1
|
Kundu S, Amini M, Stachon T, Fries F, Seitz B, Li Z, Li S, Liu S, Shu SL, Suiwal S, Szentmáry N. Effect of isolated keratin 3 knockdown on gene expression of primary limbal epithelial cells without and with inflammatory stimuli. Ann Anat 2025; 260:152670. [PMID: 40334825 DOI: 10.1016/j.aanat.2025.152670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
PURPOSE Studies have shown that keratin 3 (KRT3) expression is reduced in paired box 6 (PAX6) haploinsufficient primary limbal epithelial cells (LECs). The downregulation of KRT3 expression due to PAX6 haploinsufficiency is likely a critical factor in the development and progression of aniridia associated keratopathy (AAK). In addition, the ocular surface of congenital aniridia patients exhibits an inflammatory environment. The objective of this study was to investigate the isolated effect of KRT3 knockdown, achieved via siRNA silencing in healthy LECs, on PAX6 and other related gene expressions, both under normal and inflammatory conditions. METHODS To achieve KRT3 knockdown, human primary LECs were transfected with KRT3 siRNA using Lipofectamine 2000. Inflammatory conditions were induced 48 hours after transfection by treating the cells with 2 mg/mL of lipopolysaccharides (LPS) or 1 ng/mL of IL-1β. Subsequently, gene and protein expression levels were analysed using qPCR, Western blotting, and ELISA. RESULTS Following KRT3 knockdown at protein level, there was DSG1, ADH7 and PPARγ upregulation and MAPK1 downregulation solely at transcriptional level (p ≤ 0.031). Nevertheless, IL-6 downregulation could be observed both at transcriptional and at protein levels (p ≤ 0.003). Following KRT3 siRNA knockdown, LPS induced inflammation decreased PPARγ mRNA level and IL-1β induced inflammation decreased DSG1 and ADH7 mRNA levels without changes at protein levels (p ≤ 0.014). In contrast, in control knockdown LECs, IL-1β induced inflammation significantly decreased KRT3 mRNA and protein levels and IL-6 protein level (p ≤ 0.02). CONCLUSIONS In normal LECs, inflammatory stimuli slow differentiation and simultaneously induce IL-6 production. These mechanisms are absent in KRT3 knockdown LECs. As a result, despite the presence of inflammation, KRT3 knockdown LECs continue their differentiation unaltered while maintaining inflammatory IL-6 protein secretion.
Collapse
Affiliation(s)
- Swarnali Kundu
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Fabian Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shuailin Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shanhe Liu
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shao-Lun Shu
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
2
|
Ulrich E, Kistenmacher S, Martin G, Schlötzer-Schrehardt U, Seitz B, Auw-Hädrich C, Schlunck G, Reinhard T, Polisetti N. PAX3 expression patterns in ocular surface melanocytes. Sci Rep 2025; 15:12472. [PMID: 40216818 PMCID: PMC11992251 DOI: 10.1038/s41598-025-90318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
PAX3, a transcription factor essential for neural crest development and melanocyte progenitors, is expressed in various melanocytic tissues. However, its role in ocular surface tissues remains poorly understood. This study investigated the expression patterns of PAX3 in the limbal stem cell niche, specifically in limbal epithelial progenitor cells (LEPC), limbal melanocytes (LM), and limbal mesenchymal stem cells (LMSC). Additionally, PAX3 expression was studied in conjunctival/limbal melanoma specimens. Immunohistochemical analysis revealed predominant PAX3 expression in LM as well in the conjunctival melanocytes, suggesting distinct roles in stem cell regulation and melanocyte maintenance. Notably, PAX3 was significantly upregulated in conjunctival/limbal melanoma tissues compared to healthy counterparts, with expression co-localizing with melanocyte markers (Melan-A, HMB45, SOX10) and the proliferation marker Ki-67 in melanoma cells. These findings suggests that while PAX3 expression is restricted to melanocytes in limbal/conjunctival tissues and its dysregulation may play a crucial role in conjunctival/limbal melanoma development. Further investigation into mechanisms by which PAX3 influences corneal pathophysiology and contributes to conjunctival/limbal melanoma pathogenesis could identify potential therapeutic targets for this aggressive ocular malignancy.
Collapse
Affiliation(s)
- Eva Ulrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Sebastian Kistenmacher
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
3
|
Guo Y, Wu W, Chen H, Wang X, Zhang Y, Li S, Yang X. Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis. Front Cell Dev Biol 2025; 13:1475334. [PMID: 39896421 PMCID: PMC11782130 DOI: 10.3389/fcell.2025.1475334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all Hox genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, Pax6, Otx2, and Foxc1, are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.
Collapse
Affiliation(s)
- Yanjie Guo
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | | | | | | | | | | | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
4
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Hu X, Dong C, Zou D, Wei C, Wang Y, Li Z, Duan H, Li Z. Directed differentiation of human embryonic stem cells into conjunctival epithelial cells. Exp Cell Res 2024; 442:114227. [PMID: 39209142 DOI: 10.1016/j.yexcr.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.
Collapse
Affiliation(s)
- Xiangyue Hu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Chunxiao Dong
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Dulei Zou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Chao Wei
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Yani Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zongren Li
- 970 Hospital of Chinese PLA Joint Logistic Support Force, Weihai, 264200, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| | - Zongyi Li
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
| |
Collapse
|
6
|
Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, Liu D, Zhan Y, Du X, Liu J, Tan J, Huang Y, Mo K, Lan X, Ouyang H, Yuan J, Chen X, Ji J. PAX6-WNK2 Axis Governs Corneal Epithelial Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39453672 PMCID: PMC11512568 DOI: 10.1167/iovs.65.12.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Limbal stem/progenitor cells (LSCs) continuously proliferate and differentiate to replenish the corneal epithelium and play a vital role in corneal function and normal vision. A previous study revealed that paired box 6 (PAX6) is a master transcription factor involved in determining the fate of corneal epithelial cells (CECs). However, the molecular events downstream of PAX6 remain largely unknown. In this study, we aimed to clarify the regulation network of PAX6 in driving CEC differentiation. Methods An air-liquid culture system was used to differentiate LSCs into mature CECs. Specific targeting PAX6 short-hairpin RNAs were used to knock down PAX6 in LSC. RNA sequencing (RNA-seq) was used to analyze shPAX6-transfected CECs and CEC differentiation-associated genes to identify the potential downstream targets of PAX6. RNA-seq analysis, quantitative real-time PCR, and immunofluorescence staining were performed to clarify the function of WNK lysine deficient protein kinase 2 (WNK2), a downstream target of PAX6, and its relationship with corneal diseases. Results WNK2 expression increased during CEC differentiation and decreased upon PAX6 depletion. The distribution of WNK2 was specifically limited to the central corneal epithelium and suprabasal layer of the limbus. Knockdown of WNK2 impaired the expression of CEC-specific markers (KRT12, ALDH3A1, and CLU), disrupted the corneal differentiation process, and activated the terms of keratinization, inflammation, and cell proliferation, consistent with PAX6-depleted CEC and published microbial keratitis. Thus, aberrant expression of WNK2 was linked to corneal ulcers. Conclusions As a downstream target of PAX6, WNK2 plays an essential role in corneal epithelial cell differentiation and maintenance of corneal homeostasis.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Zhan
- Department of Experimental Research, Bioinformatics Platform, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
7
|
Takezawa Y, Kamon M, Hiraki-Kamon K, Mitani A, Shiraishi A, Kato H. Experimental interventions attenuate a conjunctival epidermal metaplasia model. Exp Eye Res 2024; 243:109916. [PMID: 38679224 DOI: 10.1016/j.exer.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The conjunctiva is a non-keratinized, stratified columnar epithelium with characteristics different from the cornea and eyelid epidermis. From development to adulthood, a distinguishing feature of ocular versus epidermal epithelia is the expression of the master regulator PAX6. A conditionally immortalized conjunctival epithelial cell line (iHCjEC) devoid of stromal or immune cells established in our laboratory spontaneously manifested epidermal metaplasia and upregulated expression of the keratinization-related genes SPRR1A/B and the epidermal cytokeratins KRT1 and KRT10 at the expense of the conjunctival trait. In addition, iHCjEC indicated a significant decrease in PAX6 expression. Dry eye syndrome (DES) and severe ocular surface diseases, such as Sjögren's syndrome and Stevens-Johnson syndrome, cause the keratinization of the entire ocular surface epithelia. We used iHCjECs as a conjunctiva epidermal metaplasia model to test PAX6, serum, and glucocorticoid interventions. Reintroducing PAX6 to iHCjECs resulted in upregulating genes related to cell adhesion and tight junctions, including MIR200CHG and CLDN1. The administration of glucocorticoids or serum resulted in the downregulation of epidermal genes (DSG1, SPRR1A/B, and KRT1) and partially corrected epidermal metaplasia. Our results using an isolated conjunctival epidermal metaplasia model point toward the possibility of rationally "repurposing" clinical interventions, such as glucocorticoid, serum, or PAX6 administration, for treating epidermal metaplasia of the conjunctiva.
