1
|
Bahari Golamkaboudi A, Vojoudi E, Babaeian Roshani K, Porouhan P, Houshangi D, Barabadi Z. Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis. Stem Cell Rev Rep 2024; 20:2104-2123. [PMID: 39145857 DOI: 10.1007/s12015-024-10768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.
Collapse
Affiliation(s)
- Ali Bahari Golamkaboudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pejman Porouhan
- Department of Radiation Oncology, Vasee Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - David Houshangi
- Department of Biomedical Engineering, University of Houston, Houston, United States
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Hosseini H, DeBenedetto C, Eleswarapu SV, Ng G, Sturm RM. De novo testicular tissue generation from non-testicular cell lines, biologic and synthetic scaffolds: Current findings and future translational applications. Front Cell Dev Biol 2022; 10:954196. [PMID: 36407104 PMCID: PMC9667054 DOI: 10.3389/fcell.2022.954196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
In recent decades, reproductive science has revolutionized the options for biological parenthood for the 20-50% of infertility cases affected by male factors. However, current solutions exclude those who are infertile due to absent testicular tissue. This includes anorchic 46, XY individuals due to trauma or congenital factors and transgender men with a 46, XX genotype. There is a clinical need for methods to restore testicular function independent of pre-existing testicular tissue. This mini-review analyzes studies that have applied non-testicular cell lines to generate germline and non-germline testicular parenchymal components. While only 46, XY cell lines have been evaluated in this context to date, the potential for future application of cell lines from 46, XX individuals is also included. Additionally, the role of varied culture methods, media supplementation, and biologic and synthetic scaffolds to further support testicular parenchyma generation are critiqued. De novo testicular tissue generation in this manner will require a focus on both cellular and environmental aspects of tissue engineering. Put together, these studies highlight the future potential for expanded clinical, reproductive, and endocrine management options for individuals who are currently excluded from aspects of biologic reproduction most consistent with their gender identity and reproductive preferences.
Collapse
Affiliation(s)
- Helia Hosseini
- Department of Bioengineering, Los Angeles, CA, United States
| | | | | | - Gladys Ng
- Department of Urology, Los Angeles, CA, United States
| | - Renea M. Sturm
- Department of Urology, Los Angeles, CA, United States,UCLA Mattel Children's Hospital, Los Angeles, CA, United States,*Correspondence: Renea M. Sturm,
| |
Collapse
|
3
|
Hénon P, Lahlil R. CD34+ Stem Cells and Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:430. [PMID: 32719657 PMCID: PMC7347755 DOI: 10.3389/fendo.2020.00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The field of cell therapy and regenerative medicine can hold the promise of restoring normal tissues structure and function. Additionally, the main targets of stem cell-based therapies are chronic diseases and lifelong disabilities without definite cures such as osteoporosis. Osteoporosis as one of the important causes of morbidity in older men and post-menopausal women is characterized by reduced bone quantity or skeletal tissue atrophy that leads to an increased risk of osteoporotic fractures. The common therapeutic methods for osteoporosis only can prevent the loss of bone mass and recover the bone partially. Nevertheless, stem cell-based therapy is considered as a new approach to regenerate the bone tissue. Herein, mesenchymal stem cells as pivotal candidates for regenerative medicine purposes especially bone regeneration are the most common type of cells with anti-inflammatory, immune-privileged potential, and less ethical concerns than other types of stem cells which are investigated in osteoporosis. Based on several findings, the mesenchymal stem cells effectiveness near to a great extent depends on their secretory function. Indeed, they can be involved in the establishment of normal bone remodeling via initiation of specific molecular signaling pathways. Accordingly, the aim herein was to review the effects of stem cell-based therapies in osteoporosis.