1
|
Horie F, Ando R, Sekimoto K, Nguyet VTA, Izawa S. Yeast Hsp78 plays an essential role in adapting to severe ethanol stress via mild ethanol stress pretreatment in mitochondrial protein quality control. Biochim Biophys Acta Gen Subj 2025; 1869:130804. [PMID: 40187374 DOI: 10.1016/j.bbagen.2025.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Severe ethanol stress (10 % v/v) causes the denaturation and aggregation of certain mitochondrial proteins, such as aconitase (Aco1), forming the deposits of unfolded mitochondrial proteins (DUMPs) in the budding yeast Saccharomyces cerevisiae. Pre-exposing yeast cells to mild stress often induces adaptation to subsequent severe stress. However, whether pre-exposing yeast cells to mild ethanol stress mitigates mitochondrial protein aggregation remains unclear. Therefore, in this study, we examined the effects of pre-exposing yeast cells to mild ethanol stress on the yeast mitochondrial protein quality control (mtPQC) system under severe ethanol stress. Pretreatment with 6 % (v/v) ethanol significantly mitigated the formation of DUMPs and Aco1 aggregates under subsequent 10 % ethanol stress in wild-type cells but not in hsp78∆ and mdj1∆ cells. Pretreatment with 6 % ethanol increased the protein levels of mtPQC-related factors, Hsp78, Mdj1, and Hsp10; however, hsp78∆ cells showed significantly lower levels of Ssc1 (mtHsp70) and its co-chaperone Mdj1 than wild-type cells. Moreover, intracellular reactive oxygen species levels and the frequency of respiration-deficient mutants under 10 % ethanol stress were reduced after pretreatment with 6 % ethanol in wild-type cells but not in hsp78∆ cells. Overall, this study demonstrated that pre-exposing yeast cells to mild ethanol stress mitigated ethanol-induced mitochondrial damage by activating the mtPQC system, including HSP78 expression, providing novel insights into the effects of ethanol stress on mitochondria and the corresponding responses in yeast.
Collapse
Affiliation(s)
- Fuko Horie
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Koharu Sekimoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
2
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Cui X, Liu H, Shi T, Zhao Q, Li F, Lv W, Yu C, Huang H, Tang QQ, Pan D. IFI27 Integrates Succinate and Fatty Acid Oxidation to Promote Adipocyte Thermogenic Adaption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301855. [PMID: 37544897 PMCID: PMC10558685 DOI: 10.1002/advs.202301855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Mitochondria are the pivot organelles to control metabolism and energy homeostasis. The capacity of mitochondrial metabolic adaptions to cold stress is essential for adipocyte thermogenesis. How brown adipocytes keep mitochondrial fitness upon a challenge of cold-induced oxidative stress has not been well characterized. This manuscript shows that IFI27 plays an important role in cristae morphogenesis, keeping intact succinate dehydrogenase (SDH) function and active fatty acid oxidation to sustain thermogenesis in brown adipocytes. IFI27 protein interaction map identifies SDHB and HADHA as its binding partners. IFI27 physically links SDHB to chaperone TNF receptor associated protein 1 (TRAP1), which shields SDHB from oxidative damage-triggered degradation. Moreover, IFI27 increases hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA) catalytic activity in β-oxidation pathway. The reduced SDH level and fatty acid oxidation in Ifi27-knockout brown fat results in impaired oxygen consumption and defective thermogenesis. Thus, IFI27 is a novel regulator of mitochondrial metabolism and thermogenesis.
