1
|
Wang Y, Wang Z, Yu X, Wang X, Song J, Yu DJ, Ge F. MORE: a multi-omics data-driven hypergraph integration network for biomedical data classification and biomarker identification. Brief Bioinform 2024; 26:bbae658. [PMID: 39692449 DOI: 10.1093/bib/bbae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
High-throughput sequencing methods have brought about a huge change in omics-based biomedical study. Integrating various omics data is possibly useful for identifying some correlations across data modalities, thus improving our understanding of the underlying biological mechanisms and complexity. Nevertheless, most existing graph-based feature extraction methods overlook the complementary information and correlations across modalities. Moreover, these methods tend to treat the features of each omics modality equally, which contradicts current biological principles. To solve these challenges, we introduce a novel approach for integrating multi-omics data termed Multi-Omics hypeRgraph integration nEtwork (MORE). MORE initially constructs a comprehensive hyperedge group by extensively investigating the informative correlations within and across modalities. Subsequently, the multi-omics hypergraph encoding module is employed to learn the enriched omics-specific information. Afterward, the multi-omics self-attention mechanism is then utilized to adaptatively aggregate valuable correlations across modalities for representation learning and making the final prediction. We assess MORE's performance on datasets characterized by message RNA (mRNA) expression, Deoxyribonucleic Acid (DNA) methylation, and microRNA (miRNA) expression for Alzheimer's disease, invasive breast carcinoma, and glioblastoma. The results from three classification tasks highlight the competitive advantage of MORE in contrast with current state-of-the-art (SOTA) methods. Moreover, the results also show that MORE has the capability to identify a greater variety of disease-related biomarkers compared to existing methods, highlighting its advantages in biomedical data mining and interpretation. Overall, MORE can be investigated as a valuable tool for facilitating multi-omics analysis and novel biomarker discovery. Our code and data can be publicly accessed at https://github.com/Wangyuhanxx/MORE.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, VIC 3800, Australia
| | - Xuan Yu
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaoyu Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, VIC 3800, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Wellington Rd, Clayton, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Fang Ge
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan, Nanjing 210023, China
| |
Collapse
|
2
|
Treekitkarnmongkol W, Shah V, Kai K, Katayama H, Wong J, Ladha FA, Nguyen T, Menegaz B, Lu W, Yang F, Mino B, Tang X, Gagea M, Batra H, Raso MG, Wistuba II, Krishnamurthy S, Pinder SE, Sawyer EJ, Thompson AM, Sen S. Epigenetic activation of SOX11 is associated with recurrence and progression of ductal carcinoma in situ to invasive breast cancer. Br J Cancer 2024; 131:171-183. [PMID: 38760444 PMCID: PMC11231151 DOI: 10.1038/s41416-024-02697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Animals
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- SOXC Transcription Factors/genetics
- SOXC Transcription Factors/metabolism
- Mice
- Disease Progression
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Epigenesis, Genetic
- Cell Line, Tumor
- Neoplasm Invasiveness
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
Collapse
Affiliation(s)
- Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Wong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farah A Ladha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tristian Nguyen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Menegaz
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Alastair M Thompson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Behbod F, Chen JH, Thompson A. Human Ductal Carcinoma In Situ: Advances and Future Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041319. [PMID: 36781223 PMCID: PMC10547390 DOI: 10.1101/cshperspect.a041319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS outcomes remain unclear. A large fraction of human DCIS (>50%) may not need the multimodality treatment options currently offered to all DCIS patients. More importantly, while we may be overtreating many, we cannot identify those most at risk of invasion or metastasis following a DCIS diagnosis. This review summarizes the studies that have furthered our understanding of DCIS pathology and mechanisms of invasive progression by using advanced technologies including spatial genomics, transcriptomics, and multiplex proteomics. This review also highlights a need for rethinking DCIS with a more focused view on epithelial states and programs and their cross talk with the microenvironment.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jennifer H Chen
- Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alastair Thompson
- Section of Breast Surgery, Baylor College of Medicine, Co-Director, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Sureda-Gómez M, Balsas P, Rodríguez ML, Nadeu F, De Bolòs A, Eguileor Á, Kulis M, Castellano G, López C, Giné E, Demajo S, Jares P, Martín-Subero JI, Beà S, Campo E, Amador V. Tumorigenic role of Musashi-2 in aggressive mantle cell lymphoma. Leukemia 2023; 37:408-421. [PMID: 36509891 PMCID: PMC9898029 DOI: 10.1038/s41375-022-01776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
SOX11 overexpression has been associated with aggressive behavior of mantle cell lymphomas (MCL). SOX11 is overexpressed in embryonic and cancer stem cells (CSC) of some tumors. Although CSC have been isolated from primary MCL, their relationship to SOX11 expression and contribution to MCL pathogenesis and clinical evolution remain unknown. Here, we observed enrichment in leukemic and hematopoietic stem cells gene signatures in SOX11+ compared to SOX11- MCL primary cases. Musashi-2 (MSI2) emerged as one of the most significant upregulated stem cell-related genes in SOX11+ MCLs. SOX11 is directly bound to the MSI2 promoter upregulating its expression in vitro. MSI2 intronic enhancers were strongly activated in SOX11+ MCL cell lines and primary cases. MSI2 upregulation was significantly associated with poor overall survival independently of other high-risk features of MCL. MSI2 knockdown decreased the expression of genes related to apoptosis and stem cell features and significantly reduced clonogenic growth, tumor cell survival and chemoresistance in MCL cells. MSI2-knockdown cells had reduced tumorigenic engraftment into mice bone marrow and spleen compared to control cells in xenotransplanted mouse models. Our results suggest that MSI2 might play a key role in sustaining stemness and tumor cell survival, representing a possible novel target for therapeutic interventions in MCL.
Collapse
Affiliation(s)
- Marta Sureda-Gómez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Balsas
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta-Leonor Rodríguez
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna De Bolòs
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álvaro Eguileor
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Giancarlo Castellano
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eva Giné
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Hematology Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Santiago Demajo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Jares
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - José I. Martín-Subero
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Silvia Beà
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.510933.d0000 0004 8339 0058Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain ,grid.410458.c0000 0000 9635 9413Hematopathology Section, Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Sun Q, Du J, Dong J, Pan S, Jin H, Han X, Zhang J. Systematic Investigation of the Multifaceted Role of SOX11 in Cancer. Cancers (Basel) 2022; 14:cancers14246103. [PMID: 36551589 PMCID: PMC9776339 DOI: 10.3390/cancers14246103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
SRY-box transcription factor 11 (SOX11), as a member of the SOX family, is a transcription factor involved in the regulation of specific biological processes and has recently been found to be a prognostic marker for certain cancers. However, the roles of SOX11 in cancer remain controversial. Our study aimed to explore the various aspects of SOX11 in pan-cancer. The expression of SOX11 was investigated by the Genotype Tissue-Expression (GTEX) dataset and the Cancer Genome Atlas (TCGA) database. The protein level of SOX11 in tumor tissues and tumor-adjacent tissues was verified by human pan-cancer tissue microarray. Additionally, we used TCGA pan-cancer data to analyze the correlations among SOX11 expression and survival outcomes, clinical features, stemness, microsatellite instability (MSI), tumor mutation burden (TMB), mismatch repair (MMR) related genes and the tumor immune microenvironment. Furthermore, the cBioPortal database was applied to investigate the gene alterations of SOX11. The main biological processes of SOX11 in cancers were analyzed by Gene Set Enrichment Analysis (GSEA). As a result, aberrant expression of SOX11 has been implicated in 27 kinds of cancer types. Aberrant SOX11 expression was closely associated with survival outcomes, stage, tumor recurrence, MSI, TMB and MMR-related genes. In addition, the most frequent alteration of the SOX11 genome was mutation. Our study also showed the correlations of SOX11 with the level of immune infiltration in various cancers. In summary, our findings underline the multifaceted role and prognostic value of SOX11 in pan-cancer.
Collapse
Affiliation(s)
- Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Du
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.H.); (J.Z.)
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.H.); (J.Z.)
| |
Collapse
|
7
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
8
|
Silva FHDS, Underwood A, Almeida CP, Ribeiro TS, Souza-Fagundes EM, Martins AS, Eliezeck M, Guatimosim S, Andrade LO, Rezende L, Gomes HW, Oliveira CA, Rodrigues RC, Borges IT, Cassali GD, Ferreira E, Del Puerto HL. Transcription factor SOX3 upregulated pro-apoptotic genes expression in human breast cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:212. [PMID: 36175695 DOI: 10.1007/s12032-022-01758-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sex-determining region Y-box 3 (SOX3) protein, a SOX transcriptions factors group, has been identified as a key regulator in several diseases, including cancer. Downregulation of transcriptions factors in invasive ductal carcinoma (IDC) can interfere in neoplasia development, increasing its aggressiveness. We investigated SOX3 protein expression and its correlation with apoptosis in the MDA-MB-231 cell line, as SOX3 and Pro-Caspase-3 immunoexpression in paraffin-embedded invasive ductal carcinoma tissue samples from patients (n = 27). Breast cancer cell line MDA-MD-231 transfected with pEF1-SOX3 + and pEF1-Empty vector followed by cytotoxicity assay (MTT), Annexin-V FITC PI for apoptosis percentage assessment by flow cytometry, qPCR for apoptotic-related gene expression, immunofluorescence, and immunohistochemistry to SOX3 immunolocalization in culture cells, and paraffin-embedded invasive ductal carcinoma tissue samples. RESULTS Apoptotic rate was higher in cells transfected with pEF1-SOX3 + (56%) than controls (10%). MDA-MB-231 transfected with pEF1-SOX3 + presented upregulation of pro-apoptotic mRNA from CASP3, CASP8, CASP9, and BAX genes, contrasting with downregulation antiapoptotic mRNA from BCL2, compared to non-transfected cells and cells transfected with pEF1-empty vector (p < 0.005). SOX3 protein nuclear expression was detected in 14% (4/27 cases) of ductal carcinoma cases, and pro-Caspase-3 expression was positive in 50% of the cases. CONCLUSION Data suggest that SOX3 transcription factor upregulates apoptosis in breast cancer cell line MDA-MB-231, and has a down nuclear expression in ductal carcinoma cases, and need to be investigated as a tumor suppressor protein, and its loss of expression and non-nuclear action turn the cells resistant to apoptosis. Further studies are necessary to understand how SOX3 protein regulates the promoter regions of genes involved in apoptosis.
Collapse
Affiliation(s)
- Felipe Henrique de Souza Silva
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH, USA
| | - Camila Pereira Almeida
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Thais Salviana Ribeiro
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Elaine M Souza-Fagundes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marcos Eliezeck
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Luciana O Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Luisa Rezende
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Hipacia Werneck Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Isabella Terra Borges
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627 - Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
9
|
Thennavan A, Garcia-Recio S, Liu S, He X, Perou CM. Molecular signatures of in situ to invasive progression for basal-like breast cancers: An integrated mouse model and human DCIS study. NPJ Breast Cancer 2022; 8:83. [PMID: 35851387 PMCID: PMC9293914 DOI: 10.1038/s41523-022-00450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of Invasive Ductal Carcinoma (IDC) and thus the identification of features that may predict DCIS progression would be of potential clinical value. Experimental mouse models can be used to address this challenge by studying DCIS-to-IDC biology. Here we utilize single cell RNA sequencing (scRNAseq) on the C3Tag genetically engineered mouse model that forms DCIS-like precursor lesions and for which many lesions progress into end-stage basal-like molecular subtype IDC. We also perform bulk RNAseq analysis on 10 human synchronous DCIS-IDC pairs comprised of estrogen receptor (ER) positive and ER-negative subsets and utilize 2 additional public human DCIS data sets for comparison to our mouse model. By identifying malignant cells using inferred DNA copy number changes from the murine C3Tag scRNAseq data, we show the existence of cancer cells within the C3Tag pre-DCIS, DCIS, and IDC-like tumor specimens. These cancer cells were further classified into proliferative, hypoxic, and inflammatory subpopulations, which change in frequency in DCIS versus IDC. The C3Tag tumor progression model was also associated with increase in Cancer-Associated Fibroblasts and decrease in activated T cells in IDC. Importantly, we translate the C3Tag murine genomic findings into human DCIS where we find common features only with human basal-like DCIS, suggesting there are intrinsic subtype unique DCIS features. This study identifies several tumor and microenvironmental features associated with DCIS progression and may also provide genomic signatures that can identify progression-prone DCIS within the context of human basal-like breast cancers.
Collapse
Affiliation(s)
- Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Spina E, Simundza J, Incassati A, Chandramouli A, Kugler MC, Lin Z, Khodadadi-Jamayran A, Watson CJ, Cowin P. Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency. Nat Commun 2022; 13:1421. [PMID: 35302059 PMCID: PMC8931046 DOI: 10.1038/s41467-022-28937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Gpr125 is an orphan G-protein coupled receptor, with homology to cell adhesion and axonal guidance factors, that is implicated in planar polarity and control of cell movements. By lineage tracing we demonstrate that Gpr125 is a highly specific marker of bipotent mammary stem cells in the embryo and of multiple long-lived unipotent basal mammary progenitors in perinatal and postnatal glands. Nipple-proximal Gpr125+ cells express a transcriptomic profile indicative of chemo-repulsion and cell movement, whereas Gpr125+ cells concentrated at invasive ductal tips display a hybrid epithelial-mesenchymal phenotype and are equipped to bind chemokine and growth factors and secrete a promigratory matrix. Gpr125 progenitors acquire bipotency in the context of transplantation and cancer and are greatly expanded and massed at the pushing margins of short latency MMTV-Wnt1 tumors. High Gpr125 expression identifies patients with particularly poor outcome within the basal breast cancer subtype highlighting its potential utility as a factor to stratify risk. Gpr125 has emerged as a specific marker of mammary stem cells and basal progenitors. Here they show that Gpr125 cells congregate at ductal tips during morphogenesis and amass at tumor margins, and that high Gpr125 predicts early tumor onset and poor outcome in basal breast cancer.
Collapse
Affiliation(s)
- Elena Spina
- Department of Cell Biology, New York University School of Medicine, New York, USA.
| | - Julia Simundza
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Angela Incassati
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, USA.,Department of Dermatology, New York University School of Medicine, New York, USA
| | - Matthias C Kugler
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, USA
| | - Ziyan Lin
- Department of Applied Bioinformatics, New York University School of Medicine, New York, USA
| | | | | | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, USA. .,Department of Dermatology, New York University School of Medicine, New York, USA.
| |
Collapse
|
11
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
12
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
13
|
Dey A, Kundu M, Das S, Jena BC, Mandal M. Understanding the function and regulation of Sox2 for its therapeutic potential in breast cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188692. [PMID: 35122882 DOI: 10.1016/j.bbcan.2022.188692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.
Collapse
Affiliation(s)
- Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Moumita Kundu
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Subhayan Das
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| |
Collapse
|
14
|
Singleton CS, Chan LLY, McCulley KJ, Kessel SL, Del Valle L, Crabtree JS. ER+ Breast Cancer Mammosphere Formation and Analysis. Methods Mol Biol 2022; 2422:233-245. [PMID: 34859410 DOI: 10.1007/978-1-0716-1948-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mammosphere formation assays are a popular and convenient technique in the study of breast cancer by providing an in vitro mechanism by which to study breast cancer stem cell (BCSC) contribution to tumorigenesis, as well as more closely mimicking the three-dimensional tumor microenvironment. In these assays, BCSCs are stimulated to proliferate in low adherence tissue culture dishes and the resulting mammospheres exhibit activation of stem cell-related signaling pathways. Here we describe the process for generating and analyzing mammospheres under varying conditions.
Collapse
Affiliation(s)
- Ciera S Singleton
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Kelsey J McCulley
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Sarah L Kessel
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Luis Del Valle
- Department of Pathology and Medicine & Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
15
|
Oliemuller E, Newman R, Howard BA. Intraductal Injections into the Mouse Mammary Gland. Methods Mol Biol 2022; 2471:221-233. [PMID: 35175600 DOI: 10.1007/978-1-0716-2193-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mammary intraductal xenografting technique has been established to inject cells or other substances directly into the mammary ducts of female mice. Using this refined xenografting method provides the possibility of mimicking the normal microenvironment of preinvasive breast lesions including, ductal carcinoma in situ (DCIS), to study of the progression of DCIS to invasive breast cancer in a more relevant manner than with other mammary xenografting methods. Xenografting into the mammary fat pad delivers cells directly into the stroma and bypasses the occurrence of invasive transition, during which cells invade through the basement membrane. Either breast cancer cell lines or patient-derived breast cancer cells can be injected into the mammary duct using this protocol to model breast cancer progression. This protocol will cover the procedures required to perform this technique.
Collapse
Affiliation(s)
- Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
16
|
Seok J, Gil M, Dayem AA, Saha SK, Cho SG. Multi-Omics Analysis of SOX4, SOX11, and SOX12 Expression and the Associated Pathways in Human Cancers. J Pers Med 2021; 11:jpm11080823. [PMID: 34442467 PMCID: PMC8400412 DOI: 10.3390/jpm11080823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
The Sry-related HMG BOX (SOX) gene family encodes transcription factors containing highly conserved high-mobility group domains that bind to the minor groove in DNA. Although some SOX genes are known to be associated with tumorigenesis and cancer progression, their expression and prognostic value have not been systematically studied. We performed multi-omic analysis to investigate the expression of SOX genes in human cancers. Expression and phylogenetic tree analyses of the SOX gene family revealed that the expression of three closely related SOX members, SOX4, SOX11, and SOX12, was increased in multiple cancers. Expression, mutation, and alteration of the three SOX members were evaluated using the Oncomine and cBioPortal databases, and the correlation between these genes and clinical outcomes in various cancers was examined using the Kaplan–Meier, PrognoScan, and R2 database analyses. The genes commonly correlated with the three SOX members were categorized in key pathways related to the cell cycle, mitosis, immune system, and cancer progression in liver cancer and sarcoma. Additionally, functional protein partners with three SOX proteins and their probable signaling pathways were explored using the STRING database. This study suggests the prognostic value of the expression of three SOX genes and their associated pathways in various human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Ssang-Goo Cho
- Correspondence: ; Tel.: +82-2-450-4207 or +82-2-444-4207
| |
Collapse
|
17
|
Wen H, Feng H, Ma Q, Liang C. LncRNA PCGEM1 induces proliferation and migration in non-small cell lung cancer cells through modulating the miR-590-3p/SOX11 axis. BMC Pulm Med 2021; 21:234. [PMID: 34261474 PMCID: PMC8278585 DOI: 10.1186/s12890-021-01600-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the most prevalent cancers. As reported, long non-coding RNAs (lncRNAs) induce various biological behaviors in cancers. LncRNA PCGEM1 prostate-specific transcript (PCGEM1) is reported to exert carcinogenic effect on certain cancers. Our research aimed to explore the role of PCGEM1 in NSCLC. Methods We enrolled forty NSCLC patients to explore PCGEM1 expression in clinical NSCLC tissues. Colony formation assay, CCK-8, Transwell assay were conducted to reveal cell proliferation, viability, migration and invasion. Luciferase reporter assay, RNA pull down, and RIP assay were performed to investigate the downstream axis of PCGEM1. Results PCGEM1 was significantly upregulated in NSCLC cells and tissues. Subsequently, in vitro loss-of-function experiments illustrated the carcinogenic role of PCGEM1 in NSCLC through promoting viability, proliferation, migration, and invasion. MiR-590-3p was confirmed to be a downstream gene of PCGEM1. Furthermore, SRY-box transcription factor 11 (SOX11) was verified to be a target of miR-590-3p. Additionally, rescue experiments indicated that miR-590-3p inhibitor or pcDNA3.1/SOX11 rescued the impacts of downregulated PCGEM1 on NSCLC cell proliferation, viability, migration and invasion. Conclusions LncRNA PCGEM1 aggravated proliferative and migrative abilities in NSCLC via the miR-590-3p/SOX11 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01600-9.
Collapse
Affiliation(s)
- Huanshun Wen
- Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hongxiang Feng
- Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
18
|
Tsang SM, Kim H, Oliemuller E, Newman R, Boateng NA, Guppy N, Howard BA. Sox11 regulates mammary tumour-initiating and metastatic capacity in Brca1-deficient mouse mammary tumour cells. Dis Model Mech 2021; 14:261799. [PMID: 33969421 PMCID: PMC8188883 DOI: 10.1242/dmm.046037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of Sox11 in the regulation of mammary progenitor cells. Sox11 is expressed by mammary bud epithelial cells during embryonic mammary gland development and is not detected in mammary epithelial cells after birth. As Sox11 is an oncofetal gene, we investigated the effects of reducing Sox11 levels in embryonic mammary progenitor cells and found that Sox11 regulates proliferative state, stem cell activity and lineage marker expression. We also investigated the effect of reducing Sox11 levels in two transplantable Brca1-deficient oestrogen receptor-negative mouse mammary tumour cell lines, to assess whether Sox11 regulates similar functions in tumour progenitor cells. When Sox11 levels were reduced in one Brca1-deficient mammary tumour cell line that expressed both epithelial and mesenchymal markers, similar effects on proliferation, stem cell activity and expression of lineage markers to those seen in the embryonic mammary progenitor cells were observed. Orthotopic grafting of mammary tumour cells with reduced Sox11 levels led to alterations in tumour-initiating capacity, latency, expression of lineage markers and metastatic burden. Our results support a model in which tumours expressing higher levels of Sox11 have more stem and tumour-initiating cells, and are less proliferative, whereas tumours expressing lower levels of Sox11 become more proliferative and capable of morphogenetic/metastatic growth, similar to what occurs during embryonic mammary developmental progression. Summary:Brca1−/− mammary tumours expressing Sox11 at high levels have more stem- and tumour-initiating cells, and are less proliferative, whereas tumours expressing Sox11 at lower levels become more proliferative and are capable of morphogenetic/metastatic growth.
Collapse
Affiliation(s)
- Siu Man Tsang
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naa-Anyima Boateng
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
19
|
Liu Y, Guo W. SOX factors as cell-state regulators in the mammary gland and breast cancer. Semin Cell Dev Biol 2021; 114:126-133. [PMID: 33583737 DOI: 10.1016/j.semcdb.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/27/2022]
Abstract
Emerging evidence has shown that several SOX family transcription factors are key regulators of stem/progenitor cell fates in the mammary gland. These cell-fate regulators are often upregulated in breast cancer and contribute to tumor initiation and progression. They induce lineage plasticity and the epithelial-mesenchymal transition, which promotes tumor invasion, metastasis, and therapeutic resistance. SOX factors act through modulating multiple oncogenic signaling pathways in breast cancer. In addition to the cell-autonomous functions, new evidence suggests they can shape the tumor immune microenvironment. Here, we will review the molecular and functional evidence linking SOX factors with mammary gland development and discuss how these cell-fate regulators are co-opted in breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Xu J, Zhang J, Li L, Mao J, You T, Li Y. SOX12 expression is associated with progression and poor prognosis in human breast cancer. Am J Transl Res 2020; 12:8162-8174. [PMID: 33437389 PMCID: PMC7791485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
The sex-determining region Y-box 12 (SOX12) is implicated in several oncogenic signaling pathways of multiple types of cancer; however, the biological effects of SOX12 on breast cancer has yet to be elucidated. Here, we assessed SOX12 expression using real-time quantitative PCR in 142 pairs of breast cancer and adjacent normal tissues (ANTs) and immunohistochemistry in 524 breast cancer and 147 ANTs. The effects of SOX12 on breast cancer progression, clinicopathological variables, and prognostic value were then investigated. SOX12 expression was markedly elevated in breast cancer tissues relative to that in ANTs at both mRNA and protein levels. Positive SOX12 expression was correlated to tumor size (P = 0.005), estrogen receptor (ER) (P = 0.018) and human epidermal growth factor receptor (HER2) (P = 0.004) status, lymph node metastasis (P < 0.001), and the tumor-node-metastasis (TNM) stage (P < 0.001). Notably, the positive rate of SOX12 expression gradually increased with breast cancer progression. Multivariate analysis indicated that SOX12 was an independent prognostic factor for overall survival (OS, P = 0.023) and distant metastasis-free survival (DMFS, P = 0.012). Subgroup analysis revealed that luminal and HER2 patients with positive SOX12 expression had a shorter OS period than those with negative SOX12 expression. Moreover, SOX12 expression was associated with a high risk of distant metastasis in invasive carcinoma with the lymph node metastasis subgroup. In summary, SOX12 correlates with progression and poor prognosis in human breast cancer, suggesting that SOX12 is a potential target for breast cancer treatment and warrants further functional research.
Collapse
Affiliation(s)
- Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jieqi Mao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Tiangeng You
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical UniversityShanghai, China
| | - Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
21
|
Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin Cancer Biol 2020; 67:3-11. [DOI: 10.1016/j.semcancer.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
|
22
|
Bi H, Shang Z, Jia C, Wu J, Cui B, Wang Q, Ou T. LncRNA RNF144A-AS1 Promotes Bladder Cancer Progression via RNF144A-AS1/miR-455-5p/SOX11 Axis. Onco Targets Ther 2020; 13:11277-11288. [PMID: 33177836 PMCID: PMC7649250 DOI: 10.2147/ott.s266067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bladder cancer (BC) is the most commonly occurring malignant tumor of the urinary system worldwide. Long non-coding RNAs (lncRNAs), including lncRNA RNF144A-AS1 (RNF144A-AS1), perform an oncogenic role in BC progression. However, how RNF144A-AS1 is regulated in BC has not been fully investigated, and its role in BC is mostly obscure. In this study, we explore its role in BC progression. Materials and Methods The expression level of RNF144A-AS1 in BC tissues was explored via bioinformatics analysis and quantitative real-time PCR (qRT-PCR). We used RNF144A-AS1 siRNA (si-RNF144A-AS1) to inhibit the RNF144A-AS1 level in BC cell lines (J82 and 5637 cells). A series of experimental studies in vitro (CCK-8 assay, colony formation assay and Transwell assay) was performed to explore the role of si-RNF144A-AS1 on the proliferation, migration and invasion of J82 and 5637 cells. A BC xenograft model was established, and the effect of si-RNF144A-AS1 on xenograft growth was explored in vivo. The interactions among RNF144A-AS1, miR-455-5p and SOX11 were predicted by bioinformatics miRanda and Targetscan database, and verified by the luciferase reporter assay and RNA pull-down assay. Finally, miR-455-5p inhibitor and si-RNF144A-AS1 were cotransfected into J82 and 5637 cells. Results RNF144A-AS1 is overexpressed in BC tumors and cells, and its overexpression is correlated with poor prognosis. Knockdown of RNF144A-AS1 markedly suppressed the proliferation, migration and invasion of J82 and 5637 cells and significantly inhibited xenograft growth in nude mice, compared to si-NC. We found that RNF144A-AS1 serves as a sponge for miR-455-5p. Furthermore, a binding site of miR-455-5p was found in 3ʹ UTR of SOX11 gene, and overexpression of miR-455-5p suppressed SOX11 levels. RNF144A-AS1 knockdown markedly decreased SOX11 expression levels, while miR-455-5p inhibitor restored this repressive effect. Restoration of SOX11 could reverse this repressive effect of RNF144A-AS1 on cell proliferation, migration and invasion abilities. Conclusion Overall, our findings underline the critical role of RNF144A-AS1 in BC development, and our study reveals for the first time that RNF144A-AS1 promotes BC progression via the RNF144A-AS1/miR-455-5p/SOX11 axis.
Collapse
Affiliation(s)
- Huifeng Bi
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China.,Department of Urology, Jincheng General Hospital, Jincheng, Shanxi Province, People's Republic of China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Oliemuller E, Newman R, Tsang SM, Foo S, Muirhead G, Noor F, Haider S, Aurrekoetxea-Rodríguez I, Vivanco MDM, Howard BA. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. eLife 2020; 9:58374. [PMID: 32909943 PMCID: PMC7518891 DOI: 10.7554/elife.58374] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
SOX11 is an embryonic mammary epithelial marker that is normally silenced prior to birth. High SOX11 levels in breast tumours are significantly associated with distant metastasis and poor outcome in breast cancer patients. Here, we show that SOX11 confers distinct features to ER-negative DCIS.com breast cancer cells, leading to populations enriched with highly plastic hybrid epithelial/mesenchymal cells, which display invasive features and alterations in metastatic tropism when xenografted into mice. We found that SOX11+DCIS tumour cells metastasize to brain and bone at greater frequency and to lungs at lower frequency compared to cells with lower SOX11 levels. High levels of SOX11 leads to the expression of markers associated with mesenchymal state and embryonic cellular phenotypes. Our results suggest that SOX11 may be a potential biomarker for breast tumours with elevated risk of developing metastases and may require more aggressive therapies.
Collapse
Affiliation(s)
- Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Siu Man Tsang
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Shane Foo
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Farzana Noor
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Maria dM Vivanco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
24
|
Krasny L, Bland P, Burns J, Lima NC, Harrison PT, Pacini L, Elms ML, Ning J, Martinez VG, Yu YR, Acton SE, Ho PC, Calvo F, Swain A, Howard BA, Natrajan RC, Huang PH. A mouse SWATH-mass spectrometry reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts. Dis Model Mech 2020; 13:dmm044586. [PMID: 32493768 PMCID: PMC7375474 DOI: 10.1242/dmm.044586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in multiple model organisms including the mouse. Here, we present a comprehensive mouse reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597 proteins (62.2% of the mouse proteome) by SWATH-MS. We exploit MouseRefSWATH to develop an analytical pipeline for species-specific deconvolution of proteomic alterations in human tumour xenografts (XenoSWATH). This method overcomes the challenge of high sequence similarity between mouse and human proteins, facilitating the study of host microenvironment-tumour interactions from 'bulk tumour' measurements. We apply the XenoSWATH pipeline to characterize an intraductal xenograft model of breast ductal carcinoma in situ and uncover complex regulation consistent with stromal reprogramming, where the modulation of cell migration pathways is not restricted to tumour cells but also operates in the mouse stroma upon progression to invasive disease. MouseRefSWATH and XenoSWATH open new opportunities for in-depth and reproducible proteomic assessment to address wide-ranging biological questions involving this important model organism.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Communication
- Cell Line, Tumor
- Chromatography, Liquid
- Databases, Protein
- Female
- Heterografts
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- NIH 3T3 Cells
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Proteome
- Proteomics
- Species Specificity
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tandem Mass Spectrometry
- Tumor Microenvironment
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Philip Bland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Peter T Harrison
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Laura Pacini
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark L Elms
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jian Ning
- Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Victor Garcia Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London WC1E 6BT, London, UK
| | - Yi-Ru Yu
- Department of Oncology, University of Lausanne, Lausanne CH-1066, Switzerland
- Ludwig Institute for Cancer Research, Lausanne CH-1066, Switzerland
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London WC1E 6BT, London, UK
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne CH-1066, Switzerland
- Ludwig Institute for Cancer Research, Lausanne CH-1066, Switzerland
| | - Fernando Calvo
- The Tumour Microenvironment Team, Institute of Biomedicine and Biotechnology of Cantabria, Santander 39011, Spain
| | - Amanda Swain
- Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachael C Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
25
|
Umeh-Garcia M, Simion C, Ho PY, Batra N, Berg AL, Carraway KL, Yu A, Sweeney C. A Novel Bioengineered miR-127 Prodrug Suppresses the Growth and Metastatic Potential of Triple-Negative Breast Cancer Cells. Cancer Res 2019; 80:418-429. [PMID: 31694904 DOI: 10.1158/0008-5472.can-19-0656] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/21/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
Abstract
miR-127 is downregulated in breast cancer, where it has been shown to suppress the proliferation, migration, and invasion of breast cancer cells. In triple-negative breast cancer (TNBC), miR-127 downregulation correlates with decreased disease-free and overall patient survival. Tumor suppressor miRNAs may hold therapeutic promise but progress has been limited by several factors, including the lability and high cost of miRNA mimics. Here, we take a novel approach to produce a miR-127 prodrug (miR-127PD), which we demonstrate is processed to mature, functional miR-127-3p in TNBC tumor cells. miR-127PD decreased the viability and motility of TNBC cells, sensitized TNBC cells to chemotherapy, and restricted the TNBC stem cell population. Furthermore, systemic delivery of miR-127PD suppressed tumor growth of MDA-MB-231 and MDA-MB-468 TNBC cells and spontaneous metastasis of MDA-MB-231 cells. In addition, CERK, NANOS1, FOXO6, SOX11, SOX12, FASN, and SUSD2 were identified as novel, functionally important targets of miR-127. In conclusion, our study demonstrates that miR-127 functions as a tumor and metastasis suppressor in TNBC and that delivery of miR-127 may hold promise as a novel therapy. SIGNIFICANCE: Exogenous administration of miR-127, which is functionally activated in target cells, inhibits growth and spontaneous metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Maxine Umeh-Garcia
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Catalina Simion
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Pui-Yan Ho
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Aiming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California.
| |
Collapse
|
26
|
Liu Z, Chen JY, Zhong Y, Xie L, Li JS. lncRNA MEG3 inhibits the growth of hepatocellular carcinoma cells by sponging miR-9-5p to upregulate SOX11. ACTA ACUST UNITED AC 2019; 52:e8631. [PMID: 31531526 PMCID: PMC6753855 DOI: 10.1590/1414-431x20198631] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
The long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), a tumor suppressor, is critical for the carcinogenesis and progression of different cancers, including hepatocellular carcinoma (HCC). To date, the roles of lncRNA MEG3 in HCC are not well illustrated. Therefore, this study used western blot and qRT-PCR to evaluate the expression of MEG3, miR-9-5p, and Sex determining Region Y-related HMG-box 11 (SOX11) in HCC tissues and cell lines. RNA pull-down and luciferase reporter assay were used to evaluate these molecular interactions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry detected the viability and apoptosis of HCC cells, respectively. The results showed that MEG3 and SOX11 were poorly expressed but miR-9-5p was highly expressed in HCC. The expression levels of these molecules suggested a negative correlation between MEG3 and miR-9-5p and a positive correlation with SOX11, confirmed by Pearson's correlation analysis and biology experiments. Furthermore, MEG3 could combine with miR-9-5p, and SOX11 was a direct target of miR-9-5p. Moreover, MEG3 over-expression promoted cell apoptosis and growth inhibition in HCC cells through sponging miR-9-5p to up-regulate SOX11. Therefore, the interactions among MEG3, miR-9-5p, and SOX11 might offer a novel insight for understanding HCC pathogeny and provide potential diagnostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jian Yu Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Liang Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jian Shui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
27
|
Affiliation(s)
- Philip Bland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
28
|
Mehta GA, Khanna P, Gatza ML. Emerging Role of SOX Proteins in Breast Cancer Development and Maintenance. J Mammary Gland Biol Neoplasia 2019; 24:213-230. [PMID: 31069617 PMCID: PMC6790170 DOI: 10.1007/s10911-019-09430-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022] Open
Abstract
The SOX genes encode a family of more than 20 transcription factors that are critical regulators of embryogenesis and developmental processes and, when aberrantly expressed, have been shown to contribute to tumor development and progression in both an oncogenic and tumor suppressive role. Increasing evidence demonstrates that the SOX proteins play essential roles in multiple cellular processes that mediate or contribute to oncogenic transformation and tumor progression. In the context of breast cancer, SOX proteins function both as oncogenes and tumor suppressors and have been shown to be associated with tumor stage and grade and poor prognosis. Experimental evidence demonstrates that a subset of SOX proteins regulate critical aspects of breast cancer biology including cancer stemness and multiple signaling pathways leading to altered cell proliferation, survival, and tumor development; EMT, cell migration and metastasis; as well as other tumor associated characteristics. This review will summarize the role of SOX family members as important mediators of tumorigenesis in breast cancer, with an emphasis on the triple negative or basal-like subtype of breast cancer, as well as examine the therapeutic potential of these genes and their downstream targets.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA.
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
29
|
Tomar AK, Agarwal R, Kundu B. Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdiscip Sci 2019; 11:668-678. [PMID: 30972690 DOI: 10.1007/s12539-019-00325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic tumor caused by cell cycle aberrations due to accumulating genetic disturbances in the expression of transcription factors (TFs), signaling oncogenes and tumor suppressors. Though survival rate in childhood ALL patients is increased up to 80% with recent medical advances, treatment of adults and childhood relapse cases still remains challenging. Here, we have performed bioinformatics analysis of 207 ALL patients' mRNA expression data retrieved from the ICGC data portal with an objective to mark out the decisive genes and pathways responsible for ALL pathogenesis and aggression. For analysis, 3361 most variable genes, including 276 transcription factors (out of 16,807 genes) were sorted based on the coefficient of variance. Silhouette width analysis classified 207 ALL patients into 6 subtypes and heat map analysis suggests a need of large and multicenter dataset for non-overlapping subtype classification. Overall, 265 GO terms and 32 KEGG pathways were enriched. The lists were dominated by cancer-associated entries and highlight crucial genes and pathways that can be targeted for designing more specific ALL therapeutics. Differential gene expression analysis identified upregulation of two important genes, JCHAIN and CRLF2 in dead patients' cohort suggesting their possible involvement in different clinical outcomes in ALL patients undergoing the same treatment.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rahul Agarwal
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
30
|
Shan T, Uyar DS, Wang LS, Mutch DG, Huang THM, Rader JS, Sheng X, Huang YW. SOX11 hypermethylation as a tumor biomarker in endometrial cancer. Biochimie 2019; 162:8-14. [PMID: 30935961 DOI: 10.1016/j.biochi.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
We previously reported that SOX4 is overexpressed in endometrial cancer and that it partially contributes to hypermethylation of miR-129-2 and miR-203. The current study seeks to identify methylation and expression levels of the SOX gene family in endometrial carcinomas. Methylation levels of the 16 SOX gene family members were measured by combining bisulfite restriction analysis (COBRA), MassARRAY, and pyrosequencing assays of cell lines and endometrial cancer samples. Gene expression was determined by RT-qPCR. The methylation level of the SOX11 locus was correlated with clinicopathologic factors in primary endometrial tumors and in TCGA endometrial cohort. It was also examined in DNA of serum and endometrial specimens from a longitudinal cohort of early stage endometrial cancer patients. COBRA assays indicated that hypermethylation of SOX1, SOX2, SOX11, SOX14, SOX15, SOX17, and SOX18 was present in endometrial cancer cell lines and not in the normal control. SOX11 expression was reactivated only by a DNA methylation inhibitor. Moreover, aberrant DNA methylation of SOX11 was detected in the majority of endometrioid endometrial carcinomas (n=114) and none of the 22 adjacent normal endometrial samples (P<0.0001). The methylation status of SOX11 associated significantly with microsatellite instability and MLH1 methylation in endometrial tumors (P<0.0001), and this finding was validated in TCGA endometrial cohort. Furthermore, SOX11 was not hypermethylated in serum DNA from early stage endometrial cancer patients. This study found that hypermethylation of SOX11 is common in endometrial carcinomas and strongly associates with microsatellite instability and MLH1 methylation.
Collapse
Affiliation(s)
- Tianjiao Shan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, Shandong, China
| | - Denise S Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David G Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim H-M Huang
- Department of Molecular Medicine and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiugui Sheng
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, Shandong, China; National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
31
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
32
|
Xu S, Dong Y, Huo Z, Yu L, Xue J, Wang G, Duan Y. SOX11: a potentially useful marker in surgical pathology: a systematic analysis of SOX11 expression in epithelial and non-epithelial tumours. Histopathology 2018; 74:391-405. [PMID: 30221780 DOI: 10.1111/his.13757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Sanpeng Xu
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
| | - Yuting Dong
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Zitian Huo
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Lu Yu
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Jin Xue
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Guoping Wang
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Yaqi Duan
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
33
|
Wu Z, Huang W, Wang X, Wang T, Chen Y, Chen B, Liu R, Bai P, Xing J. Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11. Mol Med 2018; 24:40. [PMID: 30134837 PMCID: PMC6069875 DOI: 10.1186/s10020-018-0039-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Background This study aimed to investigate the effect of over-expressing circular RNA CEP128 (circCEP128) on cell functions and explore the molecular mechanism of which in bladder carcinoma. Methods The differentially expressed circRNAs and mRNAs in bladder carcinoma cells and cells in adjacent tissues were screened out using microarray analysis. Expression levels of circRNAs and mRNAs in tissues and cells were determined by qRT-PCR. Expression of SOX11 was detected by western blot. Luciferase reporter assay and RNA pull-down assay were used to investigate the interactions between the specific circRNA, miRNA and mRNA. Cell cycle and apoptosis were measured using flow cytometry after transfection. MTT assay was also performed to detect the cell proliferation. Results In present study, circCEP128 and SOX11 were observed significantly up-regulated in bladder cancer tissues, while the expression of miR-145-5p was decreased in cancer samples compared to normal samples. Cytoscape was used to visualize circCEP128-miRNA-target gene interactions based on the TargetScan and circular RNA interactome, which revealed that circCEP128 served as a sponge of miR-145-5p and indirectly regulated SOX11. Knockdown of circCEP128 induced the inhibition of cell proliferation and the increased bladder cancer cell apoptosis rate. Conclusions CircCEP128 functions as a ceRNA for miR-145-5p, which could up regulates SOX11 and further promotes cell proliferation and inhibits cell apoptosis of bladder cancer.
Collapse
Affiliation(s)
- Zhun Wu
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Wei Huang
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Xuegang Wang
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Tao Wang
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Yuedong Chen
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Bin Chen
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Rongfu Liu
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Peide Bai
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China
| | - Jinchun Xing
- Department of Urology, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian, China.
| |
Collapse
|