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACER), Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Leppik L, Sielatycka K, Henrich D, Han Z, Wang H, Eischen-Loges MJ, Oliveira KMC, Bhavsar MB, Ratajczak MZ, Barker JH. Role of Adult Tissue-Derived Pluripotent Stem Cells in Bone Regeneration. Stem Cell Rev Rep 2019; 16:198-211. [PMID: 31828580 PMCID: PMC6987071 DOI: 10.1007/s12015-019-09943-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Bone marrow-derived mononuclear cells (BM-MNC) consist of a heterogeneous mix of mesenchymal stem cells (MSC), hematopoietic progenitor cells (HPC), endothelial progenitor cells (EPC), monocytes, lymphocytes and pluripotent stem cells. Whereas the importance of MSC and EPC has been well documented in bone healing and regeneration studies, the role of pluripotent stem cells is still poorly understood. In the present study we evaluated if and how Very Small Embryonic Like cells (VSEL), isolated from rat BM-MNC, contribute to bone healing. Methods Large bone defects were made in the femurs of 38 Sprague Dawley female rats and treated with β-TCP scaffold granules seeded with male VSEL; BM-MNC, VSEL-depleted BM-MNC or scaffold alone, and bone healing was evaluated at 8 weeks post-surgery. Results Bone healing was significantly increased in defects treated with VSEL and BM-MNC, compared to defects treated with VSEL-depleted BM-MNC. Donor cells were detected in new bone tissue, in all the defects treated with cells, and in fibrous tissue only in defects treated with VSEL-depleted BM-MNC. The number of CD68+ cells was the highest in the VSEL-depleted group, whereas the number of TRAP positive cells was the lowest in this group. Conclusions Based on the results, we can conclude that VSEL play a role in BM-MNC induced bone formation. In our rat femur defect model, in defects treated with VSEL-depleted BM-MNC, osteoclastogenesis and bone formation were decreased, and foreign body reaction was increased.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.
| | - K Sielatycka
- Institute of Biology, Faculty of Exact and Natural Science, University of Szczecin, Szczecin, Poland
| | - D Henrich
- Department of Trauma, Hand & Reconstructive Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Z Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - H Wang
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M J Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - K M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - J H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Smadja DM. Bone Marrow Very Small Embryonic-Like Stem Cells: New Generation of Autologous Cell Therapy Soon Ready for Prime Time? Stem Cell Rev Rep 2019; 13:198-201. [PMID: 28101702 DOI: 10.1007/s12015-017-9718-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells described in human and mouse. In this issue of Stem Cell Reviews and Reports, Shaikh and colleagues show in a valuable work that mouse bone marrow collected after 5FU treatment contains VSELs able to undergo in vitro multi-lineage differentiation into cells from all three germ layers and also in germ and hematopoietic cells. These findings are robust since no confounding factor such as feeder cell fusion with VSELs can occur here. This paper allows one to better appreciate bone marrow-VSELs differentiation potential and opens new perspectives for autologous cell therapy. Furthermore, it might help explaining lots of contradictive data from the past 20 years, in particular related to ability of bone marrow cells to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- David M Smadja
- Hematology Department, AP-HP, European Georges Pompidou Hospital, 20 rue Leblanc, 75015, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Inserm UMR-S1140, Paris, France.
| |
Collapse
|
8
|
Bhartiya D, Patel H, Sharma D. Heterogeneity of Stem Cells in the Ovary. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:213-223. [PMID: 31487026 DOI: 10.1007/978-3-030-24108-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Every organ in the body is thought to harbor two populations of stem cells, including the quiescent and the actively dividing, that leads to heterogeneity among them. It is generally believed that the ovary harbors a fixed number of follicles at birth that differentiate during fetal development from the primordial germ cells. The numbers of follicles decrease by age, leading to menopause. However, in 2004, it was suggested that ovary may harbor stem cells that are possibly involved in the formation of new follicles throughout reproductive life. Research over little more than a decade shows that ovarian stem cells include a quiescent population of very small embryonic-like stem cells (VSELs) and slightly bigger, actively dividing ovarian stem cells (OSCs). This heterogeneity among ovarian stem cells is similar to the presence of VSELs along with spermatogonial stem cells (SSCs) in the testis or hematopoietic stem cells (HSCs) in the hematopoietic system. VSELs express embryonic markers, including nuclear OCT-4, and are lodged in the ovary surface epithelium (OSE). Ovarian VSELs undergo asymmetric cell division to self-renew and give rise to OSCs that in turn undergo symmetric cell divisions and clonal expansion (germ cell nest) followed by meiosis to form an oocyte that gets assembled as a primordial follicle. Both VSELs and OSCs also express receptors for follicle-stimulating hormone (FSHR) and are directly activated by FSH to undergo neo-oogenesis and primordial follicle assembly. Whether stimulation of ovaries by FSH in Infertility Clinics activates the stem cells leading to the formation of multiple follicles needs further investigation. Epithelial cells lining the surface of ovary provide a niche to the stem cells under normal circumstances and undergo epithelial-mesenchymal transition (EMT) to form granulosa