Collapse
Affiliation(s)
- Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Haojie Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Feiyan Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenjing Lv
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Haiyan Huang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Vazquez‐Calvo C, Kohler V, Höög JL, Büttner S, Ott M. Newly imported proteins in mitochondria are particularly sensitive to aggregation. Acta Physiol (Oxf) 2023; 238:e13985. [PMID: 37171464 PMCID: PMC10909475 DOI: 10.1111/apha.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
AIM A functional proteome is essential for life and maintained by protein quality control (PQC) systems in the cytosol and organelles. Protein aggregation is an indicator of a decline of PQC linked to aging and disease. Mitochondrial PQC is critical to maintain mitochondrial function and thus cellular fitness. How mitochondria handle aggregated proteins is not well understood. Here we tested how the metabolic status impacts on formation and clearance of aggregates within yeast mitochondria and assessed which proteins are particularly sensitive to denaturation. METHODS Confocal microscopy, electron microscopy, immunoblotting and genetics were applied to assess mitochondrial aggregate handling in response to heat shock and ethanol using the mitochondrial disaggregase Hsp78 as a marker for protein aggregates. RESULTS We show that aggregates formed upon heat or ethanol stress with different dynamics depending on the metabolic state. While fermenting cells displayed numerous small aggregates that coalesced into one large foci that was resistant to clearance, respiring cells showed less aggregates and cleared these aggregates more efficiently. Acute inhibition of mitochondrial translation had no effect, while preventing protein import into mitochondria by inhibition of cytosolic translation prevented aggregate formation. CONCLUSION Collectively, our data show that the metabolic state of the cells impacts the dynamics of aggregate formation and clearance, and that mainly newly imported and not yet assembled proteins are prone to form aggregates. Because mitochondrial functionality is crucial for cellular metabolism, these results highlight the importance of efficient protein biogenesis to maintain the mitochondrial proteome operational during metabolic adaptations and cellular stress.
Collapse
Affiliation(s)
- Carmela Vazquez‐Calvo
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Johanna L. Höög
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
6
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Short-form OPA1 is a molecular chaperone in mitochondrial intermembrane space. SCIENCE CHINA-LIFE SCIENCES 2021; 65:227-235. [PMID: 34480695 DOI: 10.1007/s11427-021-1962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Mitochondria, double-membrane organelles, are known to participate in a variety of metabolic and signal transduction pathways. The intermembrane space (IMS) of mitochondria is proposed to subject to multiple damages emanating from the respiratory chain. The optic atrophy 1 (OPA1), an important protein for mitochondrial fusion, is cleaved into soluble short-form (S-OPA1) under stresses. Here we report that S-OPA1 could function as a molecular chaperone in IMS. We purified the S-OPA1 (amino acid sequence after OPA1 isoform 5 S1 site) protein and showed it protected substrate proteins from thermally and chemically induced aggregation and strengthened the thermotolerance of Escherichia coli (E. coli). We also showed that S-OPA1 conferred thermotolerance on IMS proteins, e.g., neurolysin. The chaperone activity of S-OPA1 may be required for maintaining IMS homeostasis in mitochondria.
Collapse
|
8
|
Proteomic analysis demonstrates the role of the quality control protease LONP1 in mitochondrial protein aggregation. J Biol Chem 2021; 297:101134. [PMID: 34461102 PMCID: PMC8503632 DOI: 10.1016/j.jbc.2021.101134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells showed a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by a reduced LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human aging processes.
Collapse
|
9
|
Tobore TO. On the Etiopathogenesis and Pathophysiology of Alzheimer's Disease: A Comprehensive Theoretical Review. J Alzheimers Dis 2020; 68:417-437. [PMID: 30775973 DOI: 10.3233/jad-181052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimers' disease (AD) is the most common cause of dementia, with an estimated 5 million new cases occurring annually. Among the elderly, AD shortens life expectancy, results in disability, decreases quality of life, and ultimately, leads to institutionalization. Despite extensive research in the last few decades, its heterogeneous pathophysiology and etiopathogenesis have made it difficult to develop an effective treatment and prevention strategy. Aging is the biggest risk factor for AD and evidence suggest that the total number of older people in the population is going to increase astronomically in the next decades. Also, there is evidence that air pollution and increasing income inequality may result in higher incidence and prevalence of AD. This makes the need for a comprehensive understanding of the etiopathogenesis and pathophysiology of the disease extremely critical. In this paper, a quintuple framework of thyroid dysfunction, vitamin D deficiency, sex hormones, and mitochondria dysfunction and oxidative stress are used to provide a comprehensive description of AD etiopathogenesis and pathophysiology. The individual role of each factor, their synergistic and genetic interactions, as well as the limitations of the framework are discussed.