Collapse
Affiliation(s)
- Yuki Takezawa
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Toon, Japan.
| | - Masayoshi Kamon
- Department of Developmental Biology and Functional Genomics, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Keiko Hiraki-Kamon
- Department of Developmental Biology and Functional Genomics, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Arisa Mitani
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hidemasa Kato
- Department of Developmental Biology and Functional Genomics, Graduate School of Medicine, Ehime University, Toon, Japan.
| |
Collapse
|
8
|
Shalwitz R, Day T, Ruehlmann AK, Julio L, Gordon S, Vandeuren A, Nelson M, Lyman M, Kelly K, Altvater A, Ondeck C, O'Brien S, Hamilton T, Hanson RL, Wayman K, Miller A, Shalwitz I, Batchelor E, McNutt P. Treatment of Sulfur Mustard Corneal Injury by Augmenting the DNA Damage Response (DDR): A Novel Approach. J Pharmacol Exp Ther 2024; 388:526-535. [PMID: 37977813 PMCID: PMC10801765 DOI: 10.1124/jpet.123.001686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since World War I. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the homologous recombination pathway could pose a novel approach to mitigate SM injury. Here, we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances γH2AX focus formation, and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DNA damage response through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared with vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs. SIGNIFICANCE STATEMENT: Sulfur mustard gas corneal injury currently has no therapeutic treatment. This study aims to show the therapeutic potential of activating the body's natural DNA damage response to activate tissue repair.
Collapse
Affiliation(s)
- Robert Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tovah Day
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Anna Kotsakis Ruehlmann
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Lindsay Julio
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Shellaina Gordon
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Adrianna Vandeuren
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Marian Nelson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Megan Lyman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kyle Kelly
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Amber Altvater
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Celinia Ondeck
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Sean O'Brien
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Tracey Hamilton
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Ryan L Hanson
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Kayla Wayman
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Alexandrea Miller
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Isaiah Shalwitz
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Eric Batchelor
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| | - Patrick McNutt
- Invirsa, Inc., Columbus, Ohio (R.S., A.K.R., A.M., I.S.); Department of Biology, Northeastern University, Boston, Massachusetts (T.D., L.J., S.G., A.V.); Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota (R.L.H., K.W., E.B.); United States Army Medical Research Institute for Chemical Defense, Gunpowder, Maryland (M.N., M.L., K.K., A.A., C.O., S.O., T.H., P.M.); and Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina (S.O., C.O., P.M.)
| |
Collapse
|
9
|
Lin S, Cai M, Zhang L, Mao Y, Wu H, Liu X, Li Y, Liang M, Cheng X, Yu F, He H, Zong R, Wu H, Liu Z, Ou S, Li W. Limbal Stem Cell Dysfunction Induced by Severe Dry Eye via Activation of the p38 MAPK Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1863-1878. [PMID: 37634709 DOI: 10.1016/j.ajpath.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Severe dry eye (SDE) can cause grievous damage to the ocular surface and result in vision impairment and even blindness. To investigate the fate of limbal stem cells in SDE and the underlying mechanism, the current study established an SDE rat model by removing the extraorbital and infraorbital lacrimal glands and maintaining them in a low-humidity environment. One month after the surgery, aqueous tear secretion was reduced dramatically, blood vessels invaded into the central cornea, and inflammatory cells infiltrated into the limbal stroma. The expressions of keratin 12 and paired box gene 6 were down-regulated dramatically, while those of keratin 10, small proline-rich protein 1b, and mucin 5AC were up-regulated in the corneal epithelium of the SDE rats. Cell proliferation in the limbal epithelium was up-regulated, while the stem/progenitor marker adenosine 5'-triphosphate-binding cassette member 2 and the limbal epithelial colony-forming efficiency were decreased in the SDE condition. Furthermore, the p38 mitogen-activated protein kinase signaling pathway was activated in the limbal corneal epithelium of SDE rats. The abnormal differentiation and stemness loss in the corneal epithelium could be reversed upon treatment with a p38 inhibitor in a SDE in vivo model and in vitro hyperosmolar corneal epithelial culture conditions. These data suggest that SDE can lead to limbal stem cell dysfunction, and p38 mitogen-activated protein kinase signaling pathway activation plays an essential role in this process.
Collapse
Affiliation(s)
- Sijie Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minqing Cai
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Lingyu Zhang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yi Mao
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Han Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xiaodong Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixuan Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minghui Liang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xinxuan Cheng
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Fei Yu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Hui He
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Rongrong Zong
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Huping Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Shangkun Ou
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China.
| | - Wei Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
11
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
12
|
Polisetti N, Martin G, Cristina Schmitz HR, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Characterization of Porcine Ocular Surface Epithelial Microenvironment. Int J Mol Sci 2023; 24:ijms24087543. [PMID: 37108705 PMCID: PMC10145510 DOI: 10.3390/ijms24087543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine ocular surface is used as a model of the human ocular surface; however, a detailed characterization of the porcine ocular surface has not been documented. This is due, in part, to the scarcity of antibodies produced specifically against the porcine ocular surface cell types or structures. We performed a histological and immunohistochemical investigation on frozen and formalin-fixed, paraffin-embedded ocular surface tissue from domestic pigs using a panel of 41 different antibodies related to epithelial progenitor/differentiation phenotypes, extracellular matrix and associated molecules, and various niche cell types. Our observations suggested that the Bowman's layer is not evident in the cornea; the deep invaginations of the limbal epithelium in the limbal zone are analogous to the limbal interpalisade crypts of human limbal tissue; and the presence of goblet cells in the bulbar conjunctiva. Immunohistochemistry analysis revealed that the epithelial progenitor markers cytokeratin (CK)15, CK14, p63α, and P-cadherin were expressed in both the limbal and conjunctival basal epithelium, whereas the basal cells of the limbal and conjunctival epithelium did not stain for CK3, CK12, E-cadherin, and CK13. Antibodies detecting marker proteins related to the extracellular matrix (collagen IV, Tenascin-C), cell-matrix adhesion (β-dystroglycan, integrin α3 and α6), mesenchymal cells (vimentin, CD90, CD44), neurons (neurofilament), immune cells (HLA-ABC; HLA-DR, CD1, CD4, CD14), vasculature (von Willebrand factor), and melanocytes (SRY-homeobox-10, human melanoma black-45, Tyrosinase) on the normal human ocular surface demonstrated similar immunoreactivity on the normal porcine ocular surface. Only a few antibodies (directed against N-cadherin, fibronectin, agrin, laminin α3 and α5, melan-A) appeared unreactive on porcine tissues. Our findings characterize the main immunohistochemical properties of the porcine ocular surface and provide a morphological and immunohistochemical basis useful to research using porcine models. Furthermore, the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Heidi R Cristina Schmitz
- CEMT-Freiburg, Experimental Surgery, Hospital-Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
13
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
PAX6 Expression Patterns in the Adult Human Limbal Stem Cell Niche. Cells 2023; 12:cells12030400. [PMID: 36766742 PMCID: PMC9913671 DOI: 10.3390/cells12030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche.
Collapse
|
15
|
Ismail T, Lee H, Kim Y, Ryu HY, Cho DH, Ryoo ZY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS. PCNB exposure during early embryogenic development induces developmental delay and teratogenicity by altering the gene expression in Xenopus laevis. ENVIRONMENTAL TOXICOLOGY 2023; 38:216-224. [PMID: 36218123 DOI: 10.1002/tox.23679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hong-Yeoul Ryu
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Zae Young Ryoo
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
16
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
17
|
Park M, Zhang R, Pandzic E, Sun M, Coulson-Thomas VJ, Di Girolamo N. Plasticity of ocular surface epithelia: Using a murine model of limbal stem cell deficiency to delineate metaplasia and transdifferentiation. Stem Cell Reports 2022; 17:2451-2466. [DOI: 10.1016/j.stemcr.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
|
18
|
Lozano V, Martín C, Blanco N, Alcalde I, Fernandez-Vega Cueto L, Merayo-Lloves J, Quirós LM. Exosomes Released by Corneal Stromal Cells Show Molecular Alterations in Keratoconus Patients and Induce Different Cellular Behavior. Biomedicines 2022; 10:biomedicines10102348. [PMID: 36289615 PMCID: PMC9598276 DOI: 10.3390/biomedicines10102348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes have been related to various disorders, but their study in relation to ocular pathologies has been limited. In this article, we analyze exosomes produced by corneal stromal cells from healthy individuals and from patients with keratoconus. The proteomic study allowed for the identification of 14 new proteins with altered expression, related to molecules previously associated with the pathology. miRNA analysis detected 16 altered species, including miR-184, responsible for familial severe keratoconus. The prediction of its potential biological targets identified 1121 genes, including some related to this pathology. Exosomes produced by keratoconic cells induced a marked increase in the migration of stromal cells and corneal epithelium, while those produced by healthy cells had no effect on stromal cells. Both types of nanovesicles reduced the proliferation of stromal and corneal cells, but those produced by healthy cells had less effect. Exosomes produced by healthy cells had concentration-dependent effects on the transcription of genes encoding proteoglycans by keratoconus cells, with a relative normalization observed at concentrations of 240 µg/mL. These results show the alteration of stromal exosomes in keratoconus and suggest an influence on the development of the pathology, although the use of healthy exosomes could also have therapeutic potential.