cells for primordial follicle assembly. Compromised function of the epithelial cells with age possibly leads to inability of stem cells to form follicles, leading to menopause. More than 90% of ovarian cancers arise in the OSE, possibly due to excessive self-renewal of VSELs. Altered biology of the OSE cells results in the formation of myofibroblasts by EMT and may provide a cancerous niche that supports excessive expansion of the stem cells lodged in the OSE, leading to ovarian cancer. Ovarian cancer cells express markers like OCT-4 and FSHR, which are also expressed by the VSELs lodged in the OSE, whereas the epithelial cells are distinctly negative for the same. Lot more research is required in the field to gain further understanding of ovarian stem cell biology.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Mumbai, India.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
9
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
10
|
d'Audigier C, Susen S, Blandinieres A, Mattot V, Saubamea B, Rossi E, Nevo N, Lecourt S, Guerin CL, Dizier B, Gendron N, Caetano B, Gaussem P, Soncin F, Smadja DM. Egfl7 Represses the Vasculogenic Potential of Human Endothelial Progenitor Cells. Stem Cell Rev Rep 2018; 14:82-91. [PMID: 28980146 DOI: 10.1007/s12015-017-9775-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Egfl7 (VE-statin) is a secreted protein mostly specific to the endothelial lineage during development and in the adult and which expression is enhanced during angiogenesis. Egfl7 involvement in human postnatal vasculogenesis remains unresolved yet. Our aim was to assess Egfl7 expression in several angiogenic cell types originating from human bone marrow, peripheral blood, or cord blood. We found that only endothelial colony forming cells (ECFC), which are currently considered as the genuine endothelial precursor cells, expressed large amounts of Egfl7. In order to assess its potential roles in ECFC, Egfl7 was repressed in ECFC by RNA interference and ECFC angiogenic capacities were tested in vitro and in vivo. Cell proliferation, differentiation, and migration were significantly improved when Egfl7 was repressed in ECFC in vitro, whereas miR-126-3p levels remained unchanged. In vivo, repression of Egfl7 in ECFC significantly improved post-ischemic revascularization in a model of mouse hind-limb ischemia. In conclusion, ECFC are the sole postnatal angiogenic cells which express large amounts of Egfl7 and whose angiogenic properties are repressed by this factor. Thus, Egfl7 inhibition may be considered as a therapeutic option to improve ECFC-mediated postnatal vasculogenesis and to optimize in vitro ECFC expansion in order to develop an optimized cell therapy approach.
Collapse
Affiliation(s)
- Clément d'Audigier
- Laboratoire de Biologie Médicale et de Greffe, Laboratoire d'Hémostase, Etablissement Français du Sang Bourgogne Franche Comté, Besançon, France
| | - Sophie Susen
- CHRU de Lille and INSERM UMR-S 1011, Université de Lille 2, Faculté de Médecine, EGID, Institut Pasteur de Lille, Lille, France
| | - Adeline Blandinieres
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France.,AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, INSERM UMR-S 1140, 20 rue Leblanc, 75015, Paris, France
| | - Virginie Mattot
- CNRS UMR 8161, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Bruno Saubamea
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Cellular and Molecular Imaging Facility, INSERM US25/CNRS UMS 3612/Faculté de Pharmacie de Paris, Paris, France
| | - Elisa Rossi
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France
| | - Nathalie Nevo
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France
| | - Séverine Lecourt
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France
| | - Coralie L Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Blandine Dizier
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France
| | - Nicolas Gendron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France.,AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, INSERM UMR-S 1140, 20 rue Leblanc, 75015, Paris, France
| | - Bertrand Caetano
- CNRS UMR 8161, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Pascale Gaussem
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France.,AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, INSERM UMR-S 1140, 20 rue Leblanc, 75015, Paris, France
| | - Fabrice Soncin
- CNRS UMR 8161, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - David M Smadja
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,INSERM UMR-S 1140, Faculté de Pharmacie de Paris, Paris, France. .,AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, INSERM UMR-S 1140, 20 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
11
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
12
|
Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells. Stem Cell Rev Rep 2018; 13:552-560. [PMID: 28303468 DOI: 10.1007/s12015-017-9731-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells defined as cells of small size being Lineage- negative, CD133-positive, and CD45-negative. We previously described that human bone marrow VSELs were able to differentiate into endothelial cells and promoted post-ischemic revascularization in mice with surgically induced critical limb ischemia. In the present work, we isolated bone marrow VSELs from patients with critical limb ischemia and studied their ability to support endothelial progenitor cells therapeutic capacity and revascularization potential. Sorted bone marrow VSELs cultured in angiogenic media were co-injected with endothelial progenitor cells and have been show to trigger post-ischemic revascularization in immunodeficient mice, and support vessel formation in vivo in Matrigel implants better than human bone marrow mesenchymal stem cells. In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial and perivascular lineage in humans. VSELs are the first real vasculogenic stem cells able to differentiate in endothelial and perivascular lineage in human adult described from now. Thus, because VSELs presence have been proposed in adult tissues, we think that VSELs are CD45 negative stem cells able to give rise to vascular regeneration in human tissues and vessels.
Collapse
|
13
|
Very Small Embryonic-like Stem Cells Are Mobilized in Human Peripheral Blood during Hypoxemic COPD Exacerbations and Pulmonary Hypertension. Stem Cell Rev Rep 2018; 13:561-566. [PMID: 28285391 DOI: 10.1007/s12015-017-9732-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells involved in vascular and tissue regeneration and constitute a recruitable pool of stem/progenitor cells with putative instrumental role in organ repair. Here, we hypothesized that VSELs might be mobilized from the bone marrow (BM) to peripheral blood (PB) in patients with hypoxic lung disease or pulmonary hypertension (PH). The objective of the present study was then to investigate the changes in VSELs number in peripheral blood of patients with hypoxic lung disease and PH. We enrolled 26 patients with Chronic Obstructive Pulmonary Disease (COPD) with or without hypoxemia, 13 patients with PH and 20 controls without any respiratory or cardiovascular diseases. In PH patients, VSELs levels have been determined during right heart catheterization in pulmonary blood and PB. For this purpose, mononuclear cells were separated by density gradient and VSELs have been quantified by using a multiparametric flow cytometry approach. The number of PB-VSELs in hypoxic COPD patients was significantly increased compared with non-hypoxic COPD patients or controls (p = 0.0055). In patients with PH, we did not find any difference in VSELs numbers between arterial pulmonary blood and venous PB (p = 0.93). However, we found an increase in VSELs in the peripheral blood of patients with PH (p = 0.03). In conclusion, we unraveled that circulating VSELs were increased in peripheral blood of patients with hypoxic COPD or with PH. Thus, VSELs may serve as a reservoir of pluripotent stem cells that can be recruited into PB and may play an important role in promoting lung repair.
Collapse
|
14
|
Bhartiya D. Pluripotent Stem Cells in Adult Tissues: Struggling To Be Acknowledged Over Two Decades. Stem Cell Rev Rep 2017; 13:713-724. [DOI: 10.1007/s12015-017-9756-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
16
|
Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells. ZYGOTE 2017; 25:358-375. [PMID: 28669362 DOI: 10.1017/s0967199417000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to classical knowledge of reproductive biology, in the ovary of female mammals there is a limited number of oocytes and there is no possibility of renewal if the oocytes are lost due to disease or injury. However, in recent years, the results of some studies on renewal and formation of oocytes and follicles in the adult mammalian ovary have led to the questioning of this opinion. The aim of our study is to demonstrate the presence of putative germline and pluripotent stem cells in the adult mouse ovary and their differentiation potential into germ and somatic cells. In ovary tissues and cells harvested from pre-differentiation step, the expression of pluripotent and germline stem cell markers was analysed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and western blotting. Embryoid bodies that formed in this step were analysed using immunofluorescence staining and transmission electron microscopy. Ovarian stem cells were induced to differentiate into oocyte, osteoblast, chondrocyte and neural cells. Besides morphological observation, differentiated cells were analysed by RT-PCR, histochemical and immunofluorescence staining. Expression of germline and pluripotent stem cell markers both in mRNA and at the protein level were detected in the pre-differentiated cells and ovary tissues. As a result of the differentiation process, the formation of oocyte-like cells, osteoblasts, chondrocytes and neural cells was observed and characteristics of differentiated cells were confirmed using the methods mentioned above. Our study results revealed that the adult mouse ovary contains germline and pluripotent stem cells with the capacity to differentiate into oocyte-like cells, osteoblasts, chondrocytes and neural cells.