Collapse
|
10
|
Interplay between Oxidative Stress, Inflammation, and Amyloidosis in the Anterior Segment of the Eye; Its Pathological Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6286105. [PMID: 32566091 PMCID: PMC7291327 DOI: 10.1155/2020/6286105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
There are different pathologies associated with amyloidogenic processes caused by the increase of reactive oxygen species (ROS) and the overactivation of inflammatory responses. These alterations are present in different regions of the anterior segment of the eye, and they have been associated with the development and progression of ocular pathologies, such as glaucoma, dry eye syndrome, keratitis, and cataracts among other pathologies. Aim. To discuss briefly the anatomical characteristics of the anterior segment of the eye and describe the interaction between oxidative stress (OS) and inflammatory responses, emphasizing the misfolding of several proteins leading to amyloidogenic processes occurring in the anterior segment and their implications in the development of ocular diseases. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms “eye,” “anterior segment”, “inflammation”, “oxidative stress”, and “amyloidosis”. The search encompassed manuscripts published up to April 2019. A hundred forty-four published studies met the inclusion criteria. We present the current knowledge regarding the interaction between OS and the activation of inflammatory processes and how both can cause conformational changes in several peptides and proteins in each compartment of the anterior segment. However, we found that there is no consensus about which factor is the first to cause amyloidosis. Our conclusions suggest that there is an interplay among these factors forming a vicious cycle that leads to the loss of protein structure in ocular pathologies, and multifactorial therapies should be developed to avoid protein misfolding and to stop the progression of ocular pathologies.
Collapse
|
11
|
Hamon MP, Gergondey R, L'honoré A, Friguet B. Mitochondrial Lon protease - depleted HeLa cells exhibit proteome modifications related to protein quality control, stress response and energy metabolism. Free Radic Biol Med 2020; 148:83-95. [PMID: 31904544 DOI: 10.1016/j.freeradbiomed.2019.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
The ATP-dependent Lon protease is located in the mitochondrial matrix and oxidized proteins are among its primary targets for their degradation. Impairment of mitochondrial morphology and function together with apoptosis were observed in lung fibroblasts depleted for Lon expression while accumulation of carbonylated mitochondrial proteins has been reported for yeast and HeLa Lon deficient cells. In addition, age-related mitochondrial dysfunction has been associated with an impairment of Lon expression. Using a HeLa cell line stably transfected with an inducible shRNA directed against Lon, we have previously observed that Lon depletion results in a mild phenotype characterized by an increase of both production of reactive oxygen species and level of oxidized proteins (Bayot et al., 2014, Biochimie, 100: 38-47). In this study using the same cell line, we now show that Lon knockdown leads to modifications of the expression of a number of specific proteins involved in protein quality control, stress response and energy metabolism, as evidenced using a 2D gel-based proteomic approach, and to alteration of the mitochondrial network morphology. We also show that these effects are associated with decreased proliferation and can be modulated by culture conditions in galactose versus glucose containing medium.
Collapse
Affiliation(s)
- Marie-Paule Hamon
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Rachel Gergondey
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Aurore L'honoré
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France.
| |
Collapse
|
12
|
The Mitochondrial Lon Protease: Novel Functions off the Beaten Track? Biomolecules 2020; 10:biom10020253. [PMID: 32046155 PMCID: PMC7072132 DOI: 10.3390/biom10020253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
To maintain organellar function, mitochondria contain an elaborate endogenous protein quality control system. As one of the two soluble energy-dependent proteolytic enzymes in the matrix compartment, the protease Lon is a major component of this system, responsible for the degradation of misfolded proteins, in particular under oxidative stress conditions. Lon defects have been shown to negatively affect energy production by oxidative phosphorylation but also mitochondrial gene expression. In this review, recent studies on the role of Lon in mammalian cells, in particular on its protective action under diverse stress conditions and its relationship to important human diseases are summarized and commented.