Collapse
Affiliation(s)
- Víctor Lozano
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.); (C.M.); (N.B.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.); (C.M.); (N.B.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Noelia Blanco
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.); (C.M.); (N.B.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Luis Fernandez-Vega Cueto
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Correspondence: (L.F.-V.C.); (J.M.-L.); (L.M.Q.); Tel.: +34-985240141 (L.F.-V.C.); +34-985240141 (J.M.-L.); +34-985103560 (L.M.Q.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (L.F.-V.C.); (J.M.-L.); (L.M.Q.); Tel.: +34-985240141 (L.F.-V.C.); +34-985240141 (J.M.-L.); +34-985103560 (L.M.Q.)
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (V.L.); (C.M.); (N.B.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (L.F.-V.C.); (J.M.-L.); (L.M.Q.); Tel.: +34-985240141 (L.F.-V.C.); +34-985240141 (J.M.-L.); +34-985103560 (L.M.Q.)
| |
Collapse
|
19
|
Menzel-Severing J, Spaniol K, Groeber-Becker F, Geerling G. [Regenerative medicine for the corneal epithelium : Cell therapy from bench to bedside]. DIE OPHTHALMOLOGIE 2022; 119:891-901. [PMID: 35925345 DOI: 10.1007/s00347-022-01674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).
Collapse
Affiliation(s)
- Johannes Menzel-Severing
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Kristina Spaniol
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Florian Groeber-Becker
- Translationszentrum Regenerative Therapien | TLZ-RT, Leitung In-vitro-Testsysteme, Fraunhofer-Institut für Silicatforschung ISC, Würzburg, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
20
|
Abdalkader R, Kamei KI. An efficient simplified method for the generation of corneal epithelial cells from human pluripotent stem cells. Hum Cell 2022; 35:1016-1029. [PMID: 35553384 DOI: 10.1007/s13577-022-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
Abstract
Corneal epithelial cells derived from human pluripotent stem cells (hPSCs) are an important cell source for preclinical models to test ophthalmic drugs. However, current differentiation protocols lack instructions regarding optimal culturing conditions, which hinders the quality of cells and limits scale-up. Here, we introduce a simplified small molecule-based corneal induction method (SSM-CI) to generate corneal epithelial cells from hPSCs. SSM-CI provides the advantage of minimizing cell-culturing time using two defined culturing media containing TGF-β, and Wnt/β-catenin pathway inhibitors, and bFGF growth factor over 25 days. Compared to the conventional human corneal epithelial cell line (HCE-T) and human primary corneal epithelial cells (hPCEpCs), corneal epithelial cells generated by SSM-CI are well differentiated and express relevant maturation markers, including PAX6 and CK12. RNA-seq analysis indicated the faithful differentiation of hPSCs into corneal epithelia, with significant upregulation of corneal progenitor and adult corneal epithelial phenotypes. Furthermore, despite the initial inhibition of TGF-β and Wnt/β-catenin, upregulation of these pathway-related transcripts was observed in the later stages, indicating their necessity in the generation of mature corneal epithelial cells. Moreover, we observed a shift in gene signatures associated with the metabolic characteristics of mature corneal epithelial cells, involving a decrease in glycolysis and an increase in fatty acid oxidation. This was also attributed to the overexpression of metabolic enzymes and transporter-related transcripts responsible for fatty acid metabolism. Thus, SSM-CI provides a comprehensive method for the generation of functional corneal epithelial cells for use in preclinical models.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
21
|
Latta L, Knebel I, Bleil C, Stachon T, Katiyar P, Zussy C, Fries FN, Käsmann-Kellner B, Seitz B, Szentmáry N. Similarities in DSG1 and KRT3 Downregulation through Retinoic Acid Treatment and PAX6 Knockdown Related Expression Profiles: Does PAX6 Affect RA Signaling in Limbal Epithelial Cells? Biomolecules 2021; 11:1651. [PMID: 34827649 PMCID: PMC8615883 DOI: 10.3390/biom11111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell deficiency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans-retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells (LECs) and conjunctival epithelial cells. The aim of this study was to identify the role of retinol derivates in the differentiation of human LEC and its potential impact on aniridia-associated keratopathy development. Human LEC were isolated from healthy donor corneas and were cultured with retinol, retinoic acid, or pan-retinoic acid receptor antagonist (AGN 193109) acting on RARα, β, γ (NR1B1, NR1B2 NR1B3) or were cultured with pan-retinoid X receptor antagonist (UVI 3003) acting on RXR α, β, γ (retinoid X receptor, NR2B1, NR2B2, BR2B3). Using qPCR, differentiation marker and retinoid-/fatty acid metabolism-related mRNA expression was analysed. DSG1 (Desmoglein 1), KRT3 (Keratin 3), and SPINK7 (Serine Peptidase Inhibitor Kazal Type 7) mRNA expression was downregulated when retinoid derivates were used. AGN 193109 treatment led to the upregulation of ADH7, KRT3, and DSG1 mRNA expression and to the downregulation of KRT12 (Keratin 12) and KRT19 (Keratin 19) mRNA expression. Retinol and all-trans retinoic acid affect some transcripts of corneal LEC in a similar way to what has been observed in the LEC of PAX6-aniridia patients with the altered expression of differentiation markers. An elevated concentration of retinol derivatives in LEC or an altered response to retinoids may contribute to this pattern. These initial findings help to explain ocular surface epithelia differentiation disorders in PAX6-aniridia and should be investigated in patient cells or in cell models in the future in more detail.
Collapse
Affiliation(s)
- Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| | - Igor Knebel
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| | - Constanze Bleil
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| | - Priya Katiyar
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Germany; (F.N.F.); (B.K.-K.); (B.S.)
| | - Claire Zussy
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| | - Fabian Norbert Fries
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Germany; (F.N.F.); (B.K.-K.); (B.S.)
| | - Barbara Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Germany; (F.N.F.); (B.K.-K.); (B.S.)
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66421 Homburg, Germany; (F.N.F.); (B.K.-K.); (B.S.)
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66421 Homburg, Germany; (L.L.); (I.K.); (C.B.); (T.S.); (P.K.); (C.Z.)
| |
Collapse
|
22
|
Transcriptome Analysis of Pterygium and Pinguecula Reveals Evidence of Genomic Instability Associated with Chronic Inflammation. Int J Mol Sci 2021; 22:ijms222112090. [PMID: 34769520 PMCID: PMC8584501 DOI: 10.3390/ijms222112090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Solar damage due to ultraviolet radiation (UVR) is implicated in the development of two proliferative lesions of the ocular surface: pterygium and pinguecula. Pterygium and pinguecula specimens were collected, along with adjacent healthy conjunctiva specimens. RNA was extracted and sequenced. Pairwise comparisons were made of differentially expressed genes (DEGs). Computational methods were used for analysis. Transcripts from 18,630 genes were identified. Comparison of two subgroups of pterygium specimens uncovered evidence of genomic instability associated with inflammation and the immune response; these changes were also observed in pinguecula, but to a lesser extent. Among the top DEGs were four genes encoding tumor suppressors that were downregulated in pterygium: C10orf90, RARRES1, DMBT1 and SCGB3A1; C10orf90 and RARRES1 were also downregulated in pinguecula. Ingenuity Pathway Analysis overwhelmingly linked DEGs to cancer for both lesions; however, both lesions are clearly still benign, as evidenced by the expression of other genes indicating their well-differentiated and non-invasive character. Pathways for epithelial cell proliferation were identified that distinguish the two lesions, as well as genes encoding specific pathway components. Upregulated DEGs common to both lesions, including KRT9 and TRPV3, provide a further insight into pathophysiology. Our findings suggest that pterygium and pinguecula, while benign lesions, are both on the pathological pathway towards neoplastic transformation.
