binding protein β through the activation of extracellular signal-regulated kinase, resulting in increased NAMPT expression at the transcriptional level. Genistein induced the dephosphorylation of peroxisome proliferator-activated receptor at serine 273 and increased the level of the insulin-sensitizing adipokine adiponectin in adipocytes, whereas the knockdown of Nampt and Phb1 abolished these genistein-mediated effects. Our results proved the potential efficacy of genistein in increasing the NAD+ level and restoring metabolic function in adipocytes. Furthermore, we identified PHB1, localized to the plasma membrane, as a novel candidate target protein for increased expression of NAMPT in adipocytes. Overall, these findings will assist in developing NAD+-boosting nutraceuticals to alleviate metabolic dysfunctions in adipose tissues.
Collapse
Affiliation(s)
- Shun Watanabe
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Riki Haruyama
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Ikuo Tomioka
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Division of Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Soichiro Nakamura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.
| |
Collapse
|
3
|
Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites 2023; 13:metabo13030415. [PMID: 36984855 PMCID: PMC10051135 DOI: 10.3390/metabo13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The present study aimed at investigating the possible benefits of a dietary intervention with Corinthian currants, a rich source of phenolic compounds, on type 1 diabetes (T1D) using the animal model of the streptozotocin-(STZ)-induced diabetic rat. Male Wistar rats were randomly assigned into four groups: control animals, which received a control diet (CD) or a diet supplemented with 10% w/w Corinthian currants (CCD), and diabetic animals, which received a control diet (DCD) or a currant diet (DCCD) for 4 weeks. Plasma biochemical parameters, insulin, polar phenolic compounds, and inflammatory factors were determined. Microbiota populations in tissue and intestinal fluid of the caecum, as well as fecal microbiota populations and short-chain fatty acids (SCFAs), were measured. Fecal microbiota was further analyzed by 16S rRNA sequencing. The results of the study showed that a Corinthian currant-supplemented diet restored serum polar phenolic compounds and decreased interleukin-1b (IL-1b) (p < 0.05) both in control and diabetic animals. Increased caecal lactobacilli counts (p < 0.05) and maintenance of enterococci levels within normal range were observed in the intestinal fluid of the DCCD group (p < 0.05 compared to DCD). Higher acetic acid levels were detected in the feces of diabetic rats that received the currant diet compared to the animals that received the control diet (p < 0.05). Corinthian currant could serve as a beneficial dietary component in the condition of T1D based on the results coming from the animal model of the STZ-induced T1D rat.
Collapse
|
4
|
Thiogenistein-Antioxidant Chemistry, Antitumor Activity, and Structure Elucidation of New Oxidation Products. Int J Mol Sci 2022; 23:ijms23147816. [PMID: 35887163 PMCID: PMC9315507 DOI: 10.3390/ijms23147816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Isoflavonoids such as genistein (GE) are well known antioxidants. The predictive biological activity of structurally new compounds such as thiogenistein (TGE)–a new analogue of GE–becomes an interesting way to design new drug candidates with promising properties. Two oxidation strategies were used to characterize TGE oxidation products: the first in solution and the second on the 2D surface of the Au electrode as a self-assembling TGE monolayer. The structure elucidation of products generated by different oxidation strategies was performed. The electrospray ionization mass spectrometry (ESI-MS) was used for identifying the product of electrochemical and hydrogen peroxide oxidation in the solution. Fourier transform infrared spectroscopy (FT-IR) with the ATR mode was used to identify a product after hydrogen peroxide treatment of TGE on the 2D surface. The density functional theory was used to support the experimental results for the estimation of antioxidant activity of TGE as well as for the molecular modeling of oxidation products. The biological studies were performed simultaneously to assess the suitability of TGE for antioxidant and antitumor properties. It was found that TGE was characterized by a high cytotoxic activity toward human breast cancer cells. The research was also carried out on mice macrophages, disclosing that TGE neutralized the production of the LPS-induced reactive oxygen species (ROS) and exhibits ABTS (2,2′-azino-bis-3-(ethylbenzothiazoline-6-sulphonic acid) radical scavenging ability. In the presented study, we identified the main oxidation products of TGE generated under different environmental conditions. The electroactive centers of TGE were identified and its oxidation mechanisms were proposed. TGE redox properties can be related to its various pharmacological activities. Our new thiolated analogue of genistein neutralizes the LPS-induced ROS production better than GE. Additionally, TGE shows a high cytotoxic activity against human breast cancer cells. The viability of MCF-7 (estrogen-positive cells) drops two times after a 72-h incubation with 12.5 μM TGE (viability 53.86%) compared to genistein (viability 94.46%).
Collapse
|
5
|
Maximizing the Estrogenic Potential of Soy Isoflavones through the Gut Microbiome: Implication for Cardiometabolic Health in Postmenopausal Women. Nutrients 2022; 14:nu14030553. [PMID: 35276910 PMCID: PMC8840243 DOI: 10.3390/nu14030553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Soy isoflavones have been suggested as an alternative treatment for managing postmenopausal symptoms and promoting long-term health due to their structural similarity to mammalian estrogen and ability to bind to estrogen receptors. Among all soy isoflavones and their metabolites, (S)-equol is known for having the strongest estrogenic activity. Equol is a metabolite of the soy isoflavone daidzein produced through intestinal bacterial metabolism. However, more than half of the human population is not able to produce equol due to the lack of equol-producing bacteria in their gastrointestinal tract. The interpersonal variations in the gut microbiome complicate the interpretation of data collected from humans. Furthermore, because rodents are efficient equol-producers, translatability between rodent models and humans is challenging. Herein, we first summarized the current knowledge of the microbial conversion of daidzein to equol, its relation to health, and proposed the need for developing model systems by which equol production can be manipulated while controlling other known confounding factors. Determining the necessity of equol-producing capacity within a gut microbial community when consuming soy as a functional ingredient, and identifying strategies to maximize equol production by modulating the gut microbiome, may provide future therapeutic approaches to improve the health of postmenopausal women.