Collapse
|
13
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
14
|
Huang Z, Zhao Q, Chen M, Zhang J, Ji L. Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury. Toxicology 2019; 428:152307. [PMID: 31589899 DOI: 10.1016/j.tox.2019.152307] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a life-threatening liver disease caused by the damage to liver sinusoidal endothelial cells (LSECs). Liquiritigenin and liquiritin are two main compounds in Glycyrrhizae Radix et Rhizoma (Gan-cao). Our previous study has shown that both liquiritigenin and liquiritin alleviated monocrotaline (MCT)-induced HSOS in rats via inducing the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway. This study aims to further investigate whether inhibiting liver inflammatory injury also contributed to the liquiritigenin and liquiritin-provided alleviation on MCT-induced HSOS. The results of serum alanine/aspartate aminotransferases (ALT/AST) activities and total bilirubin (TBil) amount, liver histological evaluation, scanning electron microscope observation and hepatic metalloproteinase-9 (MMP9) expression showed that liquiritigenin and liquiritin both alleviated MCT-induced HSOS in rats. Liquiritigenin and liquiritin reduced the increased liver myeloperoxidase (MPO) activity, mRNA expression of pro-inflammatory factors, hepatic infiltration of immune cells, hepatic toll-like receptor 4 (TLR4) expression and nuclear factor κB (NFκB) nuclear accumulation induced by MCT in rats. Furthermore, liquiritigenin and liquiritin attenuated MCT-induced liver mitochondrial injury, increased the decreased Lon protein expression and reduced the release of heat shock protein 60 (HSP60). Moreover, liquiritigenin and liquiritin also reduced NFκB nuclear accumulation and decreased the elevated cellular mRNA expression of NFκB-downstream pro-inflammatory cytokines induced by HSP60 in macrophage RAW264.7 cells. In conclusion, our study revealed that both liquiritigenin and liquiritin alleviated MCT-induced HSOS by inhibiting hepatic inflammatory responses triggered by HSP60.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Role of PGC-1α in Mitochondrial Quality Control in Neurodegenerative Diseases. Neurochem Res 2019; 44:2031-2043. [PMID: 31410709 DOI: 10.1007/s11064-019-02858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
As one of the major cell organelles responsible for ATP production, it is important that neurons maintain mitochondria with structural and functional integrity; this is especially true for neurons with high metabolic requirements. When mitochondrial damage occurs, mitochondria are able to maintain a steady state of functioning through molecular and organellar quality control, thus ensuring neuronal function. And when mitochondrial quality control (MQC) fails, mitochondria mediate apoptosis. An apparently key molecule in MQC is the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α). Recent findings have demonstrated that upregulation of PGC-1α expression in neurons can modulate MQC to prevent mitochondrial dysfunction in certain in vivo and in vitro aging or neurodegenerative encephalopathy models, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease. Because mitochondrial function and quality control disorders are the basis of pathogenesis in almost all neurodegenerative diseases (NDDs), the role of PGC-1α may make it a viable entry point for the treatment of such diseases. This review focuses on multi-level MQC in neurons, as well as the regulation of MQC by PGC-1α in these major NDDs.
Collapse
|
16
|
Dimos BA, Mahmud SA, Fuess LE, Mydlarz LD, Pellegrino MW. Uncovering a mitochondrial unfolded protein response in corals and its role in adapting to a changing world. Proc Biol Sci 2019; 286:20190470. [PMID: 31238849 PMCID: PMC6599992 DOI: 10.1098/rspb.2019.0470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Anthropocene will be characterized by increased environmental disturbances, leading to the survival of stress-tolerant organisms, particularly in the oceans, where novel marine diseases and elevated temperatures are re-shaping ecosystems. These environmental changes underscore the importance of identifying mechanisms which promote stress tolerance in ecologically important non-model species such as reef-building corals. Mitochondria are central regulators of cellular stress and have dedicated recovery pathways including the mitochondrial unfolded protein response, which increases the transcription of protective genes promoting protein homeostasis, free radical detoxification and innate immunity. In this investigation, we identify a mitochondrial unfolded protein response in the endangered Caribbean coral Orbicella faveolata, by performing in vivo functional replacement using a transcription factor (Of-ATF5) originating from a coral in the model organism Caenorhabditis elegans. In addition, we use RNA-seq network analysis and transcription factor-binding predictions to identify a transcriptional network of genes likely to be regulated by Of-ATF5 which is induced during the immune challenge and temperature stress. Overall, our findings uncover a conserved cellular pathway which may promote the ability of reef-building corals to survive increasing levels of environmental stress.
