1
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
2
|
Ibrahim R. The effect of pre-hospital use of RAS inhibitors on COVID-19 mortality. J Investig Med 2024; 72:863-875. [PMID: 39075674 DOI: 10.1177/10815589241270417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The effect of pre-hospital use of renin-angiotensin system (RAS) inhibitors (angiotensin-converting enzyme inhibitors (ACEis)/angiotensin receptor blockers (ARBs)) on clinical outcomes of hypertensive patients with COVID-19 has been questioned due to conflicting reports on this issue. After applying exclusion criteria, 175 COVID-19 hospitalized patients admitted to the Tishreen Hospital from January 1 to July 31, 2021 were retrospectively enrolled in this study. Baseline characteristics and in-hospital mortality rate were assessed between hypertensive (N = 91, 52%) and non-hypertensive (N = 84, 48%) patients, as well as between patients taking ACEis/ARBs and non-ACEis/ARBs within the hypertensive group. A lower mortality rate (51.2 versus 31.9%, p = 0.009) was observed in the hypertensive group (mean age 64.6 years, 64.8% males) compared to the non-hypertensive (mean age 62.6 years, 66.7% males). Patients' mortality in the non-hypertensive group was associated with lower blood oxygen saturation (SPO2 = 75 versus 86%, p = 0.002), increased levels of inflammatory (CRP, white blood cell and neutrophils count), and tissue/renal injury markers (LDH, urea, and creatinine). In the hypertensive group, a lower mortality rate was noted in the ACEis/ARBs group compared to the non-ACEis/ARBs (24.1 versus 45.5%, p = 0.036), and this was associated with a decrease in D-DIMER levels, although not significant (1723 versus 2683 ng/mL, p > 0.05). Death in the non-ACEis/ARBs group was associated with decreased SPO2 and tissue/renal injury markers (LDH, CK, AST, urea, and creatinine). We concluded that hypertension is not a direct cause of poor prognosis in COVID-19 patients and that multi-organ damage is a significant indicator of death from COVID-19. RAS inhibitors could improve the survival of hypertensive COVID-19 patients.
Collapse
Affiliation(s)
- Rama Ibrahim
- Department of Biochemistry and Microbiology, Faculty of Pharmacy,Al-Sham Private University (ASPU), Lattakia, Syria
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| |
Collapse
|
3
|
Kemerley A, Gupta A, Thirunavukkarasu M, Maloney M, Burgwardt S, Maulik N. COVID-19 Associated Cardiovascular Disease-Risks, Prevention and Management: Heart at Risk Due to COVID-19. Curr Issues Mol Biol 2024; 46:1904-1920. [PMID: 38534740 PMCID: PMC10969474 DOI: 10.3390/cimb46030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and the resulting COVID-19 pandemic have had devastating and lasting impact on the global population. Although the main target of the disease is the respiratory tract, clinical outcomes, and research have also shown significant effects of infection on other organ systems. Of interest in this review is the effect of the virus on the cardiovascular system. Complications, including hyperinflammatory syndrome, myocarditis, and cardiac failure, have been documented in the context of COVID-19 infection. These complications ultimately contribute to worse patient outcomes, especially in patients with pre-existing conditions such as hypertension, diabetes, or cardiovascular disease (CVD). Importantly and interestingly, reports have demonstrated that COVID-19 also causes myocardial injury in adults without pre-existing conditions and contributes to systemic complications in pediatric populations, such as the development of multisystem inflammatory syndrome in children (MIS-C). Although there is still a debate over the exact mechanisms by which such complications arise, understanding the potential paths by which the virus can influence the cardiovascular system to create an inflammatory environment may clarify how SARS-CoV-2 interacts with human physiology. In addition to describing the mechanisms of disease propagation and patient presentation, this review discusses the diagnostic findings and treatment strategies and the evolution of management for patients presenting with cardiovascular complications, focusing on disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA; (A.K.); (A.G.); (M.T.); (S.B.)
| |
Collapse
|
4
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
5
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Zhou G, Liu J. Prognostic value of elevated plasma angiotensin-converting enzyme 2 in cardiometabolic diseases: A review. Medicine (Baltimore) 2023; 102:e33251. [PMID: 36897667 PMCID: PMC9997766 DOI: 10.1097/md.0000000000033251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Angiotensin-converting enzyme 2, as an internal anti regulator of the renin-angiotensin hormone cascade reaction, plays a protective role in vasodilation, inhibition of fibrosis, and initiation of anti-inflammatory and antioxidative stress by degrading angiotensin II and generating angiotensin (1-7). Multiple studies have shown that plasma angiotensin-converting enzyme 2 activity is low in healthy populations without significant cardiometabolic disease, and elevated plasma angiotensin-converting enzyme 2 levels can be used as a novel biomarker of abnormal myocardial structure and/or adverse events in cardiometabolic diseases. This article aims to elaborate the determinants of plasma angiotensin-converting enzyme 2 concentration, the relevance between angiotensin-converting enzyme 2 and cardiometabolic disease risk markers, and its relative importance compared with known cardiovascular disease risk factors. Confronted with the known cardiovascular risk factors, plasma angiotensin-converting enzyme 2 (ACE2) concentration uniformly emerged as a firm predictor of abnormal myocardial structure and/or adverse events in cardiometabolic diseases and may improve the risk prediction of cardiometabolic diseases when combined with other conventional risk factors. Cardiovascular disease is the leading cause of death worldwide, while the renin-angiotensin system is the main hormone cascade system involved in the pathophysiology of cardiovascular disease. A multi-ancestry global cohort study from the general population by Narula et al revealed that plasma ACE2 concentration was strongly associated with cardiometabolic disease and might be an easily measurable indicator of renin-angiotensin system disorder. The association between this atypical hormone disorder marker and cardiometabolic disease is isolated from conventional cardiac risk factors and brain natriuretic peptide, suggesting that a clearer comprehending of the changes in plasma ACE2 concentration and activity may help us to improve the risk prediction of cardiometabolic disease, guide early diagnosis and feasible therapies, and develop and test new therapeutic targets.