Collapse
|
6
|
Ikeda T, Watanabe S, Mitani T. Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria. Biosci Biotechnol Biochem 2022; 86:260-272. [PMID: 34849563 DOI: 10.1093/bbb/zbab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Shun Watanabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Division of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
7
|
Synthesis, Characterization, and Antiradical Activity of 6-Hydroxygenistein. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
The effect of standard laboratory diets on estrogen signaling and spatial memory in male and female rats. Physiol Behav 2020; 215:112787. [DOI: 10.1016/j.physbeh.2019.112787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
|
9
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IMCM, Beekmann K. Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERα Activation. Mol Nutr Food Res 2020; 64:e1900912. [PMID: 32027771 PMCID: PMC7154660 DOI: 10.1002/mnfr.201900912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To predict gut microbial metabolism of xenobiotics and the resulting plasma concentrations of metabolites formed, an in vitro-in silico-based testing strategy is developed using the isoflavone daidzein and its gut microbial metabolite S-equol as model compounds. METHODS AND RESULTS Anaerobic rat fecal incubations are optimized and performed to derive the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for gut microbial conversion of daidzein to dihydrodaidzein, S-equol, and O-desmethylangolensin, which are input as parameters for a physiologically based kinetic (PBK) model. The inclusion of gut microbiota in the PBK model allows prediction of S-equol concentrations and slightly reduced predicted maximal daidzein concentrations from 2.19 to 2.16 µm. The resulting predicted concentrations of daidzein and S-equol are comparable to in vivo concentrations reported. CONCLUSION The optimized in vitro approach to quantify kinetics for gut microbial conversions, and the newly developed PBK model for rats that includes gut microbial metabolism, provide a unique tool to predict the in vivo consequences of daidzein microbial metabolism for systemic exposure of the host to daidzein and its metabolite S-equol. The predictions reveal a dominant role for daidzein in ERα-mediated estrogenicity despite the higher estrogenic potency of its microbial metabolite S-equol.
Collapse
Affiliation(s)
- Qianrui Wang
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Bert Spenkelink
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro‐IndustryKasetsart University Chalermphrakiat Sakon Nakhon Province CampusSakon Nakhon47000Thailand
| | | | - Karsten Beekmann
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
- Present address:
Wageningen Food Safety ResearchP. O. Box 2306700 AEWageningenThe Netherlands
| |
Collapse
|
10
|
Shao J, Zhao T, Ma HP, Jia ZP, Jing LL. Synthesis, Characterization, and Antioxidant Activity of 8-Hydroxygenistein. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20901399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It was reported that 8-hydroxygenistein (8-OHG) was synthesized by methylation, bromination, methoxylation, and demethylation using cheap and readily available biochanin A as raw material. All synthesized products were structurally confirmed by ultra-high-performance liquid chromatography (UHPLC), infrared spectroscopy, mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR. In addition, we examined the antioxidant capacity of 8-OHG using 6 different methods such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTS) scavenging, nitric oxide radical (NO) scavenging, superoxide radical (O2 −•) scavenging, reducing power assay, and total antioxidant activity using ascorbic acid (VC) as a positive control. Compared with VC, 8-OHG exhibited higher total antioxidant activity and stronger scavenging activity on ABTS, NO, and O2 −•. These results indicate that 8-OHG is an excellent antioxidant agent and may be effective in preventing damage induced by free radical.
Collapse
Affiliation(s)
- Jin Shao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Tong Zhao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Pharmacy, Gansu University of Chinese Medicine, China
| | - Hui-Ping Ma
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Zheng-Ping Jia
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
- Department of Medicinal Chemistry, Lanzhou University, Gansu, China
| | - Lin-Lin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Gansu, China
| |
Collapse
|
11
|
Wang ST, Chang HS, Hsu C, Su NW. Osteoprotective effect of genistein 7-O-phosphate, a derivative of genistein with high bioavailability, in ovariectomized rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Fujitani M, Mizushige T, Bhattarai K, Adhikari S, Ishikawa J, Kishida T. Dietary daidzein induces accumulation of S-equol in enterohepatic circulation to far higher levels than that of daidzein in female rats with and without ovariectomy. Biomed Res 2019; 40:97-105. [PMID: 31231095 DOI: 10.2220/biomedres.40.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously found that daidzein decreased food intake in female rats. To understand the mechanism of anorectic action of dietary daidzein, it is necessary to determine distributions of daidzein and S-equol, a metabolite of intestinal bacterial conversion from daidzein, in the body. In the present study, we measured the concentrations of daidzein and S-equol in serum and bile in sham-operated and ovariectomized female rats fed a diet containing 150 mg/kg daidzein for 7 days. Dietary daidzein increased serum and bile concentrations of S-equol to far higher levels than those of daidzein. S-equol concentration was more than several hundred fold-higher in bile than in serum, regardless of ovariectomy. Moreover, to investigate whether accumulation of S-equol is facilitated by efficient enterohepatic circulation during continuous intake of daidzein and S-equol, female rats were fed diet containing daidzein or S-equol (both 150 mg/kg), or control diet for 1, 2, 3, or 5 days. Dietary daidzein significantly increased serum and bile concentrations of S-equol in a time-dependent manner, but not those of daidzein. These results indicated that substantial proportion of dietary daidzein was converted to S-equol, which underwent efficient enterohepatic circulation and predominantly accumulated there.
Collapse
Affiliation(s)
| | - Takafumi Mizushige
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University
| | - Keshab Bhattarai
- Graduate School of Agriculture, Ehime University.,The United Graduate School of Agricultural Sciences, Ehime University
| | | | - Junji Ishikawa
- Central Research and Development Laboratory, FANCL Co. Ltd
| | - Taro Kishida
- Graduate School of Agriculture, Ehime University.,The United Graduate School of Agricultural Sciences, Ehime University
| |
Collapse
|
13
|
Huang G, Xu J, Guo TL. Isoflavone daidzein regulates immune responses in the B6C3F1 and non-obese diabetic (NOD) mice. Int Immunopharmacol 2019; 71:277-284. [PMID: 30927738 PMCID: PMC6529284 DOI: 10.1016/j.intimp.2019.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Daidzein (DAZ), a dominant isoflavone in various natural products such as soybeans, has been gaining attention due to the beneficial health effects (e.g., protection against cancer and diabetes) of its metabolites. Our major hypothesis was that dietary exposure to the soy phytoestrogen DAZ could modulate the immune responses toward a protective effect and lead to improved metabolic functions (such as glucose metabolism). In this study, we applied complementary mouse models, the hybrid B6C3F1 and inbred type 1 diabetes prone non-obese diabetic (NOD) mice, to investigate if DAZ exposure modulated the immune responses. The animals were orally administered DAZ at various physiological doses (2-20 mg/kg body weight) during adulthood. DAZ significantly altered the relative organ weights in female B6C3F1 mice and decreased the B cell population (represented by CD3-IgM+), while the T cell populations (represented by CD3+IgM-, CD4+CD8- and CD4-CD8+) were increased. In addition, DAZ dosing produced a decrease in the percentage of late apoptotic thymocytes. However, the activities cytotoxic T cells and natural killer cells were not altered in the B6C3F1 mice. In NOD mice, the blood glucose level and glucose tolerance were not affected by DAZ exposure, but DAZ modulated the antibody production, as shown by increased levels of IgG2b in NOD females and IgG1 in NOD males. Further, DAZ increased CD8+CD25+ splenocytes in NOD females. Taken together, DAZ induced an immunomodulatory effect in both NOD and B6C3F1 mouse strains; however, minimal effects on glucose homeostasis were observed.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA 30602, United States of America.
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America.
| | - Tai L Guo
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA 30602, United States of America; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
14
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Soy supplementation: Impact on gene expression in different tissues of ovariectomized rats and evaluation of the rat model to predict (post)menopausal health effect. Toxicol Rep 2018; 5:1087-1097. [PMID: 30425930 PMCID: PMC6222031 DOI: 10.1016/j.toxrep.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
The usefulness of PBMC gene expressions as a surrogate tissue for risk assessment is questionable. SIF in a dose of 2 mg/kg b.w/day is not able to influence ERGs in target tissues such as breast and uterus. Plasma concentrations of SIF after 8 weeks oral exposure similar as the recommended dose for humans do not proliferate cells in in vitro cellular models. The ovariectomized rat is probably not a good model to predict human risk or benefit assessment of SIF in human.
This toxicogenomic study was conducted to predict (post)menopausal human health effects of commercial soy supplementation using ovariectomized rats as a model. Different target tissues (i.e. breast, uterus and sternum) and non-target tissues (i.e. peripheral blood mononuclear cells (PBMC), adipose and liver) of ovariectomized F344 rats exposed to a commercially available soy supplement for eight weeks, were investigated. Changes in gene expression in these tissues were analysed using whole-genome microarray analysis. No correlation in changes in gene expression were observed among different tissues, indicating tissue specific effects of soy isoflavone supplementation. Out of 87 well-established estrogen responsive genes (ERGs), only 19 were found to be significantly regulated (p < 0.05) in different tissues, particularly in liver, adipose and uterus tissues. Surprisingly, no ERGs were significantly regulated in estrogen sensitive breast and sternum tissues. The changes in gene expression in PBMC and adipose tissue in rats were compared with those in (post)menopausal female volunteers who received the same supplement in a similar oral dose and exposure duration in human intervention studies. No correlation in changes in gene expression between rats and humans was observed. Although receiving a similar dose, in humans the plasma levels expressed as total free aglycones were several folds higher than in the rat. Therefore, the overall results in young ovariectomized female F344 rats indicated that using rat transcriptomic data does not provide a suitable model for human risk or benefit analysis of soy isoflavone supplementation.
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, the Netherlands
| | | | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, the Netherlands.,Metabolomics Service and Research Unit, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.,Sub-department of Environmental Technology, Wageningen University, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
15
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
16
|
Yamada J, Hatabe J, Tankyo K, Jinno S. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology 2016; 111:92-106. [DOI: 10.1016/j.neuropharm.2016.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
17
|
Pharmacokinetics of isoflavones from soy infant formula in neonatal and adult rhesus monkeys. Food Chem Toxicol 2016; 92:165-76. [PMID: 27084109 DOI: 10.1016/j.fct.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Consumption of soy infant formula represents a unique exposure scenario in which developing children ingest a mixture of endocrine-active isoflavones along with a substantial portion of daily nutrition. Genistein and daidzein were administered as glucoside conjugates to neonatal rhesus monkeys in a fortified commercial soy formula at 5, 35, and 70 days after birth. A single gavage dosing with 10 mg/kg bw genistein and 6 mg/kg bw daidzein was chosen to represent the upper range of typical daily consumption and to facilitate complete pharmacokinetic measurements for aglycone and total isoflavones and equol. Adult monkeys were also gavaged with the same formula solution at 2.8 and 1.6 mg/kg bw genistein and daidzein, respectively, and by IV injection with isoflavone aglycones (5.2 and 3.2 mg/kg bw, respectively) to determine absolute bioavailability. Significant differences in internal exposure were observed between neonatal and adult monkeys, with higher values for dose-adjusted AUC and Cmax of the active aglycone isoflavones in neonates. The magnitude and frequency of equol production by the gut microbiome were also significantly greater in adults. These findings are consistent with immaturity of metabolic and/or physiological systems in developing non-human primates that reduces total clearance of soy isoflavones from the body.
Collapse
|
18
|
Simultaneous determination of thirteen flavonoids from Xiaobuxin-Tang extract using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J Pharm Biomed Anal 2015; 115:214-24. [DOI: 10.1016/j.jpba.2015.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022]
|
19
|
Pawlowski JW, Martin BR, McCabe GP, McCabe L, Jackson GS, Peacock M, Barnes S, Weaver CM. Impact of equol-producing capacity and soy-isoflavone profiles of supplements on bone calcium retention in postmenopausal women: a randomized crossover trial. Am J Clin Nutr 2015; 102:695-703. [PMID: 26245807 PMCID: PMC4548170 DOI: 10.3945/ajcn.114.093906] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/10/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Postmenopausal estrogen depletion is a major contributing factor to bone loss. Soy isoflavones have variable effects on the prevention of postmenopausal bone loss, which is possibly related to the specific isoflavone content or the variable equol-producing capacity of individuals. OBJECTIVE We aimed to determine the effects of the content of isoflavones in a soy supplement and the equol-producing ability of the individual on postmenopausal bone calcium retention. DESIGN The study was a blinded, randomized, crossover intervention trial in 24 postmenopausal women who were prescreened for their ability to convert daidzein to equol. Women were equilibrated with (41)Ca before the intervention. Interventions were 5 soy isoflavone oral supplements (2 doses of a genistein-rich soy supplement and 3 doses of mixed isoflavones in various proportions) and a bisphosphonate (risedronate). Each intervention was given sequentially for 50 d followed by a 50-d washout period. The percentage of bone calcium retention was determined from the change in urinary (41)Ca:calcium. RESULTS Interventions that ranged from 52 to 220 mg total isoflavones/d increased bone calcium retention between 3.4% and 7.6% (P < 0.05), which was a moderate effect compared with that of risedronate at 15.3% (95% CI: 7.1%, 22.7%; P = 0.0014). The most-effective soy intervention delivered 105.23 mg total isoflavones/d as genistein, daidzein, and glycitein in their natural ratios and increased bone calcium retention by 7.6% (95% CI: 4.9%, 10.2%; P < 0.0001). Genistein, at 52.85 mg/d, increased bone calcium retention by 3.4% (95% CI: 0.5%, 6.2%; P = 0.029); but there was no benefit at higher amounts (113.52 mg/d). There was no difference (P = 0.5) in bone calcium retention between equol producers and nonproducers. CONCLUSION Soy isoflavones, although not as potent as risedronate, are effective bone-preserving agents in postmenopausal women regardless of their equol-producing status, and mixed isoflavones in their natural ratios are more effective than enriched genistein. This trial was registered at clinicaltrials.gov as NCT00244907.
Collapse
Affiliation(s)
| | - Berdine R Martin
- Department of Nutrition Science, College of Health and Human Sciences
| | | | - Linda McCabe
- Department of Nutrition Science, College of Health and Human Sciences
| | - George S Jackson
- Purdue Rare Isotope Measurement Laboratory, Department of Physics, Purdue University, West Lafayette, IN
| | - Munro Peacock
- Indiana University School of Medicine, Indianapolis, IN; and
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL
| | - Connie M Weaver
- Department of Nutrition Science, College of Health and Human Sciences,
| |
Collapse
|
20
|
Wang ST, Fang TF, Hsu C, Chen CH, Lin CJ, Su NW. Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
21
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, Boekschoten MV, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Plasma bioavailability and changes in PBMC gene expression after treatment of ovariectomized rats with a commercial soy supplement. Toxicol Rep 2015; 2:308-321. [PMID: 28962364 PMCID: PMC5598277 DOI: 10.1016/j.toxrep.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022] Open
Abstract
The health effects of soy supplementation in (post)menopausal women are still a controversial issue. The aim of the present study was to establish the effect of the soy isoflavones (SIF) present in a commercially available supplement on ovariectomized rats and to investigate whether these rats would provide an adequate model to predict effects of SIF in (post)menopausal women. Two dose levels (i.e. 2 and 20 mg/kg b.w.) were used to characterize plasma bioavailability, urinary and fecal concentrations of SIF and changes in gene expression in peripheral blood mononuclear cells (PBMC). Animals were dosed at 0 and 48 h and sacrificed 4 h after the last dose. A clear dose dependent increase of SIF concentrations in plasma, urine and feces was observed, together with a strong correlation in changes in gene expression between the two dose groups. All estrogen responsive genes and related biological pathways (BPs) that were affected by the SIF treatment were regulated in both dose groups in the same direction and indicate beneficial effects. However, in general no correlation was found between the changes in gene expression in rat PBMC with those in PBMC of (post)menopausal women exposed to a comparable dose of the same supplement. The outcome of this short-term study in rats indicates that the rat might not be a suitable model to predict effects of SIF in humans. Although the relative exposure period in this rat study is comparable with that of the human study, longer repetitive administration of rats to SIF may be required to draw a final conclusion on the suitability of the rat a model to predict effects of SIF in humans.
Collapse
Key Words
- BPs, biological pathways
- Bioavailability
- DMSO, dimethyl sulfoxide
- Dose effect
- E2, estradiol
- ECM, extracellular matrix
- EREs, estrogen-responsive elements
- ERs, estrogen receptors
- GSEA, gene set enrichment analysis
- Gene expression
- HD, high dose
- HPLC, high performance liquid chromatography
- KEGG, kyoto encyclopedia of genes and genomes
- LD, low dose
- MDS, multidimensional scaling
- NCBI, National Center for Biotechnology Information
- PBMC, peripheral blood mononuclear cells
- SIF, soy isoflavones
- Soy supplementation
- Species differences
- UPC, universal expression code
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | | | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
22
|
Rotches-Ribalta M, Urpi-Sarda M, Martí MM, Reglero G, Andres-Lacueva C. Resveratrol metabolic fingerprinting after acute and chronic intakes of a functional beverage in humans. Electrophoresis 2014; 35:1637-43. [DOI: 10.1002/elps.201300262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Maria Rotches-Ribalta
- Nutrition and Food Science Department; XaRTA-INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER program; FUN-C-FOOD; Ministry of Science and Innovation; Barcelona Spain
| | - Mireia Urpi-Sarda
- Nutrition and Food Science Department; XaRTA-INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
| | | | - Guillermo Reglero
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Universidad Autónoma de Madrid; Madrid Spain
| | - Cristina Andres-Lacueva
- Nutrition and Food Science Department; XaRTA-INSA, Pharmacy Faculty; University of Barcelona; Barcelona Spain
- Ingenio-CONSOLIDER program; FUN-C-FOOD; Ministry of Science and Innovation; Barcelona Spain
| |
Collapse
|
23
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Effects of dose and route of administration of genistein on isoflavone concentrations in post-weaned and gestating sows. Animal 2013; 7:983-9. [PMID: 23369600 DOI: 10.1017/s1751731113000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Phytoestrogens could be a useful tool in swine husbandry practices because of their structural and functional similarities to estradiol. The goal of this study was to compare various routes and doses of administration of the phytoestrogen genistein in sows of two different physiological statuses. Circulating concentrations of isoflavones, estradiol and IGF-I were determined. In experiment 1, 65 sows were equally divided into the five following groups, between days 3 and 5 of the first or second estrous cycle post weaning: (1) controls (CTL); (2) 1 g of genistein fed daily (OR1); (3) 2 g of genistein fed daily (OR2); (4) two daily i.m. injections of 200 mg of genistein (IM400); and (5) two daily i.m. injections of 400 mg of genistein (IM800). Treatments were carried out for 10 days. In experiment 2, 10 sows were equally divided into two groups on day 90 of gestation, namely, controls (CTL) or 2 g of genistein fed daily for 10 days (OR2). In both trials, jugular blood samples were collected on days 1 (before treatment), 5 and 10 at 0730 h. In experiment 1, a blood sample was also collected at 1730 h on day 10 for CTL, IM400 and IM800 sows. In experiment 1, circulating concentrations of genistein on days 5 and 10 were greater in OR2, IM400 and IM800 than in CTL and OR1 group sows (P < 0.01). Daily dietary supplementation with 2 g of genistein resulted in blood concentrations that were similar to those in animals given daily two i.m. injections of 200 mg. Values of all isoflavones, except equol, which was not detectable, were greater in PM than in AM on day 10 (P < 0.01). In experiment 2, genistein concentrations were greater in OR2 compared with CTL on days 5 and 10 (P ⩽ 0.05). There was no difference in the genistein response to OR2 because of physiological status (i.e. weaned v. gestating, P > 0.1). Estradiol and IGF-I concentrations were not altered by any of the treatments (P > 0.1). Providing genistein either per os or via i.m. injections increased circulating concentrations of genistein in female swine within 5 days of the onset of treatment. The genistein response to i.m. injections of genistein was similar in weaned and late-pregnant sows, even though endogenous concentrations of estradiol differed. This response was specific in that estradiol, IGF-I and isoflavones other than genistein were not affected by treatments.
Collapse
|
25
|
Nakamura T, Tokushima T, Kawabata K, Yamamoto N, Miyamoto M, Ashida H. Absorption and metabolism of 4-hydroxyderricin and xanthoangelol after oral administration of Angelica keiskei (Ashitaba) extract in mice. Arch Biochem Biophys 2012; 521:71-6. [DOI: 10.1016/j.abb.2012.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/01/2012] [Accepted: 03/13/2012] [Indexed: 11/15/2022]
|
26
|
Cohen R, Schwartz B, Peri I, Shimoni E. Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7932-7938. [PMID: 21688810 DOI: 10.1021/jf2013277] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genistein, like other phytochemicals, has beneficial health effects, but its bioavailability is limited. This research studied the effect of complexation of genistein with starch on genistein bioavailability. Genistein release from these complexes was tested in vitro under simulated intestinal conditions and in vivo in rats fed high-amylose corn starch (HACS)-genistein complexes (experimental group) as compared to those fed a physical mixture of HACS and genistein (controls). In vitro results showed that genistein release is sustained and fits the normal transit time of food in the intestine. The genistein concentration in the plasma was twice as high in the experimental group versus controls; the genistein concentration in the urine was also higher in the experimental group but lower in the feces. These results indicate that starch-genistein complexes increase genistein bioavailability and suggest that starch can affect the bioavailability of additional food components.
Collapse
Affiliation(s)
- Revital Cohen
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
27
|
Xing JF, You HS, Dong YL, Lu J, Chen SY, Zhu HF, Dong Q, Wang MY, Dong WH. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmacol Sin 2011; 32:655-63. [PMID: 21516133 DOI: 10.1038/aps.2011.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. METHODS HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. RESULTS After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, t(max2) and C(max2) for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t(1/2) and CL(int) value for scutellarin in male rats was significantly higher than that in female rats. CONCLUSION The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CL(int) and lower absorption in male rats.
Collapse
|
28
|
Zhang Z, Huang Y, Gao F, Bu H, Gu W, Li Y. Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats. NANOSCALE 2011; 3:1780-7. [PMID: 21350765 DOI: 10.1039/c0nr00879f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A nano-based delivery system was developed to improve the oral absorption of daidzein, which has poor hydrophilicity and lipophilicity. A daidzein-phospholipid complex (DPC) was firstly prepared to improve its lipophilicity, and then encapsulated into lipid nanocarriers (DLNs) to verify the effectiveness of the strategy in enhancing the oral delivery of daidzein. DLNs were spherical nanosized particles with evidently increased dissolution. DLNs were mainly distributed in stomach and proximal intestine of mice after oral administration, and the intestinal permeability of DLNs in rats was significantly improved when compared with that of daidzein solution. The peak concentration of daidzein in rats after oral administration of DPC and DLNs was 6833 ± 1112 ng mL(-1) and 14,512 ± 2390 ng mL(-1), respectively, which was improved over 10-fold and 21-fold than that of free daidzein. Moreover, the areas under the concentration-time curve (AUC(0-t)) of DPC and DLNs were enhanced by 3.62-fold and 6.87-fold compared with that of free daidzein. These results suggested that DLNs could be an effective strategy to improve the oral absorption of poor hydrophilic and lipophilic drugs like daidzein.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | | | | | | | | | | |
Collapse
|
29
|
Andrade JE, Twaddle NC, Helferich WG, Doerge DR. Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4529-36. [PMID: 20225898 PMCID: PMC4094339 DOI: 10.1021/jf9039843] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soy isoflavones, genistein and daidzein, are widely consumed in soy-based foods and dietary supplements for their putative health benefits; however, evidence for potential adverse effects has been obtained from experimental animal studies. An important prerequisite for understanding the pharmacodynamics of isoflavones is better information about pharmacokinetics and bioavailability. This study determined the bioavailability of genistein and daidzein in a mouse model by comparing plasma pharmacokinetics of their aglycone and conjugated forms following administration of identical doses (1.2 mg/kg genistein and 0.55 mg/kg daidzein) by either an intravenous injection (IV) or gavage of the aglycones in 90% aqueous solution vs a bolus administration of equimolar doses delivered in a food pellet prepared using commercial soy protein isolate (SPI) as the isoflavone source. The bioavailability of genistein and daidzein was equivalent for the gavage and dietary routes of administration despite the use of isoflavone aglycones in the former and SPI-derived glucosides in the latter. While absorption of total isoflavones was nearly quantitative from both oral routes [>84% of areas under the curve (AUCs) for IV], presystemic and systemic phase II conjugation greatly attenuated internal exposures to the receptor-active aglycone isoflavones (9-14% for genistein and 29-34% for daidzein based on AUCs for IV). These results show that SPI is an efficient isoflavone delivery vehicle capable of providing significant proportions of the total dose into the circulation in the active aglycone form for distribution to receptor-bearing tissues and subsequent pharmacological effects that determine possible health benefits and/or risks.
Collapse
Affiliation(s)
- Juan E. Andrade
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Nathan C. Twaddle
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801
- Corresponding authors [(D.R.D.) telephone (870) 543-7943, fax (870) 543-7720, ; (W.G.H.) telephone (217) 244-5414, fax (217) 244-9522, ;]
| | - Daniel R. Doerge
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
- Corresponding authors [(D.R.D.) telephone (870) 543-7943, fax (870) 543-7720, ; (W.G.H.) telephone (217) 244-5414, fax (217) 244-9522, ;]
| |
Collapse
|
30
|
Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chem Biol Interact 2010; 185:18-24. [PMID: 20188714 DOI: 10.1016/j.cbi.2010.02.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 12/24/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a pivotal role in invasion and angiogenesis of malignant glioma cells. Therefore, the inhibition of MMPs has been suggested to be a promising therapeutic strategy for brain tumors. In the present study, we found that glycitein, a bacterial metabolite of the isoflavone glycitin, inhibits the expression of MMP-3 and MMP-9 at promoter, mRNA, and protein levels in PMA-stimulated U87MG human astroglioma cells. In addition, gelatin zymography showed that glycitein inhibited the PMA-induced MMP-9 secretion in U87MG cells. A subsequent Matrigel invasion assay revealed that glycitein suppresses the in vitro invasiveness of glioma cells, which may be at least partly due to the glycitein-mediated inhibition of MMP-3 and MMP-9. In support of this, treatment of MMP-3- or MMP-9-specific inhibitor significantly suppressed PMA-induced invasion of glioma cells. Further mechanistic studies revealed that glycitein inhibits the DNA binding and transcriptional activities of NF-kappaB and AP-1, which are important transcription factors for MMP-3 or MMP-9 gene expression. Furthermore, glycitein suppresses PMA-induced phosphorylation of three types of MAP kinases, which are upstream signaling molecules in MMP gene expressions and NF-kappaB and AP-1 activities in glioma cells. Therefore, the inhibition of MMP-3 and MMP-9 expression by glycitein may have therapeutic potential for controlling invasiveness of malignant gliomas.
Collapse
|
31
|
Jefferson WN, Doerge D, Padilla-Banks E, Woodling KA, Kissling GE, Newbold R. Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1883-1889. [PMID: 20049207 PMCID: PMC2799462 DOI: 10.1289/ehp.0900923] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND Developmental exposure to environmental estrogens is associated with adverse consequences later in life. Exposure to genistin (GIN), the glycosylated form of the phytoestrogen genistein (GEN) found in soy products, is of concern because approximately 20% of U.S. infants are fed soy formula. High circulating levels of GEN have been measured in the serum of these infants, indicating that GIN is readily absorbed, hydrolyzed, and circulated. OBJECTIVES We investigated whether orally administered GIN is estrogenic in neonatal mice and whether it causes adverse effects on the developing female reproductive tract. METHODS Female CD-1 mice were treated on postnatal days 1-5 with oral GIN (6.25, 12.5, 25, or 37.5 mg/kg/day; GEN-equivalent doses), oral GEN (25, 37.5, or 75 mg/kg/day), or subcutaneous GEN (12.5, 20, or 25 mg/kg/day). Estrogenic activity was measured on day 5 by determining uterine wet weight gain and induction of the estrogen-responsive gene lactoferrin. Vaginal opening, estrous cyclicity, fertility, and morphologic alterations in the ovary/reproductive tract were examined. RESULTS Oral GIN elicited an estrogenic response in the neonatal uterus, whereas the response to oral GEN was much weaker. Oral GIN altered ovarian differentiation (i.e., multioocyte follicles), delayed vaginal opening, caused abnormal estrous cycles, decreased fertility, and delayed parturition. CONCLUSIONS Our results support the idea that the dose of the physiologically active compound reaching the target tissue, rather than the administered dose or route, is most important in modeling chemical exposures. This is particularly true with young animals in which phase II metabolism capacity is underdeveloped relative to adults.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Li Q, Wan HY, Helferich WG, Wong MS. Genistein and a soy extract differentially affect three-dimensional bone parameters and bone-specific gene expression in ovariectomized mice. J Nutr 2009; 139:2230-6. [PMID: 19793844 DOI: 10.3945/jn.109.108399] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Soy isoflavone preparations, such as purified genistein and a soy extract (Novasoy), were reported previously to exert beneficial effects on bones. Our purpose in this study was to compare the effects of genistein and Novasoy on 3-dimensional trabecular bone parameters and the expression of bone-specific genes in ovariectomized (OVX) mice. The sham-operated mice were fed the control diet and OVX mice were fed diets containing genistein or Novasoy or the control diet, with or without 17beta-estradiol treatment, for 5 wk. Trabecular bone parameters of tibias were measured by microcomputed tomography and gene expression was assayed by real-time PCR. Consumption of diets containing genistein or Novasoy partially prevented the ovariectomy-induced increase in body weight but did not alter the uterus weight of the OVX mice. Novasoy, but not purified genistein, significantly preserved trabecular bone mass, bone volume, and trabecular bone separation in the proximal tibial metaphysis. Purified genistein decreased mRNA expression of receptor activator of nuclear factor-kappaB ligand (RANKL), carbonic anhydrase II, and cathepsin K and enhanced the ratio of osteoprotegrin:RANKL mRNA expression in the tibial head of the OVX mice. In contrast, the diet containing Novasoy suppressed the OVX-induced increase in serum alkaline phosphatase but did not alter bone-specific gene expression of tibia. Our study demonstrated that a soy extract containing a similar level of genistein in the form of Novasoy is more effective than purified genistein in improving tibial trabecular bone quality in OVX mice, but the mechanism of action might be distinct from that of genistein.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, Guangdong, PRC
| | | | | | | | | |
Collapse
|
33
|
Sepehr E, Cooke GM, Robertson P, Gilani GS. Effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged male rats. Mol Nutr Food Res 2009; 53 Suppl 1:S16-26. [PMID: 19437481 DOI: 10.1002/mnfr.200800170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are limited reports on the bioavailability and pharmacokinetics of isoflavones in elderly humans and aged animals. The present study was conducted to assess the effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged (20 month old) male Fischer-344 (F-344) rats. The F-344 rat, developed by the National Institute on Aging, is an inbred rat model that is commonly used for aging studies and resembles many features of aging humans. Three sources of isoflavones; Novasoy (a commercial supplement), a mixture of synthetic aglycons (daidzein, genistein and glycitein), and a mixture of synthetic glucosides (daidzin, genistin, and glycitin) were tested. Following administration, blood samples were collected at different times (0-48 h post-oral gavage and 0-8 h post-IV dosing). Plasma isoflavones and 7-hydroxy-3-(4'-hydroxyphenyl)-chroman (a metabolite of daidzein) were measured by LC/MS. The extent of absorption was determined by comparing the area under the curve (AUC) of the plasma-concentration time curve after intravenous (IV) administration with that following oral administration. The extent of bioavailability was then calculated as: %bioabailability = (AUC(or)/AUC(IV))x(Dose(IV)/Dose(or))x100. Bioavailabilities for genistein were significantly (p = 0.013) higher for the aglycon (35 +/- 9%) compared with the glucoside forms (11 +/- 3%). In contrast, the bioavailabilities for glycitein were significantly (p = 0.011) higher in Novasoy (27 +/- 13%) and the glucoside form (21 +/- 10%) compared with the aglycon (8 +/- 3%). No significant differences in the bioavailability of daidzein were observed in aged rats dosed with aglycon, glucoside or Novasoy. However, aged rats were able to produce equol as early as 8 h post-dosing. In summary, the source of isoflavones had significant effects on genistein and glycitein bioavailability in aged male rats.
Collapse
Affiliation(s)
- Estatira Sepehr
- Health Canada, Health Products and Food Branch, Nutrition Research Division, Banting Research Centre, Tunney's Pasture, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Hsieh HM, Wu WM, Hu ML. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 2009; 47:625-32. [PMID: 19146912 DOI: 10.1016/j.fct.2008.12.026] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/27/2008] [Accepted: 12/17/2008] [Indexed: 12/23/2022]
Abstract
d-galactose (DG)-induced aging in C57BL/6J (B6) mice (3-4 mo) was used to examine the effects of soy isoflavones (SIF). Mice were divided into six groups: corn oil control, DG treatment, DG+melatonin (1 mg/kg BW), and DG+low (0.1 mg/kg), median (0.5 mg/kg) or high (2.5 mg/kg) SIF. DG was administered (s.c., 0.3 mL of 1% solution/mouse) daily for 50 days, during which melatonin and SIF were given (p.o.) 5 d/wk. A 7th group of B6 mice (11 mo) served as natural aging (NA) control, which received neither DG nor other treatments. DG significantly increased: (1) thiobarbituric acid-reactive substances in serum and brain; (2) protein carbonyls in liver, kidney and brain; (3) soluble extracellular receptors for advanced glycation end products in serum; (4) expression of Bax and caspase-3 proteins in splenocytes; (5) protein expression of Abeta, presenilin-1 and beta-site amyloid precursor protein cleaving enzyme-1 in brain. SIF significantly attenuated DG-induced changes, with high SIF completely reversing most of these changes. The DG treatment group and the NA group had similar changes in most of the parameters measured. Overall, this DG-mimetic aging study shows that SIF effectively attenuate oxidative damage and improve parameters related to aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Huei-Min Hsieh
- Department of Nutritional Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | |
Collapse
|
35
|
Yee S, Burdock GA, Kurata Y, Enomoto Y, Narumi K, Hamada S, Itoh T, Shimomura Y, Ueno T. Acute and subchronic toxicity and genotoxicity of SE5-OH, an equol-rich product produced by Lactococcus garvieae. Food Chem Toxicol 2008; 46:2713-20. [PMID: 18554770 DOI: 10.1016/j.fct.2008.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 04/11/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
The consumption of soy-based products is associated with a number of health benefits and much of these benefits are proposed to be due to the soy isoflavones daidzein, genistein, glycitein, their glycosides, and equol, an isoflavone naturally produced from daidzein. Equol is a naturally bacterially-derived metabolite of daidzein and is produced by bacteria in the gut of those humans capable of hosting the particular organism. To allow all humans to enjoy the health benefits of equol, a new functional food ingredient has been developed that relies on bacterial conversion of daidzein to equol under strictly controlled conditions. This new food substance, termed SE5-OH, has been studied extensively for its acute and subchronic toxicity in Sprague-Dawley rats, as well as for its potential genotoxicity. The oral LD(50) is >4,000 mg/kg. In a 91-day, subchronic study, the no-observed-adverse-effect-level (NOAEL) was 2,000 mg/kg/day, the highest dose tested. SE5-OH was negative in Salmonella typhimurium tester strains TA98, TA100, TA1535 and TA1537 and in Escherichia coli tester strain WP2uvrA with and without metabolic activation. SE5-OH was negative for chromosome aberrations in Chinese hamster lung cells up to 3,000 microg/ml with and without metabolic activation and did not induce increases in micronucleated polychromatic erythrocytes taken from Sprague-Dawley rats administered (via gavage) up to 4,000 mg/kg SE5-OH twice daily for two consecutive days.
Collapse
Affiliation(s)
- Simon Yee
- Burdock Group, 801 North Orange Avenue, Suite 710, Orlando, FL 32801, United States
| | | | | | | | | | | | | | | | | |
Collapse
|