1
|
Li C, Feng X, Li S, He X, Luo Z, Cheng X, Yao J, Xiao J, Wang X, Wen D, Liu D, Li Y, Zhou H, Ma L, Lin T, Cai X, Lin Y, Guo L, Yang M. Tetrahedral DNA loaded siCCR2 restrains M1 macrophage polarization to ameliorate pulmonary fibrosis in chemoradiation-induced murine model. Mol Ther 2024; 32:766-782. [PMID: 38273656 PMCID: PMC10928155 DOI: 10.1016/j.ymthe.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lethal disease in the absence of demonstrated efficacy for preventing progression. Although macrophage-mediated alveolitis is determined to participate in myofibrotic transition during disease development, the paradigm of continuous macrophage polarization is still under-explored due to lack of proper animal models. Here, by integrating 2.5 U/kg intratracheal Bleomycin administration and 10 Gy thorax irradiation at day 7, we generated a murine model with continuous alveolitis-mediated fibrosis, which mimics most of the clinical features of our involved IPF patients. In combination with data from scRNA-seq of patients and a murine IPF model, a decisive role of CCL2/CCR2 axis in driving M1 macrophage polarization was revealed, and M1 macrophage was further confirmed to boost alveolitis in leading myofibroblast activation. Multiple sticky-end tetrahedral framework nucleic acids conjunct with quadruple ccr2-siRNA (FNA-siCCR2) was synthesized in targeting M1 macrophages. FNA-siCCR2 successfully blocked macrophage accumulation in pulmonary parenchyma of the IPF murine model, thus preventing myofibroblast activation and leading to the disease remitting. Overall, our studies lay the groundwork to develop a novel IPF murine model, reveal M1 macrophages as potential therapeutic targets, and establish new treatment strategy by using FNA-siCCR2, which are highly relevant to clinical scenarios and translational research in the field of IPF.
Collapse
Affiliation(s)
- Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xiaorong Feng
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Zeli Luo
- Department of Pulmonary and Critical Care Medicine, Wenjiang Hospital of Sichuan Provincial People's, Chengdu 611138, China
| | - Xia Cheng
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duanya Liu
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Yanfei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tongyu Lin
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Mu Yang
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China.
| |
Collapse
|
2
|
Di X, Chen J, Li Y, Wang M, Wei J, Li T, Liao B, Luo D. Crosstalk between fibroblasts and immunocytes in fibrosis: From molecular mechanisms to clinical trials. Clin Transl Med 2024; 14:e1545. [PMID: 38264932 PMCID: PMC10807359 DOI: 10.1002/ctm2.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The impact of fibroblasts on the immune system provides insight into the function of fibroblasts. In various tissue microenvironments, multiple fibroblast subtypes interact with immunocytes by secreting growth factors, cytokines, and chemokines, leading to wound healing, fibrosis, and escape of cancer immune surveillance. However, the specific mechanisms involved in the fibroblast-immunocyte interaction network have not yet been fully elucidated. MAIN BODY AND CONCLUSION Therefore, we systematically reviewed the molecular mechanisms of fibroblast-immunocyte interactions in fibrosis, from the history of cellular evolution and cell subtype divisions to the regulatory networks between fibroblasts and immunocytes. We also discuss how these communications function in different tissue and organ statuses, as well as potential therapies targeting the reciprocal fibroblast-immunocyte interplay in fibrosis. A comprehensive understanding of these functional cells under pathophysiological conditions and the mechanisms by which they communicate may lead to the development of effective and specific therapies targeting fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jiawei Chen
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Menghua Wang
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Deyi Luo
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
3
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
4
|
Chen Y, Song W, Zhang H, Ji X. MICALL2 participates in the regulation of epithelial-mesenchymal transition in alveolar epithelial cells - Potential roles in pulmonary fibrosis. Arch Biochem Biophys 2023; 747:109730. [PMID: 37690696 DOI: 10.1016/j.abb.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is a vital process in idiopathic pulmonary fibrosis (IPF), which results in the accumulation of fibroblasts and myofibroblasts and excessive extracellular matrix deposition. Based on RNA sequencing analysis and GEO dataset reanalysis, we screened out MICALL2, a gene upregulated in the lungs of IPF mice and alveolar epithelial type II (ATII) cells from IPF patients, and aimed to explore its role in IPF. We validated the expression of MICALL2 in bleomycin (BLM)-induced IPF mice and TGF-β1-stimulated ATII cells (primary murine ATII cells and A549 cells), and explored the role of MICALL2 in IPF by knockdown of MICALL2 in BLM-induced mice and TGF-β1-stimulated ATII cells. We found that MICALL2 was upregulated in the lungs of BLM-induced mice and TGF-β1-stimulated ATII cells. MICALL2-deficient mice had reduced fibrogenesis and restrained EMT upon BLM challenge. Knockdown of MICALL2 restrained the EMT process, in vitro, through impeding β-catenin nuclear translocation. Mechanistically, we demonstrated that NPAS2 is directly bound to the promoter of MICALL2. Altogether, our data revealed transactivation of MICALL2 induced by NPAS2, contributing to activation of the Wnt/β-catenin pathway in ATII cells, thus leading to the EMT process and subsequent pulmonary fibrosis. Interfering with MICALL2 may represent an innovative therapeutic target to mitigate the extent of IPF.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - He Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Xinping Ji
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
5
|
Ruaro B, Tavano S, Confalonieri P, Pozzan R, Hughes M, Braga L, Volpe MC, Ligresti G, Andrisano AG, Lerda S, Geri P, Biolo M, Baratella E, Confalonieri M, Salton F. Transbronchial lung cryobiopsy and pulmonary fibrosis: A never-ending story? Heliyon 2023; 9:e14768. [PMID: 37025914 PMCID: PMC10070648 DOI: 10.1016/j.heliyon.2023.e14768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The diagnostic process of pulmonary fibrosis (PF) is often challenging, requires a collaborative effort of several experts, and often requires bioptic material, which can be difficult to obtain, both in terms of quality and technique. The main procedures available to obtain such samples are transbronchial lung cryobiopsy (TBLC) and surgical lung biopsy (SLB). Objective The purpose of this paper is to review the evidence for the role of TBLC in the diagnostic-therapeutic process of PF. Methods A comprehensive review was performed to identify articles to date that addressed the role of TBLC in the diagnostic-therapeutic process of PF using the PubMed® database. Results The reasoned search identified 206 papers, including 21 manuscripts (three reviews, one systematic review, two guidelines, two prospective studies, three retrospective studies, one cross-sectional study, one original article, three editorials, three clinical trials, and two unclassifiable studies), which were included in the final review. Conclusions TBLC is gaining increasing efficacy and improving safety profile; however, there are currently no clear data demonstrating its superiority over SLB. Therefore, the two techniques should be considered with careful rationalization on a case-by-case basis. Further research is needed to further optimize and standardize the procedure and to thoroughly study the histological and molecular characteristics of PF.
