1
|
Lee H, Kim JE, Shin EA, Pinanga Y, Pyo KH, Lee EH, Kim W, Kim S, Lim CS, Yoon KC, Lee JW. Hepatocyte TM4SF5-mediated cytosolic NCOA3 stabilization and macropinocytosis support albumin uptake and bioenergetics for hepatocellular carcinoma progression. Exp Mol Med 2025; 57:836-855. [PMID: 40186033 PMCID: PMC12046047 DOI: 10.1038/s12276-025-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 04/07/2025] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatocellular carcinoma (HCC) development and progression. Although TM4SF5 also promotes migration and invasion, it remains unclear how the metabolic context affects metastatic potential. Here we explored how TM4SF5 affects albumin uptake for HCC progression using TM4SF5 knockout or reintroduced hepatocyte and animal systems. Serum-deprived hepatocytes formed filopodia-like processes depending on TM4SF5 expression, which was altered by albumin replenishment for membranous PIP3-dependent macropinocytosis. Macropinocytosis required nuclear receptor coactivator 3 (NCOA3) stabilized in the cytosol and PTEN inactivation via binding to TM4SF5WT. TM4SF5-mediated albumin uptake led to ATP-linked respiration and cellular migration. Tumor tissues from liver-orthotopically xenografted mice fed a high protein diet or human liver cancer tissues showed TM4SF5-dependent macropinocytosis and NCOA3-correlated metastatic features, unlike mice fed a normal chow diet or human nontumor regions. These observations indicate that serum albumin availability to TM4SF5-positive HCC could support multifocality and intrahepatic metastasis, which may provide insights into clinical observations of multiple small tumor nodules surrounded by areas with high serum albumin levels.
Collapse
Affiliation(s)
- Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yangie Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chang Sup Lim
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyung Chul Yoon
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kim JE, Kim HS, Kim W, Lee EH, Kim S, Kim T, Shin EA, Pyo KH, Lee H, Jin SH, Lee JH, Byeon SM, Kim DJ, Jeong J, Lee J, Ohn M, Lee H, Yu SJ, Shin D, Kim S, Yoo JY, Lee SC, Suh YG, Lee JW. Isoxazole-based molecules restore NK cell immune surveillance in hepatocarcinogenesis by targeting TM4SF5 and SLAMF7 linkage. Signal Transduct Target Ther 2025; 10:15. [PMID: 39828766 PMCID: PMC11743776 DOI: 10.1038/s41392-024-02106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Dynamic communication between hepatocytes and the environment is critical in hepatocellular carcinoma (HCC) development. Clinical immunotherapy against HCC is currently unsatisfactory and needs more systemic considerations, including the identification of new biomarkers and immune checkpoints. Transmembrane 4 L six family member 5 (TM4SF5) is known to promote HCC, but it remains unclear how cancerous hepatocytes avoid immune surveillance and whether avoidance can be blocked. We investigated how TM4SF5-mediated hepatic tumorigenesis avoids surveillance by natural killer (NK) cells, which are prevalent in the liver, and whether the avoidance can be blocked by anti-TM4SF5 agents. We used comprehensive structure activity relationship analysis to identify TM4SF5-specific isoxazole (TSI)-based small molecules that inhibit TM4SF5-mediated effects. TM4SF5 expressed by hepatocytes reduced NK cell cytotoxicity by downregulating stimulatory ligands/receptors, including signaling lymphocytic activation molecule family member 7 (SLAMF7). TM4SF5 bound SLAMF7 depending on N-glycosylation and caused intracellular trafficking of SLAMF7 from the plasma membrane to lysosomes for degradation. TSI treatments in cell lines and animal models of HCC blocked this binding, intracellular trafficking, and downregulation, resulting in higher levels of stimulatory NK cell ligands. In mouse xenograft models, TSI treatment abrogated HCC development by increasing the abundance and dispersion of Slamf7-positive cells in liver tissues, recapitulating the phenotype of Tm4sf5-knockout mice and indicating TSI-mediated restoration of NK cell surveillance. These findings suggest that TSIs can inhibit TM4SF5-mediated liver carcinogenesis by increasing NK cell surveillance.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seo Hee Jin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae-Ho Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soo-Min Byeon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dong Joo Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinwook Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeongwon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Minjae Ohn
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jun Yeob Yoo
- CHA Advanced Research Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung-Chul Lee
- CHA Advanced Research Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea.
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Yin W, Xu H, Bai Z, Wu Y, Zhang Y, Liu R, Wang Z, Zhang B, Shen J, Zhang H, Chen X, Ma D, Shi X, Yan L, Zhang C, Jiang H, Chen K, Guo D, Niu W, Yin H, Zhang WJ, Luo C, Xie X. Inhibited peroxidase activity of peroxiredoxin 1 by palmitic acid exacerbates nonalcoholic steatohepatitis in male mice. Nat Commun 2025; 16:598. [PMID: 39799115 PMCID: PMC11724923 DOI: 10.1038/s41467-025-55939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice. Mechanistically, PRDX1 suppresses STAT signaling and protects mitochondrial function by scavenging hydrogen peroxide, and mitigating the oxidation of protein tyrosine phosphatases and lipid peroxidation. We further identify rosmarinic acid (RA) as a potent agonist of PRDX1. As revealed by the complex crystal structure, RA binds to PRDX1 and stabilizes its peroxidatic cysteine. RA alleviates NASH through specifically activating PRDX1's peroxidase activity. Thus, beyond revealing the molecular mechanism underlying PA promoting oxidative stress and NASH, our study suggests that boosting PRDX1's peroxidase activity is a promising intervention for treating NASH.
Collapse
Affiliation(s)
- Wen Yin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhonghao Bai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Rui Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhangzhao Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jing Shen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hao Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Lihui Yan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dean Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, 300070, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
4
|
Pinanga YD, Pyo KH, Shin EA, Lee H, Lee EH, Kim W, Kim S, Kim JE, Kim S, Lee JW. Association between hepatocyte TM4SF5 expression and gut microbiome dysbiosis during non-alcoholic fatty liver disease development. Life Sci 2024; 358:123164. [PMID: 39454995 DOI: 10.1016/j.lfs.2024.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Gut microbiome dysbiosis is involved in non-alcoholic fatty liver disease (NAFLD) development. Hepatic transmembrane 4 L six family member 5 (TM4SF5) overexpression promotes NAFLD. However, how gut microbiota are associated with TM4SF5-mediated NAFLD remains unexplored. We analyzed the gut microbiome using feces from hepatocyte-specific TM4SF5-overexpressing transgenic (Alb-TGTm4sf5-Flag, TG) or Tm4sf5-/- knock-out (KO) mice fed a normal chow diet (NCD), high-fat diet (HFD) for 2 weeks (HFD2W), or methionine-choline-deficient diet (MCD) for 4 weeks to investigate associations among Tm4sf5 expression, diet, and the gut microbiome. TG-NCD mice showed a higher Firmicutes-to-Bacteroidetes (F/B) ratio, with less enrichment of Akkermansia muciniphila and Lactobacillus reuteri. NASH-related microbiomes in feces were more abundant in TG-HFD2w mice than in KO-HFD2w mice. Further, TG-MCD showed a higher F/B ratio than TG-NCD or KO mice, with decreases or increases in microbiomes beneficial or detrimental to the liver, respectively. Such effects in TG-MCD animals were correlated with functional pathways producing short-chain fatty acids (SCFAs). Furthermore, potential functional pathways of the gut microbiome were metabolically parallel to NAFLD features in TG-MCD mice. These results suggest that hepatocyte Tm4sf5 supports gut microbiome dysbiosis and metabolic activity, leading to SCFA production and hepatic inflammation during NAFLD development.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Kim JE, Park S, Kwak C, Lee Y, Song D, Jung JW, Lee H, Shin E, Pinanga Y, Pyo K, Lee EH, Kim W, Kim S, Jun C, Yun J, Choi S, Rhee H, Liu K, Lee JW. Glucose-mediated mitochondrial reprogramming by cholesterol export at TM4SF5-enriched mitochondria-lysosome contact sites. Cancer Commun (Lond) 2024; 44:47-75. [PMID: 38133457 PMCID: PMC10794009 DOI: 10.1002/cac2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and β-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - So‐Young Park
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Chulhwan Kwak
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung‐Ang UniversitySeoulRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST)Gangneung‐siGangwon‐doRepublic of Korea
| | - Jae Woo Jung
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Haesong Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun‐Ae Shin
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Yangie Pinanga
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Kyung‐hee Pyo
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Eun Hae Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Wonsik Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Soyeon Kim
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Chang‐Duck Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Jeanho Yun
- Department of BiochemistryCollege of Medicine, Dong‐A UniversityBusanRepublic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun‐Woo Rhee
- Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
| | - Kwang‐Hyeon Liu
- BK21 FOUR Community‐Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National UniversityDaeguRepublic of Korea
| | - Jung Weon Lee
- Department of PharmacyCollege of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
7
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
8
|
Tian Y, Hong X, Xie Y, Guo Z, Yu Q. 17β-Estradiol (E 2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2023; 12:2100. [PMID: 38136219 PMCID: PMC10740447 DOI: 10.3390/antiox12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Premature menopause is associated with an increased prevalence of nonalcoholic fatty liver disease (NAFLD). Menopausal hormone therapy (MHT) has been widely used in clinical practice and has the potential to protect mitochondrial function and alleviate NAFLD. After bilateral oophorectomy (OVX), female rats without 17β-estradiol (E2) intervention developed NAFLD, whereas E2 supplementation was effective in preventing NAFLD in female rats. The altered pathways and cellular events from both comparison pairs, namely, the OVX vs. sham group and the OVX vs. E2 group, were assessed using transcriptomic analysis. KEGG pathways enriched by both transcriptomic and metabolomic analyses strongly suggest that oxidative phosphorylation is a vital pathway that changes during the development of NAFLD and remains unchanged when E2 is applied. Liver tissue from the OVX-induced NAFLD group exhibited increased lipid peroxidation, impaired mitochondria, and downregulated ERα/SIRT1/PGC-1α expression. An in vitro study indicated that the protective effect of E2 treatment on hepatic steatosis could be abolished when ERα or SIRT1 was selectively inhibited. This damage was accompanied by reduced mitochondrial complex activity and increased lipid peroxidation. The current research indicates that E2 upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent OVX-induced NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (Y.T.); (X.H.); (Y.X.); (Z.G.)
| |
Collapse
|
9
|
Pinanga YD, Lee HA, Shin EA, Lee H, Pyo KH, Kim JE, Lee EH, Kim W, Kim S, Kim HY, Lee JW. TM4SF5-mediated abnormal food-intake behavior and apelin expression facilitate non-alcoholic fatty liver disease features. iScience 2023; 26:107625. [PMID: 37670786 PMCID: PMC10475478 DOI: 10.1016/j.isci.2023.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) engages in non-alcoholic steatohepatitis (NASH), although its mechanistic roles are unclear. Genetically engineered Tm4sf5 mice fed ad libitum normal chow or high-fat diet for either an entire day or a daytime-feeding (DF) pattern were analyzed for metabolic parameters. Compared to wild-type and Tm4sf5-/- knockout mice, hepatocyte-specific TM4SF5-overexpressing Alb-TGTm4sf5-Flag (TG) mice showed abnormal food-intake behavior during the mouse-inactive daytime, increased apelin expression, increased food intake, and higher levels of NASH features. DF or exogenous apelin injection of TG mice caused severe hepatic pathology. TM4SF5-mediated abnormal food intake was correlated with peroxisomal β-oxidation, mTOR activation, and autophagy inhibition, with triggering NASH phenotypes. Non-alcoholic fatty liver disease (NAFLD) patients' samples revealed a correlation between serum apelin and NAFLD activity score. Altogether, these observations suggest that hepatic TM4SF5 may cause abnormal food-intake behaviors to trigger steatohepatitic features via the regulation of peroxisomal β-oxidation, mTOR, and autophagy.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Ah Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Division of Gastroenterology and Hepatology, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwi Young Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Division of Gastroenterology and Hepatology, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
11
|
Systemic TM4SF5 overexpression in Apc Min/+ mice promotes hepatic portal hypertension associated with fibrosis. BMB Rep 2022; 55:609-614. [PMID: 36104259 PMCID: PMC9813423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver. [BMB Reports 2022; 55(12): 609-614].
Collapse
|
12
|
Lee J, Kim E, Kang MK, Ryu J, Kim JE, Shin EA, Pinanga Y, Pyo KH, Lee H, Lee EH, Cho H, Cheon J, Kim W, Jho EH, Kim S, Lee JW. Systemic TM4SF5 overexpression in Apc Min/+ mice promotes hepatic portal hypertension associated with fibrosis. BMB Rep 2022; 55:609-614. [PMID: 36104259 PMCID: PMC9813423 DOI: 10.5483/bmbrep.2022.55.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 08/30/2023] Open
Abstract
Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver. [BMB Reports 2022; 55(12): 609-614].
Collapse
Affiliation(s)
- Joohyeong Lee
- Department of Pharmacy, Daejeon 34141, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Eunmi Kim
- Department of Pharmacy, Daejeon 34141, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | | | - Jihye Ryu
- Department of Pharmacy, Daejeon 34141, Korea
| | - Ji Eon Kim
- Department of Pharmacy, Daejeon 34141, Korea
| | - Eun-Ae Shin
- Department of Pharmacy, Daejeon 34141, Korea
| | | | | | - Haesong Lee
- Department of Pharmacy, Daejeon 34141, Korea
| | - Eun Hae Lee
- Department of Pharmacy, Daejeon 34141, Korea
| | - Heejin Cho
- Department of Pharmacy, Daejeon 34141, Korea
| | | | - Wonsik Kim
- Department of Pharmacy, Daejeon 34141, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jung Weon Lee
- Department of Pharmacy, Daejeon 34141, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Behavioral innovation and genomic novelty are associated with the exploitation of a challenging dietary opportunity by an avivorous bat. iScience 2022; 25:104973. [PMID: 36093062 PMCID: PMC9459691 DOI: 10.1016/j.isci.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Foraging on nocturnally migrating birds is one of the most challenging foraging tasks in the animal kingdom. Only three bat species (e.g., Ia io) known to date can prey on migratory birds. However, how these bats have exploited this challenging dietary niche remains unknown. Here, we demonstrate that I. io hunts at the altitude of migrating birds during the bird migration season. The foraging I. io exhibited high flight altitudes (up to 4945 m above sea level) and high flight speeds (up to 143.7 km h−1). I. io in flight can actively prey on birds in the night sky via echolocation cues. Genes associated with DNA damage repair, hypoxia adaptation, biting and mastication, and digestion and metabolism have evolved to adapt to this species’ avivorous habits. Our results suggest that the evolution of behavioral innovation and genomic novelty are associated with the exploitation of challenging dietary opportunities. Predation on nocturnally migrating birds is rare and challenging in nature Bats exhibit high flight altitude and speed associated with foraging on migrating birds Bats can actively prey on birds in the night sky via echolocation cues The adaptive evolution of genes enables bats to adapt to the avivorous habits
Collapse
|
14
|
Jung JW, Kim JE, Kim E, Lee H, Lee H, Shin E, Lee JW. Liver-originated small extracellular vesicles with TM4SF5 target brown adipose tissue for homeostatic glucose clearance. J Extracell Vesicles 2022; 11:e12262. [PMID: 36063136 PMCID: PMC9443943 DOI: 10.1002/jev2.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is involved in chronic liver disease, although its role in glucose homeostasis remains unknown. TM4SF5 deficiency caused age-dependent glucose (in)tolerance with no link to insulin sensitivity. Further, hepatic TM4SF5 binding to GLUT1 promoted glucose uptake and glycolysis. Excessive glucose repletion caused hepatocytes to secrete small extracellular vesicles (sEVs) loaded with TM4SF5 (hep-sEVTm4sf5 ), suggesting a role for sEVTm4sf5 in glucose metabolism and homeostasis. Hep-sEVTm4sf5 were smaller than sEVControl and recruit proteins for efficient organ tropism. Liver-derived sEVs, via a liver-closed vein circuit (LCVC) using hepatic TM4SF5-overexpressing (Alb-Tm4sf5 TG) mice (liv-sEVTm4sf5 ), improved glucose tolerance in Tm4sf5-/- KO mice and targeted brown adipose tissues (BATs), possibly allowing the clearance of blood glucose as heat independent of UCP1. Taken together, hep-sEVTm4sf5 might clear high extracellular glucose levels more efficiently by targeting BAT compared with hep-sEVControl , suggesting an insulin-like role for sEV™4SF5 in affecting age-related metabolic status and thus body weight (BW).
Collapse
Affiliation(s)
- Jae Woo Jung
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Genetic EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Hyejin Lee
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Eun‐Ae Shin
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Genetic EngineeringSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
15
|
Lee H, Yu DM, Bahn MS, Kwon YJ, Um MJ, Yoon SY, Kim KT, Lee MW, Jo SJ, Lee S, Koo SH, Jung KH, Lee JS, Ko YG. Hepatocyte-specific Prominin-1 protects against liver injury-induced fibrosis by stabilizing SMAD7. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1277-1289. [PMID: 36038590 PMCID: PMC9440255 DOI: 10.1038/s12276-022-00831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Prominin-1 (PROM1), also known as CD133, is expressed in hepatic progenitor cells (HPCs) and cholangiocytes of the fibrotic liver. In this study, we show that PROM1 is upregulated in the plasma membrane of fibrotic hepatocytes. Hepatocellular expression of PROM1 was also demonstrated in mice (Prom1CreER; R26TdTom) in which cells expressed TdTom under control of the Prom1 promoter. To understand the role of hepatocellular PROM1 in liver fibrosis, global and liver-specific Prom1-deficient mice were analyzed after bile duct ligation (BDL). BDL-induced liver fibrosis was aggravated with increased phosphorylation of SMAD2/3 and decreased levels of SMAD7 by global or liver-specific Prom1 deficiency but not by cholangiocyte-specific Prom1 deficiency. Indeed, PROM1 prevented SMURF2-induced SMAD7 ubiquitination and degradation by interfering with the molecular association of SMAD7 with SMURF2. We also demonstrated that hepatocyte-specific overexpression of SMAD7 ameliorated BDL-induced liver fibrosis in liver-specific Prom1-deficient mice. Thus, we conclude that PROM1 is necessary for the negative regulation of TGFβ signaling during liver fibrosis.
Collapse
Affiliation(s)
- Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Dong-Min Yu
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Myeong-Suk Bahn
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young-Jae Kwon
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Min Jee Um
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seo Yeon Yoon
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ki-Tae Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Myoung-Woo Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sung-Je Jo
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sungsoo Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seung-Hoi Koo
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ki Hoon Jung
- Department of Surgery, Dongguk University College of Medicine, Gyeongju, 38067, Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea. .,Division of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
16
|
Kim JE, Kim E, Lee JW. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases. Int J Mol Sci 2022; 23:ijms23158387. [PMID: 35955521 PMCID: PMC9369364 DOI: 10.3390/ijms23158387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world’s population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.
Collapse
|
17
|
Feng J, Liu Y, Chen J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Marine Chitooligosaccharide Alters Intestinal Flora Structure and Regulates Hepatic Inflammatory Response to Influence Nonalcoholic Fatty Liver Disease. Mar Drugs 2022; 20:md20060383. [PMID: 35736186 PMCID: PMC9231394 DOI: 10.3390/md20060383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, C57BL/6 mice were given an HFHSD diet for 8 weeks to induce hepatic steatosis and then given COSM solution orally for 12 weeks. The study found that the HFHSD diet resulted in steatosis and insulin resistance in mice. The formation of NAFLD induced by HFHSD diet was related to the imbalance of intestinal flora. However, after COSM intervention, the abundance of beneficial bacteria increased significantly, while the abundance of harmful bacteria decreased significantly. The HFHSD diet also induced changes in intestinal bacterial metabolites, and the content of short-chain fatty acids in cecal contents after COSM intervention was significantly higher than that in the model group. In addition, COSM not only improved LPS levels and barrier dysfunction in the ileum and colon but upregulated protein levels of ZO-1, occludin, and claudin in the colon and downregulated the liver LPS/TLR4/NF-κB inflammatory pathway. We concluded that the treatment of marine chitooligosaccharide COSM could improve the intestinal microflora structure of the fatty liver and activate an inflammatory signaling pathway, thus alleviating the intrahepatic lipid accumulation induced by HFHSD.
Collapse
Affiliation(s)
- Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| |
Collapse
|
18
|
Lee H, Kim E, Shin EA, Shon JC, Sun H, Kim JE, Jung JW, Lee H, Pinanga Y, Song DG, Liu KH, Lee JW. Crosstalk between TM4SF5 and GLUT8 regulates fructose metabolism in hepatic steatosis. Mol Metab 2022; 58:101451. [PMID: 35123128 PMCID: PMC8866669 DOI: 10.1016/j.molmet.2022.101451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Transmembrane 4 L six family member 5 (TM4SF5) is likely involved in non-alcoholic steatohepatitis, although its roles and cross-talks with glucose/fructose transporters in phenotypes derived from high-carbohydrate diets remain unexplored. Here, we investigated the modulation of hepatic fructose metabolism by TM4SF5. METHODS Wild-type or Tm4sf5-/- knockout mice were evaluated via different diets, including normal chow, high-sucrose diet, or high-fat diet without or with fructose in drinking water (30% w/v). Using liver tissues and blood samples from the mice or hepatocytes, the roles of TM4SF5 in fructose-mediated de novo lipogenesis (DNL) and steatosis via a crosstalk with glucose transporter 8 (GLUT8) were assessed. RESULTS Tm4sf5 suppression or knockout in both in vitro and in vivo models reduced fructose uptake, DNL, and steatosis. Extracellular fructose treatment of hepatocytes resulted in an inverse relationship between fructose-uptake activity and TM4SF5-mediated translocalization of GLUT8 through dynamic binding at the cell surface. Following fructose treatment, TM4SF5 binding to GLUT8 transiently decreased with translocation to the plasma membrane (PM), where GLUT8 separated and became active for fructose uptake and DNL. CONCLUSIONS Overall, hepatic TM4SF5 modulated GLUT8 localization and activity through transient binding, leading to steatosis-related fructose uptake and lipogenesis. Thus, TM4SF5 and/or GLUT8 may be promising treatment targets against liver steatosis resulting from excessive fructose consumption.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong Cheol Shon
- Department of Pharmacy, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Hyunseung Sun
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jae Woo Jung
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yangie Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do 25451, South Korea
| | - Kwang-Hyeon Liu
- Department of Pharmacy, College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
19
|
Ko D, Kim E, Shin EA, Nam SH, Yoon J, Lee JS, Lee Y, Park S, Ha K, Choi SY, Lee JW, Kim S. Therapeutic effects of TM4SF5-targeting chimeric and humanized monoclonal antibodies in hepatocellular and colon cancer models. Mol Ther Oncolytics 2022; 24:452-466. [PMID: 35211652 PMCID: PMC8841960 DOI: 10.1016/j.omto.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
The transmembrane 4 L six family member 5 (TM4SF5) is aberrantly expressed in hepatocellular and colorectal cancers, and has been implicated in tumor progression, suggesting that it could serve as a novel therapeutic target. Previously, we screened a murine antibody phage-display library to generate a novel monoclonal antibody, Ab27, that is specific to the extracellular loop 2 of TM4SF5. In this study, we evaluated the effects of chimeric Ab27 using cancer cells expressing endogenous TM4SF5 or stably overexpressing TM4SF5 in vivo and in vitro. Monotherapy with Ab27 significantly decreased tumor growth in liver and colon cancer xenograft models, including a sorafenib-resistant model, and decreased the phosphorylation of focal adhesion kinase (FAK), p27Kip1, and signal transducer and activator of transcription 3 (STAT3). No general Ab27 toxicity was observed in vivo. Combination treatment with Ab27 and sorafenib or doxorubicin exerted higher antitumor activity than monotherapy. In addition, we humanized the Ab27 sequence by the complementarity-determining region (CDR) grafting method. The humanized antibody Ab27-hz9 had reduced immunogenicity but exhibited target recognition and antitumor activity comparable with those of Ab27. Both Ab27 and Ab27-hz9 efficiently targeted tumor cells expressing TM4SF5 in vivo. These observations strongly support the further development of Ab27-hz9 as a novel therapeutic agent against liver and colorectal cancers.
Collapse
Affiliation(s)
- Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Eunmi Kim
- Department of Pharmacy Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Korea
| | - Eun-Ae Shin
- Department of Pharmacy Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Korea
| | - Seo Hee Nam
- Department of Pharmacy Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Korea
| | - Junghwa Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea
| | - Jin-Sook Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea
| | - Sora Park
- Antibody Drug Team at New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Korea
| | - Kyungsoo Ha
- Drug Efficacy Evaluation Team at New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Korea
| | - So-Young Choi
- Protein Drug Team at New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Korea
| | - Jung Weon Lee
- Department of Pharmacy Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul 08826, Korea
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
20
|
Sun H, Kim E, Ryu J, Lee H, Shin EA, Lee M, Lee H, Lee JH, Yoon JH, Song DG, Kim S, Lee JW. TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 2021; 79:49. [PMID: 34921636 PMCID: PMC8739317 DOI: 10.1007/s00018-021-04051-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.