Collapse
|
23
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
24
|
Dysfunction of the limbal epithelial stem cell niche in aniridia-associated keratopathy. Ocul Surf 2021; 21:160-173. [PMID: 34102310 DOI: 10.1016/j.jtos.2021.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Abnormalities in the limbal niche microenvironment have been suggested to be causally involved in aniridia-associated keratopathy (AAK), but histological analyses on the limbal structure and composition in AAK are lacking. Here, we investigated morphologic and molecular alterations of the limbal epithelial stem cell niche in human congenital aniridia. METHODS The blind, buphthalmic and painful left eye of a 16-year old girl with congenital aniridia and juvenile glaucoma had to be enucleated because of uncontrolled intraocular pressure. The diagnosis of AAK was based on classical clinical features and partial limbal stem cell deficiency in the superior half. Genetic analysis identified a large heterozygous PAX6 gene deletion encompassing exons 11-15 as well as exon 9 of the neighboring ELP4 gene. Three limbal biopsies were taken from the superior, nasal and temporal regions to isolate and cultivate limbal epithelial progenitor cells and subject them to mRNA expression analyses. The globe was vertically bisected and processed for light and transmission electron microscopy and immunohistochemistry. RESULTS Comparative analysis of the superior and inferior limbal zones showed a gradual degradation of palisade structures associated with the transition from a hyperplastic to an attenuated corneal epithelium, inflammatory cell infiltrations and basement membrane irregularities. The clinically unaffected inferior part revealed no distinct stem cell clusters in the preserved palisade region, but a uniform population of hyperproliferative, undifferentiated progenitor cells in the basal/suprabasal layers of limbal and corneal epithelia, which gave rise to maldifferentiated epithelial cells exhibiting a conjunctival/epidermal phenotype and nuclear-to-cytoplasmic translocation of Pax6. The structure of the limbal niche was fundamentally perturbed, showing marked alterations in extracellular matrix composition, dislocation of atypical melanocytes lacking melanosomes and melanin, aberrant Wnt/β-catenin and retinoic acid signaling, and massive immune cell infiltration. CONCLUSIONS Considering the limitations of a single Case study, the findings suggest that ocular surface alterations in AAK are caused by a primary dysfunction and gradual breakdown of the limbal stem cell niche through Pax6-related effects on both melanogenesis and epithelial differentiation.
Collapse
|
25
|
Chen SY, Zhu Y, Zhang Y, Hsu D, Tseng SCG. HC-HA/PTX3 from amniotic membrane reverts senescent limbal niche cells to Pax6+ neural crest progenitors to support limbal epithelial progenitors. Stem Cells 2021; 39:280-295. [PMID: 33373496 PMCID: PMC7986837 DOI: 10.1002/stem.3323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Quiescence and self‐renewal of human corneal epithelial progenitor/stem cells (LEPC) are regulated by the limbal niche, presumably through close interaction with limbal (stromal) niche cells (LNC). Paired box homeotic gene 6 (Pax6), a conserved transcription factor essential for eye development, is essential for proper differentiation of limbal and corneal epithelial stem cells. Pax6 haploinsufficiency causes limbal stem cell deficiency, which leads to subsequent corneal blindness. We previously reported that serial passage of nuclear Pax6+ LNC resulted in the gradual loss of nuclear Pax6+ and neural crest progenitor status, the latter of which was reverted upon recovery of Pax6. These findings suggest Pax6 plays a pivotal role in supporting the self‐renewal of LEPC in limbal niche. Herein, we show that HC‐HA/PTX3, a unique matrix purified from amniotic membrane (AM) and consists of heavy chain 1of inter‐α‐trypsin inhibitor covalently linked to hyaluronic acid and complexed with pentraxin 3, is capable of reverting senescent LNC to nuclear Pax6+ neural crest progenitors that support self‐renewal of LEPC. Such reversion is causally linked to early cell aggregation mediated by activation of C‐X‐C chemokine receptor type 4 (CXCR4)‐mediated signaling followed by activation of bone morphogenetic protein (BMP) signaling. Furthermore, CXCR4‐mediated signaling, but not BMP signaling, controls recovery of the nuclear Pax6+ neural crest progenitors. These findings not only explain why AM helps in vivo and ex vivo expansion of human LEPC, but they also illuminate the potential role of HC‐HA/PTX3 as a surrogate matrix niche that complements stem cell‐based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - Yingting Zhu
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - Yuan Zhang
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | - David Hsu
- R&D Department, Tissue Tech, Inc, Miami, Florida, USA
| | | |
Collapse
|
26
|
Tiwari A, Swamynathan S, Campbell G, Jhanji V, Swamynathan SK. BMP6 Regulates Corneal Epithelial Cell Stratification by Coordinating Their Proliferation and Differentiation and Is Upregulated in Pterygium. Invest Ophthalmol Vis Sci 2021; 61:46. [PMID: 32845956 PMCID: PMC7452852 DOI: 10.1167/iovs.61.10.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Proper balance between cell proliferation and differentiation is essential for corneal epithelial (CE) stratification and homeostasis. Although bone morphogenetic protein-6 (BMP6) is known to be expressed in the CE for over 25 years, its function in this tissue remains unknown. Here, we test the hypothesis that BMP6 promotes CE cell stratification and homeostasis by regulating their proliferation and differentiation. Methods We employed postnatal day-12 (PN-12), PN-14, PN-20, and PN-90 mouse eyes; human corneal limbal epithelial (HCLE) cells; and ocular surface fibrovascular disease pterygium tissues to evaluate the role of BMP6 in CE proliferation, differentiation, and pathology by RT-qPCR, immunoblots, and/or immunofluorescent staining. Cell proliferation was quantified by immunostaining for Ki67. Results Coincident with the mouse CE stratification between PN-12 and PN-20, BMP6 was significantly upregulated and the BMP6 antagonist Noggin downregulated. Mature CE retained high BMP6 and low Noggin expression at PN-90. BMP6 and its receptors BMPR1A and BMPR2 were upregulated during in vitro stratification of HCLE cells. Consistent with its anti-proliferative role, exogenous BMP6 suppressed HCLE cell proliferation, downregulated cyclin-D1 and cyclin-D2, and upregulated cell-cycle inhibitors Krüppel-like factor 4 (KLF4) and p21. BMP6 also upregulated the desmosomal cadherins desmoplakin and desmoglein in HCLE cells, consistent with its pro-differentiation role. Human pterygium displayed significant upregulation of BMP6 coupled with downregulation of Noggin and cell-cycle suppressors KLF4 and p21. Conclusions BMP6 coordinates CE stratification and homeostasis by regulating their proliferation and differentiation. BMP6 is significantly upregulated in human pterygium concurrent with downregulation of Noggin, KLF4, and p21.
Collapse
Affiliation(s)
- Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregory Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
27
|
Rabiee B, Anwar KN, Shen X, Putra I, Liu M, Jung R, Afsharkhamseh N, Rosenblatt MI, Fishman GA, Liu X, Ghassemi M, Djalilian AR. Gene dosage manipulation alleviates manifestations of hereditary PAX6 haploinsufficiency in mice. Sci Transl Med 2020; 12:eaaz4894. [PMID: 33298563 DOI: 10.1126/scitranslmed.aaz4894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
In autosomal dominant conditions with haploinsufficiency, a single functional allele cannot maintain sufficient dosage for normal function. We hypothesized that pharmacologic induction of the wild-type allele could lead to gene dosage compensation and mitigation of the disease manifestations. The paired box 6 (PAX6) gene is crucial in tissue development and maintenance particularly in eye, brain, and pancreas. Aniridia is a panocular condition with impaired eye development and limited vision due to PAX6 haploinsufficiency. To test our hypothesis, we performed a chemical screen and found mitogen-activated protein kinase kinase (MEK) inhibitors to induce PAX6 expression in normal and mutant corneal cells. Treatment of newborn Pax6-deficient mice (Pax6Sey-Neu/+ ) with topical or systemic MEK inhibitor PD0325901 led to increased corneal PAX6 expression, improved corneal morphology, reduced corneal opacity, and enhanced ocular function. These results suggest that induction of the wild-type allele by drug repurposing is a potential therapeutic strategy for haploinsufficiencies, which is not limited to specific mutations.
Collapse
Affiliation(s)
- Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mingna Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL 60608, USA
| | - Xiaorong Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Walker H, Akula M, West-Mays JA. Corneal development: Role of the periocular mesenchyme and bi-directional signaling. Exp Eye Res 2020; 201:108231. [PMID: 33039457 DOI: 10.1016/j.exer.2020.108231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
The cornea is a highly specialized transparent tissue located at the anterior most surface of the eye. It consists of three main layers, the outer stratified squamous epithelium, the inner endothelium, and the intermediate stroma. Formation of these layers during development involves a complex interaction between ectodermal-derived structures, such as the overlying head ectoderm with the periocular mesenchyme (POM), the latter of which is comprised of neural crest cells (NCC) and mesoderm-derived progenitor cells. Regulation of corneal epithelial development, including both epithelial cell fate and stratification, has been shown to depend on numerous bi-directional mesenchymal-epithelial signaling pathways. In this review we pay particular attention to the genes and signaling pathways that involve the POM.