Collapse
|
17
|
Monti M, Imberti B, Bianchi N, Pezzotta A, Morigi M, Del Fante C, Redi CA, Perotti C. A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood. Stem Cells Dev 2017; 26:1258-1269. [PMID: 28583028 DOI: 10.1089/scd.2017.0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.
Collapse
Affiliation(s)
- Manuela Monti
- 1 Research Center for Regenerative Medicine, Biotechnologies Research Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Barbara Imberti
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy .,3 Scientific Department, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Niccolò Bianchi
- 1 Research Center for Regenerative Medicine, Biotechnologies Research Laboratories, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Anna Pezzotta
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy
| | - Marina Morigi
- 2 Cell Biology and Regenerative Medicine Laboratory, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo, Italy
| | - Claudia Del Fante
- 4 Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| | - Carlo Alberto Redi
- 5 Department of Biology and Biotechnology "L. Spallanzani," University of Pavia , Pavia, Italy
| | - Cesare Perotti
- 4 Immunohaematology and Transfusion Service, Fondazione IRCCS Policlinico San Matteo , Pavia, Italy
| |
Collapse
|
18
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
19
|
Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J. Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 2016; 49:503-11. [PMID: 27374854 PMCID: PMC6496567 DOI: 10.1111/cpr.12271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Previous studies have shown that adipose mesenchymal stem cells (AMSCs) share the potency of typical bone marrow mesenchymal stem cells (MSCs); however, there is little information concerning characteristics of canine AMSCs (CAMSCs); it has not previously been made clear whether CAMSCs would be able to differentiate into other cell types. MATERIALS AND METHODS In this study, typical AMSC lines were established, and their characteristics including morphology, typical markers and differentiation potentiality were tested. RESULTS The cells exhibited typical MSC morphology and were positive for CD90, CD44 and CD166, considered to be MSCs surface markers. They were negative for CD34 and CD45. The CAMSCs also exhibited embryonic stem cell (ESC) markers, including Oct4 and Sox2, at passage 2. In an appropriate microenvironment, CAMSCs differentiated into EBs and were able to produce cells of the three germ layers. These results indicate that established cells were putative adipocyte-derived MSCs, which also displayed properties of ESCs. Moreover, when the CAMSCs were induced by bone morphogenetic protein 4 (BMP4), they differentiated into PGC-like cells (PGCLCs) and male germ-like cells, which were positive for PR domain-containing 1 (Prdm1), PR domain-containing 14 (Prdm14), doublesex and mab-3 related transcription factor (Dmrt1), as well as for promyelocytic leukaemia zinc finger (Plzf). Quantitative real-time PCR (qRT-PCR) and western blotting analysis verified higher expression levels of these markers. CONCLUSION This study provides an efficient approach to study germ cell development using CAMSCs.
Collapse
Affiliation(s)
- Yudong Wei
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jia Fang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shufang Cai
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Changrong Lv
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shiqiang Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| |
Collapse
|
20
|
Karimi M, Bahrami S, Mirshekari H, Basri SMM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. LAB ON A CHIP 2016; 16:2551-71. [PMID: 27296463 PMCID: PMC4935609 DOI: 10.1039/c6lc00489j] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. and Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran. and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Amir R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. and Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Gargett C, Deane J, Schwab K. Reply: An update on endometrial stem cells and progenitors by Deepa Bhartiya. Hum Reprod Update 2016; 22:530-1. [DOI: 10.1093/humupd/dmw011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Li G, Liu X, Du Q, Gao M, An J. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp Biol Med (Maywood) 2015; 240:1029-38. [PMID: 26283705 DOI: 10.1177/1535370215594583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Xujun Liu
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Qian Du
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Mei Gao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| |
Collapse
|
23
|
Shaikh A, Nagvenkar P, Pethe P, Hinduja I, Bhartiya D. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 2015; 29:1909-1917. [PMID: 25882698 DOI: 10.1038/leu.2015.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN(-)/CD45(-)/CD34(+)) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN(-)/CD45(+)/CD34(+)) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4-6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them.