Collapse
Affiliation(s)
- Hyunseung Sun
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minhyeong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
TM4SF5-dependent crosstalk between hepatocytes and macrophages to reprogram the inflammatory environment. Cell Rep 2021; 37:110018. [PMID: 34788612 DOI: 10.1016/j.celrep.2021.110018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic injury to hepatocytes results in inflammation, steatohepatitis, fibrosis, and nonalcoholic fatty liver disease (NAFLD). The tetraspanin TM4SF5 is implicated in fibrosis and cancer. We investigate the role of TM4SF5 in communication between hepatocytes and macrophages (MΦs) and its possible influence on the inflammatory microenvironment that may lead to NAFLD. TM4SF5 induction in differentiated MΦs promotes glucose uptake, glycolysis, and glucose sensitivity, leading to M1-type MΦ activation. Activated M1-type MΦs secrete pro-inflammatory interleukin-6 (IL-6), which induces the secretion of CCL20 and CXCL10 from TM4SF5-positive hepatocytes. Although TM4SF5-dependent secretion of these chemokines enhances glycolysis in M0 MΦs, further chronic exposure reprograms MΦs for an increase in the proportion of M2-type MΦs in the population, which may support diet- and chemical-induced NAFLD progression. We suggest that TM4SF5 expression in MΦs and hepatocytes is critically involved in modulating the inflammatory environment during NAFLD progression.
Collapse
|
22
|
Tetraspanin TM4SF5 in hepatocytes negatively modulates SLC27A transporters during acute fatty acid supply. Arch Biochem Biophys 2021; 710:109004. [PMID: 34364885 DOI: 10.1016/j.abb.2021.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is involved in nonalcoholic steatosis and further aggravation of liver disease. However, its mechanism for regulating FA accumulation is unknown. We investigated how TM4SF5 in hepatocytes affected FA accumulation during acute FA supply. TM4SF5-expressing hepatocytes and mouse livers accumulated less FAs, compared with those of TM4SF5 deficiency or inactivation. Binding of TM4SF5 to SLC27A2 increased gradually upon acute FA treatment, whereas TM4SF5 constitutively bound SLC27A5. Suppression of either SLC27A2 or SLC27A5 in hepatocytes expressing TM4SF5 differentially modulated initial and maximal FA uptake levels for a fast turnover of fatty acid. Altogether, TM4SF5 negatively modulates FA accumulation into hepatocytes via association with the transporters for an energy homeostasis, when FA are supplied acutely.
Collapse
|
23
|
Kim HJ, Kim E, Lee H, Jung JW, Kim JE, Pack CG, Lee JW. SLAC2B-dependent microtubule acetylation regulates extracellular matrix-mediated intracellular TM4SF5 traffic to the plasma membranes. FASEB J 2021; 35:e21369. [PMID: 33554392 DOI: 10.1096/fj.202002138rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/11/2022]
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) translocates intracellularly and promotes cell migration, but how subcellular TM4SF5 traffic is regulated to guide cellular migration is unknown. We investigated the influences of the extracellular environment and intracellular signaling on the TM4SF5 traffic with regard to migration directionality. Cell adhesion to fibronectin (FN) but not poly-l-lysine enhanced the traffic velocity and straightness of the TM4SF5WT (but not palmitoylation-deficient mutant TM4SF5 Pal - ) toward the leading edges, depending on tubulin acetylation. Acetylated-microtubules in SLAC2B-positive cells reached mostly the juxtanuclear regions, but reached-out toward the leading edges upon SLAC2B suppression. TM4SF5 expression caused SLAC2B not to be localized at the leading edges. TM4SF5 colocalization with HDAC6 depended on paxillin expression. The trimeric complex consisting of TM4SF5, HDAC6, and SLAC2B might, thus, be enriched at the perinuclear cytosols toward the leading edges. More TM4SF5WT translocation to the leading edges was possible when acetylated-microtubules reached the frontal edges following HDAC6 inhibition by paxillin presumably at new cell-FN adhesions, leading to persistent cell migration. Collectively, this study revealed that cell-FN adhesion and microtubule acetylation could control intracellular traffic of TM4SF5 vesicles to the leading edges via coordinated actions of paxillin, SLAC2B, and HDAC6, leading to TM4SF5-dependent cell migration.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|