Collapse
Affiliation(s)
- Bradford A Dimos
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Siraje A Mahmud
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Lauren E Fuess
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019 , USA
| |
Collapse
|
17
|
Wright JN, Benavides GA, Johnson MS, Wani W, Ouyang X, Zou L, Collins HE, Zhang J, Darley-Usmar V, Chatham JC. Acute increases in O-GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover. Am J Physiol Cell Physiol 2019; 316:C862-C875. [PMID: 30865517 PMCID: PMC6620580 DOI: 10.1152/ajpcell.00491.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 03/09/2019] [Indexed: 12/26/2022]
Abstract
The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins in distinct cellular compartments is increasingly recognized as an important mechanism regulating cellular function. Importantly, the O-GlcNAc modification of mitochondrial proteins has been identified as a potential mechanism to modulate metabolism under stress with both potentially beneficial and detrimental effects. This suggests that temporal and dose-dependent changes in O-GlcNAcylation may have different effects on mitochondrial function. In the current study, we found that acutely augmenting O-GlcNAc levels by inhibiting O-GlcNAcase with Thiamet-G for up to 6 h resulted in a time-dependent decrease in cellular bioenergetics and decreased mitochondrial complex I, II, and IV activities. Under these conditions, mitochondrial number was unchanged, whereas an increase in the protein levels of the subunits of several electron transport complex proteins was observed. However, the observed bioenergetic changes appeared not to be due to direct increased O-GlcNAc modification of complex subunit proteins. Increases in O-GlcNAc were also associated with an accumulation of mitochondrial ubiquitinated proteins; phosphatase and tensin homolog induced kinase 1 (PINK1) and p62 protein levels were also significantly increased. Interestingly, the increase in O-GlcNAc levels was associated with a decrease in the protein levels of the mitochondrial Lon protease homolog 1 (LonP1), which is known to target complex IV subunits and PINK1, in addition to other mitochondrial proteins. These data suggest that impaired bioenergetics associated with short-term increases in O-GlcNAc levels could be due to impaired, LonP1-dependent, mitochondrial complex protein turnover.
Collapse
Affiliation(s)
- JaLessa N Wright
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Gloria A Benavides
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Michelle S Johnson
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Willayat Wani
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Xiaosen Ouyang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
- Birmingham VA Medical Center, University of Alabama , Birmingham, Alabama
| | - Victor Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama , Birmingham, Alabama
| |
Collapse
|
18
|
Li P, Fu X, Chen M, Zhang L, Li S. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:49. [PMID: 30899329 PMCID: PMC6408782 DOI: 10.1186/s13068-019-1390-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND The thermotolerant yeast Kluyveromyces marxianus is a potential candidate for high-temperature fermentation. When K. marxianus was used for high-temperature ethanol fermentation, a fermentation arrest was observed during the late fermentation stage and the stress responses have been investigated based on the integration of RNA-Seq and metabolite data. In order to bring new insights into the cellular responses of K. marxianus after the fermentation arrest during high-temperature ethanol fermentation, quantitative proteomic profiling and integrated analysis with transcriptomic data were performed in this study. RESULTS Samples collected at 14, 16, 18, 20 and 22 h during high-temperature fermentation were subjected to isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic profiling and integrated analysis with transcriptomic data. The