Collapse
Affiliation(s)
- Gang Zhou
- Department of First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Hu W, Song X, Yu H, Zhao L, Zhao Y, Zhao Y. Further comments on the role of ACE-2 positive macrophages in human lung. Cytometry A 2023; 103:146-152. [PMID: 34355866 PMCID: PMC8426751 DOI: 10.1002/cyto.a.24484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Hu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Xiang Song
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Haibo Yu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Laura Zhao
- Throne Biotechnologies IncParamusNew JerseyUSA
| | - Yeqian Zhao
- Throne Biotechnologies IncParamusNew JerseyUSA
| | - Yong Zhao
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
- Throne Biotechnologies IncParamusNew JerseyUSA
| |
Collapse
|
8
|
Hamon R, Ween MP. E-Cigarette Vapour Increases ACE2 and TMPRSS2 Expression in a Flavour- and Nicotine-Dependent Manner. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14955. [PMID: 36429673 PMCID: PMC9691196 DOI: 10.3390/ijerph192214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 infects via the respiratory system, but it can affect multiple systems and lead to multi system failure. There is growing evidence that smoking may be associated with higher rates of COVID-19 infections and worse outcomes due to increased levels of ACE2 in lung epithelial cells, but it is unknown whether E-cigarette use may lead to increased risk of COVID-19 infection from the SARS-CoV-2 virus. In this study, healthy donor bronchial epithelial cells (NHBE) and monocyte-derived macrophages (MDM) were exposed to cigarette smoke extract (CSE) or nicotine or flavoured E-cigarette vapour extract (EVE) before the assessment of SARS-CoV-2 recognition receptors ACE2 and TMPRSS2 genes. MDMs exposed to CSE and Tobacco EVE showed increased ACE2 expression; however, no treatment altered the TMPRSS2 expression. ACE2 was found to be upregulated by >2-fold in NHBE cells exposed to CSE, as well as nicotine, banana, or chocolate EVE, while TMPRSS2 was only upregulated by CSE or nicotine EVE exposure. These findings suggesting that flavourings can increase ACE2 expression in multiple cell types, while TMPRSS2 expression increases are limited to the epithelial cells in airways and may be limited to nicotine and/or cigarette smoke exposure. Therefore, increased risk of COVID-19 infection cannot be ruled out for vapers.
Collapse
Affiliation(s)
- Rhys Hamon
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide 5000, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia
| | - Miranda P. Ween
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide 5000, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
9
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
10
|
Stress-induced cardiometabolic perturbations, increased oxidative stress and ACE/ACE2 imbalance are improved by endurance training in rats. Life Sci 2022; 305:120758. [DOI: 10.1016/j.lfs.2022.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
|
11
|
Muhl L, He L, Sun Y, Andaloussi Mäe M, Pietilä R, Liu J, Genové G, Zhang L, Xie Y, Leptidis S, Mocci G, Stritt S, Osman A, Anisimov A, Hemanthakumar KA, Räsänen M, Hansson EM, Björkegren J, Vanlandewijck M, Blomgren K, Mäkinen T, Peng XR, Hu Y, Ernfors P, Arnold TD, Alitalo K, Lendahl U, Betsholtz C. The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports 2022; 17:1089-1104. [PMID: 35452595 PMCID: PMC9022216 DOI: 10.1016/j.stemcr.2022.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications. Detailed Ace2/ACE2 expression patterns are reported for multiple mouse organs Vascular Ace2/ACE2 expression occurs in pericytes but not endothelial cells Ace2/ACE2 expression is organotypic and developmentally regulated Ace2/ACE2 expression in pericytes may suggest their involvement in COVID-19
Collapse
Affiliation(s)
- Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuro-injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ying Sun
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Riikka Pietilä
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jianping Liu
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Guillem Genové
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Lei Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an China
| | - Yuan Xie
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an China
| | - Stefanos Leptidis
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Giuseppe Mocci
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ahmed Osman
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Emil M Hansson
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Johan Björkegren
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden; Institute of Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Vanlandewijck
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; Department of Pediatric Oncology, Karolinska University Hospital, Stockholm Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiao-Rong Peng
- Cardiovascular, Renal and Metabolism, AstraZeneca BioPharmaceutical R&D, Gothenburg, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Thomas D Arnold
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Nappi F, Avtaar Singh SS. Endothelial Dysfunction in SARS-CoV-2 Infection. Biomedicines 2022; 10:654. [PMID: 35327455 PMCID: PMC8945463 DOI: 10.3390/biomedicines10030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
One of the hallmarks of the SARS-CoV-2 infection has been the inflammatory process that played a role in its pathogenesis, resulting in mortality within susceptible individuals. This uncontrolled inflammatory process leads to severe systemic symptoms via multiple pathways; however, the role of endothelial dysfunction and thrombosis have not been truly explored. This review aims to highlight the pathogenic mechanisms of these inflammatory triggers leading to thrombogenic complications. There are direct and indirect pathogenic pathways of the infection that are examined in detail. We also describe the case of carotid artery thrombosis in a patient following SARS-CoV-2 infection while reviewing the literature on the role of ACE2, the endothelium, and the different mechanisms by which SARS-CoV-2 may manifest both acutely and chronically. We also highlight differences from the other coronaviruses that have made this infection a pandemic with similarities to the influenza virus.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
13
|
Hattori Y, Hattori K, Machida T, Matsuda N. Vascular endotheliitis associated with infections: Its pathogenetic role and therapeutic implication. Biochem Pharmacol 2022; 197:114909. [PMID: 35021044 PMCID: PMC8743392 DOI: 10.1016/j.bcp.2022.114909] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Betsholtz C. Toward a granular molecular-anatomic map of the blood vasculature - single-cell RNA sequencing makes the leap. Ups J Med Sci 2022; 127:9051. [PMID: 36337278 PMCID: PMC9602202 DOI: 10.48101/ujms.v127.9051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-cell RNA sequencing (scRNAseq) marks the birth of a new era in physiology and medicine. Within foreseeable future, we will know exactly what genes are expressed - and at what levels - in all the different cell types and subtypes that make up our bodies. We will also learn how a particular cell state, whether it occurs during development, tissue repair, or disease, reflects precise changes in gene expression. While profoundly impacting all areas of life science, scRNAseq may lead to a particular leap in vascular biology research. Blood vessels pervade and fulfill essential functions in all organs, but the functions differ. Innumerable organ-specific vascular adaptations and specializations are required. These, in turn, are dictated by differential gene expression by the two principal cellular building blocks of blood vessels: endothelial cells and mural cells. An organotypic vasculature is essential for functions as diverse as thinking, gas exchange, urine excretion, and xenobiotic detoxification in the brain, lung, kidney, and liver, respectively. In addition to the organotypicity, vascular cells also differ along the vascular arterio-venous axis, referred to as zonation, differences that are essential for the regulation of blood pressure and flow. Moreover, gene expression-based molecular changes dictate states of cellular activity, necessary for angiogenesis, vascular permeability, and immune cell trafficking, i.e. functions necessary for development, inflammation, and repair. These different levels of cellular heterogeneity create a nearly infinite phenotypic diversity among vascular cells. In this review, I summarize and exemplify what scRNAseq has brought to the picture in just a few years and point out where it will take us.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
15
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
16
|
Schimmel L, Chew KY, Stocks CJ, Yordanov TE, Essebier P, Kulasinghe A, Monkman J, Dos Santos Miggiolaro AFR, Cooper C, de Noronha L, Schroder K, Lagendijk AK, Labzin LI, Short KR, Gordon EJ. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology 2021; 10:e1350. [PMID: 34721846 PMCID: PMC8542944 DOI: 10.1002/cti2.1350] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives Thrombotic and microvascular complications are frequently seen in deceased COVID‐19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation‐induced endothelial activation remains highly contentious. Methods Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial–endothelial cell barrier. Results We show that primary human endothelial cells express very low levels of the SARS‐CoV‐2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS‐CoV‐2. We also show that SARS‐CoV‐2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co‐culture model endothelial cells are not infected with SARS‐CoV‐2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM‐1 expression and releasing pro‐inflammatory cytokines. Conclusions Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS‐CoV‐2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS‐CoV‐2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS‐CoV‐2 pathogenesis by sensing adjacent infection and mounting a pro‐inflammatory response to SARS‐CoV‐2.
