1
|
Choi BK, Katoch N, Park JA, Kim JW, Oh TI, Kim HJ, Woo EJ. Measurement of extracellular volume fraction using magnetic resonance-based conductivity tensor imaging. Front Physiol 2023. [DOI: 10.3389/fphys.2023.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Conductivity tensor imaging (CTI) using MRI is an advanced method that can non-invasively measure the electrical properties of living tissues. The contrast of CTI is based on underlying hypothesis about the proportionality between the mobility and diffusivity of ions and water molecules inside tissues. The experimental validation of CTI in both in vitro and in vivo settings is required as a reliable tool to assess tissue conditions. The changes in extracellular space can be indicators for disease progression, such as fibrosis, edema, and cell swelling. In this study, we conducted a phantom imaging experiment to test the feasibility of CTI for measuring the extracellular volume fraction in biological tissue. To mimic tissue conditions with different extracellular volume fractions, four chambers of giant vesicle suspension (GVS) with different vesicle densities were included in the phantom. The reconstructed CTI images of the phantom were compared with the separately-measured conductivity spectra of the four chambers using an impedance analyzer. Moreover, the values of the estimated extracellular volume fraction in each chamber were compared with those measured by a spectrophotometer. As the vesicle density increased, we found that the extracellular volume fraction, extracellular diffusion coefficient, and low-frequency conductivity decreased, while the intracellular diffusion coefficient slightly increased. On the other hand, the high-frequency conductivity could not clearly distinguish the four chambers. The extracellular volume fraction measured by the spectrophotometer and CTI method in each chamber were quite comparable, i.e., (1.00, 0.98 ± 0.01), (0.59, 0.63 ± 0.02), (0.40, 0.40 ± 0.05), and (0.16, 0.18 ± 0.02). The prominent factor influencing the low-frequency conductivity at different GVS densities was the extracellular volume fraction. Further studies are needed to validate the CTI method as a tool to measure the extracellular volume fractions in living tissues with different intracellular and extracellular compartments.
Collapse
|
2
|
Choi BK, Katoch N, Park JA, Kim JW, Oh TI, Kim HJ, Woo EJ. Measurement of extracellular volume fraction using magnetic resonance-based conductivity tensor imaging. Front Physiol 2023; 14:1132911. [PMID: 36875031 PMCID: PMC9983119 DOI: 10.3389/fphys.2023.1132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Conductivity tensor imaging (CTI) using MRI is an advanced method that can non-invasively measure the electrical properties of living tissues. The contrast of CTI is based on underlying hypothesis about the proportionality between the mobility and diffusivity of ions and water molecules inside tissues. The experimental validation of CTI in both in vitro and in vivo settings is required as a reliable tool to assess tissue conditions. The changes in extracellular space can be indicators for disease progression, such as fibrosis, edema, and cell swelling. In this study, we conducted a phantom imaging experiment to test the feasibility of CTI for measuring the extracellular volume fraction in biological tissue. To mimic tissue conditions with different extracellular volume fractions, four chambers of giant vesicle suspension (GVS) with different vesicle densities were included in the phantom. The reconstructed CTI images of the phantom were compared with the separately-measured conductivity spectra of the four chambers using an impedance analyzer. Moreover, the values of the estimated extracellular volume fraction in each chamber were compared with those measured by a spectrophotometer. As the vesicle density increased, we found that the extracellular volume fraction, extracellular diffusion coefficient, and low-frequency conductivity decreased, while the intracellular diffusion coefficient slightly increased. On the other hand, the high-frequency conductivity could not clearly distinguish the four chambers. The extracellular volume fraction measured by the spectrophotometer and CTI method in each chamber were quite comparable, i.e., (1.00, 0.98 ± 0.01), (0.59, 0.63 ± 0.02), (0.40, 0.40 ± 0.05), and (0.16, 0.18 ± 0.02). The prominent factor influencing the low-frequency conductivity at different GVS densities was the extracellular volume fraction. Further studies are needed to validate the CTI method as a tool to measure the extracellular volume fractions in living tissues with different intracellular and extracellular compartments.
Collapse
Affiliation(s)
- Bup Kyung Choi
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Nitish Katoch
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Jin Woong Kim
- Department of Radiology, Chosun University Hospital and Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Tong In Oh
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tazoe J, Lu CF, Hsieh BY, Chen CY, Kao YCJ. Altered diffusivity of the subarachnoid cisterns in the rat brain following neurological disorders. Biomed J 2022; 46:134-143. [PMID: 35066210 PMCID: PMC10104961 DOI: 10.1016/j.bj.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Although changes in diffusion characteristics of the brain parenchyma in neurological disorders are widely studied and used in clinical practice, the change in diffusivity in the cerebrospinal fluid (CSF) system is rarely reported. In this study, free water diffusion in the subarachnoid cisterns and ventricles of the rat brain was examined using diffusion magnetic resonance imaging (MRI), and the effects of neurological disorders on diffusivity in CSF system were investigated. METHODS Diffusion MRI and T2-weighted images were obtained in the intact rats, 24 h after ischemic stroke, and 50 days after mild traumatic brain injury (mTBI). We conducted the assessment of diffusivity in the rat brain in the subarachnoid cisterns around the midbrain, as well as the lateral ventricles. One-way ANOVA and Kruskal-Wallis test were used to evaluate the change in mean diffusivity (MD) and MD histogram, respectively, in CSF system following different neurological disease. RESULTS A significant decrease in the mean MD value of the subarachnoid cisterns was observed in the stroke rats compared with the intact and mTBI rats (p < 0.005). In addition, the skewness (p < 0.002), maximum MD (p < 0.002), and MD percentiles (p < 0.002) in the stroke rats differed significantly from those in the intact and mTBI rats. By contrast, no difference was observed in the mean MD value of the lateral ventricles among three groups of rats. We proposed that the assessment of the subarachnoid cisterns, rather than the lateral ventricles, in the rat brain would be useful in providing diffusion information in the CSF system. CONCLUSIONS Alterations in MD parameters of the subarachnoid cisterns after stroke provide evidence that brain injury may alter the characteristics of free water diffusion not only in the brain parenchyma but also in the CSF system.
Collapse
|
4
|
Vincent M, Gaudin M, Lucas‐Torres C, Wong A, Escartin C, Valette J. Characterizing extracellular diffusion properties using diffusion-weighted MRS of sucrose injected in mouse brain. NMR IN BIOMEDICINE 2021; 34:e4478. [PMID: 33506506 PMCID: PMC7988537 DOI: 10.1002/nbm.4478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 06/01/2023]
Abstract
Brain water and some critically important energy metabolites, such as lactate or glucose, are present in both intracellular and extracellular spaces (ICS/ECS) at significant levels. This ubiquitous nature makes diffusion MRI/MRS data sometimes difficult to interpret and model. While it is possible to glean information on the diffusion properties in ICS by measuring the diffusion of purely intracellular endogenous metabolites (such as NAA), the absence of endogenous markers specific to ECS hampers similar analyses in this compartment. In past experiments, exogenous probes have therefore been injected into the brain to assess their apparent diffusion coefficient (ADC) and thus estimate tortuosity in ECS. Here, we use a similar approach in mice by injecting sucrose, a well-known ECS marker, in either the lateral ventricles or directly in the prefrontal cortex. For the first time, we propose a thorough characterization of ECS diffusion properties encompassing (1) short-range restriction by looking at signal attenuation at high b values, (2) tortuosity and long-range restriction by measuring ADC time-dependence at long diffusion times and (3) microscopic anisotropy by performing double diffusion encoding (DDE) measurements. Overall, sucrose diffusion behavior is strikingly different from that of intracellular metabolites. Acquisitions at high b values not only reveal faster sucrose diffusion but also some sensitivity to restriction, suggesting that the diffusion in ECS is not fully Gaussian at high b. The time evolution of the ADC at long diffusion times shows that the tortuosity regime is not reached yet in the case of sucrose, while DDE experiments suggest that it is not trapped in elongated structures. No major difference in sucrose diffusion properties is reported between the two investigated routes of injection and brain regions. These original experimental insights should be useful to better interpret and model the diffusion signal of molecules that are distributed between ICS and ECS compartments.