Collapse
Affiliation(s)
- A Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - I Hinduja
- Jaslok Hospital & Research Centre, Mumbai, India
| | - D Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
24
|
Bhartiya D, Patel H. Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Res Ther 2015; 6:96. [PMID: 25976079 PMCID: PMC4432983 DOI: 10.1186/s13287-015-0084-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mouse pancreas has a remarkable ability to regenerate after partial pancreatectomy, and several investigators have studied the underlying mechanisms involved in this regeneration process; however, the field remains contentious. Elegant lineage-tracing studies undertaken over a decade have generated strong evidence against neogenesis from stem cells and in favor of reduplication of pre-existing islets. Ductal epithelium has also been implicated during regeneration. We recently provided direct evidence for the possible involvement of very small embryonic-like stem cells (VSELs) during regeneration after partial pancreatectomy in mice. VSELs were first reported in pancreas in 2008 and are mobilized in large numbers after treating mice with streptozotocin and in patients with pancreatic cancer. VSELs can be detected in mouse pancreas as small-sized LIN−/CD45−/SCA-1+ cells (3 to 5 μm), present in small numbers (0.6%), which express nuclear Oct-4 (octamer-binding transcription factor 4) and other pluripotent markers along with their immediate descendant ‘progenitors’, which are slightly bigger and co-express Oct-4 and PDX-1. VSELs and the progenitors get mobilized in large numbers after partial pancreatectomy and regenerate both pancreatic islets and acinar cells. In this review, we deliberate upon possible reasons why VSELs have eluded scientists so far. Because of their small size, VSELs are probably unknowingly and inadvertently discarded during processing. Similar to menopause and related loss of ovarian function, type 2 diabetes mellitus occurs because of a decline in beta-cell function possibly resulting from an age-related compromised niche which does not allow VSELs to maintain normal homeostasis. As suggested earlier for ovarian cancers, the presence of Oct-4 and other pluripotent markers in pancreatic cancers is suggestive of VSELs as the possible cancer-initiating stem cells. Several issues raised in the review require urgent confirmation and thus provide scope for further research before arriving at a consensus on the fundamental role played by VSELs in normal pancreas biology and during regeneration, aging, and cancer. In the future, such understanding may allow manipulation of endogenous VSELs to our advantage in patients with diabetes and also to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
25
|
Anand S, Patel H, Bhartiya D. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reprod Biol Endocrinol 2015; 13:33. [PMID: 25903688 PMCID: PMC4407302 DOI: 10.1186/s12958-015-0031-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Extensive research is ongoing to empower cancer survivors to have biological parenthood. For this, sperm are cryopreserved prior to therapy and in younger children testicular biopsies are cryopreserved with a hope to mature the germ cells into sperm later on for assisted reproduction. In addition, lot of hope was bestowed on pluripotent embryonic and induced pluripotent stem cells to differentiate into sperm and oocytes. However, obtaining functional gametes from pluripotent stem cells still remains a distant dream and major bottle-neck appears to be their inefficient differentiation into primordial germ cells (PGCs). There exists yet another population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) in adult body organs including gonads. We have earlier reported that busulphan (25 mg/Kg) treatment to 4 weeks old mice destroys actively dividing cells and sperm but VSELs survive and differentiate into sperm when a healthy niche is provided in vivo. METHODS Mouse testicular VSELs that survived busulphan treatment were cultured for 3 weeks. A mix of surviving cells in seminiferous tubules (VSELs, possibly few spermatogonial stem cells and Sertoli cells) were cultured using Sertoli cells conditioned medium containing fetal bovine serum, follicle stimulating hormone and with no additional growth factors. RESULTS Stem cells underwent proliferation and clonal expansion in culture and spontaneously differentiated into sperm whereas Sertoli cells attached and provided a somatic support. Transcripts specific for various stages of spermatogenesis were up-regulated by qRT-PCR studies on day 7 suggesting VSELs (Sca1) and SSCs (Gfra) proliferate (Pcna), undergo spermatogenesis (spermatocyte specific marker prohibitin), meiosis (Scp3) and differentiate into sperm (post-meiotic marker protamine). CONCLUSIONS Process of spermatogenesis and spermiogenesis was replicated in vitro starting with testicular cells that survived busulphan treatment. We have earlier reported similar ability of ovarian VSELs enriched in the ovary surface epithelial cells to form oocyte-like structures in vitro. This striking potential of spontaneous differentiation of primitive testicular cells including VSELs that survive chemotherapy is being described for the first time in the present study.
Collapse
Affiliation(s)
- Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| |
Collapse
|
26
|
Stem Cells in Regenerative Therapy. Bioengineering (Basel) 2015. [DOI: 10.1007/978-3-319-10798-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther 2014; 5:106. [PMID: 25182166 PMCID: PMC4355147 DOI: 10.1186/scrt494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Despite numerous research efforts, mechanisms underlying regeneration of pancreas remains controversial. Views are divided whether stem cells are involved during pancreatic regeneration or it involves duplication of pre-existing islets or ductal cells or whether pancreatic islet numbers are fixed by birth or they renew throughout life. Pluripotent embryonic stem (ES) and induced pluripotent stem (iPS) cells have been used by several groups to regenerate diabetic mouse pancreas but the beneficial effects are short-lived. It has been suggested that cells obtained after directed differentiation of ES/iPS cells resemble fetal and not their adult counterparts; thus are functionally different and may be of little use to regenerate adult pancreas. A novel population of pluripotent very small embryonic-like stem cells (VSELs) exists in several adult body tissues in both mice and humans. VSELs have been reported in the mouse pancreas, and nuclear octamer-binding transcription factor 4 (OCT-4) positive, small-sized cells have also been detected in human pancreas. VSELs are mobilized into peripheral blood in streptozotocin treated diabetic mice and also in patients with pancreatic cancer. This study aimed to evaluate whether VSELs are involved during regeneration of adult mouse pancreas after partial pancreatectomy. Methods Mice were subjected to partial pancreatectomy wherein almost 70% of pancreas was surgically removed and residual pancreas was studied on Days 1, 3 and 5 post-surgery. Results VSELs were detected in Hematoxylin and Eosin stained smears of pancreatic tissue as spherical, small sized cells with a large nucleus surrounded by a thin rim of cytoplasm and could be sorted as LIN-/CD45-/SCA-1+ cells by flow cytometry. Results reveal that although neutrophils with multi-lobed nuclei are mobilized into the pancreas on day 1 after pancreatectomy, by day 5 VSELs with spherical nuclei, high nucleo-cytoplasmic ratio and nuclear OCT-4 are mobilized into the residual pancreas. VSELs undergo differentiation and give rise to PDX-1 and OCT-4 positive progenitors which possibly regenerate both acinar cells and islets. Conclusions Results provide direct evidence supporting the presence of VSELs in adult mouse pancreas and their role during regeneration. VSELs are an interesting alternative to ES/iPS cells to regenerate a diabetic pancreas in future.
Collapse
|
28
|
Ratajczak MZ, Marycz K, Poniewierska-Baran A, Fiedorowicz K, Zbucka-Kretowska M, Moniuszko M. Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 2014; 59:273-280. [PMID: 25170822 DOI: 10.1016/j.advms.2014.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/06/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023]
Abstract
Our current understanding of stem cells suffers from a lack of precision, as the stem cell compartment is a broad continuum between early stages of development and adult postnatal tissues, and it is not fully understood how this transition occurs. The definition of stem cell pluripotency is adapted from embryology and excludes the possibility that some early-development stem cells with pluri- and/or multipotential differentiation potential may reside in postnatal tissues in a dormant state in which they are protected from uncontrolled proliferation and thus do not form teratomas or have the ability to complement blastocyst development. We will discuss the concept that a population of very small embryonic-like stem cells (VSELs) could be a link between early-development stages and adult stem cell compartments and reside in a quiescent state in adult tissues. The epigenetic mechanism identified that changes expression of certain genes involved in insulin/insulin-like growth factor signaling (IIS) in VSELs, on the one hand, keeps these cells quiescent in adult tissues and, on the other hand, provides a novel view of the stem cell compartment, IIS, tissue/organ rejuvenation, aging, and cancerogenesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Krzysztof Marycz
- University of Environmental and Life Sciences, Electron Microscopy Laboratory, Wroclaw, Poland; Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
29
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
30
|
Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:702-713. [PMID: 24299281 PMCID: PMC3967357 DOI: 10.1089/scd.2013.0472] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.
Collapse
Affiliation(s)
- Malwina Suszynska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology Pomeranian Medial University, Szczecin, Poland
| | - Ewa K. Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Maj
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | | | - Janina Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology Pomeranian Medial University, Szczecin, Poland
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology Pomeranian Medial University, Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology Pomeranian Medial University, Szczecin, Poland
| |
Collapse
|
31
|
Havens AM, Sun H, Shiozawa Y, Jung Y, Wang J, Mishra A, Jiang Y, O'Neill DW, Krebsbach PH, Rodgerson DO, Taichman RS. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev 2014; 23:689-701. [PMID: 24372153 DOI: 10.1089/scd.2013.0362] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.
Collapse
Affiliation(s)
- Aaron M Havens
- 1 Department of Periodontics and Oral Medicine, University of Michigan , School of Dentistry, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Guo X, Lui M, Chu PJ, Yoo J, Chang M, Yen Y. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PLoS One 2014; 9:e85112. [PMID: 24465489 PMCID: PMC3894949 DOI: 10.1371/journal.pone.0085112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/30/2013] [Indexed: 01/10/2023] Open
Abstract
Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs), and very-small embryonic-like stem cells (VSELs) have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB) cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5). Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6–25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.
Collapse
Affiliation(s)
- James Wang
- StemBios Technologies, Inc., Monterey Park, California, United States of America
- * E-mail: (YY); (JW)
| | - Xiaoyu Guo
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Monica Lui
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Pei-Ju Chu
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Jennifer Yoo
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Megan Chang
- StemBios Technologies, Inc., Monterey Park, California, United States of America
| | - Yun Yen
- Board Member of the Scientific Advisory Board, StemBios Technologies, Inc., Monterey Park, California, United States of America
- * E-mail: (YY); (JW)
| |
Collapse
|
33
|
Shin DM, Suszynska M, Mierzejewska K, Ratajczak J, Ratajczak MZ. Very small embryonic-like stem-cell optimization of isolation protocols: an update of molecular signatures and a review of current in vivo applications. Exp Mol Med 2013; 45:e56. [PMID: 24232255 PMCID: PMC3849570 DOI: 10.1038/emm.2013.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
As the theory of stem cell plasticity was first proposed, we have explored an alternative hypothesis for this phenomenon: namely that adult bone marrow (BM) and umbilical cord blood (UCB) contain more developmentally primitive cells than hematopoietic stem cells (HSCs). In support of this notion, using multiparameter sorting we were able to isolate small Sca1(+)Lin(-)CD45(-) cells and CD133(+)Lin(-)CD45(-) cells from murine BM and human UCB, respectively, which were further enriched for the detection of various early developmental markers such as the SSEA antigen on the surface and the Oct4 and Nanog transcription factors in the nucleus. Similar populations of cells have been found in various organs by our team and others, including the heart, brain and gonads. Owing to their primitive cellular features, such as the high nuclear/cytoplasm ratio and the presence of euchromatin, they are called very small embryonic-like stem cells (VSELs). In the appropriate in vivo models, VSELs differentiate into long-term repopulating HSCs, mesenchymal stem cells (MSCs), lung epithelial cells, cardiomyocytes and gametes. In this review, we discuss the most recent data from our laboratory and other groups regarding the optimal isolation procedures and describe the updated molecular characteristics of VSELs.
Collapse
Affiliation(s)
- Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kasia Mierzejewska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|