Collapse
Affiliation(s)
- Lilian Schimmel
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| | - Claudia J Stocks
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Teodor E Yordanov
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Patricia Essebier
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Arutha Kulasinghe
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - James Monkman
- School of Biomedical Science, Faculty of Health Queensland University of Technology Brisbane QLD Australia
| | | | - Caroline Cooper
- Pathology Queensland Princess Alexandra Hospital Brisbane QLD Australia.,Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Lucia de Noronha
- School of Medicine & Center of Education, Research and Innovation Hospital Marcelino Champagnat - Pontifícia Universidade Católica do Paraná (PUCPR) Curitiba Brazil
| | - Kate Schroder
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Anne Karine Lagendijk
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research The University of Queensland Brisbane QLD Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| | - Emma J Gordon
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology The University of Queensland Brisbane QLD Australia.,School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
17
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
18
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
19
|
Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Spadaro S, Strazzabosco G, Campo G, Carosella ED, Papi A, Rizzo R, Contoli M. Increased sHLA-G Is Associated with Improved COVID-19 Outcome and Reduced Neutrophil Adhesion. Viruses 2021; 13:1855. [PMID: 34578436 PMCID: PMC8473385 DOI: 10.3390/v13091855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human leukocyte antigen (HLA) is a group of molecules involved in inflammatory and infective responses. We evaluated blood sHLA-E and sHLA-G levels in hospitalized COVID-19 patients with respiratory failure and their relationship with clinical evolution, changes in endothelial activation biomarker profile, and neutrophil adhesion. sHLA-E, sHLA-G, and endothelial activation biomarkers were quantified by ELISA assay in plasma samples. Neutrophil adhesion to endothelium was assessed in the presence/absence of patients' plasma samples. At admission, plasma levels of sHLA-G and sHLA-E were significantly higher in COVID-19 patients with respiratory failure compared to controls. COVID-19 clinical improvement was associated with increased sHLA-G plasma levels. In COVID-19, but not in control patients, an inverse correlation was found between serum sICAM-1 and E-selectin levels and plasma sHLA-G values. The in vitro analysis of activated endothelial cells confirmed the ability of HLA-G molecules to control sICAM-1 and sE-selectin expression via CD160 interaction and FGF2 induction and consequently neutrophil adhesion. We suggest a potential role for sHLA-G in improving COVID-19 patients' clinical condition related to the control of neutrophil adhesion to activated endothelium.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Cona, 44124 Ferrara, Italy;
| | - Edgardo D. Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, 75001 Paris, France;
| | - Alberto Papi
- Respiratory Section, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (M.C.)
- Respiratory Unit, Azienda Ospedaliera Universitaria Ferrara, Cona, 44124 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy; (D.B.); (V.G.); (S.R.); (G.S.); (S.B.); (G.S.)
- Industrial Research and Technology Transfer Laboratory (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (M.C.)
- Respiratory Unit, Azienda Ospedaliera Universitaria Ferrara, Cona, 44124 Ferrara, Italy
| |
Collapse
|
20
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Key Considerations for the Development of Safe and Effective SARS-CoV-2 Subunit Vaccine: A Peptide-Based Vaccine Alternative. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100985. [PMID: 34176237 PMCID: PMC8373118 DOI: 10.1002/advs.202100985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 is disastrous to global health and the economy. SARS-CoV-2 infection exhibits similar clinical symptoms and immunopathological sequelae to SARS-CoV infection. Therefore, much of the developmental progress on SARS-CoV vaccines can be utilized for the development of SARS-CoV-2 vaccines. Careful antigen selection during development is always of utmost importance for the production of effective vaccines that do not compromise recipient safety. This holds especially true for SARS-CoV vaccines, as several immunopathological disorders are associated with the activity of structural and nonstructural proteins encoded in the virus's genetic material. Whole viral protein and RNA-encoding full-length proteins contain both protective and "dangerous" sequences, unless pathological fragments are deleted. In light of recent advances, peptide vaccines may present a very safe and effective alternative. Peptide vaccines can avoid immunopathological pro-inflammatory sequences, focus immune responses on neutralizing immunogenic epitopes, avoid off-target antigen loss, combine antigens with different protective roles or mechanisms, even from different viral proteins, and avoid mutant escape by employing highly conserved cryptic epitopes. In this review, an attempt is made to exploit the similarities between SARS-CoV and SARS-CoV-2 in vaccine antigen screening, with particular attention to the pathological and immunogenic properties of SARS proteins.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
| | - Istvan Toth
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD4072Australia
- School of PharmacyThe University of QueenslandWoolloongabbaQLD4102Australia
| |
Collapse
|
21
|
Mohammadi Pour P, Farzaei MH, Soleiman Dehkordi E, Bishayee A, Asgary S. Therapeutic targets of natural products for the management of cardiovascular symptoms of coronavirus disease 2019. Phytother Res 2021; 35:5417-5426. [PMID: 34110678 DOI: 10.1002/ptr.7172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first occurred in China in December 2019 and subsequently spread all over the world with cardiovascular, renal, and pulmonary symptoms. Therefore, recognizing and treating the cardiovascular sign and symptoms that caused by coronavirus disease 2019 (COVID-19) can be effective in reducing patient mortality. To control the COVID-19-related cardiovascular symptoms, natural products are considered one of the promising choices as complementary medicine. Scientists are struggling to discover new antiviral agents specific to this virus. In this review, the natural products for management of cardiovascular symptoms of COVID-19 are categorized into three groups: (a) natural products with an impact on angiotensin II type 1 receptor; (b) natural products that inhibit angiotensin-converting enzyme activity; and (c) natural products that mimic adenosine activity. All these natural products should undergo clinical investigations to test their efficacy, safety, and toxicity in the treatment of cardiovascular symptoms of COVID-19. This article summarizes agents with potential efficacy against COVID-19-related cardiovascular symptoms.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Soleiman Dehkordi
- Medical Plants Research Center, Basic Health Science, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Breikaa RM, Lilly B. The Notch Pathway: A Link Between COVID-19 Pathophysiology and Its Cardiovascular Complications. Front Cardiovasc Med 2021; 8:681948. [PMID: 34124207 PMCID: PMC8187573 DOI: 10.3389/fcvm.2021.681948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is associated with a large number of cardiovascular sequelae, including dysrhythmias, myocardial injury, myocarditis and thrombosis. The Notch pathway is one likely culprit leading to these complications due to its direct role in viral entry, inflammation and coagulation processes, all shown to be key parts of COVID-19 pathogenesis. This review highlights links between the pathophysiology of SARS-CoV2 and the Notch signaling pathway that serve as primary drivers of the cardiovascular complications seen in COVID-19 patients.
Collapse
Affiliation(s)
- Randa M. Breikaa
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, United States
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Association of endothelial activation assessed through endothelin-I precursor peptide measurement with mortality in COVID-19 patients: an observational analysis. Respir Res 2021; 22:148. [PMID: 33985491 PMCID: PMC8117793 DOI: 10.1186/s12931-021-01742-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been linked to thrombotic complications and endothelial dysfunction. We assessed the prognostic implications of endothelial activation through measurement of endothelin-I precursor peptide (proET-1), the stable precursor protein of Endothelin-1, in a well-defined cohort of patients hospitalized with COVID-19. METHODS We measured proET-1 in 74 consecutively admitted adult patients with confirmed COVID-19 and compared its prognostic accuracy to that of patients with community-acquired pneumonia (n = 876) and viral bronchitis (n = 371) from a previous study by means of logistic regression analysis. The primary endpoint was all-cause 30-day mortality. RESULTS Overall, median admission proET-1 levels were lower in COVID-19 patients compared to those with pneumonia and exacerbated bronchitis, respectively (57.0 pmol/l vs. 113.0 pmol/l vs. 96.0 pmol/l, p < 0.01). Although COVID-19 non-survivors had 1.5-fold higher admission proET-1 levels compared to survivors (81.8 pmol/l [IQR: 76 to 118] vs. 53.6 [IQR: 37 to 69]), no significant association of proET-1 levels and mortality was found in a regression model adjusted for age, gender, creatinine level, diastolic blood pressure as well as cancer and coronary artery disease (adjusted OR 0.1, 95% CI 0.0009 to 14.7). In patients with pneumonia (adjusted OR 25.4, 95% CI 5.1 to 127.4) and exacerbated bronchitis (adjusted OR 120.1, 95% CI 1.9 to 7499) we found significant associations of proET-1 and mortality. CONCLUSIONS Compared to other types of pulmonary infection, COVID-19 shows only a mild activation of the endothelium as assessed through measurement of proET-1. Therefore, the high mortality associated with COVID-19 may not be attributed to endothelial dysfunction by the surrogate marker proET-1.
Collapse
|
24
|
Poznyak AV, Bezsonov EE, Eid AH, Popkova TV, Nedosugova LV, Starodubova AV, Orekhov AN. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. Int J Mol Sci 2021; 22:ijms22094691. [PMID: 33946649 PMCID: PMC8124184 DOI: 10.3390/ijms22094691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
25
|
Mascolo S, Carleo MA, Contieri M, Izzo S, Perna A, De Luca A, Esposito V. SARS-CoV-2 and inflammatory responses: From mechanisms to the potential therapeutic use of intravenous immunoglobulin. J Med Virol 2021; 93:2654-2661. [PMID: 33150961 DOI: 10.1002/jmv.26651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023]
Abstract
A novel coronavirus (SARS-CoV-2) is responsible for a severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19). It is originated in Wuhan, China, in December 2019. Due to its extreme transmissibility with droplets and human contacts, in a few months, it has become a pandemic. Nowadays, no effective therapy is available, and the scientific community is moving to find a therapeutic choice to fight this silent enemy. Studies are ongoing on several therapeutic options, including antiviral agents, immunomodulant drugs, and immunotherapy. Due to viral features, including the ability to start an inflammatory response that seems to be the fulcrum of COVID-19 pathogenic action, immunotherapy could represent a promising alternative waiting for the vaccine. High-dose intravenous immunoglobulin (IVIg), already used in other infectious diseases, could represent an effective help. The aim of this narrative review is to reassemble the clinical experiences on the use of IVIg in COVID-19 and the rationale of its use.
Collapse
Affiliation(s)
- Silvia Mascolo
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| | - Maria A Carleo
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Izzo
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Esposito
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| |
Collapse
|
26
|
Sansone A, Mollaioli D, Ciocca G, Limoncin E, Colonnello E, Vena W, Jannini EA. Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. J Endocrinol Invest 2021; 44:223-231. [PMID: 32661947 PMCID: PMC7355084 DOI: 10.1007/s40618-020-01350-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The COVID-19 pandemic, caused by the SARS-CoV-2, represents an unprecedented challenge for healthcare. COVID-19 features a state of hyperinflammation resulting in a "cytokine storm", which leads to severe complications, such as the development of micro-thrombosis and disseminated intravascular coagulation (DIC). Despite isolation measures, the number of affected patients is growing daily: as of June 12th, over 7.5 million cases have been confirmed worldwide, with more than 420,000 global deaths. Over 3.5 million patients have recovered from COVID-19; although this number is increasing by the day, great attention should be directed towards the possible long-term outcomes of the disease. Despite being a trivial matter for patients in intensive care units (ICUs), erectile dysfunction (ED) is a likely consequence of COVID-19 for survivors, and considering the high transmissibility of the infection and the higher contagion rates among elderly men, a worrying phenomenon for a large part of affected patients. METHODS A literature research on the possible mechanisms involved in the development of ED in COVID-19 survivors was performed. RESULTS Endothelial dysfunction, subclinical hypogonadism, psychological distress and impaired pulmonary hemodynamics all contribute to the potential onset of ED. Additionally, COVID-19 might exacerbate cardiovascular conditions; therefore, further increasing the risk of ED. Testicular function in COVID-19 patients requires careful investigation for the unclear association with testosterone deficiency and the possible consequences for reproductive health. Treatment with phosphodiesterase-5 (PDE5) inhibitors might be beneficial for both COVID-19 and ED. CONCLUSION COVID-19 survivors might develop sexual and reproductive health issues. Andrological assessment and tailored treatments should be considered in the follow-up.
Collapse
Affiliation(s)
- A Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - D Mollaioli
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - G Ciocca
- Department of Dynamic and Clinical Psychology, "Sapienza" University of Rome, Rome, Italy
| | - E Limoncin
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - E Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - W Vena
- Endocrinology, Diabetology and Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - E A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
27
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
28
|
Zhou B, Kojima S, Kawamoto A, Fukushima M. COVID-19 pathogenesis, prognostic factors, and treatment strategy: Urgent recommendations. J Med Virol 2021; 93:2694-2704. [PMID: 33368358 DOI: 10.1002/jmv.26754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
The pandemic of novel coronavirus disease (COVID-19) is not yet close to being over, more than 8 months after the first cases, but researchers are making great progress in fighting the disease. We have conducted a brief review of the geographic differences in the prevalence of COVID-19, the updated pathological findings, prognostic factors, and treatments for disease prevention and improvement of prognosis. Although hydroxychloroquine and tocilizumab have been recommended by some researchers, many clinical trials have failed to confirm any beneficial effect of these and other drugs on COVID-19, in terms of improved clinical status or reduced patient mortality. Currently, glucocorticoid is the only drug that reduces the mortality of COVID-19 in a randomized controlled trial; however, it is still necessary to establish the optimal timing of administration. It is also urgent to set up an international or national cohort to address the risk factors associated with infection, the natural history of COVID-19, including the disease type, surrogate markers for critically ill, long-term sequelae, and reinfection after exposure, identify responders to glucocorticoid, and establish optimal treatment strategies for disease control.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Medscience, Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Shinsuke Kojima
- Department of Medscience, Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Atsuhiko Kawamoto
- Department of Medscience, Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Masanori Fukushima
- Department of Medscience, Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| |
Collapse
|
29
|
Sohrabi Y, Dos Santos JC, Dorenkamp M, Findeisen H, Godfrey R, Netea MG, Joosten LAB. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology 2020; 9:e1228. [PMID: 33363733 PMCID: PMC7755499 DOI: 10.1002/cti2.1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
| | - Marc Dorenkamp
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Hannes Findeisen
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Rinesh Godfrey
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo AB Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de GoiásGoiâniaBrazil
| |
Collapse
|
30
|
Matarese A, Gambardella J, Sardu C, Santulli G. miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19. Biomedicines 2020; 8:462. [PMID: 33143053 PMCID: PMC7693865 DOI: 10.3390/biomedicines8110462] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
Collapse
Affiliation(s)
- Alessandro Matarese
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- AORN “Antonio Cardarelli”, 80100 Naples, Italy
| | - Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.M.); (J.G.)
- Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
31
|
MacLean MA, Kamintsky L, Leck ED, Friedman A. The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids Barriers CNS 2020; 17:55. [PMID: 32912226 PMCID: PMC7481544 DOI: 10.1186/s12987-020-00216-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Human coronaviruses are highly pathogenic viruses that pose a serious threat to human health. Examples include the severe acute respiratory syndrome outbreak of 2003 (SARS-CoV-1), the Middle East Respiratory Syndrome (MERS-CoV) outbreak of 2012, and the current SARS-CoV-2 (COVID-19) pandemic. Herein, we review the neurological manifestations of coronaviruses and discuss the potential pathogenic role of blood-brain barrier dysfunction. We present the hypothesis that pre-existing vascular damage (due to aging, cardiovascular disease, diabetes, hypertension or other conditions) facilitates infiltration of the virus into the central nervous system (CNS), increasing neuro-inflammation and the likelihood of neurological symptoms. We also discuss the role of a neuroinflammatory cytokine profile in both blood-brain barrier dysfunction and macrovascular disease (e.g. ischemic stroke and thromboembolism). Future studies are needed to better understand the involvement of the microvasculature in coronavirus neuropathology, and to test the diagnostic potential of minimally-invasive screening tools (e.g. serum biomarkers, fluorescein retinal angiography and dynamic-contrast MRI).
Collapse
Affiliation(s)
- M. A. MacLean
- Division of Neurosurgery, Dalhousie University, Queen Elizabeth II Health Sciences Centre (Halifax Infirmary), 1796 Summer Street, Halifax, NS B3H 3A7 Canada
| | - L. Kamintsky
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Room 12 H, 12th Floor, Sir Charles Tupper Building, 5850 College Street, PO Box 15000, Halifax, NS Canada
| | - E. D. Leck
- Division of Neurosurgery, Dalhousie University, Queen Elizabeth II Health Sciences Centre (Halifax Infirmary), 1796 Summer Street, Halifax, NS B3H 3A7 Canada
| | - A. Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Room 12 H, 12th Floor, Sir Charles Tupper Building, 5850 College Street, PO Box 15000, Halifax, NS Canada
| |
Collapse
|
32
|
Silva GM, França-Falcão MS, Calzerra NTM, Luz MS, Gadelha DDA, Balarini CM, Queiroz TM. Role of Renin-Angiotensin System Components in Atherosclerosis: Focus on Ang-II, ACE2, and Ang-1-7. Front Physiol 2020; 11:1067. [PMID: 33013457 PMCID: PMC7494970 DOI: 10.3389/fphys.2020.01067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is the leading cause of vascular disease worldwide and contributes significantly to deaths from cardiovascular complications. There is a remarkably close relationship between atherosclerotic plaque formation and the activation of renin-angiotensin system (RAS). However, depending on which RAS pathway is activated, pro- or anti-atherogenic outcomes may be observed. This brief review focuses on the role of three of the most important pieces of RAS axis, angiotensin II (Ang-II), angiotensin converting enzyme type 2 (ACE2), and angiotensin 1-7 (Ang-1-7) and their involvement in atherosclerosis. We focused on the effects of these molecules on vascular function and inflammation, which are important determinants of atherogenesis. Furthermore, we highlighted potential pharmacological approaches to treat this disorder.
Collapse
Affiliation(s)
- Gabriela M Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | - Mickael S Luz
- Center of Biotechnology, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Camille M Balarini
- Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Thyago M Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| |
Collapse
|
33
|
Feng H, Wei X, Pang L, Wu Y, Hu B, Ruan Y, Liu Z, Liu J, Wang T. Prognostic and Immunological Value of Angiotensin-Converting Enzyme 2 in Pan-Cancer. Front Mol Biosci 2020; 7:189. [PMID: 33088807 PMCID: PMC7490340 DOI: 10.3389/fmolb.2020.00189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays a pivotal role in the renin–angiotensin system and is closely related to coronavirus disease of 2019. However, the role of ACE2 in cancers remains unclear. We explored the pan-cancer expression patterns and prognostic value of ACE2 across multiple databases, including Oncomine, PrognoScan, Gene Expression Profiling Interactive Analysis, and Kaplan–Meier Plotter. Then, we investigated the correlations between ACE2 expression and immune infiltration in cancers. We found that tumor tissues had higher expression levels of ACE2 compared with normal tissue in the kidney and the liver and lower expression levels in the lung. High expression levels of ACE2 were beneficial to survival in ovarian serous cystadenocarcinoma, liver hepatocellular carcinoma, kidney renal papillary cell carcinoma, and kidney renal clear cell carcinoma, although this was not the case in lung squamous cell carcinoma. For those with a better prognosis, there were significant positive correlations between ACE2 expression and immune infiltrates, including B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, and dendritic cells. In conclusion, ACE2 could serve as a pan-cancer prognostic biomarker and is correlated with immune infiltrates.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Abstract
Abstract
At the end of 2019, a new coronavirus infection occurred in the People’s Republic of China with an epicentre in the city of Wuhan. On February 11th, 2020, the World Health Organization assigned the official name of the infection caused by the new coronavirus – COVID-19. COVID-19 has affected people from all over the world given that the infection was noted in 200 countries resulting in annunciation of the pandemic situation. Human corona viruses cause mild to moderate respiratory infections. At the end of 2002, a new coronavirus appeared (SARS-CoV), the causal agent of atypical pneumonia, which caused acute respiratory distress syndrome (ARDS). The initial stage of COVID-19 infection is the penetration of SARS-CoV-2 into target cells that have angiotensin converting enzyme type II receptors. The virus enters the body through the respiratory tract and interacts primarily with toll-like receptors (TLRs). The events in SARS-Cov-2 induced infection follow the next scenario: epithelial cells via TLRs recognize and identify SARS-Cov-2, and after that the information is transmitted to the transcriptional NF-κB, which causes expression of the corresponding genes. Activated in this way, the epithelial cells begin to synthesize various biologically active molecules. The results obtained on preclinical material indicate that ROS generation increases and the antioxidant protection decreases, which plays a major role in the pathogenesis of SARS-CoV, as well as in the progression and severity of this respiratory disease.
Collapse
|
35
|
Sulzer D, Antonini A, Leta V, Nordvig A, Smeyne RJ, Goldman JE, Al-Dalahmah O, Zecca L, Sette A, Bubacco L, Meucci O, Moro E, Harms AS, Xu Y, Fahn S, Ray Chaudhuri K. COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. NPJ Parkinsons Dis 2020; 6:18. [PMID: 32885037 PMCID: PMC7441399 DOI: 10.1038/s41531-020-00123-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson's disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson's patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson's disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia.
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10032 USA
| | - Angelo Antonini
- Department of Neuroscience, Parkinson and Movement Disorders Unit, University of Padua, Padua, Italy
| | - Valentina Leta
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, SE5 9RS UK
| | - Anna Nordvig
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - James E. Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92093 USA
- Department of Medicine, University of California, San Diego, CA 92093 USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102 USA
- Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102 USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102 USA
| | - Elena Moro
- Department of Neurology, Grenoble Alpes University Hospital, Grenoble, France
- Grenoble Institute of Neurosciences GIN-INSERM U1216/CEA/UGA, Grenoble, France
- Grenoble Alpes University, Grenoble, France
| | - Ashley S. Harms
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yaqian Xu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Stanley Fahn
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - K. Ray Chaudhuri
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, SE5 9RS UK
| |
Collapse
|
36
|
Descamps G, Verset L, Trelcat A, Hopkins C, Lechien JR, Journe F, Saussez S. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. BIOLOGY 2020; 9:235. [PMID: 32824830 PMCID: PMC7465650 DOI: 10.3390/biology9080235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention.
Collapse
Affiliation(s)
- Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Laurine Verset
- Department of Pathology, Institute Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium;
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Claire Hopkins
- Guy’s and St Thomas’ Hospitals, Westminster Bridge Road, London SE1 9RT, UK;
- British Rhinological Society (President), 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - Jérome R. Lechien
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 40 Rue Worth, Suresnes, 92150 Paris, France
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Oncology and Experimental Surgery, Institute Jules Bordet (IJB), Université Libre de Bruxelles (ULB), Rue Heger-Bordet 1, 1000 Brussels, Belgium
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| |
Collapse
|
37
|
Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI, Pacia SV, Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation 2020; 17:231. [PMID: 32758257 PMCID: PMC7406702 DOI: 10.1186/s12974-020-01896-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It frequently presents with unremitting fever, hypoxemic respiratory failure, and systemic complications (e.g., gastrointestinal, renal, cardiac, and hepatic involvement), encephalopathy, and thrombotic events. The respiratory symptoms are similar to those accompanying other genetically related beta-coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East Respiratory Syndrome CoV (MERS-CoV). Hypoxemic respiratory symptoms can rapidly progress to Acute Respiratory Distress Syndrome (ARDS) and secondary hemophagocytic lymphohistiocytosis, leading to multi-organ system dysfunction syndrome. Severe cases are typically associated with aberrant and excessive inflammatory responses. These include significant systemic upregulation of cytokines, chemokines, and pro-inflammatory mediators, associated with increased acute-phase proteins (APPs) production such as hyperferritinemia and elevated C-reactive protein (CRP), as well as lymphocytopenia. The neurological complications of SARS-CoV-2 infection are high among those with severe and critical illnesses. This review highlights the central nervous system (CNS) complications associated with COVID-19 attributed to primary CNS involvement due to rare direct neuroinvasion and more commonly secondary CNS sequelae due to exuberant systemic innate-mediated hyper-inflammation. It also provides a theoretical integration of clinical and experimental data to elucidate the pathogenesis of these disorders. Specifically, how systemic hyper-inflammation provoked by maladaptive innate immunity may impair neurovascular endothelial function, disrupt BBB, activate CNS innate immune signaling pathways, and induce para-infectious autoimmunity, potentially contributing to the CNS complications associated with SARS-CoV-2 infection. Direct viral infection of the brain parenchyma causing encephalitis, possibly with concurrent neurovascular endotheliitis and CNS renin angiotensin system (RAS) dysregulation, is also reviewed.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA.
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA.
| | - Amanda Najjar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Derek J Chong
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Bidyut K Pramanik
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Claudia Kirsch
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA
| | - Ruben I Kuzniecky
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Steven V Pacia
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA
| | - Salman Azhar
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
38
|
Abstract
There is growing evidence that COVID-19 not only affects the lungs but beyond that the endothelial system. Recent studies showed that this can lead to microcirculatory impairments and in consequence to functional disorders of all inner organs. The combination of endothelial dysfunction with a generalized inflammatory state and complement elements may together contribute to the overall pro-coagulative state described in COVID-19 patients leading to venular as well as to arteriolar occlusions.
Collapse
Affiliation(s)
- F Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - A Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm, Germany
| | - R P Franke
- Department of Biomaterials, University of Ulm, Ulm, Germany
| | - F Hufert
- Institute of Microbiology & Virology, Brandenburg Medical School Fontane, Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Fontane and the University of Potsdam, Potsdam, Germany
| | - J-H Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
39
|
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J 2020; 34:9843-9853. [PMID: 32588493 PMCID: PMC7361619 DOI: 10.1096/fj.202001451] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The current coronavirus disease 2019 (COVID‐19) pandemic presents a global challenge for managing acutely ill patients and complications from viral infection. Systemic inflammation accompanied by a “cytokine storm,” hemostasis alterations and severe vasculitis have all been reported to occur with COVID‐19, and emerging evidence suggests that dysregulation of lipid transport may contribute to some of these complications. Here, we aim to summarize the current understanding of the potential mechanisms related to COVID‐19 dyslipidemia and propose possible adjunctive type therapeutic approaches that modulate lipids and lipoproteins. Specifically, we hypothesize that changes in the quantity and composition of high‐density lipoprotein (HDL) that occurs with COVID‐19 can significantly decrease the anti‐inflammatory and anti‐oxidative functions of HDL and could contribute to pulmonary inflammation. Furthermore, we propose that lipoproteins with oxidized phospholipids and fatty acids could lead to virus‐associated organ damage via overactivation of innate immune scavenger receptors. Restoring lipoprotein function with ApoA‐I raising agents or blocking relevant scavenger receptors with neutralizing antibodies could, therefore, be of value in the treatment of COVID‐19. Finally, we discuss the role of omega‐3 fatty acids transported by lipoproteins in generating specialized proresolving mediators and how together with anti‐inflammatory drugs, they could decrease inflammation and thrombotic complications associated with COVID‐19.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,NeoProgen, Baltimore, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lita Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Ryan PM, Caplice N. COVID-19 and relative angiotensin-converting enzyme 2 deficiency: role in disease severity and therapeutic response. Open Heart 2020; 7:openhrt-2020-001302. [PMID: 32532804 PMCID: PMC7298719 DOI: 10.1136/openhrt-2020-001302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Noel Caplice
- Centre for Research in Vascular Biology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Crit Rev Food Sci Nutr 2020; 61:2572-2586. [PMID: 32551837 DOI: 10.1080/10408398.2020.1781049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food protein-derived bioactive peptides, particularly antihypertensive peptides, are important constituents of functional foods or nutraceuticals. Most antihypertensive are identified as the inhibitors of angiotensin converting enzyme (ACE), a key enzyme responsible for the generation of angiotensin II (Ang II), which is a vasoconstricting peptide. Hence, ACE has long been used as a universal target to identify antihypertensive peptides. Angiotensin converting enzyme 2 (ACE2), is a homolog of ACE but uses Ang II as its key substrate to produce angiotensin (1-7), exerting vasodilatory activity via the mas receptor (MasR). Therefore, ACE2 functions in the opposite way as ACE and is an emerging novel target for cardiovascular therapy. The potential of food protein-derived bioactive peptides in targeting ACE2 has been rarely explored. While, recently we found that IRW, an egg white ovotransferrin-derived antihypertensive peptide, reduced blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/MasR axis, indicating a new mechanism of food protein-derived bioactive peptides in reducing blood pressure. The objectives of this review are to summarize the functions of the ACE2/Ang (1-7)/MasR axis and to examine its potential roles in the actions of food protein-derived antihypertensive peptides. The interaction between antihypertensive peptides and the ACE2/Ang (1-7)/MasR axis will also be discussed.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol 2020; 215:108427. [PMID: 32325252 PMCID: PMC7169933 DOI: 10.1016/j.clim.2020.108427] [Citation(s) in RCA: 1180] [Impact Index Per Article: 236.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, a novel coronavirus, now named as SARS-CoV-2, caused a series of acute atypical respiratory diseases in Wuhan, Hubei Province, China. The disease caused by this virus was termed COVID-19. The virus is transmittable between humans and has caused pandemic worldwide. The number of death tolls continues to rise and a large number of countries have been forced to do social distancing and lockdown. Lack of targeted therapy continues to be a problem. Epidemiological studies showed that elder patients were more susceptible to severe diseases, while children tend to have milder symptoms. Here we reviewed the current knowledge about this disease and considered the potential explanation of the different symptomatology between children and adults.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| | - Miho Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, United States of America.
| |
Collapse
|
43
|
Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng LL, Dickstein K, Lang CC, Filippatos G, Anker SD, Ponikowski P, Metra M, van Veldhuisen DJ, Voors AA. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J 2020; 41:1810-1817. [PMID: 32388565 PMCID: PMC7239195 DOI: 10.1093/eurheartj/ehaa373] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aims The current pandemic coronavirus SARS-CoV-2 infects a wide age group but predominantly elderly individuals, especially men and those with cardiovascular disease. Recent reports suggest an association with use of renin–angiotensin–aldosterone system (RAAS) inhibitors. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for coronaviruses. Higher ACE2 concentrations might lead to increased vulnerability to SARS-CoV-2 in patients on RAAS inhibitors. Methods and results We measured ACE2 concentrations in 1485 men and 537 women with heart failure (index cohort). Results were validated in 1123 men and 575 women (validation cohort). The median age was 69 years for men and 75 years for women. The strongest predictor of elevated concentrations of ACE2 in both cohorts was male sex (estimate = 0.26, P < 0.001; and 0.19, P < 0.001, respectively). In the index cohort, use of ACE inhibitors, angiotensin receptor blockers (ARBs), or mineralocorticoid receptor antagonists (MRAs) was not an independent predictor of plasma ACE2. In the validation cohort, ACE inhibitor (estimate = –0.17, P = 0.002) and ARB use (estimate = –0.15, P = 0.03) were independent predictors of lower plasma ACE2, while use of an MRA (estimate = 0.11, P = 0.04) was an independent predictor of higher plasma ACE2 concentrations. Conclusion In two independent cohorts of patients with heart failure, plasma concentrations of ACE2 were higher in men than in women, but use of neither an ACE inhibitor nor an ARB was associated with higher plasma ACE2 concentrations. These data might explain the higher incidence and fatality rate of COVID-19 in men, but do not support previous reports suggesting that ACE inhibitors or ARBs increase the vulnerability for COVID-19 through increased plasma ACE2 concentrations. ![]()
Collapse
Affiliation(s)
- Iziah E Sama
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alice Ravera
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Cardiology, Department of Medical and Surgical Specialties, Radiologic Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Bernadet T Santema
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jozine M Ter Maaten
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John G F Cleland
- Robertson Centre for Biostatistics & Clinical Trials Unit, University of Glasgow and National Heart & Lung Institute, Imperial College, London, UK
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Germany
| | - Piotr Ponikowski
- Department of Heart Diseases, Medical University, Military Hospital, Wrocław, Poland
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiologic Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
45
|
Zhou X, Zhang P, Liang T, Chen Y, Liu D, Yu H. Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and coronary heart disease. Heart Vessels 2019; 35:153-161. [PMID: 31359146 PMCID: PMC7100072 DOI: 10.1007/s00380-019-01478-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
As a counter-regulatory arm of the renin angiotensin system (RAS), the angiotensin-converting enzyme 2-angiotensin-(1–7)-MAS axis (ACE2-Ang-(1–7)-MAS axis) plays a protective role in cardiovascular diseases. However, the link between circulating levels of ACE2-Ang-(1–7)-Mas axis and coronary atherosclerosis in humans is not determined. The object of present study was to investigate the association of circulating levels of ACE2, Ang-(1–7) and Ang-(1–9) with coronary heart disease (CHD) defined by coronary angiography (CAG). 275 patients who were referred to CAG for the evaluation of suspected CHD were enrolled and divided into two groups: CHD group (diameter narrowing ≥ 50%, n = 218) and non-CHD group (diameter narrowing < 50%, n = 57). Circulating ACE2, Ang-(1–7) and Ang-(1–9) levels were detected by enzyme-linked immunosorbent assay (ELISA). In females, circulating ACE2 levels were higher in the CHD group than in the non-CHD group (5617.16 ± 5206.67 vs. 3124.06 ± 3005.36 pg/ml, P = 0.009), and subgroup analysis showed the significant differences in ACE2 levels between the two groups only exist in patients with multi-vessel lesions (P = 0.009). In multivariate logistic regression, compared with the people in the lowest ACE2 quartile, those in the highest quartile had an OR of 4.33 (95% CI 1.20–15.61) for the CHD (P for trend = 0.025), the OR was 5.94 (95% CI 1.08–32.51) for the third ACE2 quartile and 9.58 (95% CI 1.61–56.95) for the highest ACE2 quartile after adjusting for potential confounders (P for trend = 0.022). However, circulating Ang-(1–7) and Ang-(1–9) levels had no significant differences between the two groups. In males, there were no significant differences in the levels of ACE2-Ang-(1–7)-MAS axis between two groups. Together, circulating ACE2 levels, but not Ang-(1–7) and Ang-(1–9) levels, significantly increased in female CHD group when compared with non-CHD group, increased ACE2 was independently associated with CHD in female and in patients with multi-vessel lesions even after adjusting for the confounding factors, indicating that ACE2 may participate as a compensatory mechanism in CHD.
Collapse
Affiliation(s)
- Xiaomin Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tao Liang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongyue Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Shantou Central Hospital and Affiliated Shantou Hospital of SunYat-Sen University, Shantou, China
| | - Dan Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Hospital of Panyu District, Guangzhou, China
| | - Huimin Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Department of Cardiology, Guangdong General Hospital's Nanhai Hospital, Foshan, China.
| |
Collapse
|
46
|
Sá C, Pestana D, Calhau C, Faria A. Unravelling the Effect of p,p'-Dichlorodiphenyldichloroethylene (DDE) in Hypertension of Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12847-12854. [PMID: 30415545 DOI: 10.1021/acs.jafc.8b05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypertension is a multifactorial disease with limited knowledge of the involved mechanisms. p,p'-DDE ( p,p'-dichlorodiphenyldichloroethylene) is a pollutant commonly found in tissues that interferes with endocrine signaling. This study aimed to evaluate the mechanism of hypertension triggered by p,p'-DDE exposure in the presence or absence of a HF (high-fat) diet in rats. The renin-angiotensin system (RAS) was evaluated by qPCR in liver and adipose tissue (AT), and a transcriptome analysis comparing visceral AT of HF diet and HF/DDE groups was performed. HF diet influenced RAS, but the p,p'-DDE effect was more evident in liver than in AT (interaction between the diet and p,p'-DDE treatment affected aldosterone receptor and angiotensin converting enzyme 2 expression in liver, p < 0.05, two-way ANOVA). p,p'-DDE induced a decrease in the expression of genes involved in the retinoid acid biosynthesis pathway (Crabp1; -2.07-fold; p = 0.018), eNOS activation (Nos1; -1.64-fold; p = 0.012), and regulation and urea cycle (Ass1; -2.07-fold; p = 0.02). This study suggested that p,p'-DDE may play a fundamental role in the pathogenesis of hypertension, not exclusively in RAS but also by induction of hyperuricemia and increased oxidative stress, which may lead to endoplasmic reticulum stress and vascular injury.
Collapse
Affiliation(s)
- Carla Sá
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Department of Biochemistry, Faculty of Medicine , University of Porto , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
| | - Diogo Pestana
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Conceição Calhau
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Ana Faria
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
- Comprehensive Health Research Centre NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| |
Collapse
|
47
|
Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. PLoS One 2018; 13:e0198144. [PMID: 29897923 PMCID: PMC5999069 DOI: 10.1371/journal.pone.0198144] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background Angiotensin converting enzyme 2 (ACE2) is an endogenous regulator of the renin angiotensin system. Increased circulating ACE2 predicts adverse outcomes in patients with heart failure (HF), but it is unknown if elevated plasma ACE2 activity predicts major adverse cardiovascular events (MACE) in patients with obstructive coronary artery disease (CAD). Methods We prospectively recruited patients with obstructive CAD (defined as ≥50% stenosis of the left main coronary artery and/or ≥70% stenosis in ≥ 1 other major epicardial vessel on invasive coronary angiography) and measured plasma ACE2 activity. Patients were followed up to determine if circulating ACE2 activity levels predicted the primary endpoint of MACE (cardiovascular mortality, HF or myocardial infarction). Results We recruited 79 patients with obstructive coronary artery disease. The median (IQR) plasma ACE2 activity was 29.3 pmol/ml/min [21.2–41.2]. Over a median follow up of 10.5 years [9.6–10.8years], MACE occurred in 46% of patients (36 events). On Kaplan-Meier analysis, above-median plasma ACE2 activity was associated with MACE (log-rank test, p = 0.035) and HF hospitalisation (p = 0.01). After Cox multivariable adjustment, log ACE2 activity remained an independent predictor of MACE (hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.24–4.72, p = 0.009) and HF hospitalisation (HR: 4.03, 95% CI: 1.42–11.5, p = 0.009). Conclusions Plasma ACE2 activity independently increased the hazard of adverse long-term cardiovascular outcomes in patients with obstructive CAD.
Collapse
|
48
|
de Souza-Neto FP, Carvalho Santuchi M, de Morais E Silva M, Campagnole-Santos MJ, da Silva RF. Angiotensin-(1-7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis. Curr Hypertens Rep 2018. [PMID: 29541937 DOI: 10.1007/s11906-018-0798-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1-7) [Ang-(1-7)] and alamandine in experimental hypertension and atherosclerosis. RECENT FINDINGS The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1-7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis. While the beneficial effects of Ang-(1-7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1-7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.
Collapse
Affiliation(s)
- Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos. 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Melissa Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos. 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mario de Morais E Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos. 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos. 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos. 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
49
|
Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen Sulfide Attenuates Atherosclerosis in a Partially Ligated Carotid Artery Mouse model via Regulating Angiotensin Converting Enzyme 2 Expression. Front Physiol 2017; 8:782. [PMID: 29066981 PMCID: PMC5641337 DOI: 10.3389/fphys.2017.00782] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide has been suggested to play an essential role in atherogenesis. There is a paucity of information about the association between H2S and angiotensin converting enzyme 2 (ACE2), a novel homolog of ACE. Therefore, the aim of the study was to explore the role of H2S in atherosclerosis with respect to ACE2 both in vitro and in vivo. Here, a murine model of acutely disturbed flow-induced atherosclerosis by left common carotid artery (LCA) partial ligation was utilized. We found that carotid partial ligation in high-fat fed apoE−/− mice significantly inhibited endogenous H2S synthesis in LCA. Application of NaHS, an H2S donor considerably attenuated the severity of atherosclerosis with upregulating carotid expression of ACE2, thus converting pro-atherosclerotic angiotensin II (Ang II) to anti-atherosclerotic angiotensin 1-7 (Ang-(1-7)). The anti-atherosclerotic effect of NaHS was dramatically abolished by treatment with MLN-4760, an ACE2 inhibitor. In contrast, blockage of H2S formation by DL-propargylglycine exacerbated the burden of atherosclerotic plaques accompanied by inhibiting carotid expression of ACE2. At the cellular level, NaHS dose-dependently promoted the expression of ACE2 and conversion from Ang II to Ang-(1-7) in unstimulated or LPS-stimulated endothelial cells, thus exerting anti-inflammatory properties. The anti-inflammatory effect of NaHS was abrogated by pretreatment with DX600, a selective ACE2 inhibitor. In conclusion, these data provide direct evidences that endogenous H2S insufficiency exists in acute flow disturbance-induced atherosclerosis and that application of H2S may protect against atherosclerosis via upregulating ACE2 expression in endothelial cells.
Collapse
Affiliation(s)
- Yanjun Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huasu Zeng
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ting Gu
- Department of Oral and Maxillofacial Pathology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Nehme A, Zibara K. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis 2017; 263:334-342. [PMID: 28600074 DOI: 10.1016/j.atherosclerosis.2017.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The importance of the renin-angiotensin-aldosterone system (RAAS) in the development of atherosclerotic has been experimentally documented. In fact, RAAS components have been shown to be locally expressed in the arterial wall and to be differentially regulated during atherosclerotic lesion progression. RAAS transcripts and proteins were shown to be differentially expressed and to interact in the 3 main cells of atheroma: endothelial cells, vascular smooth muscle cells, and macrophages. This review describes the local expression and cellular distribution of extended RAAS components in the arterial wall and their differential regulation during atherosclerotic lesion development.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional Genomics of Arterial Hypertension, Hôpital Nord-Ouest, Villefranche-sur-Saône, Université Lyon1, Lyon, France; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|