Collapse
|
6
|
Sun T, Li H, Zhang Y, Xiong G, Liang Y, Lu F, Zheng R, Zou Q, Hao J. Inhibitory Effects of 3-Cyclopropylmethoxy-4-(difluoromethoxy) Benzoic Acid on TGF-β1-Induced Epithelial-Mesenchymal Transformation of In Vitro and Bleomycin-Induced Pulmonary Fibrosis In Vivo. Int J Mol Sci 2023; 24:ijms24076172. [PMID: 37047142 PMCID: PMC10094315 DOI: 10.3390/ijms24076172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by lung inflammation and excessive deposition of extracellular matrix components. Transforming growth factor-β1 (TGF-β1) induced epithelial-mesenchymal transformation of type 2 lung epithelial cells leads to excessive extracellular matrix deposition, which plays an important role in fibrosis. Our objective was to evaluate the effects of 3-cyclopropylmethoxy-4-(difluoromethoxy) benzoic acid (DGM) on pulmonary fibrosis and aimed to determine whether EMT plays a key role in the pathogenesis of pulmonary fibrosis and whether EMT can be used as a therapeutic target for DGM therapy to reduce IPF. Firstly, stimulation of in vitro cultured A549 cells to construct EMTs with TGF-β1. DGM treatment inhibited the expression of proteins such as α-SMA, vimentin, and collagen Ⅰ and increased the expression of E-cadherin. Accordingly, Smad2/3 phosphorylation levels were significantly reduced by DGM treatment. Secondly, models of tracheal instillation of bleomycin and DGM were used to treat rats to demonstrate their therapeutic effects, such as improving lung function, reducing lung inflammation and fibrosis, reducing collagen deposition, and reducing the expression of E-cadherin. In conclusion, DGM attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guixin Xiong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuerun Liang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rong Zheng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Zou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
7
|
Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 2023; 116:109294. [PMID: 36948431 DOI: 10.1016/j.jnutbio.2023.109294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder that severely impairs lung function, by increasing lung stiffness. Sesamol, a phenolic Phyto-molecule isolated from sesame seeds, possess a rich source of protein and is known to have extensive nutritional and health effects. Here we investigated the effect of sesamol on TGF-β/periostin-induced fibroblast differentiation in in vitro and bleomycin-induced pulmonary fibrosis in an in vivo model. Our results demonstrated that activation of (DHLF, LL29, NHLF and A549) cells with TGF-β, elevates the epithelial to mesenchymal, extracellular matrix, and collagen deposition and periostin signaling marker's expression, further treatment with sesamol attenuated these markers significantly. In addition, sesamol treatment improved the TGF-β-induced contraction and migration of cells. Mechanistic studies showed that activation of IPF cells with periostin increased the TGF-β signaling and treatment with sesamol significantly abrogated the periostin-induced TGF-β activation and its downstream fibrotic marker's expression. In in vivo, sesamol treatment attenuated the lung inflammation, infiltration of cells, wall thickening and the formation of fibrous bands significantly in BLM-induced fibrosis rats. Molecular studies revealed that sesamol treatment reduced the bleomycin-induced fibrotic, inflammatory, apoptotic marker's expression by modulating the TGF-β/periostin crosstalk signaling in a dose-dependent manner. Further, treatment with sesamol dramatically improved lung function and decreased mortality. Our study first time reports the sesamol's inhibitory effects on periostin signalling. Collectively, our study demonstrated that periostin and TGF-β seem to work in a positive-feedback loop, inducing the other, therefore, targeting TGF-β/periostin signaling may provide a better therapeutic approach against IPF and other fibrotic disorders.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
8
|
Zhao J, Wang C, Fan R, Liu X, Zhang W. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet 2023; 13:1109903. [PMID: 36685840 PMCID: PMC9853015 DOI: 10.3389/fgene.2022.1109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Most patients with idiopathic pulmonary fibrosis (IPF) have poor prognosis; Effective predictive models for these patients are currently lacking. Epithelial-mesenchymal transition (EMT) often occurs during idiopathic pulmonary fibrosis development, and is closely related to multiple pathways and biological processes. It is thus necessary for clinicians to find prognostic biomarkers with high accuracy and specificity from the perspective of Epithelial-mesenchymal transition. Methods: Data were obtained from the Gene Expression Omnibus database. Using consensus clustering, patients were grouped based on Epithelial-mesenchymal transition-related genes. Next, functional enrichment analysis was performed on the results of consensus clustering using gene set variation analysis. The gene modules associated with Epithelial-mesenchymal transition were obtained through weighted gene co-expression network analysis. Prognosis-related genes were screened via least absolute shrinkage and selection operator (LASSO) regression analysis. The model was then evaluated and validated using survival analysis and time-dependent receiver operating characteristic (ROC) analysis. Results: A total of 239 Epithelial-mesenchymal transition-related genes were obtained from patients with idiopathic pulmonary fibrosis. Six genes with strong prognostic associations (C-X-C chemokine receptor type 7 [CXCR7], heparan sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix metallopeptidase 25 [MMP25], murine retrovirus integration site 1 [MRVI1], transmembrane four L6 family member 1 [TM4SF1], and tyrosylprotein sulfotransferase 1 [TPST1]) were identified via least absolute shrinkage and selection operator and Cox regression analyses. A prognostic model was then constructed based on the selected genes. Survival analysis showed that patients with high-risk scores had worse prognosis based on the training set [hazard ratio (HR) = 7.31, p < .001] and validation set (HR = 2.85, p = .017). The time-dependent receiver operating characteristic analysis showed that the area under the curve (AUC) values in the training set were .872, .905, and .868 for 1-, 2-, and 3-year overall survival rates, respectively. Moreover, the area under the curve values in the validation set were .814, .814, and .808 for 1-, 2-, and 3-year overall survival rates, respectively. Conclusion: The independent prognostic model constructed from six Epithelial-mesenchymal transition-related genes provides bioinformatics guidance to identify additional prognostic markers for idiopathic pulmonary fibrosis in the future.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Can Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Wei Zhang,
