1
|
Es-Sai B, Wahnou H, Benayad S, Rabbaa S, Laaziouez Y, El Kebbaj R, Limami Y, Duval RE. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025; 30:653. [PMID: 39942758 PMCID: PMC11821177 DOI: 10.3390/molecules30030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Gamma-tocopherol (γ-tocopherol), a major isoform of vitamin E, exhibits potent antioxidant, anti-inflammatory, and anticancer properties, making it a promising therapeutic candidate for treating oxidative stress-related diseases. Unlike other tocopherol isoforms, γ-tocopherol effectively neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), providing robust cellular protection against oxidative damage and lipid peroxidation. Its anti-inflammatory effects are mediated through the modulation of pathways involving cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α), reducing chronic inflammation and its associated risks. In cancer therapy, γ-tocopherol demonstrates multifaceted activity, including the inhibition of tumor growth, induction of apoptosis, and suppression of angiogenesis, with significant efficacy observed in cancers such as prostate, lung, and colon. Preclinical and clinical studies support its efficacy in mitigating oxidative stress, inflammation, and cancer progression, with excellent tolerance at physiological levels. However, high doses necessitate careful evaluation to minimize adverse effects. This review consolidates current knowledge on γ-tocopherol's biological activities and clinical implications, underscoring its importance as a natural compound for managing inflammation, oxidative stress, and cancer. As a perspective, advancements in nanoformulation technology could enhance γ-tocopherol's bioavailability, stability, and targeted delivery, offering the potential to optimize its therapeutic application in the future.
Collapse
Affiliation(s)
- Basma Es-Sai
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco;
| | - Salma Benayad
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Soufiane Rabbaa
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Yassir Laaziouez
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Youness Limami
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | | |
Collapse
|
2
|
Ma R, Sun X, Liu Z, Zhang J, Yang G, Tian J, Wang Y. Ferroptosis in Ischemic Stroke and Related Traditional Chinese Medicines. Molecules 2024; 29:4359. [PMID: 39339354 PMCID: PMC11433924 DOI: 10.3390/molecules29184359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is a severe neurological disorder resulting from the rupture or blockage of blood vessels, leading to significant mortality and disability worldwide. Among the different types of stroke, ischemic stroke (IS) is the most prevalent, accounting for 70-80% of cases. Cell death following IS occurs through various mechanisms, including apoptosis, necrosis, and ferroptosis. Ferroptosis, a recently identified form of regulated cell death characterized by iron overload and lipid peroxidation, was first described by Dixon in 2012. Currently, the only approved pharmacological treatment for IS is recombinant tissue plasminogen activator (rt-PA), which is limited by a narrow therapeutic window and often results in suboptimal outcomes. Recent research has identified several traditional Chinese medicines (TCMs) that can inhibit ferroptosis, thereby mitigating the damage caused by IS. This review provides an overview of stroke, the role of ferroptosis in IS, and the potential of certain TCMs to inhibit ferroptosis and contribute to stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (R.M.); (X.S.); (Z.L.); (J.Z.); (G.Y.); (J.T.)
| |
Collapse
|
3
|
Cappai MG, Senes A, Pilo G. Albinism and Blood Cell Profile: The Peculiar Case of Asinara Donkeys. Animals (Basel) 2024; 14:2641. [PMID: 39335231 PMCID: PMC11429210 DOI: 10.3390/ani14182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The complete blood cell count (CBC) was screened in a group of 15 donkeys, of which 8 were of Asinara breed (oculocutaneous albinism type 1, OCA1) and 7 of Sardo breed (gray coat). All donkeys were kept under same management and dietary conditions and underwent periodic health monitoring in the month of June 2024, at the peak of the positive photoperiod, at Mediterranean latitudes. One aliquot of whole blood, drawn from each individual into K2-EDTA containing tubes, was analyzed for the complete blood cell count through an automatic analyzer, within two hours of sampling. Data were analyzed and compared by one-way ANOVA, where the breed was an independent variable. All animals appeared clinically healthy, though mild eosinophilia was observed in Sardo donkeys. The red blood cell line showed peculiar traits for Asinara donkeys, which displayed significantly higher circulating red blood cell numbers than gray coat Sardo donkeys (RBC, 5.19 vs. 3.80 1012/mL ± 0.98 pooled-St. Dev, respectively; p = 0.017). RBCs also exhibited a smaller diameter and higher degree of anisocytosis in Asinara donkeys, along with lower hematocrit value, albeit within physiological ranges. Taken all together, such hematological profile depicts a peculiar trait of the red blood cell line in albino donkeys during the positive photoperiod.
Collapse
Affiliation(s)
- Maria Grazia Cappai
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Alice Senes
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Giovannantonio Pilo
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100 Sassari, Italy
| |
Collapse
|
4
|
Rys M, Stachurska J, Rudolphi-Szydło E, Dziurka M, Waligórski P, Filek M, Janeczko A. Does deacclimation reverse the changes in structural/physicochemical properties of the chloroplast membranes that are induced by cold acclimation in oilseed rape? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108961. [PMID: 39067102 DOI: 10.1016/j.plaphy.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Winter crops acquire frost tolerance during the process of cold acclimation when plants are exposed to low but non-freezing temperatures that is connected to specific metabolic adjustments. Warm breaks during/after cold acclimation disturb the natural process of acclimation, thereby decreasing frost tolerance and can even result in a resumption of growth. This phenomenon is called deacclimation. In the last few years, studies that are devoted to deacclimation have become more important (due to climate changes) and necessary to be able to understand the mechanisms that occur during this phenomenon. In the acclimation of plants to low temperatures, the importance of plant membranes is indisputable; that is why the main aim of our studies was to answer the question of whether (and to what extent) deacclimation alters the physicochemical properties of the plant membranes. The studies were focused on chloroplast membranes from non-acclimated, cold-acclimated and deacclimated cultivars of winter oilseed rape. The analysis of the membranes (formed from chloroplast lipid fractions) using the Langmuir technique revealed that cold acclimation increased membrane fluidity (expressed as the Alim values), while deacclimation generally decreased the values that were induced by cold. Moreover, because the chloroplast membranes were penetrated by lipophilic molecules such as carotenoids or tocopherols, the relationships between the structure of the lipids and the content of these antioxidants in the chloroplast membranes during the process of the cold acclimation and deacclimation of oilseed rape are discussed.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Julia Stachurska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Elżbieta Rudolphi-Szydło
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Maria Filek
- Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2, 30-084, Krakow, Poland
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
5
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
6
|
Lee WK, Probst S, Scharner B, Deba T, Dahdouh F, Thévenod F. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line. Arch Toxicol 2024; 98:1043-1059. [PMID: 38289529 PMCID: PMC10944451 DOI: 10.1007/s00204-023-03677-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 03/17/2024]
Abstract
Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany.
