1
|
Zhang Y, Li M, Liu H, Fan Y, Liu HH. The application of procyanidins in diabetes and its complications: a review of preclinical studies. Front Pharmacol 2025; 16:1532246. [PMID: 39995417 PMCID: PMC11847907 DOI: 10.3389/fphar.2025.1532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus (DM) and its various complications, including diabetic nephropathy, retinopathy, neuropathy, cardiovascular disease, and ulcers, pose significant challenges to global health. This review investigates the potential of procyanidins (PCs), a natural polyphenolic compound, in preventing and managing diabetes and its complications. PCs, recognized for their strong antioxidant, anti-inflammatory, and anti-hyperglycemic properties, play a crucial role in reducing oxidative stress and enhancing endothelial function, which are essential for managing diabetic complications. This review elucidates the molecular mechanisms by which PCs improve insulin sensitivity and endothelial health, thereby providing protection against the various complications of diabetes. The comprehensive analysis underscores the promising therapeutic role of PCs in diabetes care, indicating the need for further clinical studies to confirm and leverage their potential in comprehensive diabetes management strategies.
Collapse
Affiliation(s)
- Yongchuang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengna Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Haoyuan Liu
- Rehabilitation Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan Huan Liu
- International institute for Traditional Chinese Medicine, Guanzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
3
|
Alexander M, Cho E, Gliozheni E, Salem Y, Cheung J, Ichii H. Pathology of Diabetes-Induced Immune Dysfunction. Int J Mol Sci 2024; 25:7105. [PMID: 39000211 PMCID: PMC11241249 DOI: 10.3390/ijms25137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.
Collapse
Affiliation(s)
- Michael Alexander
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eric Cho
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Eiger Gliozheni
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Yusuf Salem
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Joshua Cheung
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| | - Hirohito Ichii
- Division of Transplantation, Department of Surgery, University of California, Irvine, CA 92868, USA
| |
Collapse
|
4
|
Suliman HA, Elkhawad AO, Babiker OO, Alhaj YM, Eltom KH, Elnour AA. Does vitamin D supplementation benefit patients with type 1 diabetes mellitus who are vitamin D deficient? A study was performed at the Sudan Childhood Diabetes Center from 2019 to 2022. SAGE Open Med 2024; 12:20503121241242931. [PMID: 38711469 PMCID: PMC11072061 DOI: 10.1177/20503121241242931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 05/08/2024] Open
Abstract
Objectives Type 1 diabetes mellitus is a chronic autoimmune disease caused by insufficient production of insulin. Many studies have linked type 1 diabetes mellitus to vitamin D3 deficiency. We investigated the prevalence of vitamin D deficiency in Sudanese children and adolescents with type 1 diabetes mellitus and assessed the impact of vitamin D deficiency treatment on their glycemic control. Methods In 2019-2022, we conducted a quasi-experimental study on 115 children with type 1 diabetes mellitus (1-19 years old) at the Sudan Childhood Diabetes Center. Vitamin D supplements were given orally to deficient patients for 3 months. The concentrations of hemoglobin A1c, fasting blood glucose, insulin dosage, and vitamin D (25-hydroxyvitamin D (25(OH)D)) were measured before and after vitamin D3 administration. One-way ANOVA and paired sample t-tests were used to evaluate the effect of supplementation. Results Only 27% of type 1 diabetes mellitus children were deficient in vitamin D, whereas 31.1% were inadequate and 40.9% were sufficient. The administration of vitamin D supplements slightly improved hemoglobin A1c levels in 67.7% of the patients, but the difference was not significant (mean 10.8 ± 2.1% before, 10.1 ± 2.5% after, p0.05 = 0.199). However, there was a significant decrease in the fasting blood glucose level (mean: 174.978.5-136.759.1 ng/ml; p0.05 = 0.049). Vitamin D levels were significantly increased after treatment (mean = 49.6 ng/mL; t-test = -11.6, 95% CI 40.8-(-28.6); p0.05 = 0.000). After vitamin D3 supplementation, 25.8% of individuals changed their insulin dosage; however, there was no significant variation in insulin needs. Conclusions The prevalence of vitamin D deficiency in children and adolescents with type 1 diabetes mellitus in Sudan is relatively high; incorporating vitamin D supplements in their treatment plan may improve their glycemic control.
Collapse
Affiliation(s)
| | - Abdalla Omer Elkhawad
- Department of Pharmacology, University of Medical Science and Technology, Khartoum, Sudan
| | - Omer Osman Babiker
- Sudan Childhood Diabetes Center, Khartoum, Sudan
- Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
| | | | - Kholod Hamad Eltom
- Department of Pharmaceutical Care, Dr Abdulrahman Bakhsh Hospital, Jeddah, Saudi Arabia
| | | |
Collapse
|
5
|
Li X, Wei Y, Zhang Z, Zhang X. Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:44-63. [PMID: 39698409 PMCID: PMC11648408 DOI: 10.20517/evcna.2023.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 12/20/2024]
Abstract
Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, etc. owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity. Although the majority of CMVs inherit certain attributes from the original cells, it is still difficult to execute distinct therapeutic functions, such as organ targeting, signal regulation, and exogenous biotherapeutic supplementation. Hence, engineering CMVs by genetic engineering, chemical modification, and hybridization is a promising way to endow CMVs with specific functions and open up novel vistas for applications. In particular, there is a growing interest in genetically engineered CMVs harnessed to exhibit biotherapeutics. Herein, we outline the preparation strategies and their characteristics for purifying CMVs. Additionally, we review the advances of genetically engineered CMVs utilized to target organs, regulate signal transduction, and deliver biomacromolecules and chemical drugs. Furthermore, we also summarize the emerging therapeutic applications of genetically engineered CMVs in addressing tumors, diabetes, systemic lupus erythematosus, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohong Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
6
|
Leete P. Type 1 diabetes in the pancreas: A histological perspective. Diabet Med 2023; 40:e15228. [PMID: 37735524 DOI: 10.1111/dme.15228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIMS This review aims to introduce research in the pancreas to a broader audience. The pancreas is a heterocrine gland residing deep within our abdominal cavity. It is the home to our islets, which play a pivotal role in regulating metabolic homeostasis. Due to its structure and location, it is an impossible organ to study, in molecular detail, in living humans, and yet, understanding the pancreas is critical if we aim to characterise the immunopathology of type 1 diabetes (T1D) and one day prevent the triggering of the autoimmune attack associated with ß-cell demise. METHODS Over a 100 years ago, we began studying pancreatic histology using cadaveric samples and clever adaptations to microscopes. As histologists, some may say nothing much has changed. Nevertheless, our microscopes can now interrogate multiple proteins at molecular resolution. Images of pancreas sections are no longer constrained to a single field of view and can capture a thousands and thousands of cells. AI-image-analysis packages can analyse these massive data sets offering breakthrough findings. CONCLUSION This narrative review will provide an overview of pancreatic anatomy, and the importance of research focused on the pancreas in T1D. It will range from histological breakthroughs to briefly discussing the challenges associated with characterising the organ. I shall briefly introduce a selection of the available global biobanks and touch on the distinct pancreatic endotypes that differ immunologically and in ß-cell behaviour. Finally, I will introduce the idea of developing a collaborative tool aimed at developing a cohesive framework for characterising heterogeneity and stratifying endotypes in T1D more readily.
Collapse
Affiliation(s)
- Pia Leete
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Ashraf MT, Ahmed Rizvi SH, Kashif MAB, Shakeel Khan MK, Ahmed SH, Asghar MS. Efficacy of anti-CD3 monoclonal antibodies in delaying the progression of recent-onset type 1 diabetes mellitus: A systematic review, meta-analyses and meta-regression. Diabetes Obes Metab 2023; 25:3377-3389. [PMID: 37580969 DOI: 10.1111/dom.15237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/16/2023]
Abstract
AIM Type 1 diabetes mellitus is widely recognized as a chronic autoimmune disease characterized by the pathogenic destruction of beta cells, resulting in the loss of endogenous insulin production. Insulin administration remains the primary therapy for symptomatic treatment. Recent studies showed that disease-modifying agents, such as anti-CD3 monoclonal antibodies, have shown promising outcomes in improving the management of the disease. In late 2022, teplizumab received approval from the US Food and Drug Administration (FDA) as the first disease-modifying agent for the treatment of type 1 diabetes. This review aims to evaluate the clinical evidence regarding the efficacy of anti-CD3 monoclonal antibodies in the prevention and treatment of type 1 diabetes. METHODS A comprehensive search of PubMed, Google Scholar, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) was conducted up to December 2022 to identify relevant randomized controlled trials. Meta-analysis was performed using a random-effects model, and odds ratios with 95% confidence intervals (CIs) were calculated to quantify the effects. The Cochrane risk of bias tool was employed for quality assessment. RESULTS In total, 11 randomized controlled trials involving 1397 participants (908 participants in the intervention arm, 489 participants in the control arm) were included in this review. The mean age of participants was 15 years, and the mean follow-up time was 2.04 years. Teplizumab was the most commonly studied intervention. Compared with placebo, anti-CD3 monoclonal antibody treatment significantly increased the C-peptide concentration in the area under the curve at shorter timeframes (mean difference = 0.114, 95% CI: 0.069 to 0.159, p = .000). Furthermore, anti-CD3 monoclonal antibodies significantly reduced the patients' insulin intake across all timeframes (mean difference = -0.123, 95% CI: -0.151 to -0.094, p < .001). However, no significant effect on glycated haemoglobin concentration was observed. CONCLUSION The findings of this review suggest that anti-CD3 monoclonal antibody treatment increases endogenous insulin production and improves the lifestyle of patients by reducing insulin dosage. Future studies should consider the limitations, including sample size, heterogeneity and duration of follow-up, to validate the generalizability of these findings further.
Collapse
Affiliation(s)
- Muhammad Talal Ashraf
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | - Syed Hassan Ahmed
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
9
|
Winkelman J, Nguyen D, vanSonnenberg E, Kirk A, Lieberman S. Artificial Intelligence (AI) in pediatric endocrinology. J Pediatr Endocrinol Metab 2023; 36:903-908. [PMID: 37589444 DOI: 10.1515/jpem-2023-0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Artificial Intelligence (AI) is integrating itself throughout the medical community. AI's ability to analyze complex patterns and interpret large amounts of data will have considerable impact on all areas of medicine, including pediatric endocrinology. In this paper, we review and update the current studies of AI in pediatric endocrinology. Specific topics that are addressed include: diabetes management, bone growth, metabolism, obesity, and puberty. Becoming knowledgeable and comfortable with AI will assist pediatric endocrinologists, the goal of the paper.
Collapse
Affiliation(s)
| | - Diep Nguyen
- University of Arizona College of Medicine Phoenix, Phoenix, USA
| | - Eric vanSonnenberg
- University of Arizona College of Medicine Phoenix, Phoenix, USA
- From the Departments of Radiology, University of Arizona College of Medicine Phoenix, Phoenix, USA
- Student Affairs, University of Arizona College of Medicine Phoenix, Phoenix, USA
| | - Alison Kirk
- University of Arizona College of Medicine Phoenix, Phoenix, USA
- Student Affairs, University of Arizona College of Medicine Phoenix, Phoenix, USA
- Pediatrics, University of Arizona College of Medicine Phoenix, Phoenix, USA
| | - Steven Lieberman
- University of Arizona College of Medicine Phoenix, Phoenix, USA
- Internal Medicine (Division of Endocrinology), University of Arizona College of Medicine Phoenix, Phoenix, USA
| |
Collapse
|
10
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Widhalm C, Pulido V. Euglycemic Diabetic Keto Acidosis in a Type 1 Diabetic Patient After Glucose Like Peptide-1 Administration: A Case Presentation. J Investig Med High Impact Case Rep 2023; 11:23247096231206333. [PMID: 37843126 PMCID: PMC10580709 DOI: 10.1177/23247096231206333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Type 1 diabetes mellitus (DM) occurs when insulin-producing beta cells are destroyed. Destruction of these cells and subsequent loss of insulin signaling can cause diabetic keto acidosis (DKA). This case describes a type 1 DM patient who presented to the emergency department (ED) with nausea and vomiting after glucose like peptide-1 (GLP-1) agonist administration. The patient was noted to have elevated anion gap and elevated beta-hydroxybutyrate with euglycemic blood glucose levels. The patient was confirmed to have a functioning insulin pump and then was sent home with nausea control. The patient was not able to consume food without vomiting and therefore did not administer any postprandial insulin. These symptoms were attributed to the GLP-1 agonist. It contributed to suppression of the patient's appetite while also inhibiting gluconeogenesis, and glycogenolysis resulting in small amounts of blood glucose entering the blood stream, negating the need for a bolus of insulin. The patient was admitted and given dextrose with an insulin drip until the anion gap was returned to normal. As GLP-1 agonists become more popular, this presentation may become more common. If not easily recognized this can lead to patient endangerment and unnecessary medical costs.
Collapse
Affiliation(s)
- Cameron Widhalm
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Victor Pulido
- Marian Regional Medical Center, Santa Maria, CA, USA
| |
Collapse
|
12
|
Pancreatic Islet Cells Response to IFNγ Relies on Their Spatial Location within an Islet. Cells 2022; 12:cells12010113. [PMID: 36611907 PMCID: PMC9818682 DOI: 10.3390/cells12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.
Collapse
|
13
|
He LP, Song YX, Zhu T, Gu W, Liu CW. Progress in the Relationship between Vitamin D Deficiency and the Incidence of Type 1 Diabetes Mellitus in Children. J Diabetes Res 2022; 2022:5953562. [PMID: 36090587 PMCID: PMC9463035 DOI: 10.1155/2022/5953562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, due to a large number of islet β cells damaged, resulting in an absolute lack of insulin, ultimately relying on insulin therapy. Vitamin D is a fat-soluble sterol derivative that not only participates in calcium and phosphorus metabolism but also acts as an immunomodulatory role by binding to nuclear vitamin D receptors to regulate the expression of transcription factors. Increasing evidence has shown that vitamin D has immunoregulation and anti-inflammatory effects, and it may play a role in T cell regulatory responses due to downregulation in the expression of cathepsin G and inhibition of CD4+ T cell activation and protection of β cells from immune attack and is beneficial in decreasing oxidative stress in T1DM patients. Epidemiologic evidence demonstrates involvement of vitamin D deficiency in T1DM pathogenesis, with the immune system improperly targeting and destroying its own islet β cells. In addition, polymorphisms in genes critical for vitamin D metabolism may increase the risk of islet autoimmunity and T1DM. In this paper, the relationship between vitamin D deficiency and the molecular mechanism of T1DM was discussed.
Collapse
Affiliation(s)
- Lian-Ping He
- School of Medicine, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Yu-Xin Song
- School of Medicine, Taizhou University, Jiaojiang, 318000 Zhejiang, China
| | - Ting Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| | - Wei Gu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| | - Chang-Wei Liu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 Jiangsu, China
| |
Collapse
|
14
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
15
|
Rodriguez-Calvo T, Christoffersson G, Bender C, von Herrath MG, Mallone R, Kent SC, James EA. Means, Motive, and Opportunity: Do Non-Islet-Reactive Infiltrating T Cells Contribute to Autoimmunity in Type 1 Diabetes? Front Immunol 2021; 12:683091. [PMID: 34220832 PMCID: PMC8242234 DOI: 10.3389/fimmu.2021.683091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
In human type 1 diabetes and animal models of the disease, a diverse assortment of immune cells infiltrates the pancreatic islets. CD8+ T cells are well represented within infiltrates and HLA multimer staining of pancreas sections provides clear evidence that islet epitope reactive T cells are present within autoimmune lesions. These bona fide effectors have been a key research focus because these cells represent an intellectually attractive culprit for β cell destruction. However, T cell receptors are highly diverse in human insulitis. This suggests correspondingly broad antigen specificity, which includes a majority of T cells for which there is no evidence of islet-specific reactivity. The presence of “non-cognate” T cells in insulitis raises suspicion that their role could be beyond that of an innocent bystander. In this perspective, we consider the potential pathogenic contribution of non-islet-reactive T cells. Our intellectual framework will be that of a criminal investigation. Having arraigned islet-specific CD8+ T cells for the murder of pancreatic β cells, we then turn our attention to the non-target immune cells present in human insulitis and consider the possible regulatory, benign, or effector roles that they may play in disease. Considering available evidence, we overview the case that can be made that non-islet-reactive infiltrating T cells should be suspected as co-conspirators or accessories to the crime and suggest some possible routes forward for reaching a better understanding of their role in disease.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gustaf Christoffersson
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christine Bender
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Matthias G von Herrath
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eddie A James
- Translatonal Research Program, Benaroya Research Institute, Seattle WA, United States
| |
Collapse
|
16
|
Huang J, Peng J, Pearson JA, Efthimiou G, Hu Y, Tai N, Xing Y, Zhang L, Gu J, Jiang J, Zhao H, Zhou Z, Wong FS, Wen L. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cell Mol Immunol 2021; 18:328-338. [PMID: 33432061 PMCID: PMC8027372 DOI: 10.1038/s41423-020-00590-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/31/2020] [Indexed: 01/29/2023] Open
Abstract
Innate immunity mediated by Toll-like receptors (TLRs), which can recognize pathogen molecular patterns, plays a critical role in type 1 diabetes development. TLR7 is a pattern recognition receptor that senses single-stranded RNAs from viruses and host tissue cells; however, its role in type 1 diabetes development remains unclear. In our study, we discovered that Tlr7-deficient (Tlr7-/-) nonobese diabetic (NOD) mice, a model of human type 1 diabetes, exhibited a significantly delayed onset and reduced incidence of type 1 diabetes compared with Tlr7-sufficient (Tlr7+/+) NOD mice. Mechanistic investigations showed that Tlr7 deficiency significantly altered B-cell differentiation and immunoglobulin production. Moreover, Tlr7-/- NOD B cells were found to suppress diabetogenic CD4+ T-cell responses and protect immunodeficient NOD mice from developing diabetes induced by diabetogenic T cells. In addition, we found that Tlr7 deficiency suppressed the antigen-presenting functions of B cells and inhibited cytotoxic CD8+ T-cell activation by downregulating the expression of both nonclassical and classical MHC class I (MHC-I) molecules on B cells. Our data suggest that TLR7 contributes to type 1 diabetes development by regulating B-cell functions and subsequent interactions with T cells. Therefore, therapeutically targeting TLR7 may prove beneficial for disease protection.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Georgios Efthimiou
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Microbiology, University of Hull, Hull, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yanpeng Xing
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Gastrointestinal Surgery of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Luyao Zhang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Gastrointestinal Surgery of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianlei Gu
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Jianping Jiang
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Moin ASM, Nandakumar M, Diane A, Dehbi M, Butler AE. The Role of Heat Shock Proteins in Type 1 Diabetes. Front Immunol 2021; 11:612584. [PMID: 33584694 PMCID: PMC7873876 DOI: 10.3389/fimmu.2020.612584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease characterized by recognition of pancreatic β-cell proteins as self-antigens, called autoantigens (AAgs), followed by loss of pancreatic β-cells. (Pre-)proinsulin ([P]PI), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, and the zinc transporter ZnT8 are key molecules in T1D pathogenesis and are recognized by autoantibodies detected in routine clinical laboratory assays. However, generation of new autoantigens (neoantigens) from β-cells has also been reported, against which the autoreactive T cells show activity. Heat shock proteins (HSPs) were originally described as “cellular stress responders” for their role as chaperones that regulate the conformation and function of a large number of cellular proteins to protect the body from stress. HSPs participate in key cellular functions under both physiological and stressful conditions, including suppression of protein aggregation, assisting folding and stability of nascent and damaged proteins, translocation of proteins into cellular compartments and targeting irreversibly damaged proteins for degradation. Low HSP expression impacts many pathological conditions associated with diabetes and could play a role in diabetic complications. HSPs have beneficial effects in preventing insulin resistance and hyperglycemia in type 2 diabetes (T2D). HSPs are, however, additionally involved in antigen presentation, presenting immunogenic peptides to class I and class II major histocompatibility molecules; thus, an opportunity exists for HSPs to be employed as modulators of immunologic responses in T1D and other autoimmune disorders. In this review, we discuss the multifaceted roles of HSPs in the pathogenesis of T1D and in autoantigen-specific immune protection against T1D development.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
18
|
Nigi L, Maccora C, Dotta F, Sebastiani G. From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: New concepts on the stage. Diabetes Metab Res Rev 2020; 36:e3264. [PMID: 31850667 DOI: 10.1002/dmrr.3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The histological analysis of human pancreatic samples in type 1 diabetes (T1D) has been proven essential to move forward in the evaluation of in situ events characterizing T1D. Increasing availability of pancreatic tissues collected from diabetic multiorgan donors by centralized biorepositories, which have shared tissues among researchers in the field, has allowed a deeper understanding of T1D pathophysiology, using novel immunohistological and high-throughput methods. In this review, we provide a comprehensive update of the main recent advancements in the characterization of cellular and molecular events involving endocrine and exocrine pancreas as well as the immune system in the onset and progression of T1D. Additionally, we underline novel elements, which provide evidence that T1D pathological changes affect not only islet β-cells but also the entire pancreas.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Carla Maccora
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Infante M, Ricordi C, Sanchez J, Clare-Salzler MJ, Padilla N, Fuenmayor V, Chavez C, Alvarez A, Baidal D, Alejandro R, Caprio M, Fabbri A. Influence of Vitamin D on Islet Autoimmunity and Beta-Cell Function in Type 1 Diabetes. Nutrients 2019; 11:E2185. [PMID: 31514368 PMCID: PMC6769474 DOI: 10.3390/nu11092185] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease leading to immune-mediated destruction of pancreatic beta cells, resulting in the need for insulin therapy. The incidence of T1D is increasing worldwide, thus prompting researchers to investigate novel immunomodulatory strategies to halt autoimmunity and modify disease progression. T1D is considered as a multifactorial disease, in which genetic predisposition and environmental factors interact to promote the triggering of autoimmune responses against beta cells. Over the last decades, it has become clear that vitamin D exerts anti-inflammatory and immunomodulatory effects, apart from its well-established role in the regulation of calcium homeostasis and bone metabolism. Importantly, the global incidence of vitamin D deficiency is also dramatically increasing and epidemiologic evidence suggests an involvement of vitamin D deficiency in T1D pathogenesis. Polymorphisms in genes critical for vitamin D metabolism have also been shown to modulate the risk of T1D. Moreover, several studies have investigated the role of vitamin D (in different doses and formulations) as a potential adjuvant immunomodulatory therapy in patients with new-onset and established T1D. This review aims to present the current knowledge on the immunomodulatory effects of vitamin D and summarize the clinical interventional studies investigating its use for prevention or treatment of T1D.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Janine Sanchez
- Pediatric Endocrinology, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, Miami, FL 33136, USA.
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA.
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Carmen Chavez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00133 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
20
|
Russell MA, Redick SD, Blodgett DM, Richardson SJ, Leete P, Krogvold L, Dahl-Jørgensen K, Bottino R, Brissova M, Spaeth JM, Babon JAB, Haliyur R, Powers AC, Yang C, Kent SC, Derr AG, Kucukural A, Garber MG, Morgan NG, Harlan DM. HLA Class II Antigen Processing and Presentation Pathway Components Demonstrated by Transcriptome and Protein Analyses of Islet β-Cells From Donors With Type 1 Diabetes. Diabetes 2019; 68:988-1001. [PMID: 30833470 PMCID: PMC6477908 DOI: 10.2337/db18-0686] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes studies consistently generate data showing islet β-cell dysfunction and T cell-mediated anti-β-cell-specific autoimmunity. To explore the pathogenesis, we interrogated the β-cell transcriptomes from donors with and without type 1 diabetes using both bulk-sorted and single β-cells. Consistent with immunohistological studies, β-cells from donors with type 1 diabetes displayed increased Class I transcripts and associated mRNA species. These β-cells also expressed mRNA for Class II and Class II antigen presentation pathway components, but lacked the macrophage marker CD68. Immunohistological study of three independent cohorts of donors with recent-onset type 1 diabetes showed Class II protein and its transcriptional regulator Class II MHC trans-activator protein expressed by a subset of insulin+CD68- β-cells, specifically found in islets with lymphocytic infiltrates. β-Cell surface expression of HLA Class II was detected on a portion of CD45-insulin+ β-cells from donors with type 1 diabetes by immunofluorescence and flow cytometry. Our data demonstrate that pancreatic β-cells from donors with type 1 diabetes express Class II molecules on selected cells with other key genes in those pathways and inflammation-associated genes. β-Cell expression of Class II molecules suggests that β-cells may interact directly with islet-infiltrating CD4+ T cells and may play an immunopathogenic role.
Collapse
Affiliation(s)
- Mark A Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Sambra D Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - David M Blodgett
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
- Math and Science Division, Babson College, Wellesley, MA
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jenny Aurielle B Babon
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Alan G Derr
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Alper Kucukural
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Manuel G Garber
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - David M Harlan
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
21
|
Salo HM, Koponen J, Kiviranta H, Rantakokko P, Honkanen J, Härkönen T, Ilonen J, Virtanen SM, Tillmann V, Knip M, Vaarala O. No evidence of the role of early chemical exposure in the development of β-cell autoimmunity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1370-1378. [PMID: 30426368 PMCID: PMC6331740 DOI: 10.1007/s11356-018-3659-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/01/2018] [Indexed: 05/15/2023]
Abstract
Exposure to environmental chemicals can modulate the developing immune system, but its role in the pathogenesis of type 1 diabetes is largely unexplored. Our objective was to study the levels of circulating concentrations of environmental pollutants during the first years of life and their associations with the later risk of diabetes-predictive autoantibodies. From two birth-cohort studies including newborn infants with HLA-conferred susceptibility to type 1 diabetes (FINDIA and DIABIMMUNE), we identified case children with at least one biochemical diabetes-associated autoantibody (n = 30-40) and from one to four autoantibody-negative controls per each case child matched for age, gender, diabetes-related HLA-risk, delivery hospital, and, in FINDIA, also dietary intervention group. Plasma levels of 13 persistent organic pollutants and 14 per- and polyfluorinated substances were analyzed in cord blood and plasma samples taken at the age of 12 and 48 months. Both breastfeeding and the geographical living environment showed association with circulating concentrations of some of the chemicals. Breastfeeding-adjusted conditional logistic regression model showed association between decreased plasma HBC concentration at 12-month-old children and the appearance of diabetes-associated autoantibodies (HR, 0.989; 95% Cl, 0.978-1.000; P = 0.048). No association was found between the plasma chemical levels and the development of clinical type 1 diabetes. Our results do not support the view that exposure to the studied environmental chemicals during fetal life or early childhood is a significant risk factor for later development of β-cell autoimmunity and type 1 diabetes.
Collapse
Affiliation(s)
- Harri M Salo
- Scientific Laboratory, Clinicum, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| | - Jani Koponen
- Department of Health Security, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Jarno Honkanen
- Scientific Laboratory, Clinicum, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - Suvi M Virtanen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- School of Health Sciences, University of Tampere, Tampere, Finland
- Science Centre, Pirkanmaa Hospital District and Center for Child Health Research, Tampere University and University Hospital, Tampere, Finland
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Outi Vaarala
- Scientific Laboratory, Clinicum, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| |
Collapse
|
22
|
Segovia-Gamboa NC, Rodríguez-Arellano ME, Muñoz-Solís A, Retana-Jiménez JE, Vargas-Ayala G, Granados J, Jiménez-Sánchez M, Sanchez-Torres C. High prevalence of humoral autoimmunity in first-degree relatives of Mexican type 1 diabetes patients. Acta Diabetol 2018; 55:1275-1282. [PMID: 30306407 DOI: 10.1007/s00592-018-1241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
AIMS To assess the prevalence of autoantibodies (Aab) to insulin (IAA), glutamic acid decarboxylase 65 (GADA) and insulinoma antigen 2 (IA-2A), as well as human leukocyte antigen (HLA) class II alleles, in first degree relatives (FDR) of Mexican patients with type 1 diabetes (T1D), and to explore whether these parameters mirror the low incidence of T1D in the Mexican population. METHODS Aab titers were determined by ELISA in 425 FDR, 234 siblings, 40 offspring and 151 parents of 197 patients with T1D. Typing of HLA-DR and -DQ alleles was performed in 41 Aab-positive FDR using polymerase chain reaction with allele-specific oligotyping. RESULTS Seventy FDR (16.47%) tested positive for Aab. The siblings (19.2%) and the offspring (25%) had significantly higher prevalence of Aab than the parents (9.9%). GADA was the most frequent Aab. Almost half of the Aab-positive FDR had two different Aab (45.7%), and none tested positive for three Aab. The highest prevalence of Aab was found among women in the 15-29 years age group. Moreover, the positivity for two Aab was significantly more frequent among females. A considerable number of FDR (48.8%) carried the susceptible HLA-DR3, -DR4, -DQB1*0201 or -DQB1*0302 alleles, but almost none had the high risk genotype HLA-DR3/DR4. CONCLUSIONS FDR of Mexican T1D patients have high prevalence of islet Aab, comparable to countries with the highest incidence of T1D. However, Aab positivity does not seem to be associated with HLA risk genotypes, which may have an impact on the low incidence of T1D in Mexico.
Collapse
Affiliation(s)
- Norma C Segovia-Gamboa
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN), Av. I.P.N. 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Martha E Rodríguez-Arellano
- Research Department, Hospital Regional "Licenciado Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Florida, 01030, Mexico City, Mexico
| | - Andrés Muñoz-Solís
- Endocrinology Department, Hospital de Especialidades "Antonio Fraga Mouret", Centro Médico nacional "La Raza" (IMSS), Paseo de las Jacarandas S/N, Atzcapotzalco, 02990, Mexico City, Mexico
| | - Jorge E Retana-Jiménez
- Pediatrics Department, Hospital Regional "Licenciado Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Florida, 01030, Mexico City, Mexico
| | - Germán Vargas-Ayala
- Department of Internal Medicine, Ticoman General Hospital, Plan de San Luis S/N, La Purísima Ticoman, 07330, Mexico City, Mexico
| | - Julio Granados
- Division of Immunogenetics, Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Marisela Jiménez-Sánchez
- Endocrinology Department, Hospital de Especialidades "Antonio Fraga Mouret", Centro Médico nacional "La Raza" (IMSS), Paseo de las Jacarandas S/N, Atzcapotzalco, 02990, Mexico City, Mexico
| | - Carmen Sanchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN), Av. I.P.N. 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
23
|
Walker AE. The Adult Pancreas in Trauma and Disease. Acad Forensic Pathol 2018; 8:192-218. [PMID: 31240039 PMCID: PMC6490126 DOI: 10.1177/1925362118781612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
The spectrum of traumatic and natural disease that can affect the adult pancreas is multiple and varied. Some entities are more commonly encountered in routine forensic pathology practice and the forensic pathologist needs to be very familiar with their pathological features and development from a pathophysiological perspective. However, many of the conditions are extremely rare and may never be encountered in the professional lifetimes of an individual pathologist. Still, forensic pathologists need to be aware of them in case they are one day faced with these entities as possible diagnoses to be established at postmortem examination. This can be the result of clinical concerns raised in life, potential natural disease explanations for unexpected biochemical results, and sudden, unexpected or otherwise unexplained deaths where criminal concern about the exogenous administration of a substance must be considered. Acad Forensic Pathol. 2018 8(2): 192-218.
Collapse
Affiliation(s)
- Alfredo E. Walker
- Alfredo E. Walker, MBBS, 501 Smyth Road, Ottawa ON K1 H 8L6, Canada.
| |
Collapse
|
24
|
Altieri B, Grant WB, Della Casa S, Orio F, Pontecorvi A, Colao A, Sarno G, Muscogiuri G. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit Rev Food Sci Nutr 2018; 57:3472-3488. [PMID: 27030935 DOI: 10.1080/10408398.2015.1136922] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that vitamin D exerts multiple effects beyond bone and calcium metabolism. Vitamin D seems to play a role in pancreatic disease, including type 1 and type 2 diabetes mellitus as well as pancreatic cancer. Vitamin D's immune-modulatory action suggests that it could help prevent type 1 diabetes. In type 2 diabetes, vitamin D may influence β-cell function, insulin sensitivity, and systematic inflammation-all characteristic pathways of that disease. Data from observational studies correlated vitamin D deficiency with risk of type 1 and type 2 diabetes. Prospective and ecological studies of pancreatic cancer incidence generally support a beneficial effect of higher 25-hydroxyvitamin D concentration as well as inverse correlations between UVB dose or exposure and incidence and/or mortality rate of pancreatic cancer. This review discusses the literature regarding vitamin D's role in risk of diabetes and pancreatic cancer. The results to date generally satisfy Hill's criteria for causality regarding vitamin D and incidence of these pancreatic diseases. However, large randomized, blinded, prospective studies are required to more fully evaluate the potential therapeutic role of vitamin D in preventing pancreatic diseases.
Collapse
Affiliation(s)
- Barbara Altieri
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - William B Grant
- b Sunlight , Nutrition, and Health Research Center , San Francisco , California , USA
| | - Silvia Della Casa
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - Francesco Orio
- c Endocrinology, Department of Sports Science and Wellness , Parthenope University , Naples , Italy.,d Fertility Techniques SSD , San Giovanni di Dio e Ruggi D'Aragona University Hospital , Salerno , Italy
| | - Alfredo Pontecorvi
- a Institute of Medical Pathology, Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart , Rome , Italy
| | - Annamaria Colao
- e Department of Clinical Medicine and Surgery, Section of Endocrinology , University "Federico II," Naples , Italy
| | - Gerardo Sarno
- f Department of General Surgery and Transplantation Unit , San Giovanni di Dio e Ruggi D'Aragona University Hospital, Scuola Medica Salernitana , Salerno , Italy
| | | |
Collapse
|
25
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
26
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
27
|
Willcox A, Richardson SJ, Walker LSK, Kent SC, Morgan NG, Gillespie KM. Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia 2017; 60:1294-1303. [PMID: 28213757 PMCID: PMC5487689 DOI: 10.1007/s00125-017-4221-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic lymph nodes (PLNs) are critical sites for the initial interaction between islet autoantigens and autoreactive lymphocytes, but the histology of PLNs in tissue from individuals with type 1 diabetes has not been analysed in detail. The aim of this study was to examine PLN tissue sections from healthy donors compared with those at risk of, or with recent-onset and longer-duration type 1 diabetes. METHODS Immunofluorescence staining was used to examine PLN sections from the following donor groups: non-diabetic (n=15), non-diabetic islet autoantibody-positive (n=5), recent-onset (≤1.5 years duration) type 1 diabetes (n=13), and longer-duration type 1 diabetes (n=15). Staining for CD3, CD20 and Ki67 was used to detect primary and secondary (germinal centre-containing) follicles and CD21 and CD35 to detect follicular dendritic cell networks. RESULTS The frequency of secondary follicles was lower in the recent-onset type 1 diabetes group compared with the non-diabetic control group. The presence of insulitis (as evidence of ongoing beta cell destruction) and diagnosis of type 1 diabetes at a younger age, however, did not appear to be associated with a lower frequency of secondary follicles. A higher proportion of primary B cell follicles were observed to lack follicular dendritic cell networks in the recent-onset type 1 diabetes group. CONCLUSIONS/INTERPRETATION Histological analysis of rare PLNs from individuals with type 1 diabetes suggests a previously unrecognised phenotype comprising decreased primary B cell follicle frequency and fewer follicular dendritic cell networks in recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Abby Willcox
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW By necessity, the vast majority of information we have on autoreactive T cells in human type 1 diabetes (T1D) has come from the study of peripheral blood of donors with T1D. It is not clear how representative the peripheral autoreactive T-cell repertoire is of the autoreactive T cells infiltrating the islets in T1D. We will summarize and discuss what is known of the immunohistopathology of insulitis, the T-cell receptor repertoire expressed by islet-infiltrating T cells, and the autoreactivity and function of islet-infiltrating T cells in T1D. RECENT FINDINGS Recovery and analysis of live, islet-infiltrating T cells from the islets of cadaveric donors with T1D revealed a broad repertoire and proinflammatory phenotype of CD4 T-cell autoreactivity to peptide targets from islet proteins, including proinsulin, as well as CD4 T-cell reactivity to a number of post-translationally modified peptides, including peptides with citrullinations and hybrid insulin peptide fusions. Islet-infiltrating CD8 T cells were also derived and required further isolation and characterization. SUMMARY The recovery of live, islet-infiltrating T cells from donors with T1D, reactive with a broad range of known targets and post-translationally modified peptides, allows for the specific functional analysis of islet-infiltrating T cells for the development of antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
29
|
Apportioning Blame: Autoreactive CD4 + and CD8 + T Cells in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2017; 65:275-284. [PMID: 28083620 DOI: 10.1007/s00005-016-0452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/18/2016] [Indexed: 01/14/2023]
Abstract
Type 1 diabetes (T1D) is one of the most studied archetypal organ-specific autoimmune diseases. Although many clinical, epidemiological, and pathological characteristics have been described, there are still important issues which need to be resolved as these will have a major impact on the development of future antigen-specific immunotherapies. An important question relates to T lymphocytes in the development of the disease, in particular their role in the destruction of insulin-producing beta cells. Since the discovery that certain class II histocompatibility complex molecules (HLA) are linked to the development of T1D, much research has focused on CD4+ helper T lymphocytes; however, recent studies highlight class I HLA molecules as an independent risk factor; hence, research into the role played by CD8+ cytotoxic T lymphocytes has gained momentum. In this review, we summarize recent studies clarifying the role played by both sets of autoreactive T lymphocytes in T1D, discuss the targets recognized by these cells and their phenotype in T1D patients. Finally, we will examine the possible generation of regulatory CD8+ T lymphocytes upon different immuno-intervention strategies.
Collapse
|
30
|
Affiliation(s)
- Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands, and Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
31
|
Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, Delta- and PP-cells: Are They the Architectural Cornerstones of Islet Structure and Co-ordination? J Histochem Cytochem 2015. [PMID: 26216135 DOI: 10.1369/0022155415583535] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.
Collapse
Affiliation(s)
- Melissa F Brereton
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom. (MFB)
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom. (EV, QZ, AC)
| |
Collapse
|
32
|
Zini E, Lunardi F, Zanetti R, Heller RS, Coppola LM, Ferro S, Guscetti F, Osto M, Lutz TA, Reusch CE, Cavicchioli L. Endocrine Pancreas in Cats With Diabetes Mellitus. Vet Pathol 2015; 53:136-44. [DOI: 10.1177/0300985815591078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic amyloidosis and loss of α and β cells have been shown to occur in cats with diabetes mellitus, although the number of studies currently available is very limited. Furthermore, it is not known whether pancreatic islet inflammation is a common feature. The aims of the present study were to characterize islet lesions and to investigate whether diabetic cats have inflammation of the pancreatic islets. Samples of pancreas were collected postmortem from 37 diabetic and 20 control cats matched for age, sex, breed, and body weight. Histologic sections were stained with hematoxylin and eosin and Congo red; double labeled for insulin/CD3, insulin/CD20, insulin/myeloperoxidase, insulin/proliferating cell nuclear antigen, and glucagon/Ki67; and single labeled for amylin and Iba1. Mean insulin-positive cross-sectional area was approximately 65% lower in diabetic than control cats ( P = .009), while that of amylin and glucagon was similar. Surprisingly, amyloid deposition was similar between groups ( P = .408). Proliferation of insulin- and glucagon-positive cells and the number of neutrophils, macrophages, and T (CD3) and B (CD20) lymphocytes in the islets did not differ. The presence of T and B lymphocytes combined tended to be more frequent in diabetic cats ( n = 8 of 37; 21.6%) than control cats ( n = 1 of 20; 5.0%). The results confirm previous observations that loss of β cells but not α cells occurs in diabetic cats. Islet amyloidosis was present in diabetic cats but was not greater than in controls. A subset of diabetic cats had lymphocytic infiltration of the islets, which might be associated with β-cell loss.
Collapse
Affiliation(s)
- E. Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Animal Medicine, Production, and Health, University of Padova, Legnaro, Italy
- Istituto Veterinario di Novara, Granozzo con Monticello, Italy
| | - F. Lunardi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - R. Zanetti
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Italy
| | - R. S. Heller
- Department of Histology and Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - L. M. Coppola
- Department of Animal Medicine, Production, and Health, University of Padova, Legnaro, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Italy
| | - F. Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - M. Osto
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - T. A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Laboratory Animal Science, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - C. E. Reusch
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - L. Cavicchioli
- Department of Comparative Biomedicine and Food Sciences, University of Padova, Legnaro, Italy
| |
Collapse
|
33
|
Hansen MP, Matheis N, Kahaly GJ. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J Diabetes 2015; 6:67-79. [PMID: 25685279 PMCID: PMC4317318 DOI: 10.4239/wjd.v6.i1.67] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome.
Collapse
|
34
|
Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajärvi K, Härkönen T, Veijola R, Simell O, Ilonen J, Peet A, Tillmann V, Knip M, Vaarala O. Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans. THE JOURNAL OF IMMUNOLOGY 2014; 194:68-75. [PMID: 25480564 DOI: 10.4049/jimmunol.1401653] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions.
Collapse
Affiliation(s)
- Linnea Reinert-Hartwall
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Jarno Honkanen
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Harri M Salo
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Janne K Nieminen
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Kristiina Luopajärvi
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku, 20520 Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu and Children's Clinic of Tartu University Hospital, Tartu 51014, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Children's Clinic of Tartu University Hospital, Tartu 51014, Estonia
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland; and
| | - Outi Vaarala
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland; Respiratory, Inflammatory and Autoimmune Diseases, Innovative Medicine, AstraZeneca, 43183 Mölndal, Sweden
| | | | | |
Collapse
|
35
|
Zhao Y, Yang L, Wang X, Zhou Z. The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab Res Rev 2014; 30:646-53. [PMID: 24446278 DOI: 10.1002/dmrr.2530] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/26/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control and protect β-cell function in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein CD26 and plays an important role in T-cell immunity. Autoimmune diabetes, a T-cell mediated organ-specific disease, is initiated by the imbalance between pathogenic and regulatory T-lymphocytes. DPP-4 inhibitors can suppress pathogenic effects of Th1 and Th17 cells and up-regulate Th2 cells and regulatory T cells, which play a critical role in ameliorating autoimmune diabetes. This provides a basis for the potential use of DPP-4 inhibitors in the treatment of autoimmune diabetes. Recent studies suggest that DPP-4 inhibitors improve β-cell function and attenuate autoimmunity in type 1 diabetic mouse models. However, there are few clinical studies on the treatment of autoimmune diabetes with DPP-4 inhibitors. Further studies are warranted to confirm the therapeutic effects of DPP-4 inhibitors on autoimmune diabetes in humans.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Diabetes Center, Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, China
| | | | | | | |
Collapse
|
36
|
Fuchs YF, Adler K, Lindner A, Karasinsky A, Wilhelm C, Weigelt M, Balke H, Förtsch K, Mortler-Hildebrandt LF, Harlan DM, Pechhold K, Ziegler AG, Bonifacio E. IGRP and insulin vaccination induce CD8+ T cell-mediated autoimmune diabetes in the RIP-CD80GP mouse. Clin Exp Immunol 2014; 176:199-206. [PMID: 24387268 DOI: 10.1111/cei.12263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 01/07/2023] Open
Abstract
Autoimmune diabetes is characterized by autoantigen-specific T cell-mediated destruction of pancreatic islet beta cells, and CD8(+) T cells are key players during this process. We assessed whether the bitransgenic RIP-CD80 x RIP-LCMV-GP (RIP-CD80GP) mice may be a versatile antigen-specific model of inducible CD8(+) T cell-mediated autoimmune diabetes. Antigen-encoding DNA, peptide-loaded dendritic cells and antigen plus incomplete Freund's adjuvant were used for vaccination. Of 14 pancreatic proteins tested by DNA vaccination, murine pre-proinsulin 2 (100% of mice; median time after vaccination, 60 days) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) (77%, 58 days) could induce diabetes. Vaccination with DNA encoding for zinc transporter 8, Ia-2, Ia-2β, glutamic acid decarboxylase 67 (Gad67), chromogranin A, insulinoma amyloid polypeptide and homeobox protein Nkx-2.2 induced diabetes development in 25-33% of mice. Vaccination with DNA encoding for Gad65, secretogranin 5, pancreas/duodenum homeobox protein 1 (Pdx1), carboxyl ester lipase, glucagon and control hepatitis B surface antigen (HBsAg) induced diabetes in <20% of mice. Diabetes induction efficiency could be increased by DNA vaccination with a vector encoding a ubiquitin-antigen fusion construct. Diabetic mice had florid T cell islet infiltration. CD8(+) T cell targets of IGRP were identified with a peptide library-based enzyme-linked immunospot assay, and diabetes could also be induced by vaccination with major histocompatibility complex (MHC) class I-restricted IGRP peptides loaded on mature dendritic cells. Vaccination with antigen plus incomplete Freund's adjuvant, which can prevent diabetes in other models, led to rapid diabetes development in the RIP-CD80GP mouse. We conclude that RIP-CD80GP mice are a versatile model of antigen specific autoimmune diabetes and may complement existing mouse models of autoimmune diabetes for evaluating CD8(+) T cell-targeted prevention strategies.
Collapse
Affiliation(s)
- Y F Fuchs
- DFG - Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden-German Center for Diabetes Research (DZD), Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The vitamin D endocrine system in now recognized as subserving a wide range of fundamental biological functions in cell differentiation, inhibition of cell growth as well as immunomodulation. Both forms of immunity, namely adaptive and innate, are regulated by 1,25(OH)2D3. The immune-modulatory properties of vitamin D suggest that it could play a potential therapeutic role in prevention of type 1 diabetes mellitus (T1DM). It is postulated that large doses of vitamin D supplementation may influence the pattern of immune regulation and subsequent progression to T1DM in a genetically susceptible individual. More studies are required to substantiate the relation between T1DM and vitamin D/vitamin D analogues in the pattern of immune regulations in susceptible individuals. In type 2 diabetes mellitus (T2DM), vitamin D may influence both insulin secretion and sensitivity. An inverse relationship between T2DM and vitamin D is postulated from cross-sectional and prospective studies, though conclusive proof is as yet lacking. Available studies differ in their design and in the recommended daily allowances (RDA) of vitamin D in non-skeletal diseases and β-cell function. Large, well designed, controlled, randomized interventional studies on the potential role of vitamin D and calcium in prevention and management of T2DM are required to clarify the relationship between vitamin D and glucose homeostasis in T2DM.
Collapse
Affiliation(s)
- Chittari Venkata Harinarayan
- Institute of Endocrinology, Diabetes, Thyroid and Osteoporosis Disorders, Sakra World Hospitals, Bangalore, India
| |
Collapse
|
38
|
Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. VITAMINS AND HORMONES 2014; 95:195-222. [PMID: 24559919 DOI: 10.1016/b978-0-12-800174-5.00008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of pancreatic islet function and insulin-producing beta cell mass is a central hallmark in the pathogenesis of both type 1 and type 2 diabetes. While in type 1 diabetes this phenomenon is due to an extensive destruction of beta cells caused by an autoimmune process, the mechanisms resulting in beta cell failure in type 2 diabetes are different and less clear. Also, beta cell destruction in type 1 diabetes occurs early and is the initial step in the pathogenetic process, while beta cell loss in type 2 diabetes after an initial phase of hyperinsulinemia due to the underlying insulin resistance occurs relatively late and it is less pronounced. Since diabetes mellitus is the most frequent endocrine disease, with an increasing high prevalence worldwide, huge efforts have been made over the past many decades to identify predisposing genetic, environmental, and nutritional factors in order to develop effective strategies to prevent the disease. In parallel, extensive studies in different cell systems and animal models have helped to elucidate our understanding of the physiologic function of islets and to gain insight into the immunological and non-immunological mechanisms of beta cell destruction and failure. Furthermore, currently emerging concepts of beta cell regeneration (e.g., the restoration of the beta cell pool by regenerative, proliferative and antiapoptotic processes, and recovery of physiologic islet function) apparently is yielding the first promising results. Recent insights into the complex endocrine and paracrine mechanisms regulating the physiologic function of pancreatic islets, as well as beta cell life and death, constitute an essential part of this new and exciting area of diabetology. For example, understanding of the physiological role of glucagon-like peptide 1 has resulted in the successful clinical implementation of incretin-based therapies over the last years. Further, recent data suggesting paracrine effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the regulation of pancreatic islet function, survival, and proliferation as well as on local glucocorticoid metabolism provide evidence for a potential role of the pancreatic islet-stress axis in the pathophysiology of diabetes mellitus. In this chapter, we provide a comprehensive overview of current preventive and regenerative concepts as a basis for the development of novel therapeutic approaches to the treatment of diabetes mellitus. A particular focus is given on the potential of the pancreatic islet-stress axis in the development of novel regenerative strategies.
Collapse
Affiliation(s)
- Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany.
| | - Andreas Barthel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; Endokrinologikum Ruhr, Bochum, Germany
| | - Andreas Reichel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Norman L Block
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan Ludwig
- Department of Visceral, Thorax and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
39
|
Herold KC, Vignali DAA, Cooke A, Bluestone JA. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 2013; 13:243-56. [PMID: 23524461 PMCID: PMC4172461 DOI: 10.1038/nri3422] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes (T1D) remains an important health problem, particularly in western countries, where the incidence has been increasing in younger children. In 1986, Eisenbarth described T1D as a chronic autoimmune disease. Work over the past three-and-a-half decades has identified many of the genetic, immunological and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Clinical trials have been conducted to test these hypotheses but have had mixed results. Here, we discuss the findings that have led to our current concepts of the disease mechanisms involved in T1D and the clinical studies promoted by these studies. The findings from preclinical and clinical studies support the original proposed model for how T1D develops but have also suggested that this disease is more complex than was originally thought and will require broader treatment approaches.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Type 1 diabetes (T1D) represents 10 to 15% of all forms of diabetes. Its incidence shows a consistent rise in all countries under survey. Evidence for autoimmunity in human T1D relies on the detection of insulitis, of islet cell antibodies, of activated β-cell-specific T lymphocytes and on the association of T1D with a restricted set of class II major histocompatibility complex (MHC) alleles. However, mechanisms that initiate the failure of immune tolerance to β-cell autoantigens remain elusive in common forms of T1D. T1D commonly develop as a multifactorial disease in which environmental factors concur with a highly multigenic background. The disease is driven by the activation of T-lymphocytes against pancreatic β-cells. Several years elapse between initial triggering of the autoimmune response to β cells, as evidenced by the appearance or islet cell autoantibodies, and the onset of clinical diabetes, defining a prediabetes stage. Active mechanisms hold back autoreactive effector T-cells in prediabetes, in particular a subset of CD4+ T-cells (T(reg)) and other regulatory T-cells, such as invariant NKT cells. There is evidence in experimental models that systemic or local infections can trigger autoimmune reactions to β-cells. However, epidemiological observations that have accumulated over years have failed to identify undisputable environmental factors that trigger T1D. Moreover, multiple environmental factors may intervene in the disease evolution and protective as weel as triggering environmental factors may be involved. Available models also indicate that local signals within the islets are required for full-blown diabetes to develop. Many autoantigens that are expressed by β-cells but also by the other endocrine islet cells and by neurons are recognized by lymphocytes along the development of T1D. The immune image of β-cells is that of native components of the β-cell membrane, as seen by B-lymphocytes, and of fragments of intracellular β-cell proteins in the form of peptides loaded onto class I MHC molecules on the β-cell surface and class I and class II molecules onto professional antigen presenting cells. Given the key role of T lymphocytes in T1D, the cartography of autoantigen-derived peptides that are presented to class I-restricted CD8(+) T-cells and class II-restricted CD4(+) T-cells is of outmost importance and is a necessary step in the development of diagnostic T-cell assays and of immunotherapy of T1D.
Collapse
|
42
|
Hooper PL, Hightower LE, Hooper PL. Loss of stress response as a consequence of viral infection: implications for disease and therapy. Cell Stress Chaperones 2012; 17:647-55. [PMID: 22797944 PMCID: PMC3468676 DOI: 10.1007/s12192-012-0352-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023] Open
Abstract
Herein, we propose that viral infection can induce a deficient cell stress response and thereby impairs stress tolerance and makes tissues vulnerable to damage. Having a valid paradigm to address the pathological impacts of viral infections could lead to effective new therapies for diseases that have previously been unresponsive to intervention. Host response to viral infections can also lead to autoimmune diseases like type 1 diabetes. In the case of Newcastle disease virus, the effects of viral infection on heat shock proteins may be leveraged as a therapy for cancer. Finally, the search for a specific virus being responsible for a condition like chronic fatigue syndrome may not be worthwhile if the disease is simply a nonspecific response to viral infection.
Collapse
Affiliation(s)
- Philip L Hooper
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
43
|
|
44
|
Axelsson S, Hjorth M, Ludvigsson J, Casas R. Decreased GAD(65)-specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum. Diabet Med 2012; 29:1272-8. [PMID: 22587593 DOI: 10.1111/j.1464-5491.2012.03710.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type 1 diabetes, focusing on chemokines and their receptors. METHODS Blood samples were collected from 70 children with Type 1 diabetes included in a phase II clinical trial with GAD-alum. Expression of CC chemokine receptor 5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. RESULTS Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. CONCLUSION Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity.
Collapse
Affiliation(s)
- S Axelsson
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
45
|
Skoglund C, Chéramy M, Casas R, Ludvigsson J, Hampe CS. GAD autoantibody epitope pattern after GAD-alum treatment in children and adolescents with type 1 diabetes. Pediatr Diabetes 2012; 13:244-50. [PMID: 21848927 PMCID: PMC3903414 DOI: 10.1111/j.1399-5448.2011.00802.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS We have previously shown that two injections of glutamic acid decarboxylase formulated in alum (GAD-alum) preserved residual insulin secretion in children and adolescents with recent onset type 1 diabetes (T1D), and was accompanied by increased GAD autoantibody (GADA) titers. The aim of this study was to investigate whether GAD-alum treatment affected the GADA epitope pattern. METHODS Serum samples from patients treated with GAD-alum (n = 33) or placebo (n = 27), at baseline, 1, 3, 9, and 15 months after the initial injection, were tested for their binding capacity to specific GADA epitopes in an epitope-specific radioligand binding assay with six recombinant Fab (rFab) (b96.11, DPA, DPD, MICA3, b78, and N-GAD(65) mAb). RESULTS No significant differences in variability of binding to any of the tested rFab were observed from baseline to 15 months. There was a sustained low binding of GADA to the b78- and N-GAD(65) mAb-defined epitopes, often recognized by GADA in patients with stiff person syndrome (SPS) and seldom in T1D patients. However, binding of GADA to the T1D-associated b96.11-defined epitope increased between baseline and 3 months in GAD-alum (-8.1%, min -72.4%, max 39.6%) compared to placebo patients (1.5%, min -28.3%, max 28.6%) (p = 0.02). Subsequently, the b96.11-defined epitope recognition returned to levels similar to that observed at baseline. CONCLUSIONS GAD-alum injections did not affect binding of GADA to SPS-related epitopes, further supporting the safety of the treatment. There were no changes in GADA epitope specificity to the T1D-related epitopes, except for a temporarily increased binding to one of the tested epitopes.
Collapse
Affiliation(s)
- Camilla Skoglund
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mikael Chéramy
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
46
|
Abstract
Chronic use of alcohol is considered to be a potential risk factor for the incidence of type 2 diabetes mellitus (T2DM), which causes insulin resistance and pancreatic β-cell dysfunction that is a prerequisite for the development of diabetes. However, alcohol consumption in diabetes has been controversial and more detailed information on the diabetogenic impact of alcohol seems warranted. Diabetes, especially T2DM, causes dysregulation of various metabolic processes, which includes a defect in the insulin-mediated glucose function of adipocytes, and an impaired insulin action in the liver. In addition, neurobiological profiles of alcoholism are linked to the effects of a disruption of glucose homeostasis and of insulin resistance, which are affected by altered appetite that regulates the peptides and neurotrophic factors. Since conditions, which precede the onset of diabetes that are associated with alcoholism is one of the crucial public problems, researches in efforts to prevent and treat diabetes with alcohol dependence, receives special clinical interest. Therefore, the purpose of this mini-review is to provide the recent progress and current theories in the interplay between alcoholism and diabetes. Further, the purpose of this study also includes summarizing the pathophysiological mechanisms in the neurobiology of alcoholism.
Collapse
Affiliation(s)
- Soo-Jeong Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Abstract
Autoimmune Type 1 A Diabetes (T1D) is characterized by dependence on exogenous insulin consequential to the autoimmune attack and destruction of insulin-producing islet beta cells. Pancreatic islet cell inflammation, or insulitis, precedes beta cell death and T1D onset. In the insulitic lesion, innate immune cells produce chemokines and cytokines that recruit and activate adaptive immune cells (Eizirik D et al., Nat Rev Endocrinol 5:219-226, 2009). Locally produced cytokines not only increase immune surveillance of beta cells (Hanafusa T and Imagawa A, Ann NY Acad Sci 1150:297-299, 2008), but also cause beta cell dysfunction and decreased insulin secretion due to the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) by the beta cells. This, coupled to the high levels of ROS and RNS secreted by activated macrophages and the low antioxidant capacities of beta cells (Huurman VA, PLoS One 3:e2435, 2008; Schatz D, Pediatr Diabetes 5:72-79, 2004; Verge CF, Diabetes 44:1176-1179, 1995), implicates free radicals as important effectors in T1D pathogenesis (Eizirik D et al., Nat Rev Endocrinol 5:219-226, 2009; Hanafusa T and Imagawa A, Ann NY Acad Sci 1150:297-299, 2008; Eisenbarth GS and Jeffrey J, Arq Bras Endocrinol Metabol 52:146-155, 2008; Pietropaolo M et al., Pediatr Diabetes 6:184-192, 2005).
Collapse
Affiliation(s)
- Yaíma L Lightfoot
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
48
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
49
|
T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011; 2011:513210. [PMID: 21785617 PMCID: PMC3140193 DOI: 10.1155/2011/513210] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease driven by the activation of lymphocytes against pancreatic β-cells. Among β-cell autoantigens, preproinsulin has been ascribed a key role in the T1D process. The successive steps that control the activation of autoreactive lymphocytes have been extensively studied in animal models of T1D, but remains ill defined in man. In man, T lymphocytes, especially CD8+ T cells, are predominant within insulitis. Developing T-cell assays in diabetes autoimmunity is, thus, a major challenge. It is expected to help defining autoantigens and epitopes that drive the disease process, to pinpoint key functional features of epitope-specific T lymphocytes along the natural history of diabetes and to pave the way towards therapeutic strategies to induce immune tolerance to β-cells. New T-cell technologies will allow defining autoreactive T-cell differentiation programs and characterizing autoimmune responses in comparison with physiologically appropriate immune responses. This may prove instrumental in the discovery of immune correlates of efficacy in clinical trials.
Collapse
|
50
|
Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 2011; 10:439-52. [DOI: 10.1038/nrd3402] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|