correlations between transcripts and proteins for the comparative group 16 h vs 14 h accounted for only 4.20% quantified proteins and 3.23% differentially expressed proteins (DEPs), respectively, much higher percentages of correlations (30.56%-59.11%) were found for other comparative groups (i.e., 18 h vs 14 h, 20 h vs 14 h, and 22 h vs 14 h). According to Spearman correlation tests between transcriptome and proteome (the absolute value of a correlation coefficient between 0.5 and 1 indicates a strong correlation), poor correlations were found for all quantified proteins (R = - 0.0355 to 0.0138), DEPs (R = - 0.0079 to 0.0233) and the DEPs with opposite expression trends to corresponding differentially expressed genes (DEGs) (R = - 0.0478 to 0.0636), whereas stronger correlations were observed in terms of the DEPs with the same expression trends as the correlated DEGs (R = 0.5593 to 0.7080). The results of multiple reaction monitoring (MRM) verification indicate that the iTRAQ results were reliable. After the fermentation arrest, a number of proteins involved in transcription, translation, oxidative phosphorylation and fatty acid metabolism were down-regulated, some molecular chaperones and proteasome proteins were up-regulated, the ATPase activity significantly decreased, and the total fatty acids gradually accumulated. In addition, the contents of palmitic acid, oleic acid, C16, C18, C22 and C24 fatty acids increased by 16.77%, 28.49%, 14.14%, 26.88%, 628.57% and 125.29%, respectively. CONCLUSIONS This study confirmed some biochemical and enzymatic alterations provoked by the stress conditions in the specific case of K. marxianus: such as decreases in transcription, translation and oxidative phosphorylation, alterations in cellular fatty acid composition, and increases in the abundance of molecular chaperones and proteasome proteins. These findings provide potential targets for further metabolic engineering towards improvement of the stress tolerance in K. marxianus.
Collapse
Affiliation(s)
- Pengsong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Xiaofen Fu
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Ming Chen
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Lei Zhang
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, No.4 Road, Future Science and Technology Park South, Beiqijia, Changping, Beijing, 102209 China
| | - Shizhong Li
- MOST-USDA Joint Research Center for Biofuels, Beijing Engineering Research Center for Biofuels, Institute of New Energy Technology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
19
|
Germany EM, Zahayko N, Huebsch ML, Fox JL, Prahlad V, Khalimonchuk O. The AAA ATPase Afg1 preserves mitochondrial fidelity and cellular health by maintaining mitochondrial matrix proteostasis. J Cell Sci 2018; 131:jcs.219956. [PMID: 30301782 DOI: 10.1242/jcs.219956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial functions are critical for cellular physiology; therefore, several conserved mechanisms are in place to maintain the functional integrity of mitochondria. However, many of the molecular details and components involved in ensuring mitochondrial fidelity remain obscure. Here, we identify a novel role for the conserved mitochondrial AAA ATPase Afg1 in mediating mitochondrial protein homeostasis during aging and in response to various cellular challenges. Saccharomyces cerevisiae cells lacking functional Afg1 are hypersensitive to oxidative insults, unable to tolerate protein misfolding in the matrix compartment and exhibit progressive mitochondrial failure as they age. Loss of the Afg1 ortholog LACE-1 in Caenorhabditis elegans is associated with reduced lifespan, impeded oxidative stress tolerance, impaired mitochondrial proteostasis in the motor neuron circuitry and altered behavioral plasticity. Our results indicate that Afg1 is a novel protein quality control factor, which plays an important evolutionarily conserved role in mitochondrial surveillance, and cellular and organismal health.