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| | - Stephanie Probst
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Bettina Scharner
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
| | - Timo Deba
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of General Paediatrics, Klinik für Kinder- und Jugendmedizin, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Faouzi Dahdouh
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Department of Natural Sciences, Higher School of Professors for Technological Education, Skikda, Algeria
| | - Frank Thévenod
- Institute of Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Str. 12, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| |
Collapse
|
7
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
8
|
Zingg JM. Finding vitamin Ex ‡. Free Radic Biol Med 2024; 211:171-173. [PMID: 38081438 DOI: 10.1016/j.freeradbiomed.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA.
| |
Collapse
|
9
|
Saito Y, Noguchi N, Niki E. Cholesterol is more readily oxidized than phospholipid linoleates in cell membranes to produce cholesterol hydroperoxides. Free Radic Biol Med 2024; 211:89-95. [PMID: 38101585 DOI: 10.1016/j.freeradbiomed.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cholesterol is an essential component of cell membranes and serves as an important precursor of steroidal hormones and bile acids, but elevated levels of cholesterol and its oxidation products have been accepted as a risk factor for maintenance of health. The free and ester forms of cholesterol and fatty acids are the two major biological lipids. The aim of this hypothesis paper is to address the long-standing dogma that cholesterol is less susceptible to free radical peroxidation than polyunsaturated fatty acids (PUFAs). It has been observed that cholesterol is peroxidized much slower than PUFAs in plasma but that, contrary to expectations from chemical reactivity toward peroxyl radicals, cholesterol appears to be more readily autoxidized than linoleates in cell membranes. The levels of oxidation products of cholesterol and linoleates observed in humans support this notion. It is speculated that this discrepancy is ascribed to the fact that cholesterol and phospholipids bearing PUFAs are localized apart in raft and non-raft domains of cell membranes respectively and that the antioxidant vitamin E distributed predominantly in the non-raft domains cannot suppress the oxidation of cholesterol lying in raft domains which are relatively deficient in antioxidant.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, Japan.
| |
Collapse
|
10
|
Connock GT, Liu XL. Tocopherols and associated derivatives track the phytoplanktonic response to evolving pelagic redox conditions spanning Oceanic Anoxic Event 2. GEOBIOLOGY 2023; 21:743-757. [PMID: 37563988 DOI: 10.1111/gbi.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Tocopherols serve a critical role as antioxidants inhibiting lipid peroxidation in photosynthetic organisms, yet are seldom used in geobiological investigations. The ubiquity of tocopherols in all photosynthetic lifeforms is often cited as an impediment to any diagnostic paleoenvironmental potential, while the inability to readily analyze these compounds via conventional methods, such as gas chromatography-mass spectrometry, further diminishes the capacity to serve as useful 'biomarkers'. Here, we analyzed an exceptionally preserved black shale sequence from the Demerara Rise that spans Oceanic Anoxic Event 2 (OAE-2) to reexamine the significance of tocopherols and associated derivatives (i.e. tocol derivatives) in ancient sediments. Tocol derivatives were analyzed via liquid chromatography-quadrupole time-of-flight-mass spectrometry and included tocopherols, a methyltrimethyltridecylchroman, and the first reported detection of tocopherol quinones and methylphytylbenzoquinones in the geologic record. Strong correlations between tocol derivatives were observed over the studied interval. Tocol derivative concentrations and ratios, which normalized tocopherols to potential derivatives, revealed absolute and relative increases in tocopherols as exclusive features of OAE-2 that can be explained by two possible mechanisms related to tocopherol production and preservation. The development of photic zone euxinia during OAE-2 likely forced an upward migration of oxygenic photoautotrophs, increasing oxidative stress that elicited heightened tocopherol biosynthesis. However, shoaling euxinic conditions may have simultaneously acted to enhance tocopherol preservation given the relatively high lability of tocopherols in the water column. Both scenarios could produce the observed stratigraphic distribution of tocol derivatives in this study, although the elevated tocopherol concentrations that define OAE-2 at the Demerara Rise are primarily attributed to enhanced tocopherol production by shoaling phytoplanktonic communities. Thus, the occurrence of tocopherols and associated derivatives in sediments and rocks of marine origin is likely indicative of shallow-water anoxia, tracking the phytoplanktonic response to the abiotic stresses associated with vertical fluctuations in pelagic redox.
Collapse
Affiliation(s)
- Gregory T Connock
- School of Geosciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Xiao-Lei Liu
- School of Geosciences, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Brigelius-Flohé R. Lester Packer and Vitamin E: Editorial. Antioxid Redox Signal 2023; 39:771-776. [PMID: 37221878 DOI: 10.1089/ars.2022.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inspiring ideas of Professor Lester Packer (1929-2018) substantially enriched our understanding of biological systems. One of the most important contributions of Lester is the role of vitamin E in biological membranes. Lester started early in the 1970s with the development and use of a preparatory technique for electron microscopy of biological membranes, the "freeze fracture." This made it possible to detect inner and outer membranes of mitochondria as well as associated compounds in other biological organelles. Lester also considered the effect of tocols on entire animals and thereby initiated the field of exercise biology. An important finding was the loss of vitamin E and of muscle mitochondria after exhaustive exercise. In the 1990s, he and his group worked on the intermembrane exchange and membrane stabilization by tocols. They also determined the specific activities of various tocols including tocotrienols. In the later years they embarked on the role of vitamin E in redox signaling and gene expression, topics fundamental to our understanding of the role of vitamin E in membranes and in general. Lester, his group, and international guests tried to answer the still open question how vitamin E protects biomembranes. The numerous possibilities they offered will help to find a final solution. Lester always engaged himself at the forefront of science and in scientific exchange on meetings and in societies. Antioxid. Redox Signal. 39, 771-776.
Collapse
|
12
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
13
|
Onizuka Y, Fujita K, Ide S, Naito T, Kaji N. Antioxidants encapsulated milk-derived exosomes for functional food development. ANAL SCI 2023; 39:705-712. [PMID: 36738404 DOI: 10.1007/s44211-023-00278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species are known to be involved in various diseases, and antioxidant ingredients are expected to essentially prevent diseases and contribute to improving health. However, antioxidants are easily degraded by enzymes before being absorbed in the intestine, so a means of transport that prevents their degradation in the body is necessary. Exosomes, which play an important role in communication between individual cells, have attracted attention as a new transport carrier of miRNA and DNA, but not yet fully exploited in food research. More recently, exosomes extracted from bovine milk began to be widely used as a cost-effective transport carrier not in clinical medicine but also in functional food materials. To develop practical applications as carriers for functional foods, systematic studies are necessary to clarify the introduction efficiency and the properties of encapsulated substances. In this study, we applied electroporation and incubation to encapsulate antioxidants into the exosomes and studied the encapsulation efficiency into the exosomes and the anticancer activity.
Collapse
Affiliation(s)
- Yuhei Onizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Kazuya Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Sachiko Ide
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
14
|
de Sousa Coelho MDPS, Pereira IC, de Oliveira KGF, Oliveira IKF, Dos Santos Rizzo M, de Oliveira VA, Carneiro da Silva FC, Torres-Leal FL, de Castro E Sousa JM. Chemopreventive and anti-tumor potential of vitamin E in preclinical breast cancer studies: A systematic review. Clin Nutr ESPEN 2023; 53:60-73. [PMID: 36657931 DOI: 10.1016/j.clnesp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Vitamin E has been investigated for its antitumor potential, including the ability to change cancer gene pathways as well as promote antioxidant and pro-oxidant activity. OBJECTIVE Therefore, this systematic review aimed to evaluate antitumor and chemopreventive activity of different vitamin E isoforms (tocopherols and tocotrienols) through in vitro and in vivo studies. METHOD The systematic review was registered in PROSPERO (No. CRD4202126207) and the search was carried out in four electronic databases (PubMed, Science Direct, Scopus and Web of Science) in June 2021 by three independent reviewers. The search equation used was: "Supplementation" AND ("Vitamin E" OR Tocopherol OR Tocotrienol) AND "breast cancer" AND (chemotherapy OR therapy OR prevention). In vitro studies and animal models of breast cancer supplemented with tocopherol or tocotrienol vitamers, alone or in combination, were included. RESULTS The results revealed 8546 relevant studies that were initially identified in our search. After analysis, a total of 12 studies were eligible for this systematic review. All studies included animal models, and 5 of them also performed in vitro experiments on cancer cell lines. The studies performed supplementation with tocopherols, mixtures (tocopherols and tocotrienols) and synthetic vitamin E forms. There was an significant association of estradiol, dendritic cells and pterostilbene in combined therapy with vitamin E. Vitamin E delayed tumor development, reduced tumor size, proliferation, viability, expression of anti-apoptotic and cell proliferation genes, and upregulated pro-apoptotic genes, tumor suppressor genes and increased immune response. The effects on oxidative stress markers and antioxidant activity were conflicting among studies. Only one study with synthetic vitamin E reported cardiotoxicity, but it did not show vitamin E genotoxicity. CONCLUSION In conclusion, vitamin E isoforms, isolated or associated, showed antitumor and chemopreventive activity. However, due to studies heterogeneity, there is a need for further analysis to establish dose, form, supplementation time and breast cancer stage.
