1
|
Human Amniotic Mesenchymal Stem Cells and Fibroblasts Accelerate Wound Repair of Cystic Fibrosis Epithelium. Life (Basel) 2022; 12:life12050756. [PMID: 35629422 PMCID: PMC9144497 DOI: 10.3390/life12050756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) airways are affected by a deranged repair of the damaged epithelium resulting in altered regeneration and differentiation. Previously, we showed that human amniotic mesenchymal stem cells (hAMSCs) corrected base defects of CF airway epithelial cells via connexin (CX)43-intercellular gap junction formation. In this scenario, it is unknown whether hAMSCs, or fibroblasts sharing some common characteristics with MSCs, can operate a faster repair of a damaged airway epithelium. A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells (CFBE, homozygous for the F508del mutation). hAMSCs were either co-cultured with CFBE cells before the wound or added to the wounded monolayers. NIH-3T3 fibroblasts (CX43+) were added to wounded cells. HeLa cells (CX43-) were used as controls. γ-irradiation was optimized to block CFBE cell proliferation. A specific siRNA was employed to downregulate CX43 expression in CFBE cells. CFBE cells showed a delayed repair as compared with wt-CFTR cells (16HBE41o-). hAMSCs enhanced the wound repair rate of wounded CFBE cell monolayers, especially when added post wounding. hAMSCs and NIH-3T3 fibroblasts, but not HeLa cells, increased wound closure of irradiated CFBE monolayers. CX43 downregulation accelerated CFBE wound repair rate without affecting cell proliferation. We conclude that hAMSCs and fibroblasts enhance the repair of a wounded CF airway epithelium, likely through a CX43-mediated mechanism mainly involving cell migration.
Collapse
|
2
|
Routhier J, Pons S, Freidja ML, Dalstein V, Cutrona J, Jonquet A, Lalun N, Mérol JC, Lathrop M, Stitzel JA, Kervoaze G, Pichavant M, Gosset P, Tournier JM, Birembaut P, Dormoy V, Maskos U. An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun 2021; 12:6384. [PMID: 34737286 PMCID: PMC8568944 DOI: 10.1038/s41467-021-26637-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease is a generally smoking-linked major cause of morbidity and mortality. Genome-wide Association Studies identified a locus including a non-synonymous single nucleotide polymorphism in CHRNA5, rs16969968, encoding the nicotinic acetylcholine receptor α5 subunit, predisposing to both smoking and Chronic Obstructive Pulmonary Disease. Here we report that nasal polyps from rs16969968 non-smoking carriers exhibit airway epithelium remodeling and inflammation. These hallmarks of Chronic Obstructive Pulmonary Disease occur spontaneously in mice expressing human rs16969968. They are significantly amplified after exposure to porcine pancreatic elastase, an emphysema model, and to oxidative stress with a polymorphism-dependent alteration of lung function. Targeted rs16969968 expression in epithelial cells leads to airway remodeling in vivo, increased proliferation and production of pro-inflammatory cytokines through decreased calcium entry and increased adenylyl-cyclase activity. We show that rs16969968 directly contributes to Chronic Obstructive Pulmonary Disease-like lesions, sensitizing the lung to the action of oxidative stress and injury, and represents a therapeutic target. Human polymorphisms in nicotinic acetylcholine receptor genes have been linked to both smoking and lung diseases like Chronic Obstructive Pulmonary Disease (COPD) or lung cancer. Here the authors identify a direct role for a human coding polymorphism in COPD-like lesions independent of smoke or nicotine exposure.
Collapse
Affiliation(s)
- Julie Routhier
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Stéphanie Pons
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France
| | - Mohamed Lamine Freidja
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biochemistry and Microbiology, Faculty of Sciences, University of M'sila, M'sila, Algeria
| | - Véronique Dalstein
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biopathology, CHU of Reims, Reims, France
| | - Jérôme Cutrona
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Antoine Jonquet
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Nathalie Lalun
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Otorhinolaryngology, CHU of Reims, Reims, France
| | - Mark Lathrop
- McGill University Genome Center, Montréal, QC, Canada
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Tournier
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France
| | - Philippe Birembaut
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.,Department of Biopathology, CHU of Reims, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, Reims, France.
| | - Uwe Maskos
- Institut Pasteur, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Paris, France.
| |
Collapse
|
3
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
4
|
Bronchial epithelium repair by Esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity. Sci Rep 2019; 9:18988. [PMID: 31831857 PMCID: PMC6908641 DOI: 10.1038/s41598-019-55426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
The airway epithelium is seriously damaged upon pulmonary Pseudomonas aeruginosa infection, especially in cystic fibrosis (CF) sufferers. Therefore, the discovery of novel anti-infective agents accelerating healing of infected injured tissues is crucial. The antipseudomonal peptides esculentin-1a(1–21)NH2 and its diastereomer Esc(1–21)-1c (Esc peptides) hold promise in this respect. In fact, they stimulate airway epithelial wound repair, but no mechanistic insights are available. Here we demonstrated that this process occurs through promotion of cell migration by an indirect activation of epidermal growth factor receptor mediated by metalloproteinases. Furthermore, we showed an increased expression of metalloproteinase 9, at both gene and protein levels, in peptide-treated bronchial epithelial cells with a functional or mutated form of CF transmembrane conductance regulator. In addition, the two peptides counteracted the inhibitory effect of Pseudomonas lipopolysaccharide (mimicking an infection condition) on the wound healing activity of the airway epithelium, and they enhanced the production of interleukin-8 from both types of cells. Finally, no immunogenicity was discovered for Esc peptides, suggesting their potential safety for clinical usage. Besides representing a step forward in understanding the molecular mechanism underlying the peptide-induced wound healing activity, these studies have contributed to highlight Esc peptides as valuable therapeutics with multiple functions.
Collapse
|
5
|
Schagen J, Sly PD, Fantino E. Characterizing well-differentiated culture of primary human nasal epithelial cells for use in wound healing assays. J Transl Med 2018; 98:1478-1486. [PMID: 30089850 DOI: 10.1038/s41374-018-0100-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
The nasal epithelium is the initial contact between the external environment and the respiratory tract and how it responds to noxious stimuli and repairs epithelial damage is important. Growing airway epithelial cells in culture at air-liquid interface allows for a physiologically relevant model of the human upper airways. The aim of the present study was to characterize human primary nasal epithelial cells grown at the air-liquid interface and establish a model for use in wound healing assays. This study determined the time required for full differentiation of nasal epithelial cells in an air-liquid interface culture to be at least 7 weeks using the standardized B-ALI media. Also, a model was established that studied the response to wounding and the effect of EGFR inhibition on this process. Nasal epithelial cultures from healthy subjects were differentiated at air-liquid interface and manually wounded. Wounds were monitored over time to complete closure using a time lapse imaging microscope with cultures identified to have a rate of wound healing above 2.5%/h independent of initial wound size. EGFR inhibition caused the rate of wound healing to drop a significant 4.6%/h with there being no closure of the wound after 48 h. The robust model established in this study will be essential for studying factors influencing wound healing, including host disease status and environmental exposures in the future.
Collapse
Affiliation(s)
- Johanna Schagen
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| | - Peter D Sly
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia.
| | - Emmanuelle Fantino
- Children's Lung, Environment and Asthma Research Team, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Beard JD, Erdely A, Dahm MM, de Perio MA, Birch ME, Evans DE, Fernback JE, Eye T, Kodali V, Mercer RR, Bertke SJ, Schubauer-Berigan MK. Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers. ENVIRONMENT INTERNATIONAL 2018; 116:214-228. [PMID: 29698898 PMCID: PMC5970999 DOI: 10.1016/j.envint.2018.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/01/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. OBJECTIVES We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. METHODS We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. RESULTS We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. CONCLUSIONS Inhalable rather than respirable CNT/F was more consistently associated with fibrosis, inflammation, oxidative stress, and cardiovascular biomarkers.
Collapse
Affiliation(s)
- John D Beard
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Matthew M Dahm
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Marie A de Perio
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - M Eileen Birch
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Douglas E Evans
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Joseph E Fernback
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stephen J Bertke
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Mary K Schubauer-Berigan
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| |
Collapse
|
7
|
Matus CE, Ehrenfeld P, Pavicic F, González CB, Concha M, Bhoola KD, Burgos RA, Figueroa CD. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor. Exp Dermatol 2016; 25:694-700. [PMID: 27093919 DOI: 10.1111/exd.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing.
Collapse
Affiliation(s)
- Carola E Matus
- Instituto de Morfofisiología y Farmacología, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Francisca Pavicic
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B González
- Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Concha
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Kanti D Bhoola
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Instituto de Morfofisiología y Farmacología, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratorio de Patología Celular, Instituto de Anatomía, Histología & Patología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Mérol JC, Polette M, Abély M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol 2014; 235:408-19. [DOI: 10.1002/path.4471] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Damien Adam
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Jacqueline Roux-Delrieu
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Emilie Luczka
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Arnaud Bonnomet
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Julien Lesage
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | | | - Myriam Polette
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Laboratory of Histology; University Hospital Centre; Reims France
| | - Michel Abély
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Pediatric Unit A, American Memorial Hospital; University Hospital Centre; Reims France
| | - Christelle Coraux
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| |
Collapse
|
9
|
Cho DY, Le W, Bravo DT, Hwang PH, Illek B, Fischer H, Nayak JV. Air pollutants cause release of hydrogen peroxide and interleukin-8 in a human primary nasal tissue culture model. Int Forum Allergy Rhinol 2014; 4:966-71. [PMID: 25400124 DOI: 10.1002/alr.21413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/22/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND A component of primary innate defense of the nasal mucosa against inhaled pathogens includes continuous, low-level release of hydrogen peroxide (H2 O2 ) into luminal secretions. Epidemiologically, an association exists between poor air quality and increased prevalence of sinonasal disease. To understand the effects of particulate matter (PM) in nasal mucosa, we studied the release of H2 O2 and interleukin 8 (IL-8) after PM exposure. METHODS Human nasal specimens were collected from surgery and cultured in serum-free growth medium. Cell integrity and recovery during culture was monitored by lactate dehydrogenase (LDH) release into the medium. Cultures were exposed to PM for 24 hours in the presence/absence of diphenyleneiodonium sulfate (DPI; a nicotinamide adenine dinucleotide phosphate [NADPH] oxidase inhibitor). Luminex cytokine and Amplex-Red H2 O2 assays were performed. RESULTS LDH levels dropped rapidly within 2 days, indicative of stabilization and cell recovery after harvest. All cultures released H2 O2 into the medium. Exposure to PM (20 μg/cm(2) ) increased H2 O2 levels significantly (94.6 ± 7.7 nM) compared to untreated controls (55.8 ± 4.0 nM; p = 0.001). PM-induced H2 O2 production was partially inhibited by DPI (80.1 ± 3.8nM), indicating that cellular NADPH oxidase may be a primary source of H2 O2 production. Exposure to PM increased IL-8 levels in a dose-dependent fashion (control = 2301 ± 412 MFI; 20 μg/cm(2) = 5002 ± 1327 MFI; 40 μg/cm(2) = 8219 ± 1090 MFI; p = 0.022). CONCLUSION PM increases the quantity of H2 O2 released by nasal epithelial cells, indicating that PM can contribute to oxidative stress in part by activating a normal cellular defense mechanism. Exposure to PM resulted in elevated IL-8 levels and mucin production in explants. Efforts to reduce airborne PM may lead to reduced H2 O2 and mucin production in sinonasal epithelium.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL; Children's Hospital Oakland Research Institute, Oakland, CA
| | | | | | | | | | | | | |
Collapse
|
10
|
Low interleukin-8 level predicts the occurrence of the postpericardiotomy syndrome. PLoS One 2014; 9:e108822. [PMID: 25333927 PMCID: PMC4204829 DOI: 10.1371/journal.pone.0108822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Aims The objective of this study was to investigate inflammatory markers of the postpericardiotomy syndrome (PPS) and to determine individuals prone to develop the PPS. Methods and Results The study included 75 patients with a stable coronary disease that had underwent coronary artery bypass surgery. Serum samples were collected prior to the surgery and on the 5th day after the operation, to measure the concentration of IL-8, IL-6, IL-1β, IL-10, TNF, IL-12p70. All included patients were screened for the PPS before discharge from the hospital and 6 months after the surgery. The 49 patients developed the PPS (65.4%), among them 42 (56%) patients had pleural effusion, and 23 (31%) had pericardial effusion. The cytokine analysis has shown an inverse correlation between IL-8 concentration before the surgery, and the occurrence of the PPS (p = 0.026). There were also positive correlations between the magnitude of increase of IL-8 and IL-1β concentrations on the 5th day after the surgery and the occurrence of the PPS (p = 0.006 and p = 0.049 respectively). Multivariate analysis revealed IL-8 concentration before surgery as an independent risk factor of the PPS development (HR = 0.976; 95%CI: 0.956–0.996, p = 0.02). Cut-off point was established to assess the predictive value of IL-8 concentration (21.1 pg/ml). The test parameters were: sensitivity: 62.5%, specificity: 75%, positive predictive value: 83% and negative predictive value: 50%. Clinical evaluation showed the relationship between the hemoglobin concentration before the surgery and the PPS occurrence (p = 0.01). Conclusion The IL-8 and IL-1β may participate in the postpericardiotomy syndrome pathogenesis, and the IL-8 concentration measurement may select patients with the risk of the PPS development.
Collapse
|
11
|
Burgess JL, Kurzius-Spencer M, Poplin GS, Littau SR, Kopplin MJ, Stürup S, Boitano S, Lantz RC. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:150-5. [PMID: 23838883 PMCID: PMC4019207 DOI: 10.1038/jes.2013.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/01/2013] [Accepted: 04/12/2013] [Indexed: 05/03/2023]
Abstract
Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether this relationship is modified by selenium. A total of 55 subjects were evaluated in Ajo and Tucson, Arizona. Tap water and first morning void urine were analyzed for arsenic species, induced sputum for AAT and toenails for selenium and arsenic. Household tap-water arsenic, toenail arsenic and urinary inorganic arsenic and metabolites were significantly higher in Ajo (20.6±3.5 μg/l, 0.54±0.77 μg/g and 27.7±21.2 μg/l, respectively) than in Tucson (3.9±2.5 μg/l, 0.16±0.20 μg/g and 13.0±13.8 μg/l, respectively). In multivariable models, urinary monomethylarsonic acid (MMA) was negatively, and toenail selenium positively associated with sputum AAT (P=0.004 and P=0.002, respectively). In analyses stratified by town, these relationships remained significant only in Ajo, with the higher arsenic exposure. Reduction in AAT may be a means by which arsenic induces respiratory disease, and selenium may protect against this adverse effect.
Collapse
Affiliation(s)
- Jefferey L. Burgess
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Margaret Kurzius-Spencer
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Gerald S. Poplin
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Sally R. Littau
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Michael J. Kopplin
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Stefan Stürup
- Institute of Analytical Chemistry, Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
| | - Scott Boitano
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - R. Clark Lantz
- Division of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Adam D, Perotin JM, Lebargy F, Birembaut P, Deslée G, Coraux C. [Regeneration of airway epithelium]. Rev Mal Respir 2013; 31:300-11. [PMID: 24750950 DOI: 10.1016/j.rmr.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. BACKGROUND The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. CONCLUSION Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution.
Collapse
Affiliation(s)
- D Adam
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - J-M Perotin
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - F Lebargy
- Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - P Birembaut
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Laboratoire d'histologie Pol Bouin, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - G Deslée
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Coraux
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| |
Collapse
|
13
|
Cheng D, Kong H, Li Y. Prognostic value of interleukin-8 and MMP-9 in nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2013; 271:503-9. [PMID: 23749058 DOI: 10.1007/s00405-013-2580-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/27/2013] [Indexed: 12/22/2022]
|
14
|
Yahaya B, McLachlan G, McCorquodale C, Collie D. Gene expression changes associated with the airway wall response to injury. PLoS One 2013; 8:e58930. [PMID: 23593124 PMCID: PMC3621906 DOI: 10.1371/journal.pone.0058930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/08/2013] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall. Methodology/Principal Findings We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7. Conclusions/Significance It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.
Collapse
Affiliation(s)
- Badrul Yahaya
- Cluster for Regenerative Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, Kepala Batas, Penang, Malaysia.
| | | | | | | |
Collapse
|
15
|
Increased volume of tracheal aspirate fluid predicts the development of bronchopulmonary dysplasia. Early Hum Dev 2013; 89:113-7. [PMID: 22980969 DOI: 10.1016/j.earlhumdev.2012.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated cytokine concentrations were observed in tracheal aspirate fluid (TAF) of infants on mechanical ventilation who subsequently developed bronchopulmonary dysplasia (BPD). However, there are few reports that systematically evaluate the amount of TAF as an indicator of BPD development. AIM To clarify whether TAF volume during the first week of life predicts BPD development in extremely low gestational age newborns (ELGANs). STUDY DESIGN We analyzed 51 infants, born at gestational age of <28 weeks and ventilated for more than 7 days after birth, among whom, 26 were diagnosed with BPD based on the clinical definition of oxygen dependence at 36 weeks postmenstrual age (BPD group) and 25 were included in the non-BPD group. Sum of TAF scores (STS) was calculated by semi-quantification of TAF volume at each suctioning and the suctioning frequency during the first week of life. RESULTS STS was significantly higher in the BPD group than in the non-BPD group (median (interquartile range): 77 (29-126) vs. 28 (22-59), p<0.001). STS (cut-off, 60) with area under the curve in receiver operating analysis of 0.75 was significantly predictive of BPD development. Multivariate logistic regression analysis adjusted for perinatal characteristics showed that STS≥60 was a significant risk factor for BPD development (odds ratio, 7.50; confidence interval, 1.16-48.40, p=0.034). CONCLUSION Increased TAF volume during the first week of life was an independent predictor for BPD development in ventilated ELGANs, indicating that increased pulmonary capillary permeability may influence the pathogenesis of BPD.
Collapse
|
16
|
Xiao H, Li DX, Liu M. Knowledge translation: airway epithelial cell migration and respiratory diseases. Cell Mol Life Sci 2012; 69:4149-62. [PMID: 22718093 PMCID: PMC11115183 DOI: 10.1007/s00018-012-1044-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 12/17/2022]
Abstract
Airway epithelial cell migration is essential for lung development and growth, as well as the maintenance of respiratory tissue integrity. This vital cellular process is also important for the repair and regeneration of damaged airway epithelium. More importantly, several lung diseases characterized by aberrant tissue remodeling result from the improper repair of damaged respiratory tissue. Epithelial cell migration relies upon extracellular matrix molecules and is further regulated by numerous local, neuronal, and hormonal factors. Under inflammatory conditions, cell migration can also be stimulated by certain cytokines and chemokines. Many well-known environmental factors involved in the pathogenesis of chronic lung diseases (e.g., cigarette smoking, air pollution, alcohol intake, inflammation, viral and bacterial infections) can inhibit airway epithelial cell migration. Further investigation of cellular and molecular mechanisms of cell migration with advanced techniques may provide knowledge that is relevant to physiological and pathological conditions. These studies may eventually lead to the development of therapeutic interventions to improve lung repair and regeneration and to prevent aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Helan Xiao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Debbie X. Li
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Departments of Surgery and Medicine, Faculty of Medicine, University of Toronto, Room TMDT 2-814, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
17
|
Mitten EK, Jing D, Suzuki Y. Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:854-864. [PMID: 22940602 DOI: 10.1016/j.ibmb.2012.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Regenerative abilities are found ubiquitously among many metazoan taxa. To compare mechanisms underlying the initial stages of limb regeneration between insects and vertebrates, the roles of matrix metalloproteinases (MMPs) and fibroblast growth factor (FGF) signaling were investigated in the red flour beetle, Tribolium castaneum. RNA interference-mediated knockdown of MMP2 expression delayed wound healing and subsequent leg regeneration. Additionally, pairwise knockdown of MMP1/2 and MMP2/3, but not MMP1/3, resulted in inhibition of wound closure. Wound healing on the dorsal epidermis after injury was also delayed when MMPs were silenced. Our findings show that functionally redundant MMPs play key roles during limb regeneration and wound healing in Tribolium. This MMP-mediated wound healing is necessary for the subsequent formation of a blastema. In contrast, silencing of FGF receptor did not interfere with the initial stages of leg regeneration despite the alterations in tanning of the cuticle. Thus, insects and vertebrates appear to employ similar developmental processes for the initial stages of wound closure during limb regeneration, while the role of FGF in limb regeneration appears to be unique to vertebrates.
Collapse
Affiliation(s)
- Emilie K Mitten
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | | | | |
Collapse
|
18
|
Abstract
Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases. Evidence is emerging that purinergic signaling promotes repair in human airway epithelia. An injury induces ATP release, which binds P2Y(2) receptors (P2Y(2)Rs) to initiate protein kinase C (PKC)-dependent oxidative activation of TNFα-converting enzyme (TACE), which then releases the membrane-bound ligands of the epidermal growth factor receptor (EGFR). The P2Y(2)R- and EGFR-dependent signaling cascades converge to induce mediator release, whereas the latter also induces cytoskeletal rearrangement for cell migration and proliferation. Similar roles for purinergic signaling are reported in pulmonary endothelial cells, smooth muscle cells and fibroblasts. In chronic airway diseases, the aberrant regulation of extracellular purines is implicated in the development of airway remodeling by mucus cell metaplasia and hypersecretion, excess collagen deposition, fibrosis and neovascularization. This chapter describes the crosstalk between these signaling cascades and discusses the impact of deregulated purinergic signaling in chronic lung diseases.
Collapse
|
19
|
Shao G, Julian MW, Bao S, McCullers MK, Lai JP, Knoell DL, Crouser ED. Formyl peptide receptor ligands promote wound closure in lung epithelial cells. Am J Respir Cell Mol Biol 2010; 44:264-9. [PMID: 20889801 DOI: 10.1165/rcmb.2010-0246rc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial antigens released from damaged cells act as "danger signals" capable of promoting innate immune cell migration and activation via formyl peptide receptors (FPRs). Lung epithelial cells are equipped to migrate and mount innate immune responses in the context of acute lung injury. The goal of this study was to determine whether lung epithelial cells express FPRs, which are capable of responding to mitochondrial antigens to promote wound closure and inflammation. Using human Beas2B lung epithelial cells grown to confluency and subjected to linear scratch injury, it was found that mitochondrial antigens enhanced epithelial wound closure, and this phenomenon was inhibited by cyclosporin H, a selective inhibitor of FPR. Although mitochondrial antigens also promoted IL-8 release, this release was not FPR dependent and was unrelated to FPR-induced lung epithelial cell wound closure. The expression of functional FPR was confirmed in Beas2B and primary human tracheobronchial epithelial cells, particularly in lamellipodia at the leading edge of the closing wound. The expression of FPR was increased in response to TNF-α, LPS, scratch injury, and mitochondrial antigen treatment. Considered together, these data confirm that human lung epithelial cells express functional FPRs, which are capable of responding to endogenous mitochondrial danger signals, to promote wound closure.
Collapse
Affiliation(s)
- Guohong Shao
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wadsworth SJ, Atsuta R, McIntyre JO, Hackett TL, Singhera GK, Dorscheid DR. IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells. J Allergy Clin Immunol 2010; 126:366-74, 374.e1-8. [PMID: 20624652 DOI: 10.1016/j.jaci.2010.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/30/2010] [Accepted: 05/11/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bronchial epithelial damage and activation likely contribute to the inflammatory and airway-remodeling events characteristic of severe asthma. Interaction of Fas receptor (CD95) with its ligand (FasL; CD95L) is an important mechanism of cell-mediated apoptosis. Bronchial epithelial FasL expression provides immune barrier protection from immune cell-mediated damage. OBJECTIVES Membrane FasL (mFasL) is a cleavage target of matrix metalloproteinases (MMPs). We investigated whether the asthmatic T(H)2 environment might influence disease processes by increasing airway epithelial MMP-mediated cleavage of mFasL into proinflammatory soluble FasL. METHODS We used human airway epithelial cell lines and primary cells to model the human airway epithelium in vitro. Airway tissue from healthy subjects and patients with severe asthma was used to investigate MMP expression patterns in diseased airways. RESULTS We demonstrate that active MMP-7 is present in the ciliated epithelial cells of normal human airways. In patients with severe asthma, MMP-7 levels are increased in basal epithelial cells. Airway epithelial cell lines (1HAEo(-) and 16HBE14o(-)) in vitro express constitutively high levels of MMP-2 and MMP-9 but relatively low levels of MMP-7. T(H)2 cytokine (IL-4, IL-9, and IL-13) treatment of 1HAEo(-) cells increased MMP-7 mRNA and activity, triggered colocalization of intracellular MMP-7 with FasL, and caused mFasL cleavage with soluble FasL release. Small interfering RNA knockdown shows that cytokine-induced mFasL cleavage is dependent on MMP-7 activity. CONCLUSIONS MMPs serve multiple beneficial roles in the lung. However, chronic disordered epithelial expression of MMP-7 in patients with asthma might increase mFasL cleavage and contribute to airway epithelial damage and inflammation.
Collapse
Affiliation(s)
- Samuel J Wadsworth
- UBC James Hogg Research Laboratories, Providence Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Boots AW, Hristova M, Kasahara DI, Haenen GRMM, Bast A, van der Vliet A. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 2009; 284:17858-67. [PMID: 19386603 DOI: 10.1074/jbc.m809761200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the NADPH oxidase homolog dual oxidase 1 (DUOX1) within the airway epithelium represents a key mechanism of innate airway host defense, through enhanced production of H2O2, which mediates cellular signaling pathways that regulate the production of various inflammatory mediators. Production of the CXC chemokine interleukin (IL)-8/CXCL8 forms a common epithelial response to many diverse stimuli, including bacterial and viral triggers, environmental oxidants, and other biological mediators, suggesting the potential involvement of a common signaling pathway that may involve DUOX1-dependent H2O2 production. Following previous reports showing that DUOX1 is activated by extracellular ATP and purinergic receptor stimulation, this study demonstrates that airway epithelial IL-8 production in response to several bacterial stimuli involves ATP release and DUOX1 activation. ATP-mediated DUOX1 activation resulted in the activation of ERK1/2 and NF-kappaB pathways, which was associated with epidermal growth factor receptor (EGFR) ligand shedding by ADAM17 (a disintegrin and metalloproteinase-17). Although ATP-mediated ADAM17 activation and IL-8 release were not prevented by extracellular H2O2 scavenging by catalase, these responses were attenuated by intracellular scavengers of H2O2 or related oxidants, suggesting an intracellular redox signaling mechanism. Both ADAM17 activation and IL-8 release were suppressed by inhibitors of EGFR/ERK1/2 signaling, which can regulate ADAM17 activity by serine/threonine phosphorylation. Collectively, our results indicate that ATP-mediated DUOX1 activation represents a common response mechanism to several environmental stimuli, involving H2O2-dependent EGFR/ERK activation, ADAM17 activation, and EGFR ligand shedding, leading to amplified epithelial EGFR activation and IL-8 production.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
22
|
Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L293-302. [PMID: 18539681 DOI: 10.1152/ajplung.00134.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As part of the innate immune defense, the polarized conducting lung epithelium acts as a barrier to keep particulates carried in respiration from underlying tissue. Arsenic is a metalloid toxicant that can affect the lung via inhalation or ingestion. We have recently shown that chronic exposure of mice or humans to arsenic (10-50 ppb) in drinking water alters bronchiolar lavage or sputum proteins consistent with reduced epithelial cell migration and wound repair in the airway. In this report, we used an in vitro model to examine effects of acute exposure of arsenic (15-290 ppb) on conducting airway lung epithelium. We found that arsenic at concentrations as low as 30 ppb inhibits reformation of the epithelial monolayer following scrape wounds of monolayer cultures. In an effort to understand functional contributions to epithelial wound repair altered by arsenic, we showed that acute arsenic exposure increases activity and expression of matrix metalloproteinase (MMP)-9, an important protease in lung function. Furthermore, inhibition of MMP-9 in arsenic-treated cells improved wound repair. We propose that arsenic in the airway can alter the airway epithelial barrier by restricting proper wound repair in part through the upregulation of MMP-9 by lung epithelial cells.
Collapse
Affiliation(s)
- Colin E Olsen
- Arizona Respiratory Center, Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724-5030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen P, McGuire JK, Hackman RC, Kim KH, Black RA, Poindexter K, Yan W, Liu P, Chen AJ, Parks WC, Madtes DK. Tissue inhibitor of metalloproteinase-1 moderates airway re-epithelialization by regulating matrilysin activity. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1256-70. [PMID: 18385523 DOI: 10.2353/ajpath.2008.070891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Obliterative bronchiolitis (OB) is the histopathological finding in chronic lung allograft rejection. Mounting evidence suggests that epithelial damage drives the development of airway fibrosis in OB. Tissue inhibitor of metalloproteinase (TIMP)-1 expression increases in lung allografts and is associated with the onset of allograft rejection. Furthermore, in a mouse model of OB, airway obliteration is reduced in TIMP-1-deficient mice. Matrilysin (matrix metallproteinase-7) is essential for airway epithelial repair and is required for the re-epithelialization of airway wounds by facilitating cell migration; therefore, the goal of this study was to determine whether TIMP-1 inhibits re-epithelialization through matrilysin. We found that TIMP-1 and matrilysin co-localized in the epithelium of human lungs with OB and both co-localized and co-immunoprecipitated in wounded primary airway epithelial cultures. TIMP-1-deficient cultures migrated faster, and epithelial cells spread to a greater extent compared with wild-type cultures. TIMP-1 also inhibited matrilysin-mediated cell migration and spreading in vitro. In vivo, TIMP-1 deficiency enhanced airway re-epithelialization after naphthalene injury. Furthermore, TIMP-1 and matrilysin co-localized in airway epithelial cells adjacent to the wound edge. Our data demonstrate that TIMP-1 interacts with matrix metalloproteinases and regulates matrilysin activity during airway epithelial repair. Furthermore, we speculate that TIMP-1 overexpression restricts airway re-epithelialization by inhibiting matrilysin activity, contributing to a stereotypic injury response that promotes airway fibrosis via bronchiole airway epithelial damage and obliteration.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 2007; 40:1334-47. [PMID: 18083622 PMCID: PMC2746915 DOI: 10.1016/j.biocel.2007.10.024] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/18/2007] [Indexed: 12/12/2022]
Abstract
Wound healing is a dynamic process that involves a coordinated response of many cell types representing distinct tissue compartments and is fundamentally similar among tissue types. Among the many gene products that are essential for restoration of normal tissue architecture, several members of the matrix metalloproteinase (MMP) family function as positive and, at times, negative regulators of repair processes. MMPs were initially thought to only function in the resolution phase of wound healing, particularly during scar resorption; however, recent evidence suggests that they also influence other wound-healing responses, such as inflammation and re-epithelialization. In this review, we discuss what is currently known about the function of MMPs in wound healing and will provide suggestions for future research directions.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | |
Collapse
|
25
|
Atkinson JJ, Toennies HM, Holmbeck K, Senior RM. Membrane type 1 matrix metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth factor receptor expression after acute injury. Am J Physiol Lung Cell Mol Physiol 2007; 293:L600-10. [PMID: 17557804 DOI: 10.1152/ajplung.00028.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a protease produced by airway epithelial cells in various diseases. Since other MMPs are involved in bronchial epithelial repair, we investigated the role of MT1-MMP in naphthalene-induced small airway injury and repair in wild-type (WT) and MT1-MMP-knockout (KO) mice. The degree of injury was similar in both strains, but the MT1-MMP KO mice were unable to reconstitute a normal, fully differentiated airway epithelium 28 days after injury. MT1-MMP was required for the proliferative response in distal airway epithelial cells, resulting in decreased cell density and airway epithelial cell differentiation in MT1-MMP KO mice. Surprisingly, EGF-mediated signaling was unaltered in MT1-MMP KO mice and therefore unrelated to the proliferative response. However, keratinocyte growth factor receptor (KGFR) expression was significantly upregulated before the proliferative response and markedly less evident in the distal airway epithelium of MT1-MMP KO mice. These results indicate MT1-MMP is involved in KGFR expression and epithelial cell proliferation after acute airway injury.
Collapse
Affiliation(s)
- Jeffrey J Atkinson
- Department of Internal Medicine, Pulmonary and Critical Care Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
26
|
Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C. Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 2007; 211:340-50. [PMID: 17186573 DOI: 10.1002/path.2118] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) at an advanced stage of the disease is characterized by airway epithelial injury and remodelling. Whether CF remodelling is related to infection and inflammation or due to an abnormal regenerative process is still undecided. We have recently established the expression and secretion profiles of interleukin (IL)-8, matrix metalloproteinase (MMP)-7, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-1 during non-CF airway epithelial regeneration in a humanized nude mouse xenograft model. To enhance our understanding of CF remodelling, we compared the regeneration process of non-infected human CF and non-CF nasal epithelia. In both CF and non-CF situations, epithelial regeneration was characterized by successive steps of cell adhesion and migration, proliferation, pseudostratification, and terminal differentiation. However, histological examination of the grafts showed a delay in differentiation of the CF airway epithelium. Cell proliferation was higher in the regenerating CF epithelium, and the differentiated CF epithelium exhibited a pronounced height increase and basal cell hyperplasia in comparison with non-CF epithelium. In addition, while the number of goblet cells expressing MUC5AC was similar in CF and non-CF regenerated epithelia, the number of MUC5B-immunopositive goblet cells was lower in CF grafts. The expression of human IL-8, MMP-7, MMP-9, and TIMP-1 was enhanced in CF epithelium, especially early in the regenerative process. Together, our data strongly suggest that the regeneration of human CF airway surface epithelium is characterized by remodelling, delayed differentiation, and altered pro-inflammatory and MMP responses.
Collapse
Affiliation(s)
- R Hajj
- INSERM U514, Reims, France; Université de Reims, IFR53, Reims, France
| | | | | | | | | | | |
Collapse
|
27
|
Chen YS, Langhammer T, Westhofen M, Lorenzen J. Relationship between matrix metalloproteinases MMP-2, MMP-9, tissue inhibitor of matrix metalloproteinases-1 and IL-5, IL-8 in nasal polyps. Allergy 2007; 62:66-72. [PMID: 17156344 DOI: 10.1111/j.1398-9995.2006.01255.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nasal polyps (NP), a subgroup of chronic rhinosinusitis, are characterized by interleukin 5 (IL-5) mediated infiltration of eosinophils in sinus mucosa, leading to pseudostratified ciliated columnar epithelium, thickening of the epithelial basement membrane and tissue edema. Matrix metalloproteinases (MMP) constitute a large group of Zn2+ dependent endopeptidases with the ability to degrade extracellular matrix and are possibly responsible for the development of tissue edema in chronic sinusitis. OBJECTIVE The aim of this study was to determine the expression of MMP-2, MMP-9 and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) mRNA and to locate the distribution of MMP-2, MMP-9 and TIMP-1 by immunohistochemistry in ethmoid sinus mucosa in NP. Furthermore the correlation between IL-5 or IL-8 and MMP-2, MMP-9 or TIMP-1 is examined. METHODS Nasal polyps of 33 patients and 18 specimens of inferior turbinate mucosa were examined by real time RT-PCR for MMP-2, MMP-9, TIMP-1, IL-5 and IL-8 mRNA expression. Immunohistochemical labeling for MMP-2, MMP-9 and TIMP-1 was performed. RESULTS Differences between both locations were detectable for MMP-9 (P < 0.001) and IL-5 (P=0.003) but not for MMP-2 (P=0.278), TIMP-1 (P=0.515) and IL-8 (P=0.386). Correlation was detected only between TIMP-1 and IL-5 (r=0.422, P =0.014). Cytoplasmic staining of MMP-2 was present in the apical part of the ciliated cells, submucosal glands and in smooth muscle cells. Matrix metalloproteinase-9 was expressed in surface epithelium, in seromucous glands and in polymorphonuclear cells. CONCLUSIONS Expression of MMP-9 and IL-5 mRNA are associated with NP. The correlation between IL-5 and TIMP-1 indicates the role of TIMP-1 in maintaining the homeostasis in NP.
Collapse
Affiliation(s)
- Y-S Chen
- Department of Otorhinolaryngology, Plastic Head and Neck Surgery, University Hospital RWTH Aachen, Germany
| | | | | | | |
Collapse
|
28
|
Bove PF, Wesley UV, Greul AK, Hristova M, Dostmann WR, van der Vliet A. Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9. Am J Respir Cell Mol Biol 2006; 36:138-46. [PMID: 16980554 PMCID: PMC1899313 DOI: 10.1165/rcmb.2006-0253sm] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9.
Collapse
Affiliation(s)
- Peter F Bove
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
29
|
Coraux C, Hajj R, Lesimple P, Puchelle E. [Repair and regeneration of the airway epithelium]. Med Sci (Paris) 2006; 21:1063-9. [PMID: 16324647 DOI: 10.1051/medsci/200521121063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions, through several mechanisms including basal cell spreading and migration, followed by proliferation and differentiation of epithelial cells. The cellular and molecular factors involved in wound repair and epithelial regeneration are closely interacting and imply extracellular matrix proteins, matrix metalloproteinases (MMPs) and their inhibitors as well as cytokines and growth factors secreted by airway epithelial and mesenchymal cells. The development of in vitro and in vivo models of airway epithelium wound repair allowed the study of the spatio-temporal modulation of these factors during the different steps of epithelial repair and regeneration. In this context, several studies have demonstrated that the matrix and secretory environment are markedly involved in these mechanisms and that their dysregulation may induce remodelling of the airway mucosa. A better knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to regenerative therapeutics allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.
Collapse
Affiliation(s)
- Christelle Coraux
- Inserm UMRS 514, IFR 53, CHU Maison Blanche, 45, rue Cognacq- Jay, 51092 Reims Cedex, France
| | | | | | | |
Collapse
|
30
|
Puchelle E, Le Simple P, Hajj R, Coraux C. Régénération de l′épithélium respiratoire lésé. ANNALES PHARMACEUTIQUES FRANÇAISES 2006; 64:107-13. [PMID: 16568011 DOI: 10.1016/s0003-4509(06)75302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The airway surface epithelium is frequently injured by microorganisms and viruses due to its permanent contact with the external medium. Following injury, the epithelium is able to repair itself and regenerate through several mechanisms including spreading and migration of basal cells, cell proliferation and differentiation. The cellular and molecular factors involved in wound repair and epithelial regeneration interact closely, implying the participation of cytoskeleton proteins and integrins receptors, matrix metalloproteinases and their inhibitors as well as cytokines and growth factors secreted by airway epithelial and mesenchymal cells. The spatio-temporal modulation of the pro-inflammatory cytokines such as IL-8, and MMPs (MMP-9 and -7) during the different steps of regeneration suggests that the matrix and secretory environment are markedly involved in these mechanisms and that their dysregulation may induce remodeling of the airway mucosa. A better knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to regenerative therapeutics allowing the reconstitution of a functional airway mucosa in numerous respiratory diseases such as cystic fibrosis, chronic obstructive pulmonary diseases and bronchiolitis.
Collapse
Affiliation(s)
- E Puchelle
- Inserm UMRS 514, IFR 53, Hôpital Maison Blanche, 45, rue Cognacq Jay, F 51092 Reims Cedex
| | | | | | | |
Collapse
|