| |
Collapse
|
9
|
Regeneration or Repair? The Role of Alveolar Epithelial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells 2022; 11:cells11132095. [PMID: 35805179 PMCID: PMC9266271 DOI: 10.3390/cells11132095] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) with unknown etiology in which gradual fibrotic scarring of the lungs leads to usual interstitial pneumonia (UIP) and, ultimately, to death. IPF affects three million people worldwide, and the only currently available treatments include the antifibrotic drugs nintedanib and pirfenidone, which effectively reduce fibrosis progression are, unfortunately, not effective in curing the disease. In recent years, the paradigm of IPF pathogenesis has shifted from a fibroblast-driven disease to an epithelium-driven disease, wherein, upon recurrent microinjuries, dysfunctional alveolar type II epithelial cells (ATII) are not only unable to sustain physiological lung regeneration but also promote aberrant epithelial–mesenchymal crosstalk. This creates a drift towards fibrosis rather than regeneration. In the context of this review article, we discuss the most relevant mechanisms involved in IPF pathogenesis with a specific focus on the role of dysfunctional ATII cells in promoting disease progression. In particular, we summarize the main causes of ATII cell dysfunction, such as aging, environmental factors, and genetic determinants. Next, we describe the known mechanisms of physiological lung regeneration by drawing a parallel between embryonic lung development and the known pathways involved in ATII-driven alveolar re-epithelization after injury. Finally, we review the most relevant interventional clinical trials performed in the last 20 years with the aim of underlining the urgency of developing new therapies against IPF that are not only aimed at reducing disease progression by hampering ECM deposition but also boost the physiological processes of ATII-driven alveolar regeneration.
Collapse
|
10
|
Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med 2021; 22:1188. [PMID: 34475978 PMCID: PMC8406816 DOI: 10.3892/etm.2021.10622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating interstitial lung disease. The origin of myofibroblasts is still to be elucidated and the existence of epithelial-mesenchymal transition (EMT) in IPF remains controversial. Hence, it is important to clarify the origin of fibroblasts by improving modeling and labeling methods and analyzing the differentiation pathway of alveolar epithelial cells (AEC) in pulmonary fibrosis with cell tracking technology. In the present study, adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- were induced with doxycycline for 15 days. The gene knockout phenomenon occurred in type II AECs in the lung and the reporter gene cell membrane-localized enhanced green fluorescence protein (mEGFP) was expressed in the cell membrane. The expression of Cre recombinase and SPC was analyzed using immunohistochemical (IHC) staining to detect the labeling efficiency. A repetitive intraperitoneal bleomycin-induced pulmonary fibrosis model was established, and the mice were sacrificed on day 28. The co-localization of mEGFP and mesenchymal markers α-smooth muscle actin (α-SMA) and S100 calcium binding protein A4 (S100A4) were detected by multiple IHC staining. The results revealed that Cre was expressed in the airway and AECs in the lung tissue of adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- induced by doxycycline; the labeling efficiency in the peripheral lung tissue was 63.27±7.51%. mEGFP was expressed on the membrane of type II AECs and their differentiated form of type I AECs. Expression of mEGFP was mainly observed in the fibrotic region in bleomycin-induced pulmonary fibrosis; 1.94±0.08% of α-SMA-positive cells were mEGFP-positive and 9.68±2.06% of S100A4-positive cells were mEGFP-positive in bleomycin-induced pulmonary fibrosis. In conclusion, the present results suggested that while EMT contributes to the pathogenesis of pulmonary fibrosis, it is not the major causative factor of this condition.
Collapse
Affiliation(s)
- Wei Tan
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yaru Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
11
|
Su X, Liu K, Xie Y, Zhang M, Wu X, Zhang Y, Wang J. Mushroom Inonotus sanghuang alleviates experimental pulmonary fibrosis: Implications for therapy of pulmonary fibrosis. Biomed Pharmacother 2021; 133:110919. [PMID: 33202282 DOI: 10.1016/j.biopha.2020.110919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Mushroom Inonotus sanghuang has been characterized as a traditional medicine in China and has pharmacological activities to treat inflammation, gastroenteric dysfunction, and cancer. Recently, we reported the impact of Inonotus sanghuang extract (ISE) from ethyl acetate fraction on bleomycin (BLM)-induced acute lung injury in mice. Here, we aimed to investigate ISE's impact on pulmonary fibrosis using in vivo and in vitro models and the underlying mechanisms. To evaluate pulmonary fibrosis, female C57BL/6 mice fed ISE (0% or 0.6% in diet) for 4 weeks were instilled intratracheally with BLM and then continued the same diet before the end of the experiment. A549 cells were used to evaluate the epithelial-mesenchymal transition (EMT). Feeding ISE improved BLM-treated mice's survival via decreasing lung infiltrating cells and fibrosis, followed by reducing hydroxyproline content, collagen deposition, and mesenchymal markers (α-SMA and vimentin) while increasing epithelial marker E-cadherin. ISE also suppressed the TGF-β expression, Smad2/3 phosphorylation, and EMT-related transcription factor Snail upon BLM instillation. Iin vitro study demonstrated that ISE inhibited TGF-β-induced EMT-like phenotype and cell behaviors, the expression of α-SMA and vimentin, and prevented E-cadherin reduction of A549 cells. Consistent with in vivo study, ISE abrogated p-Smad2/3, and Snail expression. Finally, the influence of ISE on EMT was not due to ISE toxicity. Our findings indicated that ISE effectively attenuated BLM-induced lung fibrosis. These ISE properties were thought to be involved in interfering TGF-β, Smad2/3 phosphorylation, and EMT process, suggesting that the material has the potential health benefits to improve lung fibrosis.
Collapse
Affiliation(s)
- Xing Su
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China; Department of Respiration, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Kun Liu
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Yu Xie
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China; School of Physical Education, Henan University, Kaifeng, 475000, China
| | - Mengdi Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Xiao Wu
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yijie Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Junpeng Wang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
12
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner. Cell Immunol 2020; 357:104203. [DOI: 10.1016/j.cellimm.2020.104203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
14
|
Ikonomou L, Herriges MJ, Lewandowski SL, Marsland R, Villacorta-Martin C, Caballero IS, Frank DB, Sanghrajka RM, Dame K, Kańduła MM, Hicks-Berthet J, Lawton ML, Christodoulou C, Fabian AJ, Kolaczyk E, Varelas X, Morrisey EE, Shannon JM, Mehta P, Kotton DN. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun 2020; 11:635. [PMID: 32005814 PMCID: PMC6994558 DOI: 10.1038/s41467-020-14348-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sara L Lewandowski
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Robert Marsland
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Ignacio S Caballero
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - David B Frank
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reeti M Sanghrajka
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Keri Dame
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maciej M Kańduła
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
- Chair of Bioinformatics Research Group, Boku University, 1190, Vienna, Austria
| | - Julia Hicks-Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Matthew L Lawton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Constantina Christodoulou
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Eric Kolaczyk
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
15
|
Yao L, Conforti F, Hill C, Bell J, Drawater L, Li J, Liu D, Xiong H, Alzetani A, Chee SJ, Marshall BG, Fletcher SV, Hancock D, Coldwell M, Yuan X, Ottensmeier CH, Downward J, Collins JE, Ewing RM, Richeldi L, Skipp P, Jones MG, Davies DE, Wang Y. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death Differ 2019; 26:943-957. [PMID: 30050057 PMCID: PMC6252080 DOI: 10.1038/s41418-018-0175-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
The contribution of epithelial-mesenchymal transition (EMT) to human lung fibrogenesis is controversial. Here we provide evidence that ZEB1-mediated EMT in human alveolar epithelial type II (ATII) cells contributes to the development of lung fibrosis by paracrine signalling to underlying fibroblasts. Activation of EGFR-RAS-ERK signalling in ATII cells induced EMT via ZEB1. ATII cells had extremely low extracellular matrix gene expression even after induction of EMT, however conditioned media from ATII cells undergoing RAS-induced EMT augmented TGFβ-induced profibrogenic responses in lung fibroblasts. This epithelial-mesenchymal crosstalk was controlled by ZEB1 via the expression of tissue plasminogen activator (tPA). In human fibrotic lung tissue, nuclear ZEB1 expression was detected in alveolar epithelium adjacent to sites of extracellular matrix (ECM) deposition, suggesting that ZEB1-mediated paracrine signalling has the potential to contribute to early fibrotic changes in the lung interstitium. Targeting this novel ZEB1 regulatory axis may be a viable strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Charlotte Hill
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joseph Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Leena Drawater
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiman Alzetani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Thoracic Surgery, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Serena J Chee
- University Hospital Southampton, Southampton, SO16 6YD, UK
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mark Coldwell
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Christian H Ottensmeier
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jane E Collins
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Proteomic Research, Institute for Life Sciences University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
16
|
Hill C, Jones MG, Davies DE, Wang Y. Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk. JOURNAL OF LUNG HEALTH AND DISEASES 2019; 3:31-35. [PMID: 31032489 PMCID: PMC6485666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic interstitial lung disease. Median survival is only 3 years, and treatment options are limited. IPF is thought to be a result of a combination of genetic and environmental factors with repetitive micro-injuries to alveolar epithelial cells playing a central role. IPF is characterised by aberrant extra cellular matrix (ECM) deposition by activated myofibroblasts. Epithelial-mesenchymal transition (EMT) is a process where polarised epithelial cells undergo molecular changes allowing them to gain a mesenchymal phenotype, with a subsequent enhanced ability to produce ECM components and increased migration and/or invasion. The source of myofibroblasts in IPF has been debated for many years, and EMT has been proposed as a source of these cells. However, lineage tracing in transgenic mice suggests the contribution of epithelial cells, which have undergone EMT, to the fibroblast population may be negligible. Instead, recent findings suggest that alveolar epithelial type II (ATII) cells undergoing EMT promote a pro-fibrotic microenvironment through paracrine signalling activating local fibroblasts. This review paper explores the contribution of ATII cells, which have undergone EMT, in the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
17
|
Liu G, Wang Y, Yang L, Zou B, Gao S, Song Z, Lin Z. Tetraspanin 1 as a mediator of fibrosis inhibits EMT process and Smad2/3 and beta-catenin pathway in human pulmonary fibrosis. J Cell Mol Med 2019; 23:3583-3596. [PMID: 30869194 PMCID: PMC6484435 DOI: 10.1111/jcmm.14258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Tetraspanin 1(TSPAN1) as a clinically relevant gene target in cancer has been studied, but there is no direct in vivo or vitro evidence for pulmonary fibrosis (PF). Using reanalysing Gene Expression Omnibus data, here, we show for the first time that TSPAN1 was markedly down-regulated in lung tissue of patient with idiopathic PF (IPF) and verified the reduced protein expression of TSPAN1 in lung tissue samples of patient with IPF and bleomycin-induced PF mice. The expression of TSPAN1 was decreased and associated with transforming growth factor-β1 (TGF-β1 )-induced molecular characteristics of epithelial-to-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). Silencing TSPAN1 promoted cell migration, and the expression of alpha-smooth muscle actin, vimentin and E-cadherin in AECs with TGF-β1 treatment, while exogenous TSPAN1 has the converse effects. Moreover, silencing TSPAN1 promotes the phosphorylation of Smad2/3 and stabilizes beta-catenin protein, however, overexpressed TSPAN1 impeded TGF-β1 -induced activation of Smad2/3 and beta-catenin pathway in AECs. Together, our study implicates TSPAN1 as a key regulator in the process of EMT in AECs of IPF.
Collapse
Affiliation(s)
- Gang Liu
- Shenzhen Longhua District Central Hospital, Shenzhen, China.,Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Baoan Zou
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Qian W, Cai X, Qian Q, Peng W, Yu J, Zhang X, Tian L, Wang C. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis 2019; 10:129. [PMID: 30755599 PMCID: PMC6372615 DOI: 10.1038/s41419-019-1339-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in various pathophysiological processes in many diseases. However, the role and mechanism of lncRNAs in pulmonary fibrosis have not been explicitly delineated. In the present study, we found that lncRNA ZEB1 antisense RNA 1 (ZEB1-AS1) is upregulated in the lungs of BLM-induced rats and TGF-β1-induced RLE-6TN cells, and positively correlated with the levels of ZEB1, an epithelial-mesenchymal transition (EMT) master regulator. Knockdown of ZEB1-AS1 alleviated BLM-induced fibrogenesis, in vivo, via inhibiting EMT progress. Mechanistically, we identified that ZEB1-AS1 promoted fibrogenesis in RLE-6TN cells and ZEB1-AS1 silencing inhibited TGF-β1-induced fibrogenesis through modulation of miR-141-3p. Further experiments revealed that ZEB1-AS1 acted as competing endogenous RNA (ceRNA) of miR-141-3p: forced expression of ZEB1-AS1 reduced the expression of miR-141-3p to activate Zinc-finger Ebox Binding Homeobox 1 (ZEB1) in RLE-6TN cells. In addition, we found that upregulation of miR-141-3p prevented fibrogenesis by targeting ZEB1. Therefore, our finding suggested lncRNA ZEB1-AS1 as a new profibrotic molecule that acts as a regulator of miR-141-3p/ZEB1 axis during lung fibrosis and demonstrated ZEB1-AS1 as a potential therapeutic target for the prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China.
| | - Xinrui Cai
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, People's Republic of China.
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China.
| | - Wei Peng
- Department of Scientific Research, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China
| | - Jie Yu
- Department of Chinese Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China
| | - Li Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Can Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
19
|
Han ZH, Wang F, Wang FL, Liu Q, Zhou J. Regulation of transforming growth factor β-mediated epithelial-mesenchymal transition of lens epithelial cells by c-Src kinase under high glucose conditions. Exp Ther Med 2018; 16:1520-1528. [PMID: 30116401 DOI: 10.3892/etm.2018.6348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that high glucose (HG) conditions may contribute to the acceleration of renal cell apoptosis and renal fibrosis by inducing epithelial-mesenchymal transition (EMT) of tubular epithelial cells, in which c-Src kinase and transforming growth factor (TGF)-β are key modulators. In the present study, the roles of c-Src kinase and TGF-β in EMT of lens epithelial cells (LECs) under HG conditions were investigated. Results indicated human lens epithelial B3 (HLE-B3) cells under HG conditions exhibited significantly increased protein expression levels of phosphorylated c-Src (p-Src418) (P<0.05) and secreted a significantly increased amount of TGF-β compared with HLE-B3 cells under normal glucose conditions (P<0.05). Notably the c-Src inhibitor PP1 and the activin receptor-like kinase 5 (ALK5) inhibitor SB431542 suppressed EMT of HLE-B3 cells. Results indicated that PP1 significantly inhibited the activities of c-Src and ALK5 and the secretion of TGF-β, whereas SB431542 only significantly downregulated the protein expression levels and secretion of TGF-β (P<0.05). Following c-Src knockdown, the protein expression levels of p-Src418, ALK5 and TGF-β were significantly decreased, the secretion of TGF-β was significantly suppressed (both P<0.05) and EMT was decreased in HLE-B3 cells. These results suggest that c-Src and TGF-β may promote EMT of LECs under HG conditions, with c-Src as the upstream regulatory molecule. Thus, the signal axis of c-Src/TGF-β in EMT of LECs may be a potential novel therapeutic target for the prevention of diabetic subcapsular cataract.
Collapse
Affiliation(s)
- Zhi-Hua Han
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Lei Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qi Liu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
20
|
The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochem Cell Biol 2018; 150:133-147. [DOI: 10.1007/s00418-018-1680-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
21
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018. [PMID: 29701666 DOI: 10.3390/ijms19051294.pmid:29701666;pmcid:pmc5983604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
22
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19051294. [PMID: 29701666 PMCID: PMC5983604 DOI: 10.3390/ijms19051294] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
23
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
24
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
25
|
Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, Tang Q, Shou ZX, Zuo DM. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017; 32:1966-1974. [PMID: 28370348 DOI: 10.1111/jgh.13797] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Epithelial-mesenchymal transition (EMT), characterized by the decrease of E-cadherin (E-Cad) and increase in vimentin and alpha-smooth muscle actin (α-SMA), was demonstrated to participate in inflammatory bowel disease-related fibrosis. miR-200b plays an anti-fibrosis role in inhibiting EMT by targeting ZEB1 and ZEB2. But the stability of exogenous miR-200b in blood limits its application. Microvesicles (MVs), which can transfer miRNAs among cells and prevent them from degradation, may provide an excellent transport system for the delivery of miR-200b in the treatment of fibrosis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were transfected with lentivirus to overexpress miR-200b. The MVs packaged with miRNA-200b were harvested for the anti-fibrotic treatment using in vitro (transforming growth factor beta 1-mediated EMT in intestinal epithelial cells: IEC-6) and in vivo (TNBS-induced intestinal fibrosis in rats) models. The pathological morphology was observed, and the fibrosis related proteins, such as E-Cad, vimentin, α-SMA, ZEB1, and ZEB2, were detected. RESULTS MiR-200b-MVs would significantly reverse the morphology in TGF-β1-treated IEC-6 cells and improve the TNBS-induced colon fibrosis histologically. The treatment of miR-200b-MVs increased miR-200b levels both in the IEC-6 cells and colon, resulting in a significant prevention EMT and alleviation of fibrosis. The expression of E-Cad was increased, and the expressions of vimentin and α-SMA were decreased. ZBE1 and ZEB2, the targets of miR-200b, were also decreased. CONCLUSIONS miR-200b could be transferred from genetically modified BMSCs to the target cells or tissue by MVs. The mechanisms of miR-200b-MVs in inhibiting colonic fibrosis were related to suppressing the development of EMT by targeting ZEB1and ZEB2.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Zhi Zhou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Rui Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yun Duan
- Department of Pharmacy, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
28
|
López IP, Piñeiro-Hermida S, Pais RS, Torrens R, Hoeflich A, Pichel JG. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation. PLoS One 2016; 11:e0166388. [PMID: 27861515 PMCID: PMC5115747 DOI: 10.1371/journal.pone.0166388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors) signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor) in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.
Collapse
Affiliation(s)
- Icíar P López
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Sergio Piñeiro-Hermida
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Rosete S Pais
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Raquel Torrens
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - José G Pichel
- Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| |
Collapse
|
29
|
Komatsu Y, Ibi M, Chosa N, Kyakumoto S, Kamo M, Shibata T, Sugiyama Y, Ishisaki A. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts. Int J Mol Med 2016; 38:139-47. [PMID: 27176567 PMCID: PMC4899021 DOI: 10.3892/ijmm.2016.2582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Bisphosphonates (BPs) are analogues of pyro-phosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF-β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF-β-induced promotion of cell viability, ii) the TGF-β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF-β-induced migratory activity of hGFs and iv) the expression level of TGF-β type I receptor on the surfaces of hGFs, as well as the TGF-β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF-β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad-dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level.
Collapse
Affiliation(s)
- Yuko Komatsu
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Miho Ibi
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yoshiki Sugiyama
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028‑3694, Japan
| |
Collapse
|
30
|
Nishijima N, Seike M, Soeno C, Chiba M, Miyanaga A, Noro R, Sugano T, Matsumoto M, Kubota K, Gemma A. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells. Int J Oncol 2016; 48:937-44. [PMID: 26783187 PMCID: PMC4750530 DOI: 10.3892/ijo.2016.3331] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 02/06/2023] Open
Abstract
Nintedanib (BIBF1120) is a multi-targeted angiokinase inhibitor and has been evaluated in idiopathic pulmonary fibrosis and advanced non-small cell lung cancer (NSCLC) patients in clinical studies. In the present study, we evaluated the antitumor effects of nintedanib in 16 NSCLC cell lines and tried to identify microRNA (miRNA) associated with sensitivity to nintedanib. No correlations between FGFR, PDGFR and VEGFR family activation and sensitivity to nintedanib were found. The difference in miRNA expression profiles between 5 nintedanib-sensitive and 5 nintedanib-resistant cell lines was evaluated by miRNA array and quantitative RT-PCR analysis (qRT-PCR). Expression of miR-200b, miR-200a and miR-141 belonging to the miR-200 family which contributes to epithelial-mesenchymal transition (EMT), was significantly lower in 5 nintedanib-resistant than in 5 nintedanib-sensitive cell lines. We examined the protein expression of EMT markers in these 10 NSCLC cell lines. E-cadherin expression was lower, and vimentin and ZEB1 expression were higher in 5 nintedanib-resistant cell lines. PC-1 was the most sensitive of the NSCLC cell lines to nintedanib. We established nintedanib-resistant PC-1 cells (PC-1R) by the stepwise method. PC-1R cells also showed decreased expression of miR-200b, miR-141 and miR-429 and increased expression of ZEB1 and ZEB2. We confirmed that induction of miR-200b or miR-141 enhanced sensitivity to nintedanib in nintedanib-resistant A549 and PC1-R cells. In addition, we evaluated the response to gefitinib in combination with nintedanib after TGF-β1 exposure of A549 cells. Nintedanib was able to reverse TGF-β1-induced EMT and resistance to gefitinib caused by miR-200b and miR-141 upregulation and ZEB1 downregulation. These results suggested that the miR-200/ZEB axis might be predictive biomarkers for sensitivity to nintedanib in NSCLC cells. Furthermore, nintedanib combined with gefitinib might be a novel therapeutic strategy for NSCLC cells with EMT phenotype and resistance to gefitinib.
Collapse
Affiliation(s)
- Nobuhiko Nishijima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Chie Soeno
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mika Chiba
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Teppei Sugano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
31
|
Hidvegi T, Stolz DB, Alcorn JF, Yousem SA, Wang J, Leme AS, Houghton AM, Hale P, Ewing M, Cai H, Garchar EA, Pastore N, Annunziata P, Kaminski N, Pilewski J, Shapiro SD, Pak SC, Silverman GA, Brunetti-Pierri N, Perlmutter DH. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy. J Biol Chem 2015; 290:29742-57. [PMID: 26494620 DOI: 10.1074/jbc.m115.691253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy.
Collapse
Affiliation(s)
- Tunda Hidvegi
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | - John F Alcorn
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | - Pamela Hale
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Michael Ewing
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Houming Cai
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Evelyn Akpadock Garchar
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Nunzia Pastore
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138
| | - Patrizia Annunziata
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138
| | | | | | | | - Stephen C Pak
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Gary A Silverman
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, Cell Biology, and
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy, 80138 Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy, 80131, and
| | - David H Perlmutter
- From the Departments of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, Cell Biology, and
| |
Collapse
|
32
|
Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:573210. [PMID: 26523279 PMCID: PMC4615219 DOI: 10.1155/2015/573210] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/05/2015] [Accepted: 09/15/2015] [Indexed: 12/29/2022]
Abstract
Individual alveolar epithelial cells (AECs) collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.
Collapse
|
33
|
The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition. PLoS One 2015; 10:e0139179. [PMID: 26407179 PMCID: PMC4583281 DOI: 10.1371/journal.pone.0139179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT), a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A), we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways.
Collapse
|
34
|
Li M, Luan F, Zhao Y, Hao H, Zhou Y, Han W, Fu X. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp Biol Med (Maywood) 2015; 241:1-13. [PMID: 26361988 DOI: 10.1177/1535370215597194] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Fuxin Luan
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yong Zhou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
35
|
Kleaveland KR, Velikoff M, Yang J, Agarwal M, Rippe RA, Moore BB, Kim KK. Fibrocytes are not an essential source of type I collagen during lung fibrosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5229-39. [PMID: 25281715 DOI: 10.4049/jimmunol.1400753] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Progressive fibrosis involves accumulation of activated collagen-producing mesenchymal cells. Fibrocytes are hematopoietic-derived cells with mesenchymal features that potentially have a unique and critical function during fibrosis. Fibrocytes have been proposed as an important direct contributor of type I collagen deposition during fibrosis based largely on fate-mapping studies. To determine the functional contribution of hematopoietic cell-derived type I collagen to fibrogenesis, we use a double-transgenic system to specifically delete the type I collagen gene across a broad population of hematopoietic cells. These mice develop a robust fibrotic response similar to littermate genotype control mice injured with bleomycin indicating that fibrocytes are not a necessary source of type I collagen. Using collagen-promoter GFP mice, we find that fibrocytes express type I collagen. However, fibrocytes with confirmed deletion of the type I collagen gene have readily detectable intracellular type I collagen indicating that uptake of collagen from neighboring cells account for much of the fibrocyte collagen. Collectively, these results clarify several seemingly conflicting reports regarding the direct contribution of fibrocytes to collagen deposition.
Collapse
Affiliation(s)
- Kathryn R Kleaveland
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Miranda Velikoff
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Jibing Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Richard A Rippe
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
36
|
Abstract
I am deeply honored to have been awarded an American Thoracic Society Recognition Award for Scientific Accomplishment for 2014. Over the last 20 years, it has become clear that the alveolar epithelium, my area of research focus, is not simply a gas exchange surface and barrier to leakage of fluid and protein into the alveoli, but is an active participant in the pathogenesis of a number of lung diseases, including pulmonary fibrosis. Recognition by this Award stimulates a review of the awardee's contributions to the field, as summarized in this perspective.
Collapse
Affiliation(s)
- Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
37
|
Alcaraz LB, Exposito JY, Chuvin N, Pommier RM, Cluzel C, Martel S, Sentis S, Bartholin L, Lethias C, Valcourt U. Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β. ACTA ACUST UNITED AC 2014; 205:409-28. [PMID: 24821840 PMCID: PMC4018787 DOI: 10.1083/jcb.201308031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β (TGF-β) isoforms are secreted as inactive complexes formed through noncovalent interactions between the bioactive TGF-β entity and its N-terminal latency-associated peptide prodomain. Extracellular activation of the latent TGF-β complex is a crucial step in the regulation of TGF-β function for tissue homeostasis. We show that the fibrinogen-like (FBG) domain of the matrix glycoprotein tenascin-X (TNX) interacts physically with the small latent TGF-β complex in vitro and in vivo, thus regulating the bioavailability of mature TGF-β to cells by activating the latent cytokine into an active molecule. Activation by the FBG domain most likely occurs through a conformational change in the latent complex and involves a novel cell adhesion-dependent mechanism. We identify α11β1 integrin as a cell surface receptor for TNX and show that this integrin is crucial to elicit FBG-mediated activation of latent TGF-β and subsequent epithelial-to-mesenchymal transition in mammary epithelial cells.
Collapse
Affiliation(s)
- Lindsay B Alcaraz
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Velikoff M, Canalis E, Horowitz JC, Kim KK. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor. Am J Physiol Lung Cell Mol Physiol 2014; 306:L786-96. [PMID: 24508728 DOI: 10.1152/ajplung.00243.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.
Collapse
Affiliation(s)
- Jibing Yang
- 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI 48109.
| | | | | | | | | |
Collapse
|
39
|
Vyas-Read S, Wang W, Kato S, Colvocoresses-Dodds J, Fifadara NH, Gauthier TW, Helms MN, Carlton DP, Brown LAS. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. Am J Physiol Lung Cell Mol Physiol 2013; 306:L326-40. [PMID: 24375795 DOI: 10.1152/ajplung.00074.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling.
Collapse
|
40
|
Tumelty KE, Smith BD, Nugent MA, Layne MD. Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent pathways. J Biol Chem 2013; 289:2526-36. [PMID: 24344132 DOI: 10.1074/jbc.m113.502617] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway.
Collapse
Affiliation(s)
- Kathleen E Tumelty
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | |
Collapse
|
41
|
Activated alveolar epithelial cells initiate fibrosis through secretion of mesenchymal proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1559-1570. [PMID: 24012677 DOI: 10.1016/j.ajpath.2013.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/10/2013] [Accepted: 07/23/2013] [Indexed: 12/29/2022]
Abstract
Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior reports that used a reporter gene fate-mapping strategy are limited in their ability to investigate the functional significance of epithelial cell-derived mesenchymal proteins during fibrogenesis. We found that lung epithelial cell-derived collagen I activates fibroblast collagen receptor discoidin domain receptor-2, contributes significantly to fibrogenesis, and promotes resolution of lung inflammation. Alveolar epithelial cells undergoing transforming growth factor-β-mediated mesenchymal transition express several other secreted profibrotic factors and are capable of activating lung fibroblasts. These studies provide direct evidence that activated epithelial cells produce mesenchymal proteins that initiate a cycle of fibrogenic effector cell activation, leading to progressive fibrosis. Therapy targeted at epithelial cell production of type I collagen offers a novel pathway for abrogating this progressive cycle and for limiting tissue fibrosis but may lead to sustained lung injury/inflammation.
Collapse
|
42
|
Manke A, Wang L, Rojanasakul Y. Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol Mech Methods 2013. [PMID: 23194015 DOI: 10.3109/15376516.2012.753967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) have been a subject of intensive research for a wide range of applications. However, because of their extremely small size and light weight, CNTs are readily inhaled into human lungs resulting in increased rates of pulmonary disorders, most notably fibrosis. Several studies have demonstrated the fibrogenic effects of CNTs given their ability to translocate into the surrounding areas in the lung causing granulomatous lesions and interstitial and sub-pleural fibrosis. However, the mechanisms underlying the disease process remain obscure due to the lack of understanding of the cellular interactions and molecular targets involved. Interestingly, certain physicochemical properties of CNTs have been shown to affect their respiratory toxicity, thereby becoming significant determinants of fibrogenesis. CNT-induced fibrosis involves a multitude of cell types and is characterized by the early onset of inflammation, oxidative stress and accumulation of extracellular matrix. Increased reactive oxygen species activate various cytokine/growth factor signaling cascades resulting in increased expression of inflammatory and fibrotic genes. Profibrotic growth factors and cytokines contribute directly to fibroblast proliferation and collagen production. Given the role of multiple players during the pathogenesis of CNT-induced fibrosis, the objective of this review is to summarize the key findings and discuss major cellular and molecular events governing pulmonary fibrosis. We also discuss the physicochemical properties of CNTs and their effects on pulmonary toxicities as well as various biological factors contributing to the development of fibrosis.
Collapse
Affiliation(s)
- Amruta Manke
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
43
|
Balli D, Ustiyan V, Zhang Y, Wang IC, Masino AJ, Ren X, Whitsett JA, Kalinichenko VV, Kalin TV. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J 2013; 32:231-44. [PMID: 23288041 DOI: 10.1038/emboj.2012.336] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.
Collapse
Affiliation(s)
- David Balli
- Department of Pediatrics, Division of Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Pathogenesis of interstitial lung diseases (ILD) has largely been investigated in the context of the most frequent ILD, idiopathic pulmonary fibrosis (IPF). We review studies of epithelial-to-mesenchymal transition (EMT) and discuss its potential contribution to collagen-producing (myo)fibroblasts in IPF. RECENT FINDINGS Endoplasmic reticulum (ER) stress leading to epithelial apoptosis has been reported as a potential etiologic factor in fibrosis. Recent studies further suggest EMT as a link between ER stress and fibrosis. Combinatorial interactions among Smad3, β-catenin and other transcriptional co-activators at the α-smooth muscle actin (α-SMA) promoter provide direct evidence for crosstalk between transforming growth factor-β (TGFβ) and β-catenin pathways during EMT. Lineage tracing yielded conflicting results, with two recent studies supporting and one opposing a role for EMT in lung fibrosis. SUMMARY Advances have been made in elucidating causes and mechanisms of EMT, potentially leading to new treatment options, although contributions of EMT to lung fibrosis in vivo remain controversial. In addition to EMT providing a direct source of (myo)fibroblasts, expression of mesenchymal markers may reflect epithelial injury, in which case inhibition of EMT might be deleterious. EMT-derived cells may also contribute to aberrant epithelial-mesenchymal crosstalk that promotes fibrogenesis.
Collapse
|
45
|
Abstract
The key role of extracellular matrices in alveolar epithelial cell (AEC) biology is highlighted by the phenotypes of primary AECs cultured on a soft laminin gel contrasted with that on a stiff, fibronectin matrix. On laminin, AECs maintain an epithelial phenotype, and progenitor cells within this population proliferate. In contrast, on fibronectin, AECs rapidly lose surfactant expression and spread extensively, changes that depend on activation of latent TGF-β1 by engagement of fibronectin-binding integrins. The progenitor subpopulation responding to TGF-β1 undergoes epithelial mesenchymal transition (EMT). Although it remains uncertain to what degree EMT contributes directly to collagen 1 production, signaling pathways critical to EMT are important for repair and fibrosis, implying that EMT is part of the general program of lung repair. EMT reprogramming requires not only Smad signaling but also pY654-β-catenin. Generation of pY654-β-catenin requires assembly of complexes of the integrin α3β1, E-cadherin, and TGF-β1 receptors, and such assembly is a function of cell-cell and cell-matrix contacts. Sequestration of α3β1 or E-cadherin in such contacts prevents complex assembly, TGF-β1 induced pY654-β-catenin generation and EMT. Disruption of these contacts is a signal for the cells to initiate repair. Critical remaining questions center around better definition of direct versus indirect effects of EMT on collagen deposition and the nature of AEC progenitors differentiating during fibrogenesis. Elucidation of specific inhibitors of EMT should further test the question of whether the process is important to fibrosis in vivo and a viable therapeutic target.
Collapse
|
46
|
Miyoshi K, Yanagi S, Kawahara K, Nishio M, Tsubouchi H, Imazu Y, Koshida R, Matsumoto N, Taguchi A, Yamashita SI, Suzuki A, Nakazato M. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 2012; 187:262-75. [PMID: 23239155 DOI: 10.1164/rccm.201205-0851oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Injury to alveolar epithelial cells (AECs) and to their repair process is integral to the pathogenesis of acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF). The mechanisms regulating the integrity of AECs and their intrinsic regulators remain unclear. Pten is a tumor suppressor, and its function in epithelial cells during organ fibrosis is unknown. OBJECTIVES To determine the role of epithelial Pten in ALI and lung fibrosis. METHODS Bronchioalveolar epithelium-specific Pten-deleted SP-C-rtTA/(tetO)(7)-Cre/Pten(Δ/Δ) (SOPten(Δ/Δ)) mice were studied by structural, biochemical, and physiologic analyses and compared with wild-type mice. Further mechanistic studies were performed in vivo, in vitro, and on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS SOPten(Δ/Δ) mice demonstrated exacerbated alveolar flooding and subsequent augmented lung scarring with enhanced disassembly of tight junctions (TJs) of AECs and degradation of basement membranes. The induction of dominant negative PTEN gene in lung epithelial cells led to augmented transforming growth factor-1-induced disruptions of TJs. Epithelial-derived myofibroblasts were increased in the epithelium-specific Pten-deficient mice. The lungs of bleomycin-treated SOPten(Δ/Δ) mice showed increased pAkt, pS6K, Snail, and matrix metalloproteinase expressions and decreased claudin-4, E-cadherin, and laminin-β1 expressions. Akt inactivation definitively saved SOPten(Δ/Δ) mice through amelioration of ALI and retention of AEC integrity. We detected a reduction of PTEN expression and AKT hyperactivation in the AECs of human IPF lungs. CONCLUSIONS Our results highlight epithelial Pten as a crucial gatekeeper controlling ALI and lung fibrosis by modulating AEC integrity, and the Pten/PI3K/Akt pathway as a potential therapeutic target in these intractable diseases.
Collapse
Affiliation(s)
- Kahori Miyoshi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|