Collapse
Affiliation(s)
- Maria do Perpetuo Socorro de Sousa Coelho
- Laboratory of Genetical Toxicology (LAPGENIC), Center for Health Sciences, Graduate Program in Pharmaceutical Sciences - Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Kynnara Gabriella Feitosa de Oliveira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Iara Katryne Fonseca Oliveira
- Department of Nutrition, Postgraduate Program in Food and Nutrition - PPGAN, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Márcia Dos Santos Rizzo
- Department of Morphology, Health Sciences Center, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Victor Alves de Oliveira
- Department of Nutrition, Postgraduate Program in Food and Nutrition - PPGAN, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Genetical Toxicology (LAPGENIC), Center for Health Sciences, Graduate Program in Pharmaceutical Sciences - Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
15
|
Lopez C, David-Briand E, Mériadec C, Bourgaux C, Pérez J, Artzner F. Milk sphingosomes as lipid carriers for α-tocopherol in aqueous foods: thermotropic phase behaviour and morphology. Food Res Int 2022; 162:112115. [DOI: 10.1016/j.foodres.2022.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
16
|
Kübler IC, Kretzschmar J, Brankatschk M, Sandoval-Guzmán T. Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair Regen 2022; 30:652-664. [PMID: 35596643 PMCID: PMC7613859 DOI: 10.1111/wrr.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of species that belong to the plant or animal kingdom evolved with two main strategies to counter tissue damage-scar formation and regeneration. Whereas scar formation provides a fast and cost-effective repair to exit life-threatening conditions, complete tissue regeneration is time-consuming and requires vast resources to reinstall functionality of affected organs or structures. Local environments in wound healing are widely studied and findings have provided important biomedical applications. Less well understood are organismic physiological parameters and signalling circuits essential to maintain effective tissue repair. Here, we review accumulated evidence that positions the interplay of local and systemic changes in metabolism as essential variables modulating the injury response. We particularly emphasise the role of lipids and lipid-like molecules as significant components long overlooked.
Collapse
Affiliation(s)
- Ines C. Kübler
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
DiPasquale M, Nguyen MHL, Castillo SR, Dib IJ, Kelley EG, Marquardt D. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains. Biochemistry 2022; 61:2366-2376. [PMID: 36227768 DOI: 10.1021/acs.biochem.2c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20878, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada.,Department of Physics, University of Windsor, Windsor, OntarioN9B3P4, Canada
| |
Collapse
|
18
|
Gamage RS, Smith BD. Spontaneous Transfer of Indocyanine Green from Liposomes to Albumin Is Inhibited by the Antioxidant α-Tocopherol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11950-11961. [PMID: 36126324 PMCID: PMC9897306 DOI: 10.1021/acs.langmuir.2c01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Indocyanine Green (ICG) is a clinically approved organic dye with near-infrared absorption and fluorescence. Over the years, many efforts to improve the photophysical and pharmacokinetic properties of ICG have investigated numerous nanoparticle formulations, especially liposomes with membrane-embedded ICG. A series of systematic absorption and fluorescence experiments, including FRET experiments using ICG as a fluorescence energy acceptor, found that ICG transfers spontaneously from liposomes to albumin protein residing in the external solution with a half-life of ∼10 min at 37 °C. Moreover, transfer of ICG from liposome membranes to external albumin reduces light-activated leakage from thermosensitive liposomes with membrane-embedded ICG. A survey of lipophilic liposome additives discovered that the presence of clinically approved antioxidant, α-tocopherol, greatly increases ICG retention in the liposomes (presumably by forming favorable aromatic stacking interactions), inhibits ICG photobleaching and prevents albumin-induced reduction of light-triggered liposome leakage. This new insight will help researchers with the specific task of optimizing ICG-containing liposomes for fluorescence imaging or phototherapeutics. More broadly, the results suggest a broader design concept concerning light triggered liposome leakage, that is, proximity of the light absorbing dye to the bilayer membrane is a critical design feature that impacts the extent of liposome leakage.
Collapse
|
19
|
Ali AA, Bagheri Y, Tian Q, You M. Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains. NANO LETTERS 2022; 22:7579-7587. [PMID: 36084301 PMCID: PMC10368464 DOI: 10.1021/acs.nanolett.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
20
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
21
|
Effect of Ester Moiety on Structural Properties of Binary Mixed Monolayers of Alpha-Tocopherol Derivatives with DPPC. Molecules 2022; 27:molecules27154670. [PMID: 35897846 PMCID: PMC9330579 DOI: 10.3390/molecules27154670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Phospholipid membranes are ubiquitous components of cells involved in physiological processes; thus, knowledge regarding their interactions with other molecules, including tocopherol ester derivatives, is of great importance. The surface pressure–area isotherms of pure α-tocopherol (Toc) and its derivatives (oxalate (OT), malonate (MT), succinate (ST), and carbo analog (CT)) were studied in Langmuir monolayers in order to evaluate phase formation, compressibility, packing, and ordering. The isotherms and compressibility results indicate that, under pressure, the ester derivatives and CT are able to form two-dimensional liquid-condensed (LC) ordered structures with collapse pressures ranging from 27 mN/m for CT to 44 mN/m for OT. Next, the effect of length of ester moiety on the surface behavior of DPPC/Toc derivatives’ binary monolayers at air–water interface was investigated. The average molecular area, elastic modulus, compressibility, and miscibility were calculated as a function of molar fraction of derivatives. Increasing the presence of Toc derivatives in DPPC monolayer induces expansion of isotherms, increased monolayer elasticity, interrupted packing, and lowered ordering in monolayer, leading to its fluidization. Decreasing collapse pressure with increasing molar ratio of derivatives indicates on the miscibility of Toc esters in DPPC monolayer. The interactions between components were analyzed using additivity rule and thermodynamic calculations of excess and total Gibbs energy of mixing. Calculated excess area and Gibbs energy indicated repulsion between components, confirming their partial mixing. In summary, the mechanism of the observed phenomena is mainly connected with interactions of ionized carboxyl groups of ester moieties with DPPC headgroup moieties where formed conformations perturb alignment of acyl chains, resulting in increasing mean area per molecule, leading to disordering and fluidization of mixed monolayer.
