1
|
Domínguez-López I, López-Yerena A, Vallverdú-Queralt A, Pallàs M, Lamuela-Raventós RM, Pérez M. From the gut to the brain: the long journey of phenolic compounds with neurocognitive effects. Nutr Rev 2025; 83:e533-e546. [PMID: 38687609 PMCID: PMC11723161 DOI: 10.1093/nutrit/nuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The human gut microbiota is a complex community of micro-organisms that play a crucial role in maintaining overall health. Recent research has shown that gut microbes also have a profound impact on brain function and cognition, leading to the concept of the gut-brain axis. One way in which the gut microbiota can influence the brain is through the bioconversion of polyphenols to other bioactive molecules. Phenolic compounds are a group of natural plant metabolites widely available in the human diet, which have anti-inflammatory and other positive effects on health. Recent studies have also suggested that some gut microbiota-derived phenolic metabolites may have neurocognitive effects, such as improving memory and cognitive function. The specific mechanisms involved are still being studied, but it is believed that phenolic metabolites may modulate neurotransmitter signaling, reduce inflammation, and enhance neural plasticity. Therefore, to exert a protective effect on neurocognition, dietary polyphenols or their metabolites must reach the brain, or act indirectly by producing an increase in bioactive molecules such as neurotransmitters. Once ingested, phenolic compounds are subjected to various processes (eg, metabolization by gut microbiota, absorption, distribution) before they cross the blood-brain barrier, perhaps the most challenging stage of their trajectory. Understanding the role of phenolic compounds in the gut-brain axis has important implications for the development of new therapeutic strategies for neurological and psychiatric disorders. By targeting the gut microbiota and its production of phenolic metabolites, it may be possible to improve brain function and prevent cognitive decline. In this article, the current state of knowledge on the endogenous generation of phenolic metabolites by the gut microbiota and how these compounds can reach the brain and exert neurocognitive effects was reviewed.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science, and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Park SK, Lee YG, Lee JI, Kim MS, Park JH, Hwang JT, Chung MY. Phyllanthus emblica Prevents Adipogenesis by Regulating Histone Acetylation. Foods 2025; 14:160. [PMID: 39856827 PMCID: PMC11764537 DOI: 10.3390/foods14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Phyllanthus emblica is widely used in Ayurvedic preparations against multiple disorders and contains various bioactive components. This study aimed to determine the preventive effect of P. emblica on obesity by evaluating the inhibition of adipogenesis and the related regulatory epigenetic mechanisms during 3T3-L1 differentiation. The ethyl acetate fraction of P. emblica (EFPE) effectively inhibited lipid accumulation and triglyceride (TG) production in 3T3-L1 adipocytes. It also inhibited histone acetyltransferase (HAT) activity and regulated Pcaf-specific H3K9 acetylation and the expression of adipogenesis-related genes during adipocyte differentiation. Phenolic compounds were the main components of EFPE, of which gallic acid (GA) exhibited the strongest inhibitory effect on lipid accumulation and TG production. Notably, GA effectively regulated adipogenesis-mediated gene expression through H3K9 acetylation. These findings, along with the experiment results, suggest that EFPE containing GA is a potent agent for preventing obesity by regulating H3K9 acetylation.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea; (S.K.P.); (Y.G.L.); (J.-I.L.); (J.-H.P.); (J.-T.H.)
| | - Yu Geon Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea; (S.K.P.); (Y.G.L.); (J.-I.L.); (J.-H.P.); (J.-T.H.)
| | - Jae-In Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea; (S.K.P.); (Y.G.L.); (J.-I.L.); (J.-H.P.); (J.-T.H.)
| | - Min-Sun Kim
- Food Industry Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea;
| | - Jae-Ho Park
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea; (S.K.P.); (Y.G.L.); (J.-I.L.); (J.-H.P.); (J.-T.H.)
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Republic of Korea; (S.K.P.); (Y.G.L.); (J.-I.L.); (J.-H.P.); (J.-T.H.)
| | - Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul 07661, Republic of Korea
| |
Collapse
|
3
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
4
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: https:/doi.org/10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
5
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
6
|
Bai SC, Wang YC, Li XZ, Li G. Inhibiting the Aggregation of Aβ by Natural Product Molecules. ChemMedChem 2024; 19:e202400223. [PMID: 38807345 DOI: 10.1002/cmdc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
The abnormal aggregation of Aβ has been considered one of the primary causative factors for Alzheimer's disease. Diverse molecular entities have been developed to mitigate the formation of toxic Aβ aggregates within the brain by inhibiting Aβ aggregation. Recognizing that many FDA-approved drugs are derived from natural products, we present a summary of recent discoveries involving natural product molecules with inhibitory effects on Aβ aggregation. By consolidating these findings, our review offers researchers a concise overview of the latest advancements in natural product-based interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Si-Cong Bai
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye-Cheng Wang
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Zhong Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Gao Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Co-operation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
7
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
8
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Hasibuan PAZ, Simanjuntak Y, Hey-Hawkins E, Lubis MF, Rohani AS, Park MN, Kim B, Syahputra RA. Unlocking the potential of flavonoids: Natural solutions in the fight against colon cancer. Biomed Pharmacother 2024; 176:116827. [PMID: 38850646 DOI: 10.1016/j.biopha.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.
Collapse
Affiliation(s)
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, Leipzig 04103, Germany
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| |
Collapse
|
10
|
Balakrishnan R, Jannat K, Choi DK. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer's disease. Redox Biol 2024; 71:103105. [PMID: 38471283 PMCID: PMC10945280 DOI: 10.1016/j.redox.2024.103105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Khoshnur Jannat
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
11
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
12
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
13
|
Momeni Z, Danesh S, Ahmadpour M, Eshraghi R, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions. Curr Med Chem 2024; 31:3733-3751. [PMID: 37815180 DOI: 10.2174/0109298673259299230921150030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Zahra Momeni
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Danesh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Samarghandian
- University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
15
|
Wei W, Jing L, Tian Y, Więckowska A, Kang D, Meng B, Panek D, Godyń J, Góral I, Song Y, Liu X, Zhan P. Multifunctional agents against Alzheimer's disease based on oxidative stress: Polysubstituted pyrazine derivatives synthesized by multicomponent reactions. Bioorg Med Chem 2023; 96:117535. [PMID: 37956505 DOI: 10.1016/j.bmc.2023.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
As Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR. Since the oxidative stress plays an important role in the pathological process of AD, the antioxidant activities of the newly synthesized compounds were first evaluated. Subsequently, selected active compounds were further screened in a series of AD-related bioassays, including Aβ1-42 self-aggregation and deaggregation, BACE-1 inhibition, metal chelation, and protection of SH-SY5Y cells from H2O2-induced oxidative damage. Compound A3B3C1 represented the best one with multifunctional potencies. Mechanism study showed that A3B3C1 acted on Nrf2/ARE signaling pathway, thus increasing the expression of related antioxidant proteins NQO1 and HO-1 to normal cell level. Furthermore, A3B3C1 showed good in vitro human plasma and liver microsome stability, indicating a potential for further development as multifunctional anti-AD agent.
Collapse
Affiliation(s)
- Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
16
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 PMCID: PMC11407731 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
17
|
Obafemi TO, Ekundayo BE, Adewale OB, Obafemi BA, Anadozie SO, Adu IA, Onasanya AO, Ekundayo SK. Gallic acid and neurodegenerative diseases. PHYTOMEDICINE PLUS 2023; 3:100492. [DOI: 10.1016/j.phyplu.2023.100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
19
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
20
|
Li Y, Li P, Yu X, Zheng X, Gu Q. Exploitation of In Vivo-Emulated In Vitro System in Advanced Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023249 DOI: 10.1021/acs.jafc.2c07289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reasonable model construction contributes to the accuracy of experimental results. Multiple in vivo models offer reliable choices for effective evaluation, whereas their applications are hampered due to adverse features including high time-consumption, high cost and ethical contradictions. In vivo-emulated in vitro systems (IVE systems) have experienced rapid development and have been brought into food science for about two decades. IVE systems' flexibly gathers the strengths of in vitro and in vivo models into one, reflecting the results in an efficient, systematic and interacted manner. In this review, we comprehensively reviewed the current research progress of IVE systems based on the literature published in the recent two decades. By categorizing the IVE systems into 2D coculture models, spheroids and organoids, their applications were systematically summarized and typically exemplified. The pros and cons of IVE systems were also thoroughly discussed, drawing attention to present challenges and inspiring potential orientation and future perspectives. The wide applicability and multiple possibilities suggest IVE systems as an effective and persuasive platform in the future of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| |
Collapse
|
21
|
Wang Z, Gao C, Zhang L, Sui R. Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer's disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways. Int J Biol Macromol 2023; 233:123169. [PMID: 36623626 DOI: 10.1016/j.ijbiomac.2023.123169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Phytocompounds therapy has recently emerged as an effective strategy to treat Alzheimer's disease. Herein, the protective effect of hesperidin methylchalcone (HMC) was evaluated through Alzheimer's disease models of Neuro-2a cells and Wistar rats. The in vitro results showed that HMC possesses significant ability to inhibit the acetylcholinesterase enzyme and exhibiting anti-aggregation and disaggregation properties. Furthermore, HMC could protect the Neuro-2a cells against Aβ-induced neurotoxicity. Simultaneously, HMC treatment significantly improved the cognitive deficits caused by Aβ-peptide on spatial memory in Wistar rats. HMC significantly enhanced the cholinergic effects by inhibiting AChE, BuChE, β-secretase activity, caspase-3 activity, and attenuating macromolecular damages and apoptosis. Notably, HMC reduced the Aβ-induced oxidative stress by activating the antioxidative defence enzymes. In addition, the HMC treatment suppressed the expression of immunocytokines such as p-NF-κB p65, p-IκBα, induced by Aβ; whereas upregulating Nrf2, HO-1 in brain homogenate. These results suggest that HMC could attenuate Aβ-induced neuroinflammation in brain via suppressing NF-κB signalling pathway and activating the Nrf2/HO-1 pathway, thereby improving memory and cognitive impairments in Wistar rats. Overall, the present study reports that HMC can act as a potent candidate with multi-faceted neuroprotective potential against Aβ-induced memory dysfunction in Wistar rats for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Chao Gao
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
22
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
23
|
Angkawijaya AE, Bundjaja V, Santoso SP, Go AW, Lin SP, Cheng KC, Soetaredjo FE, Ismadji S. Biocompatible and biodegradable copper-protocatechuic metal-organic frameworks as rifampicin carrier. BIOMATERIALS ADVANCES 2023; 146:213269. [PMID: 36696782 DOI: 10.1016/j.bioadv.2022.213269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment. A continuous drug delivery system that has a long-term effect is needed to reduce routine drug consumption intervals, suppress infection, and prevent the emergence of drug-resistant strains of M. tuberculosis. For this reason, biomolecule metal-organic framework (BioMOF) with good biocompatibility, nontoxicity, bioactivity, and high stability are becoming potential drug carriers. This study used a bioactive protocatechuic acid (PCA) as organic linker to prepare copper-based BioMOF Cu-PCA under base-modulated conditions. Detailed crystal analysis by the powder X-ray diffraction demonstrated that the Cu-PCA, with a chemical formula of C14H16O13Cu3, crystalizes as triclinic in space group P1. Comprehensive physicochemical characterizations were provided using FTIR, SEM, XPS, TGA, EA, and N2 sorption. As a drug carrier, Cu-PCA showed a high maximum rifampicin (RIF) drug loading of 443.01 mg/g. Upon resuspension in PBS, the RIF and linkers release profile exhibited two-stage release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. A complete release of these compounds (RIF and PCA) was achieved after ~9 h of mixing in PBS. Cu-PCA and RIF@Cu-PCA possessed antibacterial activity against Escherichia coli, and good biocompatibility is evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementations.
Collapse
Affiliation(s)
- Artik Elisa Angkawijaya
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106-07, Taiwan.
| | - Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Alchris Woo Go
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, #250, Wuxing Street, Xinyi Dist., Taipei 11042, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| |
Collapse
|
24
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
25
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
26
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
27
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
28
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
29
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
30
|
A Systematic Review and Meta-Analysis on the Role of Nutraceuticals in the Management of Neuropathic Pain in In Vivo Studies. Antioxidants (Basel) 2022; 11:antiox11122361. [PMID: 36552569 PMCID: PMC9774415 DOI: 10.3390/antiox11122361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The control of neuropathic pain is a leading challenge in modern medicine. Traditional medicine has, for a long time, used natural compounds such as nutraceuticals for this purpose, and extensive evidence has supported their role in controlling oxidative stress and persistent pain-related inflammation. Nutraceuticals are natural products belonging to the food sector whose consumption could be related to physiological benefits. Indeed, they are used to improve health, prevent chronic diseases, and delay the aging process. Here, we report a systematic review and meta-analysis to provide a more comprehensive report on the use of nutraceuticals in neuropathic pain, including evaluating confounding factors. A search of the literature has been conducted on principal databases (PubMed, MEDLINE, EMBASE, and Web of Science) following the PRISMA statement, and we retrieved 484 articles, 12 of which were selected for the meta-analysis. The results showed that administration of natural drugs in animals with neuropathic pain led to a significant reduction in thermal hyperalgesia, measured in both the injured paw (SMD: 1.79; 95% CI: 1.41 to 2.17; p < 0.0001) and in the two paws (SMD: −1.74; 95% CI: −3.36 to −0.11; p = 0.036), as well as a reduction in mechanical allodynia and hyperalgesia (SMD: 1.95, 95% CI: 1.08 to 2.82; p < 0.001) when compared to controls. The results of the review indicate that nutraceutical compounds could be clinically relevant for managing persistent neuropathic pain.
Collapse
|
31
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
32
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
33
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
34
|
Aqueous extract of Piper betle L. leaf and Areca catechu L. nut protects against pentylenetetrazole-induced seizures and positively modulates cognitive function in adult Zebrafish. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Abrão LDC, Costa-Silva DG, Santos MGD, Cerqueira MBR, Badiale-Furlong E, Muccillo-Baisch AL, Hort MA. Toxicity evaluation of traditional and organic yerba mate ( Ilex paraguariensis A. St.-Hil.) extracts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:461-479. [PMID: 35189780 DOI: 10.1080/15287394.2022.2035873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important source of biologically active compounds with pharmacological potential. The aim of this study was to examine the toxicity of different extracts obtained from either traditional or organic cultivated yerba mate in vitro and in vivo. Aqueous, ethanolic and methanolic extracts were obtained from commercial samples of yerba mate and total phenolic content was determined employing Folin-Ciocalteau reagent. The aqueous extracts presented higher content of total phenols, compared to ethanolic and methanolic extracts, and also demonstrated lower cytotoxicity, which is the basis for testing were carried out only using aqueous extracts. The main phenolic acids found in traditional aqueous (TA) extract were chlorogenic, gallic and protocatechuic acids. Gallic and hydroxybenzoic acids were detected in aqueous cultivated organic (OA) extract. Pretreatment with OA extract (100 µg/ml, 1 hr) was cytoprotective against rotenone-induced toxicity (1 µM). For in vivo toxicity assay, zebrafish embryos were exposed to OA or TA extracts (10-160 µg/ml) at 4 hr post fertilization. TA extract decreased embryos survival in a concentration-dependent manner, reduced the hatching rate at 40 µg/ml, increased edema frequency at 80 µg/ml and altered body curvature at 120 µg/ml. Further, TA extract produced locomotor disorders at concentrations equal to or greater than 10 µg/ml. In contrast, OA extract exhibited no apparent toxic effect on organogenesis and behavior up to 100 µg/ml. In summary, the OA cultivated extract showed the lowest cytotoxicity in vitro, enhanced reduction in rotenone-induced toxicity, and produced less toxicity in zebrafish embryos compared to the TA extract.
Collapse
Affiliation(s)
- Lian da Costa Abrão
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Dennis Guilherme Costa-Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Michele Goulart Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Eliana Badiale-Furlong
- Programa de Pós-graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Brazil
| | - Ana Luiza Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
36
|
Xu S, Sun Y, Dong X. Design of Gallic Acid-Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer's Amyloid-β Fibrillogenesis. Bioconjug Chem 2022; 33:677-690. [PMID: 35380783 DOI: 10.1021/acs.bioconjchem.2c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer's amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, Ka1 = 3.1 × 106 M-1) and the other weaker (site 2, Ka2 = 0.8 × 106 M-1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer's amyloid.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
37
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
38
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
39
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
40
|
Kaur B, Maity HS, Rakshit M, Srivastav PP, Nag A. Cryo-Ground Mango Kernel Powder: Characterization, LC-MS/MS Profiling, Purification of Antioxidant-Rich Gallic Acid, and Molecular Docking Study of Its Major Polyphenols as Potential Inhibitors against SARS-CoV-2 M pro. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1776-1786. [PMID: 37556283 PMCID: PMC8525339 DOI: 10.1021/acsfoodscitech.1c00179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Mango processing waste (MPW) is an inexpensive and rich source of valuable substances. Hence, the mango kernel powder (MKP) from four cultivars (Chausa, Neelum, Barahmasi, and Dashehari) was characterized for the selection of the best cultivar. The MKP of the best cultivar (Dashehari) was analyzed for the profiling of polyphenols using LC-MS/MS in both modes of ionization (positive and negative) and indicated the presence of 50 compounds with specific retention times. After identification, gallic acid (GA), an important industrial compound, was targeted and purified followed by its confirmation using NMR (600 MHz) and HRMS. The antioxidant activity (IC50: 1.96 μg/mL) of extracted GA proposes its use as a natural antioxidant in novel food formulations. Additionally, SARS-CoV-2 main protease (Mpro) was selected for molecular docking based virtual screening of seven major polyphenols (MKP), and the results were compared with hydroxychloroquine. The docking scores of targeted polyphenols revealed that three compounds (epicatechin, mangiferin, and quercetin) exhibited appreciable proteolytic activity against Mpro. In this way, it is a favorable approach toward environmental safety on the standpoint of green chemistry owing to the use of food processing waste and elimination of the waste dumping/composting problems.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Himadri Sekhar Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Madhulekha Rakshit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ahindra Nag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
41
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean ( Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11554-11571. [PMID: 34551518 DOI: 10.1021/acs.jafc.1c04049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mung bean contains various neuroprotective polyphenols, so it might be a healthy food for Alzheimer's disease (AD) prevention. Totally, 19 major phenolic compounds were quantified in mung bean, including 10 phenolic acids and 9 flavonoids. After summarizing their contents and effective doses in rodent AD models, it was speculated that vitexin, isovitexin, sinapic acid, and ferulic acid might be the major bioactive compounds for mung bean-mediated neuroprotection. The mechanisms involved inhibition of β-amyloidogenesis, tau hyperphosphorylation, oxidative stress, and neuroinflammation, and promotion of autophagy and acetylcholinesterase enzyme activity. Notably, the neuroprotective phenolic profile in mung bean changed after germination, with decreased vitexin and isovitexin, and increased rutin, isoquercitrin, isorhamnetin, and caffeic acid detected. However, only studies of individual phenolic compounds in mung bean are published at present. Hence, further studies are needed to elucidate the neuroprotective activities and mechanisms of extractions of mung bean seeds and sprouts, and the synergism between different phenolic compounds.
Collapse
Affiliation(s)
- Hui Xu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
43
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
44
|
Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J Pharm Anal 2021; 12:394-405. [PMID: 35811622 PMCID: PMC9257438 DOI: 10.1016/j.jpha.2021.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. NF-κB plays a pivotal role in the maintenance of homeostasis and various inflammation-mediated pathologies. NF-κB is involved in cancer development and progression by modulating growth signaling and apoptosis pathways. Phytochemicals modulating NF-κB activity should be exploited to design anticancer drugs with minimal side effects. Use of these phytochemicals in adjunctive chemotherapy may enhance the chemosensitivity of existing chemotherapeutic drugs.
Collapse
Affiliation(s)
- Akansha Chauhan
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridayesh Prakash
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sandhya Singh
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
- Corresponding author.
| |
Collapse
|
45
|
Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113592. [PMID: 33217520 DOI: 10.1016/j.jep.2020.113592] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quercus Infectoria galls (QIG) have a long history of use in traditional Chinese medicine and traditional Uyghur medicine for the treatment of diarrhea, hemorrhage, skin disease, and many other human ailments. Medicinal applications of QIG have become increasingly popular in Greece, Asia Minor, Syria, and Iran. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interactions of QIG to assess the ethnopharmacological uses, explore its therapeutic potential, and identify future opportunities for research. MATERIALS AND METHODS Information on QIG was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pubmed, Web of Science, CNKI, and EMBASE) and libraries. Additionally, information was also obtained from local books and PhD and MS dissertations. RESULTS QIG has played an important role in traditional Chinese medicine. The main bioactive metabolites of QIG include tannins, phenolic acids, flavonoids, triterpenoids, and steroids. Scientific studies on the QIG extract and its components have shown its wide range of pharmacological activities, such as cholinesterase- and monoamine oxidase-inhibitory, antitumor, anti-hypertension, antidiabetic, antimicrobial, insecticidal, antiparasitic, antioxidant, and anti-inflammatory. CONCLUSIONS The ethnopharmacological, phytochemical, pharmacological, and analytical methods of QIG were highlighted in this review, which provides information for future studies and commercial exploration. QIG has a huge potential for pharmaceutical and nutraceutical applications. Moreover, comprehensive toxicity studies of this plant must be conducted to ensure its safety. Additional investigations are recommended to transmute the ethnopharmacological claims of this plant in folklore medicines into scientific rationale-based information. Research on pharmacokinetics studies and potential drug interactions with standard-of-care medications is still limited, which calls for additional studies particularly on humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Aliya Elham
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Miradel Arken
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Gulina Kalimanjan
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Abdulaziz Arkin
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mubarak Iminjan
- Dept. of Pharmaceutics and Physical Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
46
|
Lee JH, Park M, Jung K, Hong G, Lee HL, Kim DW, Kim CE, Kang KS. Identification of gallic acid as a active ingredient of Syzygium aromaticum against tacrolimus-induced damage in renal epithelial LLC-PK1 cells and rat kidney. Bioorg Med Chem Lett 2021; 41:128012. [PMID: 33838305 DOI: 10.1016/j.bmcl.2021.128012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
Tacrolimus (FK506), a calcineurin inhibitor, is an effective immunosuppressive agent mainly used to lower the risk of organ rejection after allogeneic organ transplant. However, FK506-associated adverse effects, such as nephrotoxicity, may limit its therapeutic use. In this study, we confirmed that epigallocatechin-3-gallate (EGCG), sanguiin H-6, and gallic acid increased cell survival following FK506-induced cytotoxicity in renal epithelial LLC-PK1. Among these compounds, gallic acid exerted the strongest protective effect, further confirmed in the FK506-induced nephrotoxicity rat model. Additionally, we identified supporting evidence for the nephroprotective function of gallic acid using molecular docking and bioavailability investigations.
Collapse
Affiliation(s)
- Ji Hwan Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Musun Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; Intellectual Information Team, Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
| | - Gyeongmin Hong
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
| | - Hye Lim Lee
- Department of Pediatrics, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28530, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
47
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
48
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
49
|
Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133:110985. [DOI: 10.1016/j.biopha.2020.110985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
|
50
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|