Collapse
Affiliation(s)
- Edward M Germany
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Nataliya Zahayko
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Mason L Huebsch
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jennifer L Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Wilkening A, Rüb C, Sylvester M, Voos W. Analysis of heat-induced protein aggregation in human mitochondria. J Biol Chem 2018; 293:11537-11552. [PMID: 29895621 DOI: 10.1074/jbc.ra118.002122] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Proteins in mammalian cells exhibit optimal stability at physiological temperatures, and even small temperature variations may cause unfolding and nonspecific aggregation. Because this process leads to a loss of function of the affected polypeptides and to cytotoxic stress, formation of protein aggregates has been recognized as a major pathogenic factor in human diseases. In this study, we determined the impact of physiological heat stress on mitochondria isolated from HeLa cells. We found that the heat-stressed mitochondria had lower membrane potential and ATP level and exhibited a decreased production of reactive oxygen species. An analysis of the mitochondrial proteome by 2D PAGE showed that the overall solubility of endogenous proteins was only marginally affected by elevated temperatures. However, a small subset of polypeptides exhibited an high sensitivity to heat stress. The mitochondrial translation elongation factor Tu (Tufm), a protein essential for organellar protein biosynthesis, was highly aggregation-prone and lost its solubility already under mild heat-stress conditions. Moreover, mitochondrial translation and the import of cytosolic proteins were defective in the heat-stressed mitochondria. Both types of nascent polypeptides, produced by translation or imported into the mitochondria, exhibited a strong tendency to aggregate in the heat-exposed mitochondria. We propose that a fast and specific inactivation of elongation factors may prevent the accumulation of misfolded nascent polypeptides and may thereby attenuate proteotoxicity under heat stress.
Collapse
Affiliation(s)
- Anne Wilkening
- Institute for Biochemistry and Molecular Biology, Friedrich Wilhelm University, 53115 Bonn, Germany
| | - Cornelia Rüb
- Institute for Biochemistry and Molecular Biology, Friedrich Wilhelm University, 53115 Bonn, Germany
| | - Marc Sylvester
- Institute for Biochemistry and Molecular Biology, Friedrich Wilhelm University, 53115 Bonn, Germany
| | - Wolfgang Voos
- Institute for Biochemistry and Molecular Biology, Friedrich Wilhelm University, 53115 Bonn, Germany.
| |
Collapse
|
21
|
Mechanism of Protein Carbonylation in Glutathione-Depleted Rat Brain Slices. Neurochem Res 2017; 43:609-618. [PMID: 29264677 DOI: 10.1007/s11064-017-2456-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
|
22
|
Bruderek M, Jaworek W, Wilkening A, Rüb C, Cenini G, Förtsch A, Sylvester M, Voos W. IMiQ: a novel protein quality control compartment protecting mitochondrial functional integrity. Mol Biol Cell 2017; 29:256-269. [PMID: 29212875 PMCID: PMC5996957 DOI: 10.1091/mbc.e17-01-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Aggregation processes can cause severe perturbations of cellular homeostasis and are frequently associated with diseases. We performed a comprehensive analysis of mitochondrial quality and function in the presence of aggregation-prone polypeptides. Despite a significant aggregate formation inside mitochondria, we observed only a minor impairment of mitochondrial function. Detoxification of aggregated reporter polypeptides as well as misfolded endogenous proteins inside mitochondria takes place via their sequestration into a specific organellar deposit site we termed intramitochondrial protein quality control compartment (IMiQ). Only minor amounts of endogenous proteins coaggregated with IMiQ deposits and neither resolubilization nor degradation by the mitochondrial protein quality control system were observed. The single IMiQ aggregate deposit was not transferred to daughter cells during cell division. Detoxification of aggregates via IMiQ formation was highly dependent on a functional mitochondrial fission machinery. We conclude that the formation of an aggregate deposit is an important mechanism to maintain full functionality of mitochondria under proteotoxic stress conditions.
Collapse
Affiliation(s)
- Michael Bruderek
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Witold Jaworek
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Anne Wilkening
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Cornelia Rüb
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Arion Förtsch
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Marc Sylvester
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
23
|
Molecular Age-Related Changes in the Anterior Segment of the Eye. J Ophthalmol 2017; 2017:1295132. [PMID: 29147580 PMCID: PMC5632897 DOI: 10.1155/2017/1295132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/09/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose To examine the current knowledge about the age-related processes in the anterior segment of the eye at a biological, clinical, and molecular level. Methods We reviewed the available published literature that addresses the aging process of the anterior segment of the eye and its associated molecular and physiological events. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms “eye,” “anterior segment,” and “age.” We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) “Eye” AND “ageing process” OR “anterior segment ageing” and (2) “Anterior segment” AND “ageing process” OR “anterior segment” AND “molecular changes” AND “age.” Results. Among the principal causes of age-dependent alterations in the anterior segment of the eye, we found the mutation of the TGF-β gene and loss of autophagy in addition to oxidative stress, which contributes to the pathogenesis of degenerative diseases. Conclusions In this review, we summarize the current knowledge regarding some of the molecular mechanisms related to aging in the anterior segment of the eye. We also introduce and propose potential roles of autophagy, an important mechanism responsible for maintaining homeostasis and proteostasis under stress conditions in the anterior segment during aging.