Collapse
Affiliation(s)
- Haydn Walker
- McMaster University, Health Sciences Centre, 1280 Main St. W., L8S 4L8, Hamilton, ON, Canada
| | - Monica Akula
- McMaster University, Health Sciences Centre, 1280 Main St. W., L8S 4L8, Hamilton, ON, Canada
| | - Judith A West-Mays
- McMaster University, Health Sciences Centre, 1280 Main St. W., L8S 4L8, Hamilton, ON, Canada.
| |
Collapse
|
29
|
Yu F, Zhang W, Yan C, Yan D, Zhou M, Chen J, Zhao X, Zhu A, Zhou J, Liu H, Sun H, Fu Y. PAX6, modified by SUMOylation, plays a protective role in corneal endothelial injury. Cell Death Dis 2020; 11:683. [PMID: 32826860 PMCID: PMC7442823 DOI: 10.1038/s41419-020-02848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Treating corneal endothelial diseases tends to be challenging as human corneal endothelial cells (CECs) do not proliferate in vivo. The pathogenesis or mechanisms underlying injured CECs need further studies. The abnormal expression of PAX6, which is an essential transcription factor for corneal homeostasis, exhibits corneal endothelial defects. However, the effects of PAX6 protein involved in corneal endothelial wound process are still unknown. Here, we found the upregulated protein levels of PAX6 in human corneal endothelial monolayer after injury; the expression of PAX6 also increased in murine and rat corneal endothelium injury models. Enforced PAX6 expression could alleviate the damages to CECs via regulating permeability by prompting cellular tight junction. In addition, SUMOylation mainly happened on both K53 and K89 residues of 48-kD PAX6 (the longest and main isoform expressed in cornea), and de-SUMOylation promoted the stability of PAX6 protein in vitro. In CECs of SENP1+/− mice, increased SUMOylation levels leading to instability and low expression of PAX6, delayed the repair of CECs after injury. Furthermore, overexpression of PAX6 accelerated the rate of corneal endothelial repair of SENP1+/− mice. Our findings indicate that SENP1-mediated de-SUMOylation improving the stability of PAX6, amplifies the protective effects of PAX6 on corneal endothelial injuries, highlighting potentials of PAX6 and/or SUMOylation to be used as a treatment target for corneal endothelial disorders.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Pediatric Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
30
|
He J, Ou S, Ren J, Sun H, He X, Zhao Z, Wu H, Qu Y, Liu T, Jeyalatha V, Zhang L, Li Q, Reinach PS, Quantock A, Hao J, Liu Z, Li W. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocul Surf 2020; 18:672-680. [PMID: 32710961 DOI: 10.1016/j.jtos.2020.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To construct tissue engineered corneal epithelium from a clinical-grade human embryonic stem cells (hESCs) and investigate the dynamic gene profile and phenotypic transition in the process of differentiation. METHODS A stepwise protocol was applied to induce differentiation of clinical-grade hESCs Q-CTS-hESC-1 and construct tissue engineered corneal epithelium. Single cell RNA sequencing (scRNA-seq) analysis was performed to monitor gene expression and phenotypic changes at different differentiation stages. Immunostaining, real-time quantitative PCR and Western blot analysis were conducted to detect gene and protein expressions. After subcutaneous transplantation into nude mice to test the biosafety, the epithelial construct was transplanted in a rabbit corneal limbal stem cell deficiency (LSCD) model and followed up for eight weeks. RESULTS The hESCs were successfully induced into epithelial cells. scRNA-seq analysis revealed upregulation of ocular surface epithelial cell lineage related genes such as TP63, Pax6, KRT14, and activation of Wnt, Notch, Hippo, and Hedgehog signaling pathways during the differentiation process. Tissue engineered epithelial cell sheet derived from hESCs showed stratified structure and normal corneal epithelial phenotype with presence of clonogenic progenitor cells. Eight weeks after grafting the cell sheet onto the ocular surface of LSCD rabbit model, a full-thickness continuous corneal epithelium developed to fully cover the damaged areas with normal limbal and corneal epithelial phenotype. CONCLUSION The tissue engineered corneal epithelium generated from a clinical-grade hESCs may be feasible in the treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- Jia He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Shangkun Ou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Jun Ren
- School of Informatics, Xiamen University, Xiamen, Fujian, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Xin He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Han Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Yangluowa Qu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Tingting Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Vimalin Jeyalatha
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Liying Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Qiyuan Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Peter Sol Reinach
- Wenzhou Medical University, Department of Ophthalmology, Wenzhou, Zhejiang, China; Wenzhou Medical University, Department of Optometry, Wenzhou, Zhejiang, China
| | - Andrew Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
31
|
He H, Liang M, Li L, Luo S, Fang X, He H, Xiao X, Wu H, Lin Z. PPAR-α Agonist Fenofibrate Suppressed the Formation of Ocular Surface Squamous Metaplasia Induced by Topical Benzalkonium Chloride. Invest Ophthalmol Vis Sci 2020; 61:54. [PMID: 32232349 PMCID: PMC7401654 DOI: 10.1167/iovs.61.3.54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effects and mechanisms of the peroxisome proliferator-activated receptor alpha (PPAR-α) agonist fenofibrate on the formation of ocular surface squamous metaplasia induced by topical benzalkonium chloride (BAC) in a mouse model. Methods Ocular surface squamous metaplasia was induced in 16 days by topical BAC application in mice. During the period of induction, mice were divided into four groups: no additional treatment (BAC+UT), topical vehicle (BAC+Vehicle), topical fenofibrate (BAC+Feno), or topical fenofibrate plus intraperitoneal injection of MK886 (BAC+Feno+MK886). The parameters of tear film were evaluated on day 16, and eye specimens were collected. Histologic investigation; PAS assays; immunostaining for cytokeratin 10 (K10), Ki67, and F4/80; and PCR assays for TNF-α and IL-6 were performed. Cell Counting Kit 8 (CCK-8) assays were performed to evaluate the inhibitory effects of fenofibrate on RAW264.7 cells. Results Fenofibrate suppressed the formation of BAC-induced instable tear film. In the BAC+Feno group, the expression of K10 and Ki67 was lower than in the other three groups. The number of goblet cells was reduced in eyes of the BAC+UT and BAC+Vehicle groups but was maintained in eyes of the BAC+Feno group. The number of F4/80-positive cells and the levels of TNF-α and IL-6 mRNA were significantly reduced in the cornea of the BAC+Feno group. These effects of fenofibrate could be attenuated by MK886. The cell viability of RAW264.7 cells could be significantly inhibited by fenofibrate in a dose-dependent pattern. Conclusions Topical application of fenofibrate suppressed the formation of ocular surface squamous metaplasia, which might be mediated through the PPAR-α signaling pathway.
Collapse
|
32
|
Peripheral Blood As a Source of Stem Cells for Regenerative Medicine: Emphasis Towards Corneal Epithelial Reconstruction-An In Vitro Study. Tissue Eng Regen Med 2020; 17:495-510. [PMID: 32572811 DOI: 10.1007/s13770-020-00273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-based treatments are now emerging as a therapy for corneal epithelial damage. Although bone marrow, adipose tissue and umbilical cord blood are the main sources of mesenchymal stem cells (MSCs), other tissues like the peripheral blood also harbor mesenchymal-like stem cells called peripheral blood-derived mononuclear cells (PBMNCs). These blood derived stem cells gained a lot of attention due to its minimally invasive collection and ease of isolation. In this study, the feasibility of using PBMNCs as an alternative cell source to corneal limbal stem cells envisaging corneal epithelial regeneration was evaluated. METHODS Rabbit PBMNCs were isolated using density gradient centrifugation and was evaluated for mesenchymal cell properties including stemness. PBMNCs were differentiated to corneal epithelial lineage using rabbit limbal explant conditioned media and was evaluated by immuno-cytochemistry and gene expression analysis. Further, the differentiated PBMNCs were engineered into a cell sheet using an in-house developed thermo-responsive polymer. RESULTS These blood derived cells were demonstrated to have similar properties to mesenchymal stem cells. Corneal epithelial lineage commitment of PBMNCs was confirmed by the positive expression of CK3/12 marker thereby demonstrating the aptness as an alternative to limbal stem cells. These differentiated cells effectively generated an in vitro cell sheet that was then demonstrated for cell sheet transfer on an ex vivo excised rabbit eye. CONCLUSION PBMNCs as an alternative autologous cell source for limbal stem cells is envisaged as an effective therapeutic strategy for corneal surface reconstruction especially for patients with bilateral limbal stem cell deficiency.
Collapse
|
33
|
O'Callaghan AR, Dziasko MA, Sheth-Shah R, Lewis MP, Daniels JT. Oral Mucosa Tissue Equivalents for the Treatment of Limbal Stem Cell Deficiency. ACTA ACUST UNITED AC 2020; 4:e1900265. [PMID: 32515079 DOI: 10.1002/adbi.201900265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Cultured limbal and oral epithelial cells have been successfully used to treat patients with limbal stem cell deficiency (LSCD). The most common culture method for these cell therapies utilizes amniotic membrane as a cell support and/or murine 3T3s as feeder fibroblasts. The aim of this study is to refine the production of autologous oral mucosal cell therapy for the treatment of LSCD. Real architecture for 3D tissue (RAFT) is used as an alternative cell culture support. In addition, oral mucosal cells (epithelial and fibroblast) are used as autologous alternatives to donor human limbal epithelial cells (HLE) and murine 3T3s. The following tissue equivalents are produced and characterized: first, for patients with bilateral LSCD, an oral mucosa tissue equivalent consisting of human oral mucosal epithelial cells on RAFT supported by human oral mucosal fibroblasts (HOMF). Second, for patients with unilateral LSCD, HLE on RAFT supported by HOMF. For both tissue equivalent types, features of the cornea are observed including a multi-layered epithelium with small cells with a stem cell like phenotype in the basal layer and squamous cells in the top layers, and p63α and PAX6 expression. These tissue equivalents may therefore be useful in the treatment of LSCD.
Collapse
Affiliation(s)
- Anna R O'Callaghan
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Marc A Dziasko
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Radhika Sheth-Shah
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Julie T Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| |
Collapse
|
34
|
Latta L, Ludwig N, Krammes L, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, Keller A, Meese E, Lagali N, Käsmann-Kellner B. Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul Surf 2020; 19:115-127. [PMID: 32422284 DOI: 10.1016/j.jtos.2020.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate conjunctival cell microRNA (miRNAs) and mRNA expression in relation to observed phenotype of progressive limbal stem cell deficiency in a cohort of subjects with congenital aniridia with known genetic status. METHODS Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age and sex-matched healthy control subjects. RNA was extracted and miRNA and mRNA analyses were performed using microarrays. Results were related to severity of keratopathy and genetic cause of aniridia. RESULTS Of 2549 miRNAs, 21 were differentially expressed in aniridia relative to controls (fold change ≤ -1.5 or ≥ +1.5). Among these miR-204-5p, an inhibitor of corneal neovascularization, was downregulated 26.8-fold in severely vascularized corneas. At the mRNA level, 539 transcripts were differentially expressed (fold change ≤ -2 or ≥ +2), among these FOSB and FOS were upregulated 17.5 and 9.7-fold respectively, and JUN by 2.9-fold, all being components of the AP-1 transcription factor complex. Pathway analysis revealed enrichment of PI3K-Akt, MAPK, and Ras signaling pathways in aniridia. For several miRNAs and transcripts regulating retinoic acid metabolism, expression levels correlated with keratopathy severity and genetic status. CONCLUSION Strong dysregulation of key factors at the miRNA and mRNA level suggests that the conjunctiva in aniridia is abnormally maintained in a pro-angiogenic and proliferative state, and these changes are expressed in a PAX6 mutation-dependent manner. Additionally, retinoic acid metabolism is disrupted in severe, but not mild forms of the limbal stem cell deficiency in aniridia.
Collapse
Affiliation(s)
- L Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - N Ludwig
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany; Center for Human and Molecular Biology, Saarland University, Homburg, Saar, Germany
| | - L Krammes
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - T Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - F N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - A Mukwaya
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - N Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - B Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - B Wowra
- Chair and Clinical Department of Ophthalmology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| | - M Kahraman
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - A Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - E Meese
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| | - B Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
35
|
Rubelowski AK, Latta L, Katiyar P, Stachon T, Käsmann-Kellner B, Seitz B, Szentmáry N. HCE-T cell line lacks cornea-specific differentiation markers compared to primary limbal epithelial cells and differentiated corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2020; 258:565-575. [PMID: 31927639 DOI: 10.1007/s00417-019-04563-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Human corneal epithelial cell-transformed (HCE-T) cell line is used as a widely accepted barrier model for pharmacological investigations in the context of eye application. The differentiation of (limbal) corneal epithelial into mature corneal epithelium coincides with the expression of established differentiation markers. If these differentiation mechanisms are disturbed, it will lead to ocular surface disease. In this study, we want to compare the expression of differentiation markers in the HCE-T cell line to differentiated primary epithelial cells (pCECs) and primary limbal epithelial cell (LEC) culture. This is necessary in order to decide whether HCE-T cells could be a tool to study the differentiation process and its regulatory networks in corneal epithelium. METHODS Primary limbal epithelial cells (LECs) for cell culture and primary corneal epithelial cells (pCECs) as differentiated tissue samples were obtained from the limbus or central cornea region of corneal donors. HCE-T cell line was purchased from RIKEN Institute RCB-2280.Expression levels of conjunctival- and corneal-specific keratin and adhesion markers (KRT3, KRT12, KRT13, KRT19, DSG1), stem cell and differentiation markers (PAX6, ABCG2, ADH7, TP63, ALDH1A1), and additional (unvalidated) putative differentiation and stem cell markers (CTSV, SPINK7, DKK1) were analyzed with qPCR. Additionally, KRT3, KRT12, DSG1, and PAX6 protein levels were analyzed with Western blot. RESULTS KRT3, KRT12, DSG1, PAX6, ADH7, and ALDH1A1 mRNA expressions were higher in LECs and magnitudes higher in pCECs compared to HCE-T cells. KRT3, KRT12, PAX6, ALDH1A1, ADH7, TP63, and CTSV mRNAs have shown increasing mRNA expression from HCE-T < HCE-T cultured in keratinocyte serum-free medium (KSFM) < LEC < to pCEC.KRT3 and KRT12 protein expressions were only slightly increased in LEC compared to HCE-T samples, and the strongest signals were seen in pCEC samples. DSG1 protein expression was only detected in pCECs. PAX6 protein expression was hardly detected in HCE-T cells, and no difference could be seen between LECs and pCECs. CONCLUSIONS The HCE-T cell line is even less differentiated than LECs regarding the investigated markers and therefore might also lack the ability to express differentiation markers at protein level. Hence, this cell line is not suitable to study corneal differentiation processes. Primary LECs in the way cultured here are not an ideal system compared to differentiated epithelium in organ culture but should be preferred to HCE-T cells if corneal differentiation markers are investigated. Other cell models or differentiation protocols should be developed in the future to gain new tools for research on ocular surface diseases.
Collapse
Affiliation(s)
- Anna-Klara Rubelowski
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Lorenz Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - Priya Katiyar
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Direct Reprogramming Into Corneal Epithelial Cells Using a Transcriptional Network Comprising PAX6, OVOL2, and KLF4. Cornea 2019; 38 Suppl 1:S34-S41. [PMID: 31403532 DOI: 10.1097/ico.0000000000002074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In its early stages, an embryo polarizes to form cell subpopulations that subsequently produce specific organ cell types. These cell subpopulations are defined by transcription factors (TFs) that activate or repress specific genes. Although an embryo comprises thousands of TFs, surprisingly few are needed to determine the fate of a given cell. The ectoderm divides into the neuroectoderm and surface ectoderm, the latter of which gives rise to epidermal keratinocytes and corneal epithelial cells (CECs). Meanwhile, neuroectoderm cells give rise to other parts of the eye such as the corneal endothelium and retina. To investigate the regulatory role of TFs in CECs, we overexpressed the "core TFs" (PAX6, OVOL2, and KLF4) in human fibroblasts and found that the cells adopted a CEC-like quality. OVOL2 overexpression was even able to directly induce cells with a neuroectoderm fate toward a surface ectoderm fate, designated "direct reprogramming." Conversely, suppression of OVOL2 or PAX6 expression induced CECs to show qualities consistent with neural lineage cells or epidermal keratinocytes, respectively. This suggests that these core TFs can maintain the CEC phenotype through reciprocal gene regulation. Direct reprogramming has important implications for cell therapies. The potential benefits of cells derived by direct reprogramming compared with induced pluripotent stem cells include the fact that it requires less time than reprogramming a cell back to the pluripotent state and then to another cell type. Further understanding of the reciprocally repressive mechanism of action for core TFs could lead to alternative treatments for regenerative medicine not requiring cell transplantation.
Collapse
|
37
|
Chen SY, Cheng AMS, Zhang Y, Zhu YT, He H, Mahabole M, Tseng SCG. Pax 6 Controls Neural Crest Potential of Limbal Niche Cells to Support Self-Renewal of Limbal Epithelial Stem Cells. Sci Rep 2019; 9:9763. [PMID: 31278274 PMCID: PMC6611810 DOI: 10.1038/s41598-019-45100-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
On ocular surface, corneal epithelial stem cells (SC) reside in limbus between cornea and conjunctiva. Pax6, an evolutionally conserved transcription factor essential for eye development, is expressed in post-natal corneal and limbal epithelia progenitors (LEPC) but not in underlying stroma. Because Pax6 is transiently expressed in developing corneal stroma and a subset of limbal and corneal stromal progenitors, we examined the role of Pax6 in limbal niche cells (LNC) in maintaining the phenotype of neural crest (NC) progenitors to support LEPC. Our results showed that nuclear Pax6 staining was found in freshly isolated LNC but not corneal stromal cells. Serial passaged LNC resulted in gradual loss of nuclear Pax6 (46 kDa) staining and neural crest progenitor status defined by the expression of embryonic SCs and NC markers, neurosphere formation, and differentiation into neurons, oligodendrocytes and astrocytes. Gain of function of 46 kDa Pax6 in late-passaged LNC resulted in nuclear Pax6 staining and promotion of the aforementioned NC progenitor status. In an in vitro reunion assay, early passaged LNC and late passaged LNC with overexpression of Pax6 inhibited the expression of corneal epithelial differentiation marker and promoted holoclone by LEPC. Therefore, expression of nuclear 46 kDa Pax6 in LNC plays an important developmental role in maintaining NC progenitor status to support self-renewal of corneal epithelial SCs in the limbal niche.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL33136, USA
| | - Anny M S Cheng
- Department of Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL33199, USA.,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA
| | - Yuan Zhang
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Ying-Ting Zhu
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Hua He
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Megha Mahabole
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Scheffer C G Tseng
- R&D Department, Tissue Tech, Inc., Miami, FL, 33126, USA. .,Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| |
Collapse
|
38
|
Simsek C, Dogru M, Shinzawa M, Den S, Kojima T, Iseda H, Suzuki M, Shibasaki Y, Yoshida N, Shimazaki J. The Efficacy of 2% Topical Rebamipide on Conjunctival Squamous Metaplasia and Goblet Cell Density in Dry Eye Disease. J Ocul Pharmacol Ther 2019; 35:350-358. [PMID: 31259647 PMCID: PMC6659741 DOI: 10.1089/jop.2018.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose: To clarify the pharmacological effects of 2% rebamipide eye drops on mucosal membrane functions of the ocular surface epithelium, we investigated keratoconjunctival alterations at the cellular level in this study. Methods: Fifteen patients with definite dry eye disease were recruited from outpatient clinics of the Department of Ophthalmology, Ichikawa General Hospital. The patients received treatment with 2% rebamipide eye drops q.i.d for 12 weeks. Symptom score assessment, tear film breakup time, fluorescein and lissamine green ocular surface vital staining, grading of lid wiper epitheliopathy, Cochet-Bonnet corneal sensitivity, assessment of squamous metaplasia grades, and goblet cell density calculations from conjunctival impression cytology samples, as well as evaluation of nucleocytoplasmic ratios and corneal epithelial cells from in vivo confocal microscopy images before and 3 months after treatment were performed. Results: The mean symptom scores, tear film breakup time values, ocular surface fluorescein and lissamine green vital staining scores, and lid wiper scores showed a significant improvement after treatment (P < 0.01). The mean squamous metaplasia grade also showed a significant improvement (1.2 ± 0.1 → 0.3 ± 0.1) 3 months after treatment (P = 0.004). There were similar significant improvements in the mean corneal epithelial cell density (660.1 ± 62.6 → 1015.5 ± 43.5 cells/mm2) (P = 0.002) and nucleocytoplasmic ratios (0.1 ± 0.0 → 0.2 ± 0.0) (P = 0.0042) after treatment. Conclusions: Topical use of 2% rebamipide for 3 months was associated with improvements in ocular surface differentiation due to changes of mucosal functions at the cellular level. These alterations may explain objective and subjective improvements in dry eye disease.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Megumi Shinzawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Seika Den
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Iseda
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Mai Suzuki
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Yoshiyuki Shibasaki
- Department of Medical Affairs, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Naoshi Yoshida
- Department of Medical Affairs, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jun Shimazaki
- Department of Ophthalmology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| |
Collapse
|
39
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
40
|
Expression of retinoic acid signaling components ADH7 and ALDH1A1 is reduced in aniridia limbal epithelial cells and a siRNA primary cell based aniridia model. Exp Eye Res 2019; 179:8-17. [DOI: 10.1016/j.exer.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 01/31/2023]
|
41
|
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, Tiosano B, Hasson P, Panman L, Luxenburg C, Aberdam D, Shalom-Feuerstein R. SOX2 Regulates P63 and Stem/Progenitor Cell State in the Corneal Epithelium. Stem Cells 2019; 37:417-429. [PMID: 30548157 PMCID: PMC6850148 DOI: 10.1002/stem.2959] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co‐expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2‐mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long‐term colony‐forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR‐450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells2019;37:417–429
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eshkar Nir
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maroun Khreish
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lia Panman
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
42
|
Vicente A, Byström B, Pedrosa Domellöf F. Altered Signaling Pathways in Aniridia-Related Keratopathy. ACTA ACUST UNITED AC 2018; 59:5531-5541. [DOI: 10.1167/iovs.18-25175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- André Vicente
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Berit Byström
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Fátima Pedrosa Domellöf
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
43
|
Ueda K, Watanabe A, Yokoi N, Sugimoto M, Fukuoka H, Shinomiya K, Kinoshita S, Rajak S, Selva D. Biopsy of recurrent nasolacrimal duct obstruction using sheath-guided dacryoendoscopy. Orbit 2018; 38:37-42. [PMID: 30142018 DOI: 10.1080/01676830.2018.1513536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The purpose of this article is to present a novel technique, as well the histopathological findings, of dacryoendoscopic guided nasolacrimal duct (NLD) biopsy for recurrent nasolacrimal duct obstruction (NLDO). METHODS This study involved subjects with recurrent NLDO. Direct endoscopic probing or sheath-guided endoscopic probing was used for the initial intubation in all treated eyes, and the stent had been removed at between 2 and 11 months (mean 3.5 months) post-intubation with dacryoendoscopic confirmation of patency and mucosal regeneration. Biopsy specimens were obtained by scraping the recurrent lesion by sheath advancement. Histopathological examination and immunohistochemical (IHC) staining were performed. RESULTS In five patients (two males and three females, mean age: 71.2 ± 5.6 years [range: 61-78 years]) with recurrent NLDO, biopsy specimens were obtained from six ducts of six eyes, and stratified epithelium and a mixed inflammatory cell infiltrates were identified. IHC staining was positive for cytokeratin (CK)4 and CK13, and negative for paired box protein Pax-6. CONCLUSIONS This novel technique enabled a minimally invasive biopsy of the NLD to be obtained, and IHC staining indicated the presence of mucus epithelium, thus suggesting squamous metaplasia of the usual respiratory epithelium which likely occurs secondary to chronic inflammation.
Collapse
Affiliation(s)
- Kosuke Ueda
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Akihide Watanabe
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Norihiko Yokoi
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | | | - Hideki Fukuoka
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Katsuhiko Shinomiya
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Shigeru Kinoshita
- a Department of Ophthalmology , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Saul Rajak
- c Sussex Eye Hospital , Brighton and Sussex University Hospital , Brighton , United Kingdom
| | - Dinesh Selva
- d Discipline of Ophthalmology and Visual Sciences , South Australian Institute of Ophthalmology and Royal Adelaide Hospital , Adelaide , Australia
| |
Collapse
|
44
|
Abstract
Paired box protein 6 (PAX6) is a master regulator of the eye development. Over the last past two decades, our understanding of eye development, especially the molecular function of PAX6, has focused on transcriptional control of the Pax6 expression. However, other regulatory mechanisms for gene expression, including alternative splicing (AS), have been understudied in the eye development. Recent findings suggest that two PAX6 isoforms generated by AS of Pax6 pre-mRNA may play previously underappreciated role(s) during eye development, especially, the corneal development.
Collapse
Affiliation(s)
- Jung Woo Park
- Faculty of Health Sciences, University of Macau , Macau, China
| | - Juan Yang
- Faculty of Health Sciences, University of Macau , Macau, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau , Macau, China
| |
Collapse
|
45
|
Guo Y, Ma X, Wu W, Shi M, Ma J, Zhang Y, Zhao E, Yang X. Coordinated microRNA/mRNA expression profiles reveal a putative mechanism of corneal epithelial cell transdifferentiation from skin epidermal stem cells. Int J Mol Med 2017; 41:877-887. [PMID: 29207049 PMCID: PMC5752239 DOI: 10.3892/ijmm.2017.3304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
Skin epidermal stem cells (SESCs), which share a single origin with corneal epithelial cells (CECs), are considered to be one of the most ideal seed cells for the construction of tissue engineered corneas. However, the mechanism underlying the transdifferentiation of SESCs to CECs has not been fully elucidated. In the present study, to identify critical microRNAs (miRNAs/miRs) and genes that regulate the transdifferentiation of SESCs to CECs, SESCs and CECs were collected from sheep and used for small RNA sequencing and mRNA microarray analyses. Among the differentially expressed miRNAs and genes, 36 miRNAs were downregulated and 123 genes were upregulated in the CECs compared with those in the SESCs. miR-10b exhibited the largest change in expression between the cell types. Target genes of the 36 downregulated miRNAs were predicted and a computational approach demonstrated that these target genes may be involved in several signaling pathways, including the 'PI3K signaling pathway', the 'Wnt signaling pathway' and the 'MAPK signaling pathway', as well as in 'focal adhesion'. Comparison of these target genes to the 123 upregulated genes identified 43 intersection genes. A regulatory network of these 43 intersection genes and its correlative miRNAs were constructed, and three genes (dedicator of cytokinesis 9, neuronal differentiation 1 and activated leukocyte cell adhesion molecule) were found to have high interaction frequencies. The expression levels of 7 randomly selected miRNAs and the 3 intersection genes were further validated by reverse transcription-quantitative polymerase chain reaction. It was found that miR-10b, the Wnt signaling pathway and the 3 intersection genes may act together and serve a critical role in the transdifferentiation process. This study identified miRNAs and genes that were expressed in SESCs and CECs that may assist in uncovering its underlying molecular mechanism, as well as promote corneal tissue engineering using epidermal stem cells for clinical applications.
Collapse
Affiliation(s)
- Yanjie Guo
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Xiya Ma
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Weini Wu
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Junlong Ma
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Yaping Zhang
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Erkang Zhao
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China
| |
Collapse
|
46
|
Latta L, Viestenz A, Stachon T, Colanesi S, Szentmáry N, Seitz B, Käsmann-Kellner B. Human aniridia limbal epithelial cells lack expression of keratins K3 and K12. Exp Eye Res 2017; 167:100-109. [PMID: 29162348 DOI: 10.1016/j.exer.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023]
Abstract
Aniridia is a rare disease of the eye that affects the iris, lens and the cornea. In about 90% of the cases, patients showed a loss of PAX6 function. Patients with aniridia often develop aniridia-related keratopathy (ARK), due to limbal stem cell insufficiency. The aim of this study was to determine the differentiation status of limbal epithelial cells (LECs) in patients with ARK. Epithelial cells were isolated from the limbus region of two patients with aniridia and cultured in KSFM medium supplemented with EGF and BPE. Normal cells were obtained from limbus region of cadaveric control patients. Cells were analyzed with RT-PCR, qPCR and Western blot to evaluate expression of the developmental transcription factor, PAX6, potential stem cell markers, ΔNp63α and ABCG2, and corneal differentiation markers, keratin 12 (K12) and K3. Conjunctival differentiation markers, keratin 13 (K13) and K19 were also investigated. Cells were immunostained to evaluate K3, PAX6, and p63α protein expression. Protein coding sequence of PAX6 from patient LEC-cDNA was cloned and sequenced. RT-PCR showed that K3 and K12 transcripts were absent from patient cells, but present in healthy control preparations. Transcription levels of PAX6, ABCG2, and p63α of aniridia patients show no differences compared to normal control cells. Western blot showed reduced PAX6, protein levels in aniridia-LECs compared to control-LECs. Immunostaining also showed reduced PAX6 and K3 expression in aniridia-LECs compared to control-LECs. One aniridia patient showed a loss of stop codon in half of the cloned transcripts. In the second aniridia patient mRNA degradation through nonsense mediated decay seems to be very likely since we could not identify the mutation c.174C > T (Refseq. NM_000280), or misspliced transcripts in cDNA. We identified decreased PAX6 protein levels in aniridia patients in addition to decreased K12 mRNA levels compared to control cells. This result indicates an altered differentiation of limbal epithelial cells of aniridia patients. Further studies are necessary to evaluate the mechanism of differentiation of limbal epithelial cells in aniridia.
Collapse
Affiliation(s)
- Lorenz Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - Arne Viestenz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Sarah Colanesi
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | | |
Collapse
|
47
|
Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, Borderie V. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS One 2017; 12:e0188398. [PMID: 29149196 PMCID: PMC5693460 DOI: 10.1371/journal.pone.0188398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC) and epithelial limbal (LSC) stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8), E8 supplemented with EGF (E8+) or Green’s medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green’s media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.
Collapse
Affiliation(s)
- Djida Ghoubay-Benallaoua
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | | | - Raphaël Martos
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Gaël Latour
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM U1182, Université Paris-Saclay, Palaiseau, France
| | - Elisabeth Dupin
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Vincent Borderie
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
48
|
Nebbioso M, Del Regno P, Gharbiya M, Sacchetti M, Plateroti R, Lambiase A. Analysis of the Pathogenic Factors and Management of Dry Eye in Ocular Surface Disorders. Int J Mol Sci 2017; 18:E1764. [PMID: 28805710 PMCID: PMC5578153 DOI: 10.3390/ijms18081764] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
The tear film represents the interface between the eye and the environment. The alteration of the delicate balance that regulates the secretion and distribution of the tear film determines the dry eye (DE) syndrome. Despite having a multifactorial origin, the main risk factors are female gender and advanced age. Likewise, morphological changes in several glands and in the chemical composition of their secretions, such as proteins, mucins, lipidics, aqueous tears, and salinity, are highly relevant factors that maintain a steady ocular surface. Another key factor of recurrence and onset of the disease is the presence of local and/or systemic inflammation that involves the ocular surface. DE syndrome is one of the most commonly encountered diseases in clinical practice, and many other causes related to daily life and the increase in average life expectancy will contribute to its onset. This review will consider the disorders of the ocular surface that give rise to such a widespread pathology. At the end, the most recent therapeutic options for the management of DE will be briefly discussed according to the specific underlying pathology.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Paola Del Regno
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Magda Gharbiya
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marta Sacchetti
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rocco Plateroti
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
49
|
Laggner M, Pollreisz A, Schmidinger G, Schmidt-Erfurth U, Chen YT. Autophagy mediates cell cycle response by regulating nucleocytoplasmic transport of PAX6 in limbal stem cells under ultraviolet-A stress. PLoS One 2017; 12:e0180868. [PMID: 28700649 PMCID: PMC5507275 DOI: 10.1371/journal.pone.0180868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/22/2017] [Indexed: 01/09/2023] Open
Abstract
Limbal stem cells (LSC) account for homeostasis and regeneration of corneal epithelium. Solar ultraviolet A (UVA) is the major source causing oxidative damage in the ocular surface. Autophagy, a lysosomal degradation mechanism, is essential for physiologic function and stress defense of stem cells. PAX6, a master transcription factor governing corneal homeostasis by regulating cell cycle and cell fate of LSC, responds to oxidative stress by nucleocytoplasmic shuttling. Impaired autophagy and deregulated PAX6 have been reported in oxidative stress-related ocular surface disorders. We hypothesize a functional role for autophagy and PAX6 in LSC’s stress response to UVA. Therefore, human LSC colonies were irradiated with a sub-lethal dose of UVA and autophagic activity and intracellular reactive oxygen species (ROS) were measured by CYTO-ID assay and CM-H2DCFDA live staining, respectively. Following UVA irradiation, the percentage of autophagic cells significantly increased in LSC colonies while intracellular ROS levels remained unaffected. siRNA-mediated knockdown (KD) of ATG7 abolished UVA-induced autophagy and led to an excessive accumulation of ROS. Upon UVA exposure, LSCs displayed nuclear-to-cytoplasmic translocation of PAX6, while ATG7KD or antioxidant pretreatment largely attenuated the intracellular trafficking event. Immunofluorescence showing downregulation of proliferative marker PCNA and induction of cell cycle regulator p21 indicates cell cycle arrest in UVA-irradiated LSC. Abolishing autophagy, adenoviral-assisted restoration of nuclear PAX6 or antioxidant pretreatment abrogated the UVA-induced cell cycle arrest. Adenoviral expression of an ectopic PAX gene, PAX7, did not affect UVA cell cycle response. Furthermore, knocking down PAX6 attenuated the cell cycle progression of irradiated ATG7KD LSC by de-repressing p21 expression. Collectively, our data suggest a crosstalk between autophagy and PAX6 in regulating cell cycle response of ocular progenitors under UVA stress. Autophagy deficiency leads to impaired intracellular trafficking of PAX6, perturbed redox balance and uncurbed cell cycle progression in UVA-stressed LSCs. The coupling of autophagic machinery and PAX6 in cell cycle regulation represents an attractive therapeutic target for hyperproliferative ocular surface disorders associated with solar radiation.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Ophthalmology & Optometry, Medical University of Vienna, Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology & Optometry, Medical University of Vienna, Vienna, Austria
| | - Gerald Schmidinger
- Department of Ophthalmology & Optometry, Medical University of Vienna, Vienna, Austria
| | | | - Ying-Ting Chen
- Department of Ophthalmology & Optometry, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
50
|
Genome-wide analysis suggests a differential microRNA signature associated with normal and diabetic human corneal limbus. Sci Rep 2017; 7:3448. [PMID: 28615632 PMCID: PMC5471258 DOI: 10.1038/s41598-017-03449-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Small non-coding RNAs, in particular microRNAs (miRNAs), regulate fine-tuning of gene expression and can impact a wide range of biological processes. However, their roles in normal and diseased limbal epithelial stem cells (LESC) remain unknown. Using deep sequencing analysis, we investigated miRNA expression profiles in central and limbal regions of normal and diabetic human corneas. We identified differentially expressed miRNAs in limbus vs. central cornea in normal and diabetic (DM) corneas including both type 1 (T1DM/IDDM) and type 2 (T2DM/NIDDM) diabetes. Some miRNAs such as miR-10b that was upregulated in limbus vs. central cornea and in diabetic vs. normal limbus also showed significant increase in T1DM vs. T2DM limbus. Overexpression of miR-10b increased Ki-67 staining in human organ-cultured corneas and proliferation rate in cultured corneal epithelial cells. MiR-10b transfected human organ-cultured corneas showed downregulation of PAX6 and DKK1 and upregulation of keratin 17 protein expression levels. In summary, we report for the first time differential miRNA signatures of T1DM and T2DM corneal limbus harboring LESC and show that miR-10b could be involved in the LESC maintenance and/or their early differentiation. Furthermore, miR-10b upregulation may be an important mechanism of corneal diabetic alterations especially in the T1DM patients.
Collapse
|