Collapse
Affiliation(s)
- Mélissa Vincent
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Mylène Gaudin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Covadonga Lucas‐Torres
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Alan Wong
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| |
Collapse
|
5
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
6
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 2017; 157:230-246. [DOI: 10.1016/j.pneurobio.2015.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
|
8
|
Dehghani M, Kunz N, Lanz B, Yoshihara HAI, Gruetter R. Diffusion-weighted MRS of acetate in the rat brain. NMR IN BIOMEDICINE 2017; 30:e3768. [PMID: 28796319 DOI: 10.1002/nbm.3768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/04/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Acetate has been proposed as an astrocyte-specific energy substrate for metabolic studies in the brain. The determination of the relative contribution of the intracellular and extracellular compartments to the acetate signal using diffusion-weighted magnetic resonance spectroscopy can provide an insight into the cellular environment and distribution volume of acetate in the brain. In the present study, localized 1 H nuclear magnetic resonance (NMR) spectroscopy employing a diffusion-weighted stimulated echo acquisition mode (STEAM) sequence at an ultra-high magnetic field (14.1 T) was used to investigate the diffusivity characteristics of acetate and N-acetylaspartate (NAA) in the rat brain in vivo during prolonged acetate infusion. The persistence of the acetate resonance in 1 H spectra acquired at very large diffusion weighting indicated restricted diffusion of acetate and was attributed to intracellular spaces. However, the significantly greater diffusion of acetate relative to NAA suggests that a substantial fraction of acetate is located in the extracellular space of the brain. Assuming an even distribution for acetate in intracellular and extracellular spaces, the diffusion properties of acetate yielded a smaller volume of distribution for acetate relative to water and glucose in the rat brain.
Collapse
Affiliation(s)
- Masoumeh Dehghani
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Kunz
- Centre d'Imagerie BioMédicale (CIBM)-AIT, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Hikari A I Yoshihara
- Service de Cardiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre d'Imagerie BioMédicale (CIBM), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, Université de Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
9
|
Zanchi D, Viallon M, Le Goff C, Millet GP, Giardini G, Croisille P, Haller S. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes. Front Physiol 2017; 7:664. [PMID: 28105018 PMCID: PMC5214892 DOI: 10.3389/fphys.2016.00664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.
Collapse
Affiliation(s)
- Davide Zanchi
- Department of Psychiatry, University Hospital of Basel Basel, Switzerland
| | - Magalie Viallon
- CREATIS, Centre National de la Recherche Scientifique UMR 5220, INSERM U1206, Université de Lyon, INSA Lyon, Université Jean Monnet Saint-EtienneSaint Etienne, France; Radiology Department, CHU de Saint EtienneSaint Etienne, France
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège Liège, Belgium
| | - Grégoire P Millet
- Institute of Sports Sciences, University of Lausanne Lausanne, Switzerland
| | - Guido Giardini
- Department of Neurology and Stroke Unit, Mountain Medicine and Neurology Center Valle d'Aosta Regional Hospital Aosta, Italy
| | - Pierre Croisille
- CREATIS, Centre National de la Recherche Scientifique UMR 5220, INSERM U1206, Université de Lyon, INSA Lyon, Université Jean Monnet Saint-EtienneSaint Etienne, France; Radiology Department, CHU de Saint EtienneSaint Etienne, France
| | - Sven Haller
- Affidea Centre de Diagnostic Radiologique de Carouge CDRCGeneva, Switzerland; Faculty of Medicine, University of GenevaGeneva, Switzerland; Department of Surgical Sciences, Radiology, Uppsala UniversityUppsala, Sweden; Department of Neuroradiology, University Hospital FreiburgGermany
| |
Collapse
|
10
|
Ligneul C, Valette J. Probing metabolite diffusion at ultra-short time scales in the mouse brain using optimized oscillating gradients and "short"-echo-time diffusion-weighted MRS. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3671. [PMID: 27891691 PMCID: PMC5164933 DOI: 10.1002/nbm.3671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 05/29/2023]
Abstract
Measuring diffusion at ultra-short time scales may yield information about short-range intracellular structure and cytosol viscosity. However, reaching such time scales usually requires oscillating gradients, which in turn imply long echo times TE . Here we propose a new kind of stretched oscillating gradient that allows us to increase diffusion-weighting b while preserving spectral and temporal properties of the gradient modulation. We used these optimized gradients to measure metabolite diffusion in the mouse brain down to effective diffusion times of 1 ms while keeping TE relatively short (60 ms). At such TE , a significant macromolecule signal could still be observed and used as an internal reference of approximately null diffusivity, which proved critical to discard datasets corrupted by some motion artifact. The methods introduced here may be useful to improve the accuracy and precision of metabolite apparent diffusion coefficient measurements with oscillating gradients.
Collapse
Affiliation(s)
- Clémence Ligneul
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Mussel M, Inzelberg L, Nevo U. Insignificance of active flow for neural diffusion weighted imaging: A negative result. Magn Reson Med 2016; 78:746-753. [DOI: 10.1002/mrm.26375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Matan Mussel
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
| | - Lilah Inzelberg
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| | - Uri Nevo
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
12
|
Estimation of the Number of Compartments Associated With the Apparent Diffusion Coefficient in MRI: The Theoretical and Experimental Investigations. AJR Am J Roentgenol 2016; 206:455-62. [PMID: 26901002 DOI: 10.2214/ajr.15.14497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The goal of the present study was to estimate the number of compartments and the mean apparent diffusion coefficient (ADC) value with the use of the DWI signal curve. MATERIALS AND METHODS A useful new mathematic model that includes internal correlation among subcompartments with a distinct number of compartments was proposed. The DWI signal was simulated to estimate the approximate association between the number of subcompartments and the molecular density, with density corresponding to the ratio of the ADC values of the compartments, as determined using the Monte Carlo method. RESULTS Various factors, such as energy depletion, temperature, intracellular water accumulation, changes in the tortuosity of the extracellular diffusion paths, and changes in cell membrane permeability, have all been implicated as factors contributing to changes in the ADC of water (ADCw); therefore, one may consider them as pseudocompartments in the new model proposed in this study. The lower the coefficient is, the lower the contribution of the compartment to the net signal will be. The results of the simulation indicate that when the number of compartments increases, the signal will become significantly lower, because the gradient factor (i.e., the b value) will increase. In other words, the signal curve is approximately linear at all b values when the number of compartments in which the tissues have been severely damaged is low; however, when the number of compartments is high, the curve will become constant at high b values, and the perfusion parameters will prevail on the diffusion parameters at low b values. Therefore, normal tissues will be investigated when the number of compartments and the ADC values are high and the b values are low, whereas damaged tissues will be evaluated when the number of compartments and the ADC values are low and the b values are high. CONCLUSION The present study investigates damaged tissues at high b values for which the effect of eddy currents will also be compensated. These b values will probably be used in functional MRI.
Collapse
|
13
|
Han H, Shi C, Fu Y, Zuo L, Lee K, He Q, Han H. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform 2015; 18:978-83. [PMID: 24808229 DOI: 10.1109/jbhi.2014.2308279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We proposed a novel MRI tracer-based method for the determination of water diffusion in the brain extracellular space (ECS). The measuring system was validated in 32 Sprague Dawley rats. The rats were randomly divided into four groups with different injection sites: 1) caudate nucleus (Cn.); 2) thalamus (T.); 3) cortex (Cor.); and 4) substantia nigra (Sn.). The spin-lattice relaxation time of hydrogen nuclei in water molecules were shortened, which presented as high signal on MRI after the injection of gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) into the rat brain ECS. The enhancement on MRI decreased over time due to the water diffusion and clearance process within the brain ECS. The process was dynamically recorded on a series of magnetic resonance (MR) images. As the increment in signal intensity (ΔSI) could be converted to local Gd-DTPA concentration, the water diffusion parameters were further calculated voxel by voxel based on a modified diffusion model. The most tortuous ECS (λ = 1.77 ± 0.71) was found in Sn. with D∗(Sn) of (2.06 ± 1.01) × 10(-4) mm(2)·s(-1) ( P < 0.05). No statistical difference was demonstrated among D∗(Cn), D∗(T.), and D∗(Cor). with an average D∗ values of (3.28 ± 0.88) × 10(-4) mm(2)·s(-1)( F = 0.18, P > 0.05). By using the tracer-based MRI method, the local diffusion parameters of the brain ECS can be quantitatively measured. The different distribution territories and clearance rates of the tracer in four brain areas indicated that the brain ECS is a physiologically partitioned system.
Collapse
|
14
|
Hagberg GE, Mamedov I, Power A, Beyerlein M, Merkle H, Kiselev VG, Dhingra K, Kubìček V, Angelovski G, Logothetis NK. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:71-82. [PMID: 24470296 DOI: 10.1002/cmmi.1535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/22/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023]
Abstract
Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration.
Collapse
Affiliation(s)
- Gisela E Hagberg
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A macroscopic view of microstructure: Using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience 2014; 276:14-28. [DOI: 10.1016/j.neuroscience.2013.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
|
16
|
Pyatigorskaya N, Le Bihan D, Reynaud O, Ciobanu L. Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 tesla in the healthy rat brain cortex. Magn Reson Med 2013; 72:492-500. [DOI: 10.1002/mrm.24921] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/27/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Nadya Pyatigorskaya
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives; Gif-sur-Yvette France
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives; Gif-sur-Yvette France
| | - Olivier Reynaud
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives; Gif-sur-Yvette France
| | - Luisa Ciobanu
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives; Gif-sur-Yvette France
| |
Collapse
|
17
|
Jirjis MB, Kurpad SN, Schmit BD. Ex vivo diffusion tensor imaging of spinal cord injury in rats of varying degrees of severity. J Neurotrauma 2013; 30:1577-86. [PMID: 23782233 DOI: 10.1089/neu.2013.2897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague-Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm². Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r(2)=0.80). The diffusivity of water significantly decreased throughout "uninjured" portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury.
Collapse
Affiliation(s)
- Michael B Jirjis
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | |
Collapse
|
18
|
Chen NC, Huang CW, Lui CC, Lee CC, Chang WN, Huang SH, Chen C, Chang CC. Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication. Neuroradiology 2012; 55:107-15. [DOI: 10.1007/s00234-012-1102-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/03/2012] [Indexed: 12/31/2022]
|
19
|
Obenaus A, Ashwal S. Neuroimaging of stroke and ischemia in animal models. Transl Stroke Res 2011; 3:4-7. [PMID: 24323750 DOI: 10.1007/s12975-011-0139-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) has dramatically changed our ability to diagnose and treat stroke as well as follow its evolution and response to treatment. Early stroke and ischemia can be visualized using diffusion-weighted imaging that utilizes water diffusion within tissues as a reporter for evolving neuropathology that reflects cytotoxic edema, particularly during the first several days after injury. T2-weighted imaging is used for evaluation of vasogenic edema but also is a reliable indicator of the volume and regional distribution of injured tissues. Perfusion-weighted imaging can be used to assess vascular function and also to evaluate potential tissues that might be rescued using therapeutic interventions (core vs. penumbra). Other imaging modalities such as magnetic resonance spectroscopy, diffusion tensor imaging, and susceptibility-weighted imaging are also being used to assist in rapid diagnosis of injured tissues following stroke. While visual analysis of MR data can provide some information about the evolution of injury, quantitative analyses allow definitive and objective evaluations of the injury and could be used to assess novel therapeutic strategies. We review here the basic uses of neuroimaging, focusing on MR approaches to assess stroke and ischemic injury in animal models.
Collapse
Affiliation(s)
- Andre Obenaus
- Non-Invasive Imaging Laboratory, Department of Radiation Medicine, Loma Linda University, 11175 Campus St, CSPA1010, Loma Linda, CA, 92324, USA,
| | | |
Collapse
|
20
|
Bell LK, Ainsworth NL, Lee SH, Griffiths JR. MRI & MRS assessment of the role of the tumour microenvironment in response to therapy. NMR IN BIOMEDICINE 2011; 24:612-35. [PMID: 21567513 DOI: 10.1002/nbm.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
MRI and MRS techniques are being applied to the characterisation of various aspects of the tumour microenvironment and to the assessment of tumour response to therapy. For example, kinetic parameters describing tumour blood vessel flow and permeability can be derived from dynamic contrast-enhanced MRI data and have been correlated with a positive tumour response to antivascular therapies. The ongoing development and validation of noninvasive, high-resolution anatomical/molecular MR techniques will equip us with the means to detect specific tumour biomarkers early on, and then to monitor the efficacy of cancer treatments efficiently and reliably, all within a clinically relevant time frame. Reliable tumour microenvironment imaging biomarkers will provide obvious advantages by enabling tumour-specific treatment tailoring and potentially improving patient outcome. However, for routine clinical application across many disease types, such imaging biomarkers must be quantitative, robust, reproducible, sufficiently sensitive and cost-effective. These characteristics are all difficult to achieve in practice, but image biomarker development and validation have been greatly facilitated by an increasing number of pertinent preclinical in vivo cancer models. Emphasis must now be placed on discovering whether the preclinical results translate into an improvement in patient care and, therefore, overall survival.
Collapse
Affiliation(s)
- Leanne K Bell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
| | | | | | | |
Collapse
|
21
|
Ackerman JJH, Neil JJ. The use of MR-detectable reporter molecules and ions to evaluate diffusion in normal and ischemic brain. NMR IN BIOMEDICINE 2010; 23:725-33. [PMID: 20669147 PMCID: PMC3080095 DOI: 10.1002/nbm.1530] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a result of the technical challenges associated with distinguishing the MR signals arising from intracellular and extracellular water, a variety of endogenous and exogenous MR-detectable molecules and ions have been employed as compartment-specific reporters of water motion. Although these reporter molecules and ions do not have the same apparent diffusion coefficients (ADCs) as water, their ADCs are assumed to be directly related to the ADC of the water in which they are solvated. This approach has been used to probe motion in the intra- and extracellular space of cultured cells and intact tissue. Despite potential interpretative challenges with the use of reporter molecules or ions and the wide variety used, the following conclusions are consistent considering all studies: (i) the apparent free diffusive motion in the intracellular space is approximately one-half of that in dilute aqueous solution; (ii) ADCs for intracellular and extracellular water are similar; (iii) the intracellular ADC decreases in association with brain injury. These findings provide support for the hypothesis that the overall brain water ADC decrease that accompanies brain injury is driven primarily by a decrease in the ADC of intracellular water. We review the studies supporting these conclusions, and interpret them in the context of explaining the decrease in overall brain water ADC that accompanies brain injury.
Collapse
Affiliation(s)
- Joseph J H Ackerman
- Department of Chemistry, Campus Box 1134, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
22
|
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR IN BIOMEDICINE 2010; 23:698-710. [PMID: 20632416 PMCID: PMC2997680 DOI: 10.1002/nbm.1518] [Citation(s) in RCA: 922] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantification of non-Gaussianity for water diffusion in brain by means of diffusional kurtosis imaging (DKI) is reviewed. Diffusional non-Gaussianity is a consequence of tissue structure that creates diffusion barriers and compartments. The degree of non-Gaussianity is conveniently quantified by the diffusional kurtosis and derivative metrics, such as the mean, axial, and radial kurtoses. DKI is a diffusion-weighted MRI technique that allows the diffusional kurtosis to be estimated with clinical scanners using standard diffusion-weighted pulse sequences and relatively modest acquisition times. DKI is an extension of the widely used diffusion tensor imaging method, but requires the use of at least 3 b-values and 15 diffusion directions. This review discusses the underlying theory of DKI as well as practical considerations related to data acquisition and post-processing. It is argued that the diffusional kurtosis is sensitive to diffusional heterogeneity and suggested that DKI may be useful for investigating ischemic stroke and neuropathologies, such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Jens H Jensen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016-3295, USA.
| | | |
Collapse
|
23
|
Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci U S A 2010; 107:14472-7. [PMID: 20660718 DOI: 10.1073/pnas.1004841107] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diffusion-weighted MRI (DWI) is a sensitive and reliable marker of cerebral ischemia. Within minutes of an ischemic event in the brain, the microscopic motion of water molecules measured with DWI, termed the apparent diffusion coefficient (ADC), decreases within the infarcted region. However, although the change is related to cell swelling, the precise pathological mechanism remains elusive. We show that focal enlargement and constriction, or beading, in axons and dendrites are sufficient to substantially decrease ADC. We first derived a biophysical model of neurite beading, and we show that the beaded morphology allows a larger volume to be encompassed within an equivalent surface area and is, therefore, a consequence of osmotic imbalance after ischemia. The DWI experiment simulated within the model revealed that intracellular ADC decreased by 79% in beaded neurites compared with the unbeaded form. To validate the model experimentally, excised rat sciatic nerves were subjected to stretching, which induced beading but did not cause a bulk shift of water into the axon (i.e., swelling). Beading-induced changes in cell-membrane morphology were sufficient to significantly hinder water mobility and thereby decrease ADC, and the experimental measurements were in excellent agreement with the simulated values. This is a demonstration that neurite beading accurately captures the diffusion changes measured in vivo. The results significantly advance the specificity of DWI in ischemia and other acute neurological injuries and will greatly aid the development of treatment strategies to monitor and repair damaged brain in both clinical and experimental settings.
Collapse
|
24
|
Cooke JM, Kalmykov YP, Coffey WT, Kerskens CM. Langevin equation approach to diffusion magnetic resonance imaging. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061102. [PMID: 20365113 DOI: 10.1103/physreve.80.061102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Indexed: 05/29/2023]
Abstract
The normal phase diffusion problem in magnetic resonance imaging (MRI) is treated by means of the Langevin equation for the phase variable using only the properties of the characteristic function of Gaussian random variables. The calculation may be simply extended to anomalous diffusion using a fractional generalization of the Langevin equation proposed by Lutz [E. Lutz, Phys. Rev. E 64, 051106 (2001)] pertaining to the fractional Brownian motion of a free particle coupled to a fractal heat bath. The results compare favorably with diffusion-weighted experiments acquired in human neuronal tissue using a 3 T MRI scanner.
Collapse
Affiliation(s)
- Jennie M Cooke
- Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
25
|
Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J Cereb Blood Flow Metab 2009; 29:1836-45. [PMID: 19654586 DOI: 10.1038/jcbfm.2009.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial spin labelling (ASL) can noninvasively isolate the MR signal from arterial blood water that has flowed into the brain. In gray matter, the labelled bolus is dispersed within three main compartments during image acquisition: the intravascular compartment; intracellular tissue space; and the extracellular tissue space. Changes in the relative volumes of the extracellular and intracellular tissue space are thought to occur in many pathologic conditions such as stroke and brain tumors. Accurate measurement of the distribution of the ASL signal within these three compartments will yield better understanding of the time course of blood delivery and exchange, and may have particular application in animal models of disease to investigate the relationship between the source of the ASL signal and pathology. In this study, we sample the transverse relaxation of the ASL perfusion weighted and control images acquired with and without vascular crusher gradients at a range of postlabelling delays and tagging durations, to estimate the tricompartmental distribution of labelled water in the rat cortex. Our results provide evidence for rapid exchange of labelled blood water into the intracellular space relative to the transit time through the vascular bed, and provide a more solid foundation for cerebral blood flow quantification using ASL techniques.
Collapse
|
26
|
Pike MM, Stoops CN, Langford CP, Akella NS, Nabors LB, Gillespie GY. High-resolution longitudinal assessment of flow and permeability in mouse glioma vasculature: Sequential small molecule and SPIO dynamic contrast agent MRI. Magn Reson Med 2009; 61:615-25. [PMID: 19235262 DOI: 10.1002/mrm.21931] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The poor prognosis associated with malignant glioma is largely attributable to its invasiveness and robust angiogenesis. Angiogenesis involves host-tumor interaction and requires in vivo evaluation. Despite their versatility, few studies have used mouse glioma models with perfusion MRI approaches, and generally lack longitudinal study design. Using a micro-MRI system (8.5 Tesla), a novel dual bolus-tracking perfusion MRI strategy was implemented. Using the small molecule contrast agent Magnevist, dynamic contrast enhanced MRI was implemented in the intracranial 4C8 mouse glioma model to determine K(trans) and v(e), indices of tumor vascular permeability and cellularity, respectively. Dynamic susceptibility contrast MRI was subsequently implemented to assess both cerebral blood flow and volume, using the macromolecular superparamagnetic iron oxide, Feridex, which circumvented tumor bolus susceptibility curve distortions from first-pass extravasation. The high-resolution parametric maps obtained over 4 weeks, indicated a progression of tumor vascularization, permeability, and decreased cellularity with tumor growth. In conclusion, a comprehensive array of key parameters were reliably quantified in a longitudinal mouse glioma study. The syngeneic 4C8 intracerebral mouse tumor model has excellent characteristics for studies of glioma angiogenesis. This approach provides a useful platform for noninvasive and highly diagnostic longitudinal investigations of anti-angiogenesis strategies in a relevant orthotopic animal model.
Collapse
Affiliation(s)
- M M Pike
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
28
|
Kimelberg HK. Volume activated anion channel and astrocytic cellular edema in traumatic brain injury and stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 559:157-67. [PMID: 18727237 DOI: 10.1007/0-387-23752-6_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Harold K Kimelberg
- Neural and Vascular Biology Theme, Ordway Research Institute, 150 New Scotland Avenue., Albany, NY 12208, USA.
| |
Collapse
|
29
|
Schmithorst VJ, Holland SK, Dardzinski BJ. Developmental differences in white matter architecture between boys and girls. Hum Brain Mapp 2008; 29:696-710. [PMID: 17598163 PMCID: PMC2396458 DOI: 10.1002/hbm.20431] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have found developmental differences between males and females in brain structure. During childhood and adolescence, relative white matter volume increases faster in boys than in girls. Sex differences in the development of white matter microstructure were investigated in a cohort of normal children ages 5-18 in a cross-sectional diffusion tensor imaging (DTI) study. Greater fractional anisotropy (FA) in boys was shown in associative white matter regions (including the frontal lobes), while greater FA in girls was shown in the splenium of the corpus callosum. Greater mean diffusivity (MD) in boys was shown in the corticospinal tract and in frontal white matter in the right hemisphere; greater MD in girls was shown in occipito-parietal regions and the most superior aspect of the corticospinal tract in the right hemisphere. Significant sex-age interactions on FA and MD were also shown. Girls displayed a greater rate of fiber density increase with age when compared with boys in associative regions (reflected in MD values). However, girls displayed a trend toward increased organization with age (reflected in FA values) only in the right hemisphere, while boys displayed this trend only in the left hemisphere. These results indicate differing developmental trajectories in white matter for boys and girls and the importance of taking sex into account in developmental DTI studies. The results also may have implications for the study of the relationship of brain architecture with intelligence.
Collapse
Affiliation(s)
- Vincent J Schmithorst
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
30
|
Trouard TP, Harkins KD, Divijak JL, Gillies RJ, Galons JP. Ischemia-induced changes of intracellular water diffusion in rat glioma cell cultures. Magn Reson Med 2008; 60:258-64. [PMID: 18666112 PMCID: PMC10029360 DOI: 10.1002/mrm.21616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diffusion-weighted MRI is commonly used in the diagnosis and evaluation of ischemic stroke because of the rapid decrease observed in the apparent diffusion coefficient (ADC) of tissue water following ischemia. Although this observation has been clinically useful for many years, the biophysical mechanisms underlying the reduction of tissue ADC are still unknown. To help elucidate these mechanisms, we have employed a novel three-dimensional (3D) hollow-fiber bioreactor (HFBR) perfused cell culture system that enables cells to be grown to high density and studied via MRI and MRS. By infusing contrast media into the HFBR, signals from intracellular water and extracellular water are spectroscopically resolved and can be investigated individually. Diffusion measurements carried out on C6 glioma HFBR cell cultures indicate that ischemia-induced cellular swelling results in an increase in the ADC of intracellular water from 0.35 microm(2)/ms to approximately 0.5 microm(2)/ms (diffusion time = 25 ms).
Collapse
Affiliation(s)
- Theodore P Trouard
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona 85721-0240, USA.
| | | | | | | | | |
Collapse
|
31
|
Komoroski RA, Pearce JM. Estimating intracellular lithium in brain in vivo by localized7Li magnetic resonance spectroscopy. Magn Reson Med 2008; 60:21-6. [DOI: 10.1002/mrm.21613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Babsky AM, Topper S, Zhang H, Gao Y, James JR, Hekmatyar SK, Bansal N. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn Reson Med 2008; 59:485-91. [PMID: 18306401 DOI: 10.1002/mrm.21568] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanism of water and sodium apparent diffusion coefficient (ADC) changes in rat skeletal muscle during global ischemia was examined by in vivo 1H and 23Na magnetic resonance spectroscopy (MRS). The ADCs of Na+ and water are expected to have similar characteristics because sodium is present as an aqua-cation in tissue. The shift reagent, TmDOTP5(-), was used to separate intra- and extracellular sodium (Na+i and Na+e, respectively) signals. Water, total tissue sodium (Na+t), Na+i, and Na+e ADCs were measured before and 1, 2, 3, and 4 hr after ischemia. Contrary to the general perception, Na+i and Na+e ADCs were identical before ischemia. Thus, ischemia-induced changes in Na+e ADC cannot be explained by a simple change in the size of relative intracellular or extracellular space. Na+t and Na+e ADCs decreased after 2-4 hr of ischemia, while water and Na+i ADC remained unchanged. The correlation between Na+t and Na+e ADCs was observed because of high Na+e concentration. Similarly, the correlation between water and Na+i ADCs was observed because cells occupy 80% of the tissue space in the skeletal muscle. Ischemia also caused an increase in the Na+i and an equal decrease in Na+e signal intensity due to cessation of Na+/K+-ATPase function.
Collapse
Affiliation(s)
- Andriy M Babsky
- Department of Radiology, Indiana University, Indianapolis, Indiana 46202-5181, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A caged molecule is an inert but photosensitive molecule that is transformed by photolysis into a biologically active molecule at high speed (typically 1 msec). The process is referred to as photorelease. The spatial resolution of photorelease is limited by the properties of light; submicrometer resolution is potentially achievable. Therefore, focal photorelease of caged molecules enables one to control biological processes with high spatio-temporal precision. The principles underlying caged molecules as well as practical considerations for their use are discussed in this unit.
Collapse
Affiliation(s)
- Joseph P Y Kao
- University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Goodman JA, Ackerman JJH, Neil JJ. Cs + ADC in rat brain decreases markedly at death. Magn Reson Med 2008; 59:65-72. [PMID: 18098293 DOI: 10.1002/mrm.21418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spectroscopic resolution of intracellular and extracellular compartments can be used to probe the kinetic environment of those spaces and the compartment-specific changes that occur following injury. This is important for understanding the biophysical mechanisms that underlie the remarkable diffusion-weighted MRI contrast of injured central nervous system (CNS) tissue. Cesium-133 is a physiologic analog of potassium that is actively taken up by cells and resides primarily in the intracellular space. The (133)Cs(+) signal can, thus, be exploited to probe the kinetic environment of the intracellular space. Two principal (133)Cs(+) resonances were observed at 11.74 T. These resonances arise separately from (133)Cs(+) in brain and temporalis muscle. The apparent diffusion coefficient (ADC) of Cs(+) in brain decreased from 1.0 +/- 0.2 microm(2)/ms in healthy tissue to 0.24 +/- 0.04 microm(2)/ms following global ischemia (average ADC +/- average uncertainty), while there was no significant change in the ADC of Cs(+) in temporalis muscle after injury. This finding underscores the tissue-specific nature of the decrease in ADC that accompanies brain injury. Further, as the Cs(+) ADC should reflect water ADC in the intracellular space, these results strongly support the hypothesis that the decrease in water ADC associated with CNS injury arises largely from kinetic changes taking place in the intracellular space.
Collapse
Affiliation(s)
- James A Goodman
- Department of Radiology, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
35
|
Abstract
Functional neuroimaging has emerged as an important approach to study the brain and the mind. Surprisingly, although they are based on radically different physical approaches both positron emission tomography (PET) and magnetic resonance imaging (MRI) make brain activation imaging possible through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the principle that neuronal activation and blood flow are coupled through metabolism. However, a new paradigm has emerged to look at brain activity through the observation with MRI of the molecular diffusion of water. In contrast with the former approaches diffusion MRI has the potential to reveal changes in the intrinsic water physical properties during brain activation, which could be more intimately linked to the neuronal activation mechanisms and lead to an improved spatial and temporal resolution. However, this link has yet to be fully confirmed and understood. To shed light on the possible relationship between water and brain activation, this introductory paper reviews the most recent data on the physical properties of water and on the status of water in biological tissues, and evaluates their relevance to brain diffusion MRI. The biophysical mechanisms of brain activation are then reassessed to reveal their intimacy with the physical properties of water, which may come to be regarded as the 'molecule of the mind'.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Bâtiment 145, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Goerke U, Möller HE. Transient signal changes in diffusion-weighted stimulated echoes during neuronal stimulation at 3T. J Magn Reson Imaging 2007; 25:947-56. [PMID: 17410563 DOI: 10.1002/jmri.20891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a sensitive method for detecting minute transient signal changes that can arise due to variations in the extravascular apparent self-diffusion coefficient, D, during neuronal activation. MATERIALS AND METHODS A three-pulse sequence that reads out a moderately diffusion-weighted (DW) primary echo (PRE) and a heavily DW stimulated echo (STE) was employed to investigate whether small transient signal changes in extravascular D occur in response to a visual stimulus. Contributions to signal changes caused by subtle differences in the transient variations of the apparent transverse relaxation constant, T(2), between the PRE and STE were also quantified. RESULTS On z-maps obtained from the STE, more voxels showed significant stimulus-related signal changes compared to maps of the PRE. The average maximum signal change of the STE was larger than that of the PRE. The observed increase in the relative signal change was independent of the strength of the diffusion weighting. CONCLUSION The STE is more sensitive to neuronal activity than the PRE. The discrepancy between the two echoes does not arise from transient changes in D, but from subtle differences in stimulus-related variations of T(2) between the two echoes.
Collapse
Affiliation(s)
- Ute Goerke
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
37
|
Hutchinson EB, Stefanovic B, Koretsky AP, Silva AC. Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. Neuroimage 2006; 32:520-30. [PMID: 16713717 DOI: 10.1016/j.neuroimage.2006.03.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 03/07/2006] [Accepted: 03/16/2006] [Indexed: 11/16/2022] Open
Abstract
The spatial and temporal response of the cerebral microcirculation to mild hypercapnia was investigated via two-photon laser-scanning microscopy. Cortical vessels, traversing the top 200 microm of somatosensory cortex, were visualized in alpha-chloralose-anesthetized Sprague-Dawley rats equipped with a cranial window. Intraluminal vessel diameters, transit times of fluorescent dextrans and red blood cells (RBC) velocities in individual capillaries were measured under normocapnic (PaCO2= 32.6 +/- 2.6 mm Hg) and slightly hypercapnic (PaCO2= 45 +/- 7 mm Hg) conditions. This gentle increase in PaCO2 was sufficient to produce robust and significant increases in both arterial and venous vessel diameters, concomitant to decreases in transit times of a bolus of dye from artery to venule (14%, P < 0.05) and from artery to vein (27%, P < 0.05). On the whole, capillaries exhibited a significant increase in diameter (16 +/- 33%, P < 0.001, n = 393) and a substantial increase in RBC velocities (75 +/- 114%, P < 0.001, n = 46) with hypercapnia. However, the response of the cerebral microvasculature to modest increases in PaCO2 was spatially heterogeneous. The maximal relative dilatation (range: 5-77%; mean +/- SD: 25 +/- 34%, P < 0.001, n = 271) occurred in the smallest capillaries (1.6 microm-4.0 microm resting diameter), while medium and larger capillaries (4.4 microm-6.8 microm resting diameter) showed no significant changes in diameter (P > 0.08, n = 122). In contrast, on average, RBC velocities increased less in the smaller capillaries (39 +/- 5%, P < 0.002, n = 22) than in the medium and larger capillaries (107 +/- 142%, P < 0.003, n = 24). Thus, the changes in capillary RBC velocities were spatially distinct from the observed volumetric changes and occurred to homogenize cerebral blood flow along capillaries of all diameters.
Collapse
Affiliation(s)
- Elizabeth B Hutchinson
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room B1D114, Bethesda, MD 20892-1065, USA
| | | | | | | |
Collapse
|
38
|
Siepmann J, Siepmann F, Florence AT. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 2006; 314:101-19. [PMID: 16647231 DOI: 10.1016/j.ijpharm.2005.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/12/2005] [Indexed: 10/24/2022]
Abstract
The mass transport mechanisms involved in the controlled delivery of drugs to living brain tissue are complex and yet not fully understood. Often the drug is embedded within a polymeric or lipidic matrix, which is directly administered into the brain tissue, that is, intracranially. Different types of systems, including microparticles and disc- or rod-shaped implants are used to control the release rate and, thus, to optimize the drug concentrations at the site of action in the brain over prolonged periods of time. Most of these dosage forms are biodegradable to avoid the need for the removal of empty remnants after drug exhaustion. Various physical and chemical processes are involved in the control of drug release from these systems, including water penetration, drug dissolution, degradation of the matrix and drug diffusion. Once the drug has been released from the delivery system, it has to be transported through the living brain tissue to the target site(s). Again, a variety of phenomena, including diffusion, drug metabolism and degradation, passive or active uptake into CNS tissue and convection can be of importance for the fate of the drug. An overview is given of the current knowledge of the nature of barriers to free access of drug to tumour sites within the brain and the state of the art of: (i) mathematical modeling approaches describing the physical transport processes and chemical reactions which can occur in different types of intracranially administered drug delivery systems, and of (ii) theories quantifying the mass transport phenomena occurring after drug release in the living tissue. Both, simplified as well as complex mathematical models are presented and their major advantages and shortcomings discussed. Interestingly, there is a significant lack of mechanistically realistic, comprehensive theories describing both parts in detail, namely, drug transport in the dosage form and in the living brain tissue. High quality experimental data on drug concentrations in the brain tissue are difficult to obtain, hence this is itself an issue in testing mathematical approaches. As a future perspective, the potential benefits and limitations of these mathematical theories aiming to facilitate the design of advanced intracranial drug delivery systems and to improve the efficiency of the respective pharmacotherapies are discussed.
Collapse
Affiliation(s)
- J Siepmann
- College of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| | | | | |
Collapse
|
39
|
Ronen I, Moeller S, Ugurbil K, Kim DS. Investigation of multicomponent diffusion in cat brain using a combined MTC–DWI approach. Magn Reson Imaging 2006; 24:425-31. [PMID: 16677949 DOI: 10.1016/j.mri.2005.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/02/2005] [Indexed: 10/24/2022]
Abstract
In this study, multiple-component water diffusion in the cat brain is investigated using an approach that combines diffusion-weighted images using multiple b values with magnetization transfer contrast (MTC). The MTC allows filter of signal originating from water molecules that rapidly exchange with binding sites on large macromolecular structures, and in brain white matter, it is assumed that a significant portion of the MTC is due to the interaction of water with the extraaxonal myelin sheath. Henceforth, multicomponent analysis of diffusion curves with and without MTC may shed light on the contribution of the extraaxonal water to the diffusion signal and on the relationship between diffusion components and tissue compartments in the brain. When a biexponential model was applied to the data, the volume fractions of the two diffusion components changed significantly in white matter with the application of the MTC. These changes are then discussed in the frame of tissue components and the possible interaction with the myelin sheath.
Collapse
Affiliation(s)
- Itamar Ronen
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
40
|
Babsky AM, Hekmatyar SK, Zhang H, Solomon JL, Bansal N. Predicting and monitoring response to chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and23Na MRI. J Magn Reson Imaging 2006; 24:132-9. [PMID: 16758478 DOI: 10.1002/jmri.20615] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To examine the effects of the alkylating anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on (23)Na MRI and the water apparent diffusion coefficient (ADC) in subcutaneously- (sc-) implanted 9L glioma in rats. MATERIALS AND METHODS (23)Na MRI and (1)H water ADC measurements were performed on sham-treated control (N = 6) and BCNU-treated (N = 15) Fisher rats one day before BCNU injection and then one, three, and five days after BCNU injection. RESULTS The BCNU-treated tumors were divided into BCNU-responsive (R(BCNU)) and BCNU-nonresponsive (NR(BCNU)) groups depending on the tumor volume changes that occurred after therapy. The pretreatment (23)Na MRI signal intensity (SI) and water ADC values were higher in R(BCNU) tumors compared to NR(BCNU) tumors. (23)Na MRI SI and water ADC increased with tumor growth in control and NR(BCNU) groups, but these changes were interrupted by BCNU therapy in R(BCNU) group. CONCLUSION (23)Na MRI and water ADC measurements may be useful for predicting and monitoring response to chemotherapy in some tumors. However, the changes that occurred in (23)Na MRI SI and water ADC in sc-implanted 9L tumors are in contrast to previously published results for BCNU therapy of orthotopic 9L tumors. This may have important implications for monitoring therapy response in tumors.
Collapse
Affiliation(s)
- Andriy M Babsky
- Indiana Center for Excellence in Biomedical Imaging, Department of Radiology, Indiana University, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
41
|
Goodman JA, Kroenke CD, Bretthorst GL, Ackerman JJH, Neil JJ. Sodium ion apparent diffusion coefficient in living rat brain. Magn Reson Med 2005; 53:1040-5. [PMID: 15844159 DOI: 10.1002/mrm.20444] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The apparent diffusion coefficient (ADC) of Na(+) was determined in live rat brain. The brain extracellular-to-intracellular Na(+) content ratio is approximately 8:2, which is the inverse of that for water in these spaces. Consequently, the ADC of Na(+) is primarily affected by motion in the extracellular space, and Na(+) can be viewed as a reporter molecule for motion in that space. Likewise, water ADC is dominated by intracellular motion. The brain Na(+) ADC was 1.15 +/- 0.09 microm(2)/ms, which is 61% of the aqueous Na(+) free diffusion coefficient (D(free)) at 37 degrees C (1.9 microm(2)/ms), while the ADC for brain water is 28% of the water D(free) at 37 degrees C (3 microm(2)/ms). This suggests that the ADC of molecular species within the extracellular space is roughly twofold that within the intracellular space. In postmortem brain, both Na(+) and water decrease to 17% of the respective D(free) values. These results are consistent with Na(+) and water ADC values sharing the same biophysical determinants in postmortem brain. The observed difference between Na(+) and water ADC/D(free) ratios in living brain tissue may be attributable to the extracellular environment hindering molecular displacements twofold less than the intracellular environment.
Collapse
Affiliation(s)
- James A Goodman
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Diffusion of molecules in brain and other tissues is important in a wide range of biological processes and measurements ranging from the delivery of drugs to diffusion-weighted magnetic resonance imaging. Diffusion tensor imaging is a powerful noninvasive method to characterize neuronal tissue in the human brain in vivo. As a first step toward understanding the relationship between the measured macroscopic apparent diffusion tensor and underlying microscopic compartmental geometry and physical properties, we treat a white matter fascicle as an array of identical thick-walled cylindrical tubes arranged periodically in a regular lattice and immersed in an outer medium. Both square and hexagonal arrays are considered. The diffusing molecules may have different diffusion coefficients and concentrations (or densities) in different domains, namely within the tubes' inner core, membrane, myelin sheath, and within the outer medium. Analytical results are used to explore the effects of a large range of microstructural and compositional parameters on the apparent diffusion tensor and the degree of diffusion anisotropy, allowing the characterization of diffusion in normal physiological conditions as well as changes occurring in development, disease, and aging. Implications for diffusion tensor imaging and for the possible in situ estimation of microstructural parameters from diffusion-weighted MR data are discussed in the context of this modeling framework.
Collapse
Affiliation(s)
- Pabitra N Sen
- Schlumberger-Doll Research, Ridgefield, CT 06877, USA.
| | | |
Collapse
|
43
|
Savtchenko LP, Rusakov DA. Extracellular diffusivity determines contribution of high-versus low-affinity receptors to neural signaling. Neuroimage 2005; 25:101-11. [PMID: 15734347 DOI: 10.1016/j.neuroimage.2004.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 10/10/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging detects physiological changes in the human brain by highlighting alterations in local diffusivity. However, the causal link between brain tissue diffusivity and neural activity is poorly understood. Synaptic physiology studies in vitro coupled with biophysical modeling have suggested that extracellular diffusion affects the spatial profile of receptor activation during synaptic discharges. Here, we attempt to address this issue more directly, by recording synaptic currents from individual cells in acute brain slices while reducing the bath medium diffusivity by 25-30% (measured with two-photon microscopy) using inert dextran molecules. We find that retarding extracellular diffusion increases the activation of high-affinity NMDA, but not low-affinity AMPA, receptors in response to remote, spontaneous or evoked, synaptic releases of the common excitatory neurotransmitter glutamate. The results suggest that variations in extracellular diffusivity could reflect an altered contribution of higher- versus lower-affinity receptor types to the network activity of synaptic circuits.
Collapse
Affiliation(s)
- Leonid P Savtchenko
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
44
|
Strong AJ, Dardis R. Depolarisation phenomena in traumatic and ischaemic brain injury. Adv Tech Stand Neurosurg 2005; 30:3-49. [PMID: 16350451 DOI: 10.1007/3-211-27208-9_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
1. Cortical spreading depression is a non-physiological global depolarisation of neurones and astrocytes that can be initiated with varying degrees of difficulty in the normally perfused cerebral cortex in the experimental laboratory. Induction is typically with electrical stimulation, needling of the cerebral cortex, or superfusion of isotonic or more concentrated potassium chloride solution. The phenomenon propagates across the cerebral cortex at a rate of 2-5 mm per minute, and is accompanied by marked but transient increases in cerebral blood flow, in local tissue oxygen tension, and most probably in metabolic rate. 2. Peri-infarct depolarisation is also a depolarisation event affecting neurones and glia, with an electrophysiological basis similar or identical to CSD, but occurring spontaneously in the ischaemic penumbra or boundary zone in focal cerebral cortical ischaemia. Most such events arise from the edge of the ischaemic core, and propagate throughout the penumbra, at a rate similar to that of cortical spreading depression. 3. Cortical spreading depression in the normally perfused cortex does not result in histological damage whereas peri-infarct depolarisations augment neuronal damage in the penumbra, and are believed by many authors to constitute an important, or the principal, mechanism by which electrophysiological penumbra progressively deteriorates, ultimately undergoing terminal depolarisation and thus recruitment into an expanded core lesion. 4. There is some experimental evidence to suggest that under some circumstances induction of episodes of cortical spreading depression can confer protection against subsequent ischaemic insults. 5. Although cortical spreading depression and peri-infarct depolarisations have been extensively studied in the experimental in vivo models, there is now clear evidence that depolarisations also occur and propagate in the human brain in areas surrounding a focus of traumatic contusion. 6. Whether such events in the injured human brain represent cortical spreading depression or peri-infarct depolarisation is unclear. However, invasive and probably non-invasive monitoring methods are available which may serve to distinguish which event has occurred. 7. Much further work will be needed to examine the relationship of depolarisation events in the injured brain with outcome from cerebral ischaemia or head injury, to examine the factors which influence the frequency of depolarisation events, and to determine which depolarisation events in the human brain augment the injury and should be prevented.
Collapse
Affiliation(s)
- A J Strong
- Section of Neurosurgery, Department of Clinical Neurosciences, King's College, London, UK
| | | |
Collapse
|
45
|
Kroenke CD, Neil JJ. Use of magnetic resonance to measure molecular diffusion within the brain extracellular space. Neurochem Int 2004; 45:561-8. [PMID: 15186923 DOI: 10.1016/j.neuint.2003.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Ion-selective microelectrode measurements of molecular diffusion have provided unique information about the structural characteristics of the extracellular compartment of brain tissue. Magnetic resonance (MR) techniques can also be used to perform diffusion measurements in living tissue in situ. In MR applications, the challenge to study a particular physiological compartment lies in achieving the appropriate specificity in the experimentally-observed MR signal, and many strategies have been used to provide measurements that reflect molecular diffusion within the extracellular space. This review describes how magnetic resonance and microelectrode diffusion measurements are performed, and applications using the MR technique are summarized. Comparisons of experimental results obtained from the two techniques indicate that their use in combination may further augment what is known about extracellular space structure.
Collapse
Affiliation(s)
- Christopher D Kroenke
- Department of Radiology, Biomedical MR Laboratory, Washington University School of Medicine, Campus Box 8227, 2313 East Building, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
46
|
Biton IE, Mayk A, Assaf Y, Cohen Y. Structural changes in glutamate cell swelling followed by multiparametric q-space diffusion MR of excised rat spinal cord. Magn Reson Imaging 2004; 22:661-72. [PMID: 15172060 DOI: 10.1016/j.mri.2004.01.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 01/28/2004] [Indexed: 01/21/2023]
Abstract
Diffusion in the extracellular and intracellular spaces (ECS and ICS, respectively) was evaluated in excised spinal cords, before and after cell swelling induced by glutamate, by high b-value q-space diffusion MR of specific markers and water. The signal decays of deuterated tetramethylammonium (TMA-d(12)) chloride, an exogenous marker of the ECS, and N-acetyl aspartate (NAA), an endogenous marker of the ICS, were found to be non-mono-exponential at all diffusion times. The signal decays of these markers were found to depend on the diffusion time and the cell swelling induced by the glutamate. It was found, for example, that the mean displacements of the apparent fast and slow diffusion components of TMA-d(12) are 7.21 +/- 0.11 and 1.16 +/- 0.05 microm, respectively at a diffusion time of 496 ms. After exposure of the spinal cords to 10 mM of glutamate, these values decreased to 6.62 +/- 0.13 and 1.01 +/- 0.05 microm, respectively. The mean displacement of NAA, however, showed a less pronounced opposite trend and increased after cell swelling induced by exposure to glutamate. q-Space diffusion MR of water was found to be sensitive to exposure to glutamate, and q-space diffusion MRI showed that a more pronounced decrease in the apparent diffusion coefficient and the mean displacement of water is observed in the gray matter (GM) of the spinal cord. All these changes demonstrate that diffusion MR is indeed sensitive to structural changes caused by cell swelling induced by glutamate. Multiparametric high b-value q-space diffusion MR is useful for obtaining microstructural information in neuronal tissues.
Collapse
Affiliation(s)
- Inbal E Biton
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
47
|
Chu K, Jung KH, Kim HJ, Jeong SW, Kang DW, Roh JK. Diffusion-Weighted MRI and 99mTc-HMPAO SPECT in Delayed Relapsing Type of Carbon Monoxide Poisoning: Evidence of Delayed Cytotoxic Edema. Eur Neurol 2004; 51:98-103. [PMID: 14752216 DOI: 10.1159/000076536] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/11/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND Carbon monoxide (CO) is a common cause of poisoning, and its sequelae include a progressive (25%) and a delayed relapsing form (75%). We report the diffusion-weighted MRI (DWI) findings in the delayed relapsing form of CO poisoning and characterize the types of edema. METHODS From November 1, 2000 to June 1, 2003, 5 consecutive patients (2 men, 3 women, range of age: 54-67 years), who had the delayed relapsing type of CO poisoning, underwent DWI, conventional MRI, MR angiography and SPECT. CO poisoning was diagnosed by the presence of a typical clinical history, an abnormally increased level of serum carboxyhemoglobin and MRI findings. Apparent diffusion coefficient (ADC) values were measured in all of the abnormal lesions with visual inspection of DWI and T(2)-weighted echo-planar imaging. RESULTS DWI showed high signal intensities in bilateral periventricular white matter, in the splenium of the corpus callosum, in internal capsules, and brainstem showing moderately decreased ADC values. In the globus pallidus, the ADC values were rather increased with low signal intensities on DWI. Brain SPECT showed decreased perfusion in bilateral white matter and some parts of the cerebral cortex, which correlated well with the DWI findings. CONCLUSIONS We suggest that prominent, symmetric restricted diffusion can occur in periventricular white matter, brainstem, and corpus callosum after the delayed relapsing type of CO poisoning. Delayed cytotoxic edema can occur in this setting, which provides a new guidance for the pathogenesis of CO poisoning and the differential diagnosis of white matter diseases.
Collapse
Affiliation(s)
- Kon Chu
- Stroke and Neural Stem Cell Laboratory, Clinical Research Institute, Seoul National University Hospital, 28 Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Schwarcz A, Bogner P, Meric P, Correze JL, Berente Z, Pál J, Gallyas F, Doczi T, Gillet B, Beloeil JC. The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 2004; 51:278-85. [PMID: 14755652 DOI: 10.1002/mrm.10702] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is generally believed that the apparent diffusion coefficient (ADC) changes measured by diffusion-weighted imaging (DWI) in brain pathologies are related to alterations in the water compartments. The aim of this study was to elucidate the role of compartmentalization in DWI via biexponential analysis of the signal decay due to diffusion. DWI experiments were performed on mouse brain over an extended range of b-values (up to 10,000 mm(-2) s) under intact, global ischemic, and cold-injury conditions. DWI was additionally applied to centrifuged human erythrocyte samples with a negligible extracellular space. Biexponential signal decay was found to occur in the cortex of the intact mouse brain. During global ischemia, in addition to a drop in the ADC in both components, a shift from the volume fraction of the rapidly diffusing component to the slowly diffusing one was observed. In cold injury, the biexponential signal decay was still present despite the electron-microscopically validated disintegration of the membranes. The biexponential function was also applicable for fitting of the data obtained on erythrocyte samples. The results suggest that compartmentalization is not an essential feature of biexponential decay in diffusion experiments.
Collapse
Affiliation(s)
- Attila Schwarcz
- Department of Neurosurgery, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schwartz ED, Hackney DB. Diffusion-weighted MRI and the evaluation of spinal cord axonal integrity following injury and treatment. Exp Neurol 2003; 184:570-89. [PMID: 14769351 DOI: 10.1016/s0014-4886(03)00295-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Revised: 05/14/2003] [Accepted: 05/28/2003] [Indexed: 11/19/2022]
Abstract
Diffusion-based magnetic resonance imaging (MRI) (DWI) has been shown experimentally to detect both injury and functionally significant neuroprotection of injured spinal cord white matter that would otherwise go undetected with conventional MRI techniques. The diffusion of water in the central nervous system (CNS) is thought to be affected by both its location (intracellular or extracellular), and by diffusion barriers formed by cell membranes and myelin sheaths. There is, however, controversy concerning how to obtain, interpret, and present DWI data. Computer simulations and MR microscopy have been helpful in resolving some of these issues, as well as determining exact histologic correlates to DWI findings.
Collapse
Affiliation(s)
- Eric D Schwartz
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
50
|
Shen Q, Meng X, Fisher M, Sotak CH, Duong TQ. Pixel-by-pixel spatiotemporal progression of focal ischemia derived using quantitative perfusion and diffusion imaging. J Cereb Blood Flow Metab 2003; 23:1479-88. [PMID: 14663344 PMCID: PMC2949943 DOI: 10.1097/01.wcb.0000100064.36077.03] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pixel-by-pixel spatiotemporal progression of focal ischemia (permanent occlusion) in rats was investigated using quantitative perfusion and diffusion magnetic resonance imaging every 30 minutes for 3 hours. The normal left-hemisphere apparent diffusion coefficient (ADC) was 0.76 +/- 0.03 x 10(-3) mm(2)/s and CBF was 0.7 +/- 0.3 mL x g(-1) x min(-1) (mean +/- SD, n=5). The ADC and CBF viability thresholds yielding the lesion volumes (LV) at 3 hours that best approximated the 2,3,5-triphenyltetrazolium chloride (TTC) infarct volumes (200 +/- 30 mm(3)) at 24 hours were 0.53 +/- 0.02 x 10(-3) mm(2)/s (30% +/- 2% reduction) and 0.30 +/- 0.09 mL x g(-1) x min(-1) (57% +/- 11% reduction), respectively. Temporal evolution of the ADC- and CBF-defined LV showed a significant "perfusion-diffusion mismatch" up to 2 hours (P < 0.05, n = 11), a potential therapeutic window. Based on the viability thresholds, three pixel clusters were identified on the CBF-ADC scatterplots: (1) a "normal" cluster with normal CBF and ADC, (2) an "ischemic core" cluster with markedly reduced CBF and ADC, and (3) a "mismatch" cluster with reduced CBF but slightly reduced ADC. These clusters were color-coded and mapped onto the image and CBF-ADC spaces. Lesions grew peripheral and medial to the initial ADC abnormality. In contrast to the CBF distribution, the ADC distribution in the ischemic hemisphere was bimodal; the relatively time-invariant bimodal-ADC minima were 0.57 +/- 0.02 x 10(-3) mm(2)/s (corresponding CBF 0.35 +/- 0.04 mL x g(-1) x min(-1)), surprisingly similar to the TTC-derived thresholds. Together, these results illustrate an analysis approach to systemically track the pixel-by-pixel spatiotemporal progression of acute ischemic brain injury.
Collapse
Affiliation(s)
- Qiang Shen
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|