Collapse
|
24
|
Bulteau AL, Mena NP, Auchère F, Lee I, Prigent A, Lobsiger CS, Camadro JM, Hirsch EC. Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radic Biol Med 2017; 108:236-246. [PMID: 28365360 DOI: 10.1016/j.freeradbiomed.2017.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| | - Natalia P Mena
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Millennium Institute of Cell Dynamics and Biotechnology, Santiago, Chile
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Irene Lee
- Case Western Reserve University Department of Chemistry, Cleveland, OH 44106, USA
| | - Annick Prigent
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Christian S Lobsiger
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Michel Camadro
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Etienne C Hirsch
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
25
|
Protein quality control at the mitochondrion. Essays Biochem 2017; 60:213-225. [PMID: 27744337 DOI: 10.1042/ebc20160009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.
Collapse
|
26
|
Chen YG, Yue HT, Zhang ZZ, Yuan FH, Bi HT, Yuan K, Weng SP, He JG, Chen YH. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:144-152. [PMID: 26481519 DOI: 10.1016/j.fsi.2015.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence.
Collapse
Affiliation(s)
- Yong-Gui Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
27
|
Babizhayev MA. Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA CLINICAL 2016; 6:49-68. [PMID: 27413694 PMCID: PMC4925929 DOI: 10.1016/j.bbacli.2016.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working correctly. The clogging problem occurs further inside the drainage canals, similar to a clogged pipe below the drain in a sink. The excessive oxidative damage is a major factor of the ocular diseases because the mitochondrial respiratory chain in mitochondria of the vital cells is a significant source of the damaging reactive oxygen species superoxide and hydrogen peroxide. However, despite the clinical importance of mitochondrial oxidative damage, antioxidants have been of limited therapeutic success. This may be because the antioxidants are not selectively taken up by mitochondria, but instead are dispersed throughout the body, ocular tissues and fluids' moieties. This work is an attempt to integrate how mitochondrial reactive oxygen species (ROS) are altered in the aging eye, along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. The authors developed and patented the new ophthalmic compositions including N-acetylcarnosine acting as a prodrug of naturally targeted to mitochondria l-carnosine endowed with pluripotent antioxidant activities, combined with mitochondria-targeted rechargeable antioxidant (either MitoVit E, Mito Q or SkQs) as a potent medicine to treat ocular diseases. Such specificity is explained by the fact that developed compositions might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo and outside mitochondria in the cellular and tissue structures of the lens and eye compartments. Mitochondrial targeting of compounds with universal types of antioxidant activity represents a promising approach for treating a number of ROS-related ocular diseases of the aging eye and can be implicated in the management of cataracts and primary open-angle glaucoma.
Collapse
Affiliation(s)
- Mark A Babizhayev
- Innovative Vision Products, Inc., 3511 Silverside Road, Suite 105, County of New Castle, DE 19810, USA
| |
Collapse
|
28
|
Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 2015; 23:56-66. [PMID: 25578288 DOI: 10.1016/j.arr.2014.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 11/23/2022]
Abstract
Mitochondria have been implicated in the ageing process and the lifespan modulation of model organisms. Mitochondria are the main providers of energy in eukaryotic cells but also represent both a major source of reactive oxygen species and targets for protein oxidative damage. Since protein damage can impair mitochondrial function, mitochondrial proteases are critically important for protein maintenance and elimination of oxidized protein. In the mitochondrial matrix, protein quality control is mainly achieved by the Lon and Clp proteases which are also key players in damaged mitochondