1
|
Abstract
Cryptorchidism is one of the most common abnormalities of male sexual development, and is characterized by the failure of the testis to descend into the scrotum. Despite extensive studies of cryptorchidism over the past century, the mechanisms for temperature-induced germ-cell loss are not well understood. All of the main cell types in the testis are believed to be affected by the elevated testis temperature induced by cryptorchidism. The cooler temperature in the special environment of the scrotum is required for maintaining optional conditions for normal spermatogenesis. Many studies reported that experimentally induced cryptorchidism caused germ cell apoptosis and suppressed spermatogenesis. However, other factors including hormones must also be examined for cryptorchidism. To explore the mechanism for cryptorchidism, in vitro cultures of testes have been used, but complete spermatogenesis using in vitro methods was not accomplished until 2011. In 2011, Sato et al. (Nature, 471, 504-507) reported the in vitro production of functional sperm in cultured neonatal mouse testes. Using this in vitro system, for the first time, we report that spermatogenesis was abrogated at 37 °C, in accordance with in vivo surgery-mediated cryptorchidism, while spermatogenesis proceeded at 34 °C in cultured testes. This result clearly showed that temperature is the sole determinant of cryptorchidism. Moreover, we found that spermatogenesis was arrested before early spermatocytes at 37 °C. In conclusion, using our in vitro system, we have demonstrated that (1) temperature is the determining factor for cryptorchidism, and (2) higher temperature (37 °C) suppresses DNA synthesis in spermatogenesis.
Collapse
|
2
|
Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization. PLoS One 2014; 9:e103566. [PMID: 25084016 PMCID: PMC4118885 DOI: 10.1371/journal.pone.0103566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with insitu digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays invitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Collapse
|
3
|
Multiple renal cyst development but not situs abnormalities in transgenic RNAi mice against Inv::GFP rescue gene. PLoS One 2014; 9:e89652. [PMID: 24586938 PMCID: PMC3933642 DOI: 10.1371/journal.pone.0089652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/27/2014] [Indexed: 12/05/2022] Open
Abstract
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments.
Collapse
|
4
|
Arrotéia KF, Joazeiro PP, Yamada AT, Tanaka H, Nishimune Y, Pereira LAV. Identification and Characterization of an Antigen Recognized by Monoclonal Antibody TRA 54 in Mouse Epididymis and Vas Deferens. ACTA ACUST UNITED AC 2013; 25:914-21. [PMID: 15477363 DOI: 10.1002/j.1939-4640.2004.tb03161.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spermatozoa in testicular fluid are known to have weak forward motility and cannot fertilize eggs. The epididymis is known to participate in sperm maturation leading fertilization, but little is known about the specific epididymal molecules involved in the modification of sperm. In this study, we characterized the new pattern of expression of an antigen previously identified in testicular germ cells by monoclonal antibody (mAb) TRA 54. This antigen is expressed in epididymal and vas deferens epithelial cells in mice older than 24 days but not during younger developmental stages. Evaluation by immunohistochemistry shows that antigen expression is limited to the cytoplasm of a specific cell population of epithelia along the epididymal regions and vas deferens of adult mice. The molecules synthesized and released by epididymal and vas deferens epithelia into their lumen seem to bind on spermatozoa moving down through the ducts. Immunoblot analysis showed that the molecules recognized by mAb TRA 54 in testis and epididymis were similar and share a common epitope involving carbohydrate domains. Interestingly, the antigens identified in epididymal and vas deferens epithelial cells were expressed independently of testicular germ cells and are produced in an androgen-dependent manner. Finally, the molecules recognized by mAb TRA 54 seem to play an important role in spermatogenesis, as well as in epididymal function related to spermatozoa maturation and ability to fertilize.
Collapse
Affiliation(s)
- Kélen F Arrotéia
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Histology and Embryology, Institute of Biology, State University of Campinas (UNICAMP), PO Box 6109, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Dun MD, Aitken RJ, Nixon B. The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 2012; 18:420-35. [DOI: 10.1093/humupd/dms009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. Proc Natl Acad Sci U S A 2012; 109:3850-5. [PMID: 22357757 DOI: 10.1073/pnas.1117963109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for both sperm migration from the uterus into the oviduct and sperm primary binding to the zona pellucida (ZP). Here we show that the testis-specific protein disulfide isomerase homolog (PDILT) cooperates with the testis-specific calreticulin-like chaperone, calsperin (CALR3), in the endoplasmic reticulum and plays an indispensable role in the disulfide-bond formation and folding of ADAM3. Pdilt(-/-) mice were male infertile because ADAM3 could not be folded properly and transported to the sperm surface without the PDILT/CALR3 complex. Peculiarly we find that not only Pdilt(-/-), but also Adam3(-/-), spermatozoa effectively fertilize eggs when the eggs are surrounded in cumulus oophorus. These findings reveal that ADAM3 requires testis-specific private chaperones to be folded properly and that the principle role of ADAM3 is for sperm migration into the oviduct but not for the fertilization event. Moreover, the importance of primary sperm ZP binding, which has been thought to be a critical step in mammalian fertilization, should be reconsidered.
Collapse
|
7
|
Mazaud-Guittot S, Gow A, Le Magueresse-Battistoni B. Phenotyping the claudin 11 deficiency in testis: from histology to immunohistochemistry. Methods Mol Biol 2011; 763:223-36. [PMID: 21874455 PMCID: PMC3771074 DOI: 10.1007/978-1-61779-191-8_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The testis is a heterogeneous organ that comprises a number of cell types, including germ cells at -different stages in their maturation, differentiated neighbor nursing cells, and endocrine somatic cells. Despite such cellular heterogeneity the testis is highly organized, with germ cell development and differentiation being compartmentalized into the interconnected tubular network of the seminiferous epithelium. Intratesticular scaffolds rely heavily on the basement membrane of the seminiferous tubules while germ cell development inside the seminiferous epithelium is critically dependent on the Blood Testis Barrier (BTB). The BTB is a macromolecular tight junction complex generated by somatic Sertoli cells within the seminiferous epithelium. The BTB divides the seminiferous epithelium into two compartments: the basal compartment, which delineates a niche for the proliferation and renewal of spermatogonia; and the adluminal compartment, where differentiating germ cells undergo meiosis and spermiogenesis. The BTB is unique in mammalian tissues because it is cyclically reconstructed during the spermatogenic cycle as preleptotene spermatocytes migrate from the basal compartment to the adluminal compartment and enter meiosis. In mouse, the loss of the BTB in the absence of the claudin 11 protein causes azoospermia and leads to infertility. Specifically, cldn11 deficiency results in sloughing of the cells of the seminiferous epithelium into the lumen. Understanding this pathophysiology has involved histological examination of the tissue defects as well as immunohistological characterization. Here, we present a comparative study of several modifications to the classical Hematoxylin-Eosin stain that may improve the diagnostic usefulness of this technique, as well as the use of several selective markers to identify testicular cell types.
Collapse
|
8
|
Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, Satouh Y, Inoue N, Okabe M. Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 2010; 286:5639-46. [PMID: 21131354 DOI: 10.1074/jbc.m110.140152] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calnexin (CANX) and calreticulin (CALR) are homologous lectin chaperones located in the endoplasmic reticulum and cooperate to mediate nascent glycoprotein folding. In the testis, calmegin (CLGN) and calsperin (CALR3) are expressed as germ cell-specific counterparts of CANX and CALR, respectively. Here, we show that Calr3(-/-) males produced apparently normal sperm but were infertile because of defective sperm migration from the uterus into the oviduct and defective binding to the zona pellucida. Whereas CLGN was required for ADAM1A/ADAM2 dimerization and subsequent maturation of ADAM3, a sperm membrane protein required for fertilization, we show that CALR3 is a lectin-deficient chaperone directly required for ADAM3 maturation. Our results establish the client specificity of CALR3 and demonstrate that the germ cell-specific CALR-like endoplasmic reticulum chaperones have contrasting functions in the development of male fertility. The identification and understanding of the maturation mechanisms of key sperm proteins will pave the way toward novel approaches for both contraception and treatment of unexplained male infertility.
Collapse
Affiliation(s)
- Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
10
|
Oliveira Filho A, Souza R, Azeredo-Oliveira M, Peruquetti R, Cedenho A. Microdissection testicular sperm extraction causes spermatogenic alterations in the contralateral testis. GENETICS AND MOLECULAR RESEARCH 2010; 9:1405-13. [DOI: 10.4238/vol9-3gmr860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Mazaud-Guittot S, Meugnier E, Pesenti S, Wu X, Vidal H, Gow A, Le Magueresse-Battistoni B. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol Reprod 2009; 82:202-13. [PMID: 19741204 DOI: 10.1095/biolreprod.109.078907] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue integrity relies on barriers formed between epithelial cells. In the testis, the barrier is formed at the initiation of puberty by a tight junction complex between adjacent Sertoli cells, thereby defining an adluminal compartment where meiosis and spermiogenesis occur. Claudin 11 is an obligatory protein for tight junction formation and barrier integrity in the testis. It is expressed by Sertoli cells, and spermatogenesis does not proceed beyond meiosis in its absence, resulting in male sterility. Sertoli cell maturation--arrest of proliferation and expression of proteins to support germ cell development--parallels tight junction assembly; however, the pathophysiology underlying the loss of tight junctions in the mature testis remains largely undefined. Here, using immunohistochemistry and microarrays we demonstrate that adult Cldn11(-/-) mouse Sertoli cells can proliferate while maintaining expression of mature markers. Sertoli cells detach from the basement membrane, acquire a fibroblast cell shape, are eliminated through the lumen together with apoptotic germ cells, and are found in epididymis. These changes are associated with tight junction regulation as well as actin-related and cell cycle gene expression. Thus, Cldn11(-/-) Sertoli cells exhibit a unique phenotype whereby loss of tight junction integrity results in loss of the epithelial phenotype.
Collapse
|
12
|
Kim S, Bardwell VJ, Zarkower D. Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Dev Biol 2007; 307:314-27. [PMID: 17540358 PMCID: PMC1995593 DOI: 10.1016/j.ydbio.2007.04.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/21/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Genes containing the DM domain, a conserved DNA binding motif first found in Doublesex of Drosophila and mab-3 of Caenorhabditis elegans, regulate sexual differentiation in multiple phyla. The DM domain gene Dmrt1 is essential for testicular differentiation in vertebrates. In the mouse, Dmrt1 is expressed in pre-meiotic germ cells and in Sertoli cells, which provide essential support for spermatogenesis. Dmrt1 null mutant mice have severely dysgenic testes in which Sertoli cells and germ cells both fail to differentiate properly after birth. Here we use conditional gene targeting to identify the functions of Dmrt1 in each cell type. We find that Dmrt1 is required in Sertoli cells for their postnatal differentiation, and for germ line maintenance and for meiotic progression. Dmrt1 is required in germ cells for their radial migration to the periphery of the seminiferous tubule where the spermatogenic niche will form, for mitotic reactivation and for survival beyond the first postnatal week. Thus Dmrt1 activity is required autonomously in the Sertoli and germ cell lineages, and Dmrt1 activity in Sertoli cells is also required non-autonomously to maintain the germ line. These results demonstrate that Dmrt1 plays multiple roles in controlling the remodeling and differentiation of the juvenile testis.
Collapse
Affiliation(s)
- Shinseog Kim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
13
|
Kim S, Namekawa SH, Niswander LM, Ward JO, Lee JT, Bardwell VJ, Zarkower D. A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet 2007; 3:e62. [PMID: 17447844 PMCID: PMC1853120 DOI: 10.1371/journal.pgen.0030062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/06/2007] [Indexed: 11/25/2022] Open
Abstract
Gametogenesis is a sexually dimorphic process requiring profound differences in germ cell differentiation between the sexes. In mammals, the presence of heteromorphic sex chromosomes in males creates additional sex-specific challenges, including incomplete X and Y pairing during meiotic prophase. This triggers formation of a heterochromatin domain, the XY body. The XY body disassembles after prophase, but specialized sex chromatin persists, with further modification, through meiosis. Here, we investigate the function of DMRT7, a mammal-specific protein related to the invertebrate sexual regulators Doublesex and MAB-3. We find that DMRT7 preferentially localizes to the XY body in the pachytene stage of meiotic prophase and is required for male meiosis. In Dmrt7 mutants, meiotic pairing and recombination appear normal, and a transcriptionally silenced XY body with appropriate chromatin marks is formed, but most germ cells undergo apoptosis during pachynema. A minority of mutant cells can progress to diplonema, but many of these escaping cells have abnormal sex chromatin lacking histone H3K9 di- and trimethylation and heterochromatin protein 1β accumulation, modifications that normally occur between pachynema and diplonema. Based on the localization of DMRT7 to the XY body and the sex chromatin defects observed in Dmrt7 mutants, we conclude that DMRT7 plays a role in the sex chromatin transformation that occurs between pachynema and diplonema. We suggest that DMRT7 may help control the transition from meiotic sex chromosome inactivation to postmeiotic sex chromatin in males. In addition, because it is found in all branches of mammals, but not in other vertebrates, Dmrt7 may shed light on evolution of meiosis and of sex chromatin. Genes related to the sexual regulator Doublesex of Drosophila have been found to control sexual development in a wide variety of animals, ranging from roundworms to mammals. In this paper, we investigate the function of the Dmrt7 gene, one of seven related genes in the mouse. Female mammals are XX and males are XY, a chromosomal difference that presents specific challenges during the meiotic phase of male germ cell development. Some of these are thought to be overcome by incorporating the X and Y chromosomes into a specialized structure called the XY body. We find that DMRT7 protein is present in germ cells, localizes to the male XY body during meiosis, and is essential for male but not female fertility. The XY body normally is altered by recruitment of additional proteins and by specific modifications to histone proteins between the pachytene and diplotene stages of meiosis, but modification of the “sex chromatin” in Dmrt7 mutant cells is abnormal during this period. Because Dmrt7 is found in all branches of mammals, but not in other vertebrates, these results may indicate some commonality in regulation of sex chromatin among the mammals.
Collapse
Affiliation(s)
- Shinseog Kim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Satoshi H Namekawa
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa M Niswander
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Jeremy O Ward
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005; 438:374-8. [PMID: 16292313 DOI: 10.1038/nature04112] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/14/2005] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and chromatin structure. Here we show that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase. Meisetz transcripts are detected only in germ cells entering meiotic prophase in female fetal gonads and in postnatal testis. Notably, Meisetz has catalytic activity for trimethylation, but not mono- or dimethylation, of lysine 4 of histone H3, and a transactivation activity that depends on its methylation activity. Mice in which the Meisetz gene is disrupted show sterility in both sexes due to severe impairment of the double-stranded break repair pathway, deficient pairing of homologous chromosomes and impaired sex body formation. In Meisetz-deficient testis, trimethylation of lysine 4 of histone H3 is attenuated and meiotic gene transcription is altered. These findings indicate that meiosis-specific epigenetic events in mammals are crucial for proper meiotic progression.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, Murodo-cho 840, Izumi, Osaka 594-1101, Japan
| | | | | |
Collapse
|
15
|
Nixon B, Asquith KL, John Aitken R. The role of molecular chaperones in mouse sperm-egg interactions. Mol Cell Endocrinol 2005; 240:1-10. [PMID: 16043280 DOI: 10.1016/j.mce.2005.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/20/2005] [Accepted: 06/22/2005] [Indexed: 11/15/2022]
Abstract
Fertilization is a unique and exquisitely choreographed cellular interaction between the male and female gamete that results in the creation of a genetically unique individual. Despite the fundamental importance of fertilization, there remains a dearth of information about the basic biochemical mechanisms that underpin this process. One of the key issues that remain unresolved is the molecular basis of sperm-egg recognition. From the female perspective, it is well established that the sperm recognition sites reside in the zona pellucida (ZP), an acellular coat that surrounds the oocyte. In contrast, numerous studies into the cognate zona receptors residing on the sperm surface have failed to shed significant light on the biochemical identity of these molecules. Such difficulties may, in part, have arisen because investigations have traditionally been based on the precept that the zona receptor represents a single molecular entity that is constitutively expressed on the sperm surface. While such a view holds obvious appeal, it fails to account for growing evidence that gamete interaction is not mediated by a simple lock-and-key mechanism. In this review, we present a novel hypothesis in which the zona recognition site is portrayed as a multimeric molecular structure that is assembled into a functional complex during a maturation process known as 'capacitation'. Furthermore, we consider the possibility that this previously cryptic complex is assembled and delivered to the outer surface of the sperm plasma membrane through the concerted action of several members of the molecular chaperone family of proteins.
Collapse
Affiliation(s)
- Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|
16
|
Siep M, Sleddens-Linkels E, Mulders S, van Eenennaam H, Wassenaar E, Van Cappellen WA, Hoogerbrugge J, Grootegoed JA, Baarends WM. Basic helix-loop-helix transcription factor Tcfl5 interacts with the Calmegin gene promoter in mouse spermatogenesis. Nucleic Acids Res 2004; 32:6425-36. [PMID: 15585666 PMCID: PMC535687 DOI: 10.1093/nar/gkh979] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mouse spermatogenesis, differentiating germ line cells initiate expression of specific genes at subsequent developmental steps. The Calmegin (Clgn) gene is first expressed in meiotic prophase, in primary spermatocytes, and encodes a protein that acts as a chaperone. To identify testis-specific transcription factors that control expression of the Clgn gene in spermatogenesis, we performed a yeast one-hybrid screening with a Clgn promoter sequence as bait DNA. This screening resulted in the identification of mouse Tcfl5 as a candidate Clgn promoter-binding protein. Tcfl5 is a member of the basic helix-loop-helix (bHLH) family of transcription factors, and mouse Tcfl5 shows 83% amino acid sequence identity with human TCFL5. Gel-shift and yeast one-hybrid experiments showed that Tcfl5 interacts with a non-canonical CACGCG site that is present in the Clgn promoter. By using northern blot, RT-PCR and in situ hybridization, mouse Tcfl5 mRNA was detected only in testis, with the highest expression level in primary spermatocytes and round spermatids. The highest level of Tcfl5 protein was found in primary spermatocytes at the diplotene stage of meiotic prophase, where the protein colocalizes with transcriptionally active chromatin.
Collapse
Affiliation(s)
- Michel Siep
- Department of Reproduction and Development, Erasmus MC, PO Box 1738, NL-3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim JM, Takemoto N, Arai KI, Masai H. Hypomorphic mutation in an essential cell-cycle kinase causes growth retardation and impaired spermatogenesis. EMBO J 2003; 22:5260-72. [PMID: 14517263 PMCID: PMC204480 DOI: 10.1093/emboj/cdg497] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cdc7 kinase is essential for initiation of DNA replication. Cdc7(-/-) mouse embryonic stem (ES) cells are non-viable but their growth can be rescued by an ectopically expressed transgene (Cdc7(-/-)tg). Here we report that, despite the normal growth capability of Cdc7(-/-)tg ES cells, the mice with the identical genetic background exhibit growth retardation. Concomi tantly, Cdc7(-/-)tg embryonic fibroblasts (MEFs) display delayed S phase entry and slow S phase progression. Furthermore, spermatogenesis of Cdc7(-/-)tg mice is disrupted prior to pachytene stage of meiotic prophase I. The impairment in spermatogenesis correlates with the extremely low level of Cdc7 protein in testes, and is rescued by introducing an additional allele of transgene, which results in increase of Cdc7 expression. The increased level of Cdc7 also recovers the growth of Cdc7(-/-)tg MEFs and mice, indicating that the developmental abnormalities of Cdc7(-/-)tg mice are due to insufficiency of Cdc7 protein. Our results indicate the requirement of a critical level of a cell-cycle regulator for mouse development and provide genetic evidence that Cdc7 plays essential roles in meiotic processes in mammals.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | |
Collapse
|
18
|
Ikawa M, Tergaonkar V, Ogura A, Ogonuki N, Inoue K, Verma IM. Restoration of spermatogenesis by lentiviral gene transfer: offspring from infertile mice. Proc Natl Acad Sci U S A 2002; 99:7524-9. [PMID: 12032316 PMCID: PMC124271 DOI: 10.1073/pnas.072207299] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disruption of spermatogenesis found in azoospermia and oligozoospermia is thought to be of primarily genetic origin. Sl/Sl(d) mutant mice offer a model system in which lack of transmembrane type c-kit ligand (KL2) expression on the somatic Sertoli cell surface results in disruption of spermatogenesis. We investigated the ability of adeno-, adeno-associated-, retro-, and lentiviral vectors to transduce Sertoli cells and found that transduction with either adeno- or lentiviral vectors led to reporter gene expression for more than 2 mo after testicular tubule injection. Because adenoviral vectors showed toxicity, lentiviral vectors were used to express the c-kit ligand in Sl/Sl(d) Sertoli cells. Restoration of spermatogenesis was observed in all recipient testes. Furthermore, the sperm collected from recipient testes were able to generate normal pups after intracytoplasmic sperm injection. None of the offspring carried the transgene, suggesting the inability of lentiviral vectors to infect spermatogenic cells in vivo. We propose that lentiviral vectors can be used for gene therapy of male infertility without the risk of germ-line transmission.
Collapse
Affiliation(s)
- Masahito Ikawa
- Laboratory of Genetics, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ikawa M, Nakanishi T, Yamada S, Wada I, Kominami K, Tanaka H, Nozaki M, Nishimune Y, Okabe M. Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev Biol 2001; 240:254-61. [PMID: 11784061 DOI: 10.1006/dbio.2001.0462] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of the endoplasmic reticulum resident chaperone calmegin leads to the production of sterile sperm that do not bind to the egg zona pellucida (M. Ikawa et al., 1997, Nature 387, 607-611). In the present study, we demonstrate that calmegin -/- sperm were defective in migrating into the oviducts and in binding to the egg plasma membrane. Despite the impaired adhesive function, calmegin -/- sperm could fertilize eggs when zonae pellucidae were partially dissected, and eggs fertilized in this manner could develop normally to term. Since these sperm characteristics were similar to those found in fertilin beta -/- sperm, we investigated the interaction of calmegin with fertilin beta. Using immunoprecipitation techniques, calmegin was found to bind to sperm membrane proteins, fertilin alpha and beta, during spermatogenesis. The binding was specific to calmegin: another endoplasmic reticulum chaperone calnexin, a calmegin homologue, was not able to bind to fertilin alpha and beta. In the calmegin -/- mice, a loss of heterodimerization of fertilin alpha and beta was observed and fertilin beta was not detectable in mature sperm. The data not only explain why the calmegin and fertilin beta knockout mouse lines share a common infertile phenotype, but also reveal the importance of the maturation of sperm membrane proteins in the endoplasmic reticulum.
Collapse
Affiliation(s)
- M Ikawa
- Genome Information Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kurita A, Takizawa T, Takayama T, Totsukawa K, Matsubara S, Shibahara H, Orgebin-Crist MC, Sendo F, Shinkai Y, Araki Y. Identification, cloning, and initial characterization of a novel mouse testicular germ cell-specific antigen. Biol Reprod 2001; 64:935-45. [PMID: 11207211 DOI: 10.1095/biolreprod64.3.935] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A monoclonal antibody, designated TES101, was raised by immunizing BALB/c mice with an allogenic mouse testicular homogenate followed by immunohistochemical selection as the initial screening method. By searching the expressed sequence tag (EST) database with the N-terminal amino acid sequence of TES101 reactive protein, we found that the predicted amino acid sequence encoded by a mouse testicular EST clone matched the TES101 protein sequence. Sequence analysis of the clone revealed no homologous molecule in the DNA/protein database. Based on data obtained from N-terminal amino acid analysis of the TES101 protein, the derived amino acid sequence contained a signal peptide region of 25 amino acids and a mature protein region of 225 amino acids, which translated into a protein with a molecular weight of 24 093. Northern blot analysis showed that mRNA of the TES101 protein was found in testis but not in any other mouse tissues examined. Western blot analysis revealed that TES101 reacted with a 38-kDa band on SDS-PAGE under nonreducing conditions, and this reactivity was abrogated under reducing conditions. Immunoelectron microscopic studies demonstrated that the molecule was predominantly located on the plasma membrane of spermatocytes and spermatids but not in Sertoli cells or interstitial cells, including Leydig cells. Thus, the TES101 protein is a novel molecule present primarily on the surface of developing male germ cells. TES101 protein may play a role in the processes underlying male germ cell formation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens/genetics
- Antigens/immunology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Expressed Sequence Tags
- Female
- GPI-Linked Proteins
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sertoli Cells/chemistry
- Spermatogenesis/immunology
- Testis/immunology
- Testis/metabolism
Collapse
Affiliation(s)
- A Kurita
- Department of Immunology & Parasitology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugiyama N, Obinata M, Matsui Y. Bcl-2 inhibits apoptosis of spermatogonia and growth of spermatogonial stem cells in a cell-intrinsic manner. Mol Reprod Dev 2001; 58:30-8. [PMID: 11144217 DOI: 10.1002/1098-2795(200101)58:1<30::aid-mrd5>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The growth, differentiation, and death/survival of spermatogonia are precisely regulated for the proper production of spermatozoa. We have previously shown that Bcl-2 ectopically expressed in spermatogonia caused the inhibition of normal spermatogonial apoptosis and the subsequent failure of differentiation in transgenic mice. In addition, the growth of spermatogonial stem cells seemed to be temporally arrested in the transgenic mice. In the present study, we attempted to examine whether the abnormality of spermatogonia described above was caused by Bcl-2 misexpression in the spermatogonia or by an abnormal spermatogenic environment of the transgenic mice. We transplanted testicular cells of transgenic mice to seminiferous tubules of W/Wv mice in which transplanted normal testicular cells can undergo spermatogenesis. We found that the transplanted spermatogonia of the transgenic mice reproduced a series of abnormal changes including temporal growth arrest of spermatogonial stem cells and abnormal accumulation of spermatogonia in tubules, which were also observed in the testes of the transgenic mice. The results indicated that Bcl-2 inhibited apoptosis of spermatogonia and growth of spermatogonial stem cells in a cell-intrinsic manner. We also cultured testicular cells of transgenic mice and found that the spermatogonia of the transgenic mice were better able to survive than were those of wild-type mice but that their differentiation was not affected. The result suggested that failure of differentiation of the accumulated spermatogonia in the transgenic testes is not due to the abnormality of the bcl-2 misexpressing spermatogonia, but may be caused by extrinsic problems including improper interaction of spermatogonia with supporting cells.
Collapse
Affiliation(s)
- N Sugiyama
- Department of Cell Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
22
|
Atanassova NN, Russinova AI, Kancheva LS, Valkova CA. Stage-specific nuclear antigen is expressed in rat male germ cells during early meiotic prophase. Mol Reprod Dev 2000; 56:45-50. [PMID: 10737966 DOI: 10.1002/(sici)1098-2795(200005)56:1<45::aid-mrd6>3.0.co;2-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A germ cell nuclear antigen with approximately 44-kDa molecular weight was identified by a novel monoclonal antibody designated as Mab 2F2 from the library we have accumulated against rat testicular cells. In immature 20-day-old and adult rat testis the recognized antigen was expressed in the nuclei of early meiotic cells from preleptotene to early pachytene spermatocytes exhibiting a stage-specific appearance in the cycle of the seminiferous epithelium. The immunoreactivity was clearly associated with the meiotic chromosomes. The antigen was not detected in the late pachytene spermatocytes and more advanced stages of spermatogenesis. No labeling was observed in spermatogonia and somatic Sertoli and Leydig cells. The pattern of expression of the recognized antigen during early meiotic stages of spermatogenesis but not in mitotically dividing spermatogonia could strengthen its possible role in meiotic division.
Collapse
Affiliation(s)
- N N Atanassova
- Institute of Experimental Morphology and Anthropology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
23
|
Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000. [DOI: 10.1101/gad.14.7.841] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Restricted expression of a mouse Vasa homolog gene (Mvh) expression is first detected in primordial germ cells (PGCs) after colonization of the genital ridges. Subsequently,Mvh is maintained until postmeiotic germ cells are formed. Here, we demonstrate that male mice homozygous for a targeted mutation of Mvh exhibit a reproductive deficiency. Male homozygotes produce no sperm in the testes, where premeiotic germ cells cease differentiation by the zygotene stage and undergo apoptotic death. In addition, the proliferation of PGCs that colonize homozygous male gonads is significantly hampered, and OCT-3/4 expression appears to be reduced. These results indicate that the loss ofMvh function causes a deficiency in the proliferation and differentiation of mouse male germ cells.
Collapse
|
24
|
Ling X, Tanaka H, Tsuchida J, Nishimune Y. Identification of differentiation antigens in mouse testicular germ cells recognized by monoclonal antibody TRA 55. INTERNATIONAL JOURNAL OF ANDROLOGY 2000; 23:29-35. [PMID: 10632759 DOI: 10.1046/j.1365-2605.2000.00200.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated a monoclonal antibody (mAb) TRA 55, which recognizes mouse testicular germ cells from mid-pachytene spermatocytes to the early stages of haploid spermatids during differentiation. Immunohistochemical analysis produced strong positive staining of the nuclei and faint staining in the cytoplasm of germ cells. At meiotic division, when the nuclear membrane disappeared, a specific positive signal could be observed on metaphase chromosomes. When germ cells produced haploid spermatids, antigenicity became suddenly weak and soon disappeared. TRA 55 did not react with testicular somatic cells, such as Sertoli cells or Leydig cells. Western blot analysis of the whole testis showed four positive bands with molecular weights of 43, 46, 49 and 55 kDa. Three bands of 43, 49 and 55 kDa, and a single band of 46 kDa were recovered in cytoplasmic and nuclear fractions of testicular germ cells, respectively. Chronological changes in the Western blot pattern indicated that these antigens became detectable in the testis at the age of 10 days. Furthermore, all antigens were resistant to periodate treatment, suggesting that the epitope was in an amino acid rather than a sugar moiety. These antigen molecules may play important roles in the differentiation of germ cells at the later stages of meiotic prophase and meiotic division in the mouse testis.
Collapse
Affiliation(s)
- X Ling
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita City, Japan
| | | | | | | |
Collapse
|
25
|
Kuroda T, Tanaka H, Nakamura H, Nishimune Y, Kishimoto T. Hepatoma-derived growth factor-related protein (HRP)-1 gene in spermatogenesis in mice. Biochem Biophys Res Commun 1999; 262:433-7. [PMID: 10462493 DOI: 10.1006/bbrc.1999.1115] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatoma-derived growth factor (HDGF)-related protein (HRP)-1, a member of the HDGF gene family, showed testis-specific expression in mice. HRP-1 expression in spermatogenesis was analyzed in the testis of normal and azoospermic mice by Northern blot and immunohistochemistry. HRP-1 gene message was not expressed in the ovary and its product was detected only in the nuclei of germ cells, not in somatic cells. The HRP-1 gene is expressed through pachytene spermatocyte to round spermatid. HRP-1 gene expression was not detected in the testis of cryptorchid mice or in some strains of mutant mice. These findings suggest that the testis-specific HRP-1 gene may play an important role in the phase around meiotic cell division.
Collapse
Affiliation(s)
- T Kuroda
- Department of Molecular Medicine, Osaka University Medical School, Osaka, Japan.
| | | | | | | | | |
Collapse
|
26
|
Yoshinaga K, Tanii I, Toshimori K. Molecular chaperone calmegin localization to the endoplasmic reticulum of meiotic and post-meiotic germ cells in the mouse testis. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:283-93. [PMID: 10495883 DOI: 10.1679/aohc.62.283] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calmegin is a testis-specific Ca(2+)-binding protein that is homologous to calnexin. Recently, sperm from transgenic mice lacking calmegin have been shown to be infertile. To further characterize calmegin, we analyzed the precise stage of expression and the intracellular localization of this protein in germ cells during mouse spermatogenesis by an immunoperoxidase technique using the anti-calmegin monoclonal antibody TRA369. Light microscopic immunocytochemistry showed that calmegin appeared in early pachytene spermatocytes, with the highest expression in round and elongating spermatids, and disappeared in the maturation phase of spematids at step 15. Immunoelectron microscopy showed that selective localization was found at the endoplasmic reticulum membrane and the nuclear envelope of spermatogenic cells. During the maturation phase, a dramatic reduction in calmegin occurred in the endoplasmic reticulum of the spermatids, suggesting that the major function of calmegin has been completed by the time spermatids reach step 14. In addition, although the immunoreactivity was completely absent in the calmegin-deficient mutant mouse testis, ultrastructural analysis showed that mature sperm from the knockout mice were normal. This suggests that calmegin is not required for the morphogenesis of male germ cells. Thus, our results suggest that calmegin has a major role in mouse spermatogenesis, and also indicate that this protein would be useful as a maker molecule to study the functional role of the endoplasmic reticulum in the process of spermatid differentiation.
Collapse
Affiliation(s)
- K Yoshinaga
- Department of Anatomy and Reproductive Cell Biology, Miyazaki Medical College, Japan.
| | | | | |
Collapse
|
27
|
Tsuchida J, Nishina Y, Wakabayashi N, Nozaki M, Sakai Y, Nishimune Y. Molecular cloning and characterization of meichroacidin (male meiotic metaphase chromosome-associated acidic protein). Dev Biol 1998; 197:67-76. [PMID: 9578619 DOI: 10.1006/dbio.1998.8885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a cDNA clone encoding a germ cell specific protein from an expression cDNA library prepared from the mouse testis, using testis-specific polyclonal antibodies. Sequence analysis of the cDNA revealed that the deduced amino acid sequence consisted of 284 residues, including a nominal repeat structure in the N-terminal region. Northern blot analysis revealed the presence of a transcript of 1.3 kb exclusively expressed in the testis and ovary, but at relatively low levels in the ovary. In contrast, no other tissues and organs expressed significant levels of the transcript. Expression of the mRNA in the testis was first detected on day 14 in postnatal development. Western blot analysis showed the presence of the protein with a molecular weight of approximately 40 kDa and an isoelectric point of 4.9. The protein was exclusively found in the testis and ovary, but in a far lesser amount in the ovary as was the case with the transcript. Immunohistochemical examination revealed that the protein was predominantly present in the cytoplasm in pachytene spermatocytes through to round spermatids. However, during the disappearance of the nuclear envelope at both the first and second meiotic divisions, the protein was localized around the metaphase chromosomes and spindles. Because of this, the name meichroacidin which stands for male meiotic metaphase chromosome-associated acidic protein is proposed for this antigen. The highly regulated stage-specific expression of meichroacidin and its specific association with the metaphase chromosomes and spindles suggest that the protein plays important roles in male meiosis.
Collapse
Affiliation(s)
- J Tsuchida
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, 565, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Pereira LA, Tanaka H, Nagata Y, Sawada K, Mori H, Chimelli LM, Nishimune Y. Characterization and expression of a stage specific antigen by monoclonal antibody TRA 54 in testicular germ cells. INTERNATIONAL JOURNAL OF ANDROLOGY 1998; 21:34-40. [PMID: 9639150 DOI: 10.1046/j.1365-2605.1998.00086.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the mechanism of spermatogenesis, we have isolated many monoclonal antibodies (mAb) which recognize specific steps of mouse germ cell differentiation and then have evaluated the specific expression and characterization of antigenic molecules using immunohistochemistry and Western blotting. Monoclonal antibody TRA 54 recognized specific organelles in germ cell cytoplasm from spermatocytes to spermatids; that is, a large granule was stained in mid-late pachytene, diplotene and secondary spermatocytes and in round spermatids at stage I while the acrosome of spermatids at steps 2-3 to step 12 were also positive. Thereafter, the antigens disappeared from spermatids at more advanced stages of differentiation. Western blots using TRA 54 revealed broad bands with approximate molecular weights of >200, 190 and 85 kDa in the testis. The expression of these antigens during testicular germ cell development should be of interest in relation to the biogenesis of organelles such as the chromatoid body and acrosome and will be a useful stage-specific molecular marker for the study of spermatogenesis.
Collapse
Affiliation(s)
- L A Pereira
- Department of Histology and Embryology, State University of Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Tanaka H, Ikawa M, Tsuchida J, Nozaki M, Suzuki M, Fujiwara T, Okabe M, Nishimune Y. Cloning and characterization of the human Calmegin gene encoding putative testis-specific chaperone. Gene 1997; 204:159-63. [PMID: 9434179 DOI: 10.1016/s0378-1119(97)00537-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The putative chaperone Calmegin is required for sperm fertility in mouse and the relevance of the gene to certain cases of human male infertility has been suggested. In the present paper, we have isolated and characterized the human homolog cDNA of the mouse germ cell-specific Calmegin. The entire coding region of the human cDNA showed 80% identity with the previously reported mouse Calmegin. The predicted amino acid sequence showed strong conservation of the two sets of internal repetitive sequences (Ca2+ binding motif), and the hydrophilic COOH terminus, which corresponds to the putative endoplasmic reticulum (ER) retention motif. Our finding will support diagnosis of male infertility. Northern blotting analysis of various human tissues showed that the transcript was 3 kb in length and was expressed exclusively in the testis. Using the fluorescence in situ hybridization (FISH) technique, human Calmegin gene was mapped to chromosome 4q28.3-q31.1.
Collapse
Affiliation(s)
- H Tanaka
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, Suita City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Taketo MM, Araki Y, Matsunaga A, Yokoi A, Tsuchida J, Nishina Y, Nozaki M, Tanaka H, Koga M, Uchida K, Matsumiya K, Okuyama A, Rochelle JM, Nishimune Y, Matsui M, Seldin MF. Mapping of eight testis-specific genes to mouse chromosomes. Genomics 1997; 46:138-42. [PMID: 9403069 DOI: 10.1006/geno.1997.5014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously identified eight testis-specific genes using antibodies raised against testicular germ cells. They are expressed during spermatogenesis and are presumed to be involved in testicular germ cell differentiation and sperm formation. We have mapped the genomic loci for these testis-specific genes using restriction fragment length variants in interspecific backcross mice. The calmegin gene (Clgn) was mapped to Chr 8. The synaptonemal complex protein gene 1 (Sycp1) probe hybridized with two sequences on different chromosomes; Sycp1-rs2 was mapped to Chr 3, whereas Sycp1-rs3 was mapped to Chr 7. The relaxin-like factor gene (Rlnl) was mapped to Chr 8, and collapsin response mediator protein 1 (Crmp1) was mapped to Chr 5. Three novel genes encoding testis-specific proteins A2 (Tsga2), A8 (Tsga8), and A12 (Tsga12) were mapped to chromosomes 3, X, and 10, respectively.
Collapse
Affiliation(s)
- M M Taketo
- Laboratory of Biomedical Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M. The putative chaperone calmegin is required for sperm fertility. Nature 1997; 387:607-11. [PMID: 9177349 DOI: 10.1038/42484] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proper folding of newly synthesized membrane proteins in the endoplasmic reticulum (ER) is required for the formation of functional mature proteins. Calnexin is a ubiquitous ER chaperone that plays a major role in quality control by retaining incompletely folded or misfolded proteins. In contrast to other known chaperones such as heat-shock proteins, BiP and calreticulin, calnexin is an integral membrane protein. Calmegin is a testis-specific ER protein that is homologous to calnexin. Here we show that calmegin binds to nascent polypeptides during spermatogenesis, and have analysed its physiological function by targeted disruption of its gene. Homozygous-null male mice are nearly sterile even though spermatogenesis is morphologically normal and mating is normal. In vitro, sperm from homozygous-null males do not adhere to the egg extracellular matrix (zona pellucida), and this defect may explain the observed infertility. These results suggest that calmegin functions as a chaperone for one or more sperm surface proteins that mediate the interactions between sperm and egg. The defective zona pellucida-adhesion phenotype of sperm from calmegin-deficient mice is reminiscent of certain cases of unexplained infertility in human males.
Collapse
Affiliation(s)
- M Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Tsuchida J, Nishina Y, Akamatsu T, Nishimune Y. Characterization of development-specific, cell type-specific mouse testicular antigens using testis-specific polyclonal antibodies. INTERNATIONAL JOURNAL OF ANDROLOGY 1995; 18:208-12. [PMID: 7591194 DOI: 10.1111/j.1365-2605.1995.tb00412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antisera were raised by immunizing rabbits with mouse testicular germ cells, and absorbed in vivo by injection into castrated male whole mice to obtain a specific antiserum which reacted with mouse germ cells. The expression of mouse testis-specific antigenic macromolecules was then studied immunochemically with the antiserum. Approximately 20 antigenic macromolecules with molecular weights ranging from 26 to 110 kD were detected in the normal adult testis. At least 12 of these were differentiation-specific antigens appearing during development of germ cells, while others were expressed in testicular germ and/or somatic cells or detected only in mature spermatozoa. This technique for raising testis-specific antisera could be useful for isolation of cDNA clones encoding their antigens, as well as for investigation of the physiological roles of these molecules in germ cell differentiation at the molecular level.
Collapse
Affiliation(s)
- J Tsuchida
- Department of Science for Laboratory Animal Experimentation, Osaka University, Japan
| | | | | | | |
Collapse
|
33
|
Watanabe D, Okabe M, Hamajima N, Morita T, Nishina Y, Nishimune Y. Characterization of the testis-specific gene 'calmegin' promoter sequence and its activity defined by transgenic mouse experiments. FEBS Lett 1995; 368:509-12. [PMID: 7635209 DOI: 10.1016/0014-5793(95)00729-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have cloned the genomic DNA of calmegin [(1992) J. Biol. Chem. 269, 7744-7749] and analyzed its promoter region. It contained GC-rich sequences and potential binding sites for AP 2 and Sp 1, but lacked the TATA sequence. The 330 bp 5' flanking sequence of calmegin genomic DNA fused with the CAT gene was used for the study of promoter activity in transgenic mice. The CAT gene activity was detected exclusively in testes, indicating that the 330 bp calmegin 5' sequence was sufficient for the testis-specific expression. The existence of testicular nuclear factors specifically bound to the putative promoter sequence was also demonstrated.
Collapse
Affiliation(s)
- D Watanabe
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Koshimizu U, Nishioka H, Watanabe D, Dohmae K, Nishimune Y. Characterization of a novel spermatogenic cell antigen specific for early stages of germ cells in mouse testis. Mol Reprod Dev 1995; 40:221-7. [PMID: 7766415 DOI: 10.1002/mrd.1080400211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To study the mechanism of spermatogenesis during the premeiotic phase, a hybridoma producing monoclonal antibody (mAb) specific for early stages of spermatogenic cells was obtained. In immunohistochemical staining of adult testis, this mAb, designated as EE2, was able to react with type A to B spermatogonia and early meiotic cells, but not with Sertoli cells, Leydig cells, and other somatic tissues. Precursor cells of type A spermatogonia (gonocytes) were also positive for EE2 in perinatal mouse testis. The antigenic molecule recognized by mAb EE2 was a novel glycoprotein with molecular weight of 114 kDa, which had affinity with Con A and WGA lectins, and was susceptible to N-glycanase, suggesting the presence of asparagine-linked sugar chains. Furthermore, EE2 antigen was found to localize on the germ cell surface. The specific expression of this antigenic molecule suggests that it may play an important role in early spermatogenesis, of which only a little information is available at present.
Collapse
Affiliation(s)
- U Koshimizu
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | | | |
Collapse
|
35
|
Tanaka H, Yoshimura Y, Nishina Y, Nozaki M, Nojima H, Nishimune Y. Isolation and characterization of cDNA clones specifically expressed in testicular germ cells. FEBS Lett 1994; 355:4-10. [PMID: 7957958 DOI: 10.1016/0014-5793(94)01155-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have cloned cDNAs involved in germ cell-specific expression. For this, a subtracted cDNA library was generated by subtracting cDNAs derived from supporting cells of mutant testis from wild-type testis cDNAs. Detailed analyses of mRNA expression revealed that the genes corresponding to the cloned cDNAs were exclusively expressed in testes and were developmentally controlled.
Collapse
Affiliation(s)
- H Tanaka
- Department of Science for Laboratory Animal Experimentation, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37349-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Yoshiki A, Moriwaki K, Sakakura T, Kusakabe M. Histological studies on male sterility of hybrids between laboratory and wild mouse strains. (hybrid sterility/Hst-1 locus/spermatogenesis/chimera/Sertoli cell). Dev Growth Differ 1993. [DOI: 10.1111/j.1440-169x.1993.00271.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|