Collapse
|
22
|
Thompson MA, Zuniga K, Sousse L, Christy R, Gurney J. The Role of Vitamin E in Thermal Burn Injuries, Infection, and Sepsis: A Review. J Burn Care Res 2022; 43:1260-1270. [PMID: 35863690 PMCID: PMC9629418 DOI: 10.1093/jbcr/irac100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thermal burn injuries are still a serious public health concern in the United States, due to the initial insult and resulting comorbidities. Burned patients are increasingly susceptible to colonization by endogenous and exogenous microorganisms after having lost skin, which acts as the primary protective barrier to environmental contaminants. Furthermore, the onset of additional pathophysiologies, specifically sepsis, becomes more likely in burned patients compared to other injuries. Despite improvements in the early care of burn patients, infections, and sepsis, these pathophysiologies remain major causes of morbidity and mortality and warrant further investigation of potential therapies. Vitamin E may be one such therapy. We aimed to identify publications of studies that evaluated the effectiveness of vitamin E as it pertains to thermal burn injuries, infection, and sepsis. Several investigations ranging from in vitro bench work to clinical studies have examined the impact on, or influence of, vitamin E in vitro, in vivo, and in the clinical setting. To the benefit of subjects it has been shown that enteral or parenteral vitamin E supplementation can prevent, mitigate, and even reverse the effects of thermal burn injuries, infection, and sepsis. Therefore, a large-scale prospective observational study to assess the potential benefits of vitamin E supplementation in patients is warranted and could result in clinical care practice paradigm changes.
Collapse
Affiliation(s)
- Marc A Thompson
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Kameel Zuniga
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Linda Sousse
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Robert Christy
- US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX
| | - Jennifer Gurney
- Burn Center, United States Army Institute of Surgical Research, JBSA Ft. Sam Houston, TX, USA
| |
Collapse
|
23
|
Trela-Makowej A, Leśkiewicz M, Kruk J, Żądło A, Basta-Kaim A, Szymańska R. Antioxidant and Neuroprotective Activity of Vitamin E Homologues: In Vitro Study. Metabolites 2022; 12:metabo12070608. [PMID: 35888732 PMCID: PMC9315808 DOI: 10.3390/metabo12070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Here we present comparative data on the inhibition of lipid peroxidation by a variety of tocochromanols in liposomes. We also show for the first time the potential neuroprotective role of all the vitamin E homologues investigated on the neuronally differentiated human neuroblastoma SH-SY5Y cell line. α-Tocopherol had nearly no effect in the inhibition of lipid peroxidation, while β-, γ-, and δ-tocopherols inhibited the reaction completely when it was initiated in a lipid phase. Similar effects were observed for tocotrienol homologues. Moreover, in this respect plastochromanol-8 was as effective as β-, γ-, and δ-tocochromanols. When the prenyllipids were investigated in a 1,1-diphenyl-2-picrylhydrazyl (DPPH) test and incorporated into different lipid carriers, the radical oxidation was most pronounced in liposomes, followed by mixed micelles and the micellar system. When the reaction of tocochromanols was examined in niosomes, the oxidation was most pronounced for α-tocopherol and plastochromanol-8, followed by α-tocotrienol. Next, using retinoic acid-differentiated SH-SY5Y cells, we tested the protective effects of the compounds investigated on hydrogen peroxide (H2O2)-induced cell damage. We showed that tocotrienols were more active than tocopherols in the oxidative stress model. Plastochromanol-8 had a strong inhibitory effect on H2O2-induced lactate dehydrogenase (LDH) release and H2O2-induced decrease in cell viability. The water-soluble α-tocopherol phosphate had neuroprotective effects at all the concentrations analyzed. The results clearly indicate that structural differences between vitamin E homologues reflect their different biological activity and indicate their potential application in pharmacological treatments for neurodegenerative diseases. In this respect, the application of optimal tocochromanol-carrying structures might be critical.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Cracow, Poland;
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland; (M.L.); (A.B.-K.)
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland;
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland;
- Department of Biophysics, Jagiellonian University Medical College, św. Łazarza 16, 31-530 Cracow, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland; (M.L.); (A.B.-K.)
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Cracow, Poland;
- Correspondence: ; Tel.: +48-126-175-688
| |
Collapse
|
24
|
Lv S, Yang H, Jing P, Song H. α-tocopherol pretreatment alleviates cerebral ischemia-reperfusion injury in rats. CNS Neurosci Ther 2022; 28:964-970. [PMID: 35301808 PMCID: PMC9062554 DOI: 10.1111/cns.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shitao Lv
- Department of Emergency, Yantaishan Hospital, Yantai, China
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai, China
| | | | - Haiying Song
- Department of Gynecology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
25
|
Hamze L, Miserere A, Molina MS, Maestri D, Searles PS, Rousseaux MC. Influence of environmental growth temperature on tocopherol and sterol oil concentrations in olive fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2741-2749. [PMID: 34716600 DOI: 10.1002/jsfa.11615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tocopherols and sterols are minor components of virgin olive oils that contribute to oil quality. Based on observations at different geographical locations, it has been suggested that environmental temperature during fruit growth affects tocopherol and sterol oil concentrations in olive fruit. However, controlled experiments have not been conducted to directly assess their responses to temperature. In this study, a manipulative experiment using open-top chambers (OTCs) was performed in the field to evaluate the responses of these oil components to a moderate air temperature increase during oil accumulation in young trees of two olive cultivars (Arbequina, Coratina). The two temperature levels in the OTCs were a control about 1 °C above ambient temperature (T0) and a heated treatment (T+) with a target temperature of 4 °C above T0. RESULTS Total tocopherol and sterol oil concentrations in olive fruit were generally higher in the T+ temperature treatment than in the control at the end of the oil accumulation period. The increase in total tocopherols in T+ appeared to be related to a decrease in fruit oil concentration with heating. Individual sterols showed both significant increases and decreases due to T+, and some differences in response occurred between the two cultivars. CONCLUSION These findings provide evidence that growth temperature affects tocopherol and sterol oil concentrations in olive fruit at the end of the oil accumulation period. Cultivars should be carefully chosen for new olive-growing regions, and the results could be relevant for global warming scenarios in existing growing regions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leila Hamze
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
| | - Andrea Miserere
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
- Departamento de Ciencias y Tecnologías Aplicadas (DACTAPAyU), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - M Sol Molina
- Estación Experimental Agropecuaria (EEA) Catamarca, Instituto Nacional de Tecnología Agropecuaria (INTA), Valle Viejo, Argentina
| | - Damian Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Peter S Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
| | - M Cecilia Rousseaux
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR- SEGEMAR-UNCa-CONICET), Anillaco, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales (DACEFyN), Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
26
|
van Bavel N, Lai P, Loebenberg R, Prenner EJ. Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. Nanomedicine (Lond) 2022; 17:827-843. [PMID: 35437998 DOI: 10.2217/nnm-2021-0398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Inhalation of vaping additives has recently been shown to impair respiratory function, leading to e-cigarette or vaping product use associated with lung injuries. This work was designed to understand the impact of additives (vitamin E, vitamin E acetate, tetrahydrocannabinol and cannabidiol) on model lung surfactants. Materials & methods: Lipid monofilms at the air-water interface and Brewster angle microscopy were used to assess the impact of vaping additives on model lung surfactant films. Results & conclusion: The addition of 5 mol % of vaping additives, and even more so mixtures of vitamins and cannabinoids, negatively impacts lipid packing and film stability, induces material loss upon cycling and significantly reduces functionally relevant lipid domains. This range of detrimental effects could affect proper lung function.
Collapse
Affiliation(s)
- Nicolas van Bavel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Patrick Lai
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
27
|
Maiti B, Kumar K, Datta S, Bhattacharya S. Physical-Chemical Characterization of Bilayer Membranes Derived from (±) α-Tocopherol-Based Gemini Lipids and Their Interaction with Phosphatidylcholine Bilayers and Lipoplex Formation with Plasmid DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:36-49. [PMID: 34955028 DOI: 10.1021/acs.langmuir.1c01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane formation and aggregation properties of two series of (±) α-tocopherol-based cationic gemini lipids without and with hydroxyl functionalities at the headgroup region (TnS n = 3, 4, 5, 6, 8, and 12; THnS n = 4, 5, 6, 8, and 12) with varying polymethylene spacer lengths were investigated extensively while comparing with the corresponding properties of the monomeric counterparts (TM and THM). Liposomal suspensions of each cationic lipid were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurements, and small-angle X-ray diffraction studies. The length of the spacer and the presence of hydroxyl functionalities at the headgroup region strongly contribute to the aggregation behavior of these gemini lipids in water. The interaction of each tocopherol lipid with a model phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-derived vesicles, was thoroughly examined by differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5-hexatriene (DPH)-doped fluorescence anisotropy measurements. The binding efficiency of the cationic tocopherol liposomes with plasmid DNA (pDNA) was followed by an ethidium bromide (EB) exclusion assay and zeta potential measurements, whereas negatively charged micellar sodium dodecyl sulfate (SDS)-mediated release of the pDNA from various preformed pDNA-liposomal complexes (lipoplex) was studied by an ethidium bromide (EB) reintercalation assay. The structural transformation of pDNA upon complexation with liposome was characterized using circular dichroism (CD) spectroscopic measurements. Gemini lipid-pDNA interactions depend on both the presence of hydroxyl functionalities at the headgroups and the length of the spacer chain between the headgroups. Succinctly, we performed a detailed physical-chemical characterization of the membranes formed from cationic monomeric and gemini lipids bearing tocopherol as their hydrophobic backbone and describe the role of inserting the -OH group at the headgroup of such lipids.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subhasis Datta
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
28
|
Barouh N, Bourlieu-Lacanal C, Figueroa-Espinoza MC, Durand E, Villeneuve P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr Rev Food Sci Food Saf 2021; 21:642-688. [PMID: 34889039 DOI: 10.1111/1541-4337.12867] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
Lipid oxidation is a major concern in the food, cosmetic, and pharmaceutical sectors. The degradation of unsaturated lipids affects the nutritional, physicochemical, and organoleptic properties of products and can lead to off-flavors and to the formation of potentially harmful oxidation compounds. To prevent or slow down lipid oxidation, different antioxidant additives are used alone or in combination to achieve the best possible efficiency with the minimum possible quantities. In manufactured products, that is, heterogeneous systems containing lipids as emulsions or bulk phase, the efficiency of an antioxidant is determined not only by its chemical reactivity, but also by its physical properties and its interaction with other compounds present in the products. The antioxidants most widely used on the industrial scale are probably tocopherols, either as natural extracts or pure synthetic molecules. Considerable research has been conducted on their antioxidant activity, but results regarding their efficiency are contradictory. Here, we review the known mechanisms behind the antioxidant activity of tocopherols and discuss the chemical and physical features that determine their efficacy. We first describe their chemical reactivity linked with the main factors that modulate it between efficient antioxidant capacity and potential prooxidant effects. We then describe their chemical interactions with other molecules (phenolic compounds, metals, vitamin C, carotenes, proteins, and phospholipids) that have potential additive, synergistic, or antagonist effects. Finally, we discuss other physical parameters that influence their activity in complex systems including their specific interactions with surfactants in emulsions and their behavior in the presence of association colloids in bulk oils.
Collapse
Affiliation(s)
- Nathalie Barouh
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | | | - Maria Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| |
Collapse
|
29
|
Brigelius-Flohé R. Vitamin E research: Past, now and future. Free Radic Biol Med 2021; 177:381-390. [PMID: 34756995 DOI: 10.1016/j.freeradbiomed.2021.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
The early history of vitamin E from its discovery by Herbert M. Evans and Katharine J. S. Bishop in 1922 up to its chemical synthesis by Paul Karrer and coworkers in 1938 and the development of the concept that vitamin E acts as an antioxidant in vivo are recalled. Some more recent results shedding doubt on this hypothesis are reviewed. They comprise influence of vitamin E on enzyme activities, signaling cascades, gene expression and bio-membrane structure. The overall conclusion is that our knowledge of the vitamin's mechanism of action still remains fragmentary. The metabolism of tocopherols and tocotrienols is presented and discussed in respect to bioactivity of the metabolites, interference with drug metabolism and the future design of clinical trials. Some strategies are recommended how to reach the final goal: the identification of the primary vitamin E target(s) and the analysis of the downstream events up to the physiological phenomena.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam Rehbrücke, Arthur-Scheunert-Alle 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
30
|
Traber MG, Head B. Vitamin E: How much is enough, too much and why! Free Radic Biol Med 2021; 177:212-225. [PMID: 34699937 DOI: 10.1016/j.freeradbiomed.2021.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, USA.
| | - Brian Head
- Linus Pauling Institute, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
31
|
Atkinson J, Marquardt D, DiPasquale M, Harroun T. From fat to bilayers: Understanding where and how vitamin E works. Free Radic Biol Med 2021; 176:73-79. [PMID: 34555454 DOI: 10.1016/j.freeradbiomed.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022]
Abstract
Vitamin E was one of the last fat-soluble vitamins to be discovered. We provide here an historical review of the discovery and the increasingly more detailed understanding of the role of α-tocopherol both as an antioxidant and as a structural component of phospholipid bilayer membranes. Despite the detailed descriptions now available of the orientation, location, and dynamics of α-tocopherol in lipid bilayers, there are still gaps in our knowledge of the effect of α-tocopherol and its potential receptors than control gene transcription.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON, L2S3A1, Canada.
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada; Department of Physics, Windsor, ON, N9B 3P4, Canada
| | | | - Thad Harroun
- Department of Physics, and Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S3A1, Canada
| |
Collapse
|
32
|
Moe Htet TT, Cruz J, Khongkaew P, Suwanvecho C, Suntornsuk L, Nuchtavorn N, Limwikrant W, Phechkrajang C. PLS-regression-model-assisted raman spectroscopy for vegetable oil classification and non-destructive analysis of alpha-tocopherol contents of vegetable oils. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Molecular dynamics simulation study of the positioning and dynamics of α-tocopherol in phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:889-903. [PMID: 34052860 DOI: 10.1007/s00249-021-01548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Using molecular dynamics simulations, we investigate the interaction of α-tocopherol (α-toc) with dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine (POPC), and palmitoyloleoylphosphatidylethanolamine (POPE) lipid bilayers. The goal is to develop a better understanding of the positioning and orientation of α-toc inside the bilayers; properties of significant relevance to α-toc anti-oxidant activity. We investigated bilayer systems with 128 lipids in the presence of either single or 14 α-toc molecules. The single α-toc bilayer systems were investigated via biased MD simulations in which the potential of mean force (PMF) and diffusivity were obtained as functions of the distance between α-toc head group and bilayer center. The higher α-toc concentration systems were investigated with unbiased MD simulations. For all four bilayers at both concentrations, the simulations show that the most probable location of the α-toc hydroxyl group is just below the lipid carbonyl group. Overall, the simulation results are in good agreement with existing experimental data except for the DMPC bilayer system for which some experiments predict α-toc to be located closer to bilayer center. The flip-flop frequency calculated shows that the α-toc flip-flop rate is sensitive to bilayer lipid type. In particular, α-toc has a much lower flip-flop rate in a POPE bilayer compared to the three PC lipid bilayers due to the smaller area per lipid in the POPE bilayer. For DMPC and POPC, the α-toc flip-flop rates are significantly higher at higher α-toc concentration and this appears to be related to the local structural disruption caused by α-toc clusters spanning the bilayer.
Collapse
|
34
|
The effects of feeding and starvation on antioxidant defence, fatty acid composition and lipid peroxidation in reared Oncorhynchus mykiss fry. Sci Rep 2021; 11:16716. [PMID: 34408240 PMCID: PMC8373945 DOI: 10.1038/s41598-021-96204-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of feeding and starvation have been studied with respect to oxidative stress and enzymatic antioxidant activities in the whole body of 4 cm rainbow trout fry Oncorhynchus mykiss (Walbaum 1792). The experiment was conducted for 28 days. The selected biomarkers for the study were determined, including non-enzymic scavengers glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) contents and a number of enzymes are known to have major antioxidant activity, such as activities of süperoksit dismutaz (SOD), catalase (CAT), glutatyon peroksidaz (GSHpx), glutatyon Redüktaz (GR) and Glutatyon-S-Transferaz (GST). There is an endogenous cellular glutathione pool which consists of two forms of glutathione, i.e. the GSH and the GSSG. Oxidative damage was measured by the formation of MDA as an indication of lipid peroxidation. The activities of SOD in 14th and 28th day and the activity of CAT in 14th day were increased significantly during the 28 days of starvation. GSHpx and GR activities in starved fry decreased significantly in 28th day. GST activity in all starved fry showed the most significant increases the period of 28 days starving. The highest ΣSFA (Total Saturated Fatty Acid) content was obtained from 28 day starved fry. In starved fry, there was an apparent preference in utilization of C18:1n-9 than in the fed fry. In both starved and fed fry, C16:1n-7 was preferentially kept during the same period. Fry kept 28 days under starvation conditions exhausted C15:0, C17:0, C18:3n-6, C22:0, C24:0. They utilized less C20:5n-3 acid and conserved strongly C22:6n-3 acid. Concentrations of C20:5n-3, C22:5n-3, C22:6n-3 and total n-3 fatty acids significantly increased and C18:3n-3 significantly decreased in the whole body of starved fry during starvation period. A significant increase in the concentrations of C22:5n-3 and C22:6n-3 was determined in the fed fries in the last 2 weeks. Fat-soluble vitamins, cholesterol, stigmasterol and β-sitosterol levels were also determined in the same period of O. mykiss fry.
Collapse
|
35
|
Cooper-Mullin C, Carter WA, Amato RS, Podlesak D, McWilliams SR. Dietary vitamin E reaches the mitochondria in the flight muscle of zebra finches but only if they exercise. PLoS One 2021; 16:e0253264. [PMID: 34181660 PMCID: PMC8238215 DOI: 10.1371/journal.pone.0253264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Whether dietary antioxidants are effective for alleviating oxidative costs associated with energy-demanding life events first requires they are successfully absorbed in the digestive tract and transported to sites associated with reactive species production (e.g. the mitochondria). Flying birds are under high energy and oxidative demands, and although birds commonly ingest dietary antioxidants in the wild, the bioavailability of these consumed antioxidants is poorly understood. We show for the first time that an ingested lipophilic antioxidant, α-tocopherol, reached the mitochondria in the flight muscles of a songbird but only if they regularly exercise (60 min of perch-to-perch flights two times in a day or 8.5 km day-1). Deuterated α-tocopherol was found in the blood of exercise-trained zebra finches within 6.5 hrs and in isolated mitochondria from pectoral muscle within 22.5 hrs, but never reached the mitochondria in caged sedentary control birds. This rapid pace (within a day) and extent of metabolic routing of a dietary antioxidant to muscle mitochondria means that daily consumption of such dietary sources can help to pay the inevitable oxidative costs of flight muscle metabolism, but only when combined with regular exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Wales A. Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ronald S. Amato
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David Podlesak
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
36
|
Dossi CG, Vargas RG, Valenzuela R, Videla LA. Beneficial effects of natural compounds on experimental liver ischemia-reperfusion injury. Food Funct 2021; 12:3787-3798. [PMID: 33977997 DOI: 10.1039/d1fo00289a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion injury (IRI) is a phenomenon inherent to hepatic surgery that severely compromises the organ functionality, whose underlying mechanisms involve cellular and molecular interrelated processes leading to the development of an excessive inflammatory response. Liver resident cells and those recruited in response to injury generate pro-inflammatory signals such as reactive oxygen species, cytokines, chemokines, proteases and lipid mediators that contribute to hepatocellular necrosis and apoptosis. Besides, dying hepatocytes release damage-associated molecular patterns that actívate inflammasomes to further stimulate inflammatory responses leading to massive cell death. Since liver IRI is a complication of hepatic surgery in man, extensive preclinical studies have assessed potential protective strategies, including the supplementation with natural compounds, with the objective to downregulate nuclear factor-κB functioning, the main effector of inflammatory responses. This can be accomplished by either the activation of peroxisome proliferator-activated receptor-α, G protein-coupled receptor 120 or antioxidant signaling pathways, the synthesis of specific pro-resolving mediators, downregulation of Toll-like receptor 4 activity or additional contributory mechanisms that are beginning to be understood. The latter aspect is a crucial issue to be accomplished in preclinical studies, in order to establish adequate conditions for the supplementation with natural products before major liver surgeries in man involving warm IR, such as hepatic trauma or resection of large intrahepatic tumors.
Collapse
Affiliation(s)
- Camila G Dossi
- Escuela de Medicina Veterinaria, Facultad Ciencias de La Vida, Universidad Andres Bello, Viña del Mar, Chile.
| | - Romina G Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, Uiversity of Chile, Santiago, Chile and Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto, ON M2J4A6, Canada
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
37
|
Alpha2-Adrenoblockers Regulate Development of Oxidative Stress and Cognitive Behaviour of Rats under Chronic Acoustic Stress Conditions. Pharmaceuticals (Basel) 2021; 14:ph14060529. [PMID: 34199400 PMCID: PMC8228817 DOI: 10.3390/ph14060529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Noise is a wide-spread stress factor in modern life produced by urbanization, traffic, and an industrialized environment. Noise stress causes dysfunction and neurotransmission impairment in the central nervous system, as well as changes in hormone levels. In this study, we have examined the level of α-Tocopherol (α-T) and malondialdehyde (MDA) in plasma and the erythrocytes’ membrane (EM), as well as the behavioral characteristics of a noise-induced stress model in rats. In addition, the modulating effect of α2-adrenoblockers, beditin, and mesedin on the aforementioned parameters has been investigated. For these purposes, albino male rats were divided into four groups: (1) untreated; (2) noise-exposed, (3) noise-exposed and beditin-treated (2 mg/kg, i.p.), and (4) noise-exposed and mesedin-treated (10 mg/kg, i.p.) animals. Noise-exposed groups were treated with 91dBA noise on 60 days with a daily duration of 8 h. Increased MDA and decreased α-T levels in plasma and EM were observed upon chronic high-level noise exposure. Locomotor and behavioral activity assessed with a Y-maze revealed disorientation and increased anxiety under chronic noise exposure. Prominently, α2-adrenoblockers alleviated both behavioral deficits and oxidative stress, providing evidence for the involvement of α2-adrenoceptor in the pathophysiology of noise-induced stress.
Collapse
|
38
|
Li X, Li T, Hong XY, Liu JJ, Yang XF, Liu GP. Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Front Cell Dev Biol 2021; 9:680386. [PMID: 34055809 PMCID: PMC8160100 DOI: 10.3389/fcell.2021.680386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aging, characterized by a time-dependent functional decline of physiological integrity, is the major independent risk factor for many neurodegeneration diseases. Therefore, it’s necessary to look for natural food supplements to extend the healthy lifespan of aging people. We here treated normal aging mice with acer truncatum seed oil, and found that the seed oil significantly improved the learning and memory ability. Proteomics revealed that the seed oil administration changed many proteins expression involving in biological processes, including complement and coagulation cascades, inflammatory response pathway and innate immune response. BDNF/TrkB signaling pathway was also activated by acer truncatum seed oil treatment. And the seed oil administration increased the expression of postsynaptic related proteins including PSD95, GluA1, and NMDAR1, and decreased the mRNA level of inflammatory factors containing IL-1β, TNF-α, and IL-6. These findings suggest that acer truncatum seed oil holds a promise as a therapeutic food supplement for delaying aging with multiple mechanisms.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
39
|
Neunert G, Tomaszewska-Gras J, Baj A, Gauza-Włodarczyk M, Witkowski S, Polewski K. Phase Transitions and Structural Changes in DPPC Liposomes Induced by a 1-Carba-Alpha-Tocopherol Analogue. Molecules 2021; 26:2851. [PMID: 34064897 PMCID: PMC8151464 DOI: 10.3390/molecules26102851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak was broadened and shifted to lower temperatures in a concentration-dependent manner, and pretransition was abolished. Increasing CT concentrations induced the formation of new phases in the DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH fluorescent probes, which are selectively located at different places in the bilayer, were studied. With the increased concentration of CT molecules in the DPPC liposomes, structural changes with the simultaneous formation of different phases of such mixture were observed. Temperature studies of such mixtures revealed a decrease in the temperature of the main phase transition and fluidization at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained from concentration-temperature data with fluorescent probes allowed for identification of different phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling water molecules from the interphase, thus introducing disorder and structural changes to the highly ordered gel phase.
Collapse
Affiliation(s)
- Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Jolanta Tomaszewska-Gras
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-637 Poznan, Poland;
| | - Aneta Baj
- Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (A.B.); (S.W.)
| | - Marlena Gauza-Włodarczyk
- Department of Biophysics, Faculty of Medical Sciences, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Stanislaw Witkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (A.B.); (S.W.)
| | - Krzysztof Polewski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| |
Collapse
|
40
|
Ranard KM, Kuchan MJ, Juraska JM, Erdman JW. Natural and Synthetic α-Tocopherol Modulate the Neuroinflammatory Response in the Spinal Cord of Adult Ttpa-null Mice. Curr Dev Nutr 2021; 5:nzab008. [PMID: 33733036 PMCID: PMC7947595 DOI: 10.1093/cdn/nzab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin E (α-tocopherol, α-T) deficiency causes neurological pathologies. α-T supplementation improves outcomes, but the relative bioactivities of dietary natural and synthetic α-T in neural tissues are unknown. OBJECTIVE The aim was to assess the effects of dietary α-T source and dose on oxidative stress and myelination in adult α-tocopherol transfer protein-null (Ttpa- / - ) mouse cerebellum and spinal cord. METHODS Three-week-old male Ttpa- / - mice (n = 56) were fed 1 of 4 AIN-93G-based diets for 37 wk: vitamin E-deficient (VED; below α-T limit of detection); natural α-T, 600 mg/kg diet (NAT); synthetic α-T, 816 mg/kg diet (SYN); or high synthetic α-T, 1200 mg/kg diet (HSYN). Male Ttpa+/+ littermates (n = 14) fed AIN-93G (75 mg synthetic α-T/kg diet; CON) served as controls. At 40 wk of age, total and stereoisomer α-T concentrations and oxidative stress markers were determined (n = 7/group). Cerebellar Purkinje neuron morphology and white matter areas in cerebellum and spinal cord were assessed in a second subset of animals (n = 7/group). RESULTS Cerebral cortex α-T concentrations were undetectable in Ttpa- / - mice fed the VED diet. α-T concentrations were increased in NAT (4.6 ± 0.3 nmol/g), SYN (8.0 ± 0.7 nmol/g), and HSYN (8.5 ± 0.3 nmol/g) mice, but were significantly lower than in Ttpa+/+ mice fed CON (27.8 ± 1.9 nmol/g) (P < 0.001). 2R stereoisomers constituted the majority of α-T in brains of Ttpa+/+ mice (91%) and Ttpa- / - mice fed NAT (100%), but were substantially lower in the SYN and HSYN groups (∼53%). Neuroinflammatory genes were increased in the spinal cord, but not cerebellum, of VED-fed animals; NAT, SYN, and HSYN normalized their expression. Cerebellar Purkinje neuron atrophy and myelin pathologies were not visible in Ttpa- / - mice. CONCLUSIONS Natural and synthetic α-T supplementation normalized neuroinflammatory markers in neural tissues of 10-mo-old Ttpa- / - mice. α-T prevents tissue-specific molecular abnormalities, which may prevent severe morphological changes during late adulthood.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | - Janice M Juraska
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
41
|
Wanitpongpun C, Honma Y, Okada T, Suzuki R, Takeshi U, Suzumiya J. Tamoxifen enhances romidepsin-induced apoptosis in T-cell malignant cells via activation of FOXO1 signaling pathway. Leuk Lymphoma 2021; 62:1585-1596. [PMID: 33508992 DOI: 10.1080/10428194.2021.1876857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although romidepsin as monotherapy appears to be useful for treating T-cell lymphoma, combined chemotherapy with other therapeutic agents is required for improvement of the treatment outcome. To establish safer and more effective regimens, systematic screening was conducted to identify suitable drugs to be used in combination with romidepsin for T-cell malignancies, and the underlying molecular mechanisms were examined. The most effective agent was tamoxifen. The combination of romidepsin and tamoxifen had a significant synergistic effect in inducing apoptosis. The growth-inhibitory effects of the combined treatment were reversed by α-tocopherol. FOXO1 expression was greatly upregulated in MOLT-4 cells treated with romidepsin plus tamoxifen. Knockdown of FOXO1 expression by siRNA significantly reduced the cell death induced by romidepsin plus tamoxifen. The combination of romidepsin and tamoxifen might be considered for the treatment of T-cell lymphoma patients.
Collapse
Affiliation(s)
| | - Yoshio Honma
- Department of Oncology/Hematology, Shimane University, Izumo, Japan.,Faculty of Medicine, Department of Biochemistry, Shimane University, Izumo, Japan
| | - Takahiro Okada
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| | - Urano Takeshi
- Faculty of Medicine, Department of Biochemistry, Shimane University, Izumo, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| |
Collapse
|
42
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Yuan G, Xu M, Tan M, Dong J, Chen X. Supplementation with Docosahexaenoic Acid and Vitamin E Improves Hepatic Triglyceride Accumulation Induced by High‐Fat Diet in Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Mengmeng Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Meijuan Tan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Jian Dong
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| | - Xiaoe Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province Zhejiang Ocean University Zhoushan 316022 China
- College of Food and Medicine Zhejiang Ocean University Zhoushan 316022 China
| |
Collapse
|
44
|
Czepas J, Matczak K, Koceva-Chyła A, Grobelski B, Jóźwiak Z, Gwoździński K. Doxyl Nitroxide Spin Probes Can Modify Toxicity of Doxorubicin towards Fibroblast Cells. Molecules 2020; 25:E5138. [PMID: 33158261 PMCID: PMC7663118 DOI: 10.3390/molecules25215138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
The biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application-alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy.
Collapse
Affiliation(s)
- Jan Czepas
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (B.G.); (K.G.)
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (Z.J.)
| | - Aneta Koceva-Chyła
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (Z.J.)
| | - Bartłomiej Grobelski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (B.G.); (K.G.)
| | - Zofia Jóźwiak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (Z.J.)
| | - Krzysztof Gwoździński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska st., 90-236 Łódź, Poland; (B.G.); (K.G.)
| |
Collapse
|
45
|
Wagener BM, Anjum N, Evans C, Brandon A, Honavar J, Creighton J, Traber MG, Stuart RL, Stevens T, Pittet JF. α-Tocopherol Attenuates the Severity of Pseudomonas aeruginosa-induced Pneumonia. Am J Respir Cell Mol Biol 2020; 63:234-243. [PMID: 32243761 DOI: 10.1165/rcmb.2019-0185oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.
Collapse
Affiliation(s)
- Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine.,Center for Free Radical Biology, and
| | - Naseem Anjum
- Department of Anesthesiology and Perioperative Medicine
| | - Cilina Evans
- Department of Anesthesiology and Perioperative Medicine
| | | | | | | | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | | | - Troy Stevens
- Department of Pharmacology and Medicine and the Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine.,Center for Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
46
|
Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids 2020; 231:104910. [PMID: 32492380 DOI: 10.1016/j.chemphyslip.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023]
Abstract
Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States.
| |
Collapse
|
47
|
Harper PE, Cavazos AT, Kinnun JJ, Petrache HI, Wassall SR. Vitamin E Promotes the Inverse Hexagonal Phase via a Novel Mechanism: Implications for Antioxidant Role. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4908-4916. [PMID: 32295345 DOI: 10.1021/acs.langmuir.0c00176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vitamin E (α-tocopherol) and a range of other biological compounds have long been known to promote the HII (inverted hexagonal) phase in lipids. Now, it has been well established that purely hydrophobic lipids such as dodecane promote the HII phase by relieving extensive packing stress. They do so by residing deep within the hydrocarbon core. However, we argue from X-ray diffraction data obtained with 1-palmitoyl-2-oleoylphosphatidylcholine (POPE) and 1,2-dioleoylphosphatidylcholine (DOPE) that α-tocopherol promotes the HII phase by a different mechanism. The OH group on the chromanol moiety of α-tocopherol anchors it near the aqueous interface. This restriction combined with the relatively short length of α-tocopherol (as compared to DOPE and POPE) means that α-tocopherol promotes the HII phase by relieving compressive packing stress. This observation offers new insight into the nature of packing stress and lipid biophysics. With the deeper understanding of packing stress offered by our results, we also explore the role that molecular structure plays in the primary function of vitamin E, which is to prevent the oxidation of polyunsaturated membrane lipids.
Collapse
Affiliation(s)
- Paul E Harper
- Department of Physics and Astronomy, Calvin University, Grand Rapids, Michigan 49546-4403, United States
| | - Andres T Cavazos
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| | - Jacob J Kinnun
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| | - Horia I Petrache
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| | - Stephen R Wassall
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| |
Collapse
|
48
|
Lauridsen C. From oxidative stress to inflammation: redox balance and immune system. Poult Sci 2019; 98:4240-4246. [PMID: 30371893 DOI: 10.3382/ps/pey407] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Important intestinal diseases in young pigs and chickens, such as diarrhea and enteritis, may be associated with oxidative stress and inflammatory reactions. Especially enteric infectious diseases of weaned pigs and broiler chickens are responsible for a high antibiotic consumption, and there is a major request for alternative strategies to enhance animal disease resistance and robustness. The aim of this presentation was to address the role of oxidative stress and inflammation to combat infectious pathogens, and to elucidate how the reactive processes will contribute to normal immune defense mechanisms of the animal. Furthermore, factors that can enhance oxidative stress (e.g., intensive production, heat stress, polyunsaturated fatty acids, and impaired fat quality), uncontrolled inflammatory reactions (e.g., high ratio of n-6 and n-3 in cellular membranes), and limited immune development (such as micronutrient deficiency) are addressed. In addition, the presentation reviews how micronutrient supplementation during critical phases can support a normal immune system and modulate resistance to infectious diseases of pigs and poultry. The mechanisms concern especially modulation of signal transduction in leukocytes (fat-soluble vitamins and fatty acids) and protection against immunopathology, as exerted by the antioxidative vitamins and selenium. Substantial advances in optimized gut health could be expected by increasing our understanding on how to foster or inhibit production of reactive oxygen species and inflammatory reaction; the relation to enteric pathogens, and how to monitor the effect of disease prevention in farm animals by the use of antioxidant therapy and antibacterial feed components.
Collapse
Affiliation(s)
- Charlotte Lauridsen
- Department of Animal Science, Aarhus University, Blichers Alle 20, P.O. Box 50 8830 Tjele, Denmark
| |
Collapse
|
49
|
Muñoz P, Munné-Bosch S. Vitamin E in Plants: Biosynthesis, Transport, and Function. TRENDS IN PLANT SCIENCE 2019; 24:1040-1051. [PMID: 31606282 DOI: 10.1016/j.tplants.2019.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
Vitamin E, which includes both tocopherols and tocotrienols, comprises lipid-soluble antioxidants that modulate lipid peroxidation. Recently, significant advances have been made in our understanding of vitamin E biosynthesis, transport, and function. The phytyl moiety from chlorophyll degradation is used for tocopherol biosynthesis. An α-tocopherol-binding protein (TBP) has been identified in tomato (SlTBP) serving in intraorganellar vitamin E transport in plants. Moreover, α-tocopherol not only scavenges free radicals through flip-flop movements in the lipid bilayer, but may also contribute to fine-tuning the transmission of specific signals outside chloroplasts. Vitamin E, and α-tocopherol in particular, appear to be essential for plant development and help to provide the most suitable response to a number of environmental stresses.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
50
|
Janeczko A, Pociecha E, Dziurka M, Jurczyk B, Libik-Konieczny M, Oklestkova J, Novák O, Pilarska M, Filek M, Rudolphi-Skórska E, Sadura I, Siwek A. Changes in content of steroid regulators during cold hardening of winter wheat - Steroid physiological/biochemical activity and impact on frost tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:215-228. [PMID: 30908973 DOI: 10.1016/j.plaphy.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 05/24/2023]
Abstract
The purpose of experiments was to describe the alterations of content of steroid regulators (brassinosteroids, progesterone) during cold hardening of winter wheat. Further we studied physiological and biochemical changes induced by these steroids in cold hardened winter wheat together with estimation of plant frost tolerance. The endogenous brassinosteroid content was elevated in winter wheat during cold hardening while level of progesterone was lowered. A higher content of brassinosteroids (but not progesterone) was connected to better frost tolerance of winter wheat cultivars. Plant supplementation with brassinosteroid (24-epibrassinolide) and progesterone before cold hardening reduced frost damage. Tests with the inhibitors of the biosynthesis of brassinosteroids and progesterone suggested that these steroids are one of players in regulating the antioxidant system in winter wheat during cold hardening. Their role in regulating the expression of Rubisco or the Rubisco activase gene was less clear. Steroid regulators did not affect the content of the stress hormone ABA. Model studies of the membranes, made on a Langmuir bath, showed an increase in the value of the parameter describing differences in membrane compressibility (resulting from stronger interactions among the molecules in the monolayers). This suggests that 24-epibrassinolide and progesterone enter into the lipid layer and - in a similar way to sterols - stabilise the interaction among lipids. It may be significant step for better frost tolerance. The use of steroid regulators (especially brassinosteroids) as agrochemicals improving frost tolerance of winter cereals will be discussed.
Collapse
Affiliation(s)
- Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Ewa Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Krakow, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland.
| | - Barbara Jurczyk
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Krakow, Poland
| | - Marta Libik-Konieczny
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Maria Pilarska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Maria Filek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; Department of Biochemistry, Biophysics and Biotechnology, Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Krakow, Poland
| | - Elżbieta Rudolphi-Skórska
- Department of Biochemistry, Biophysics and Biotechnology, Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Krakow, Poland
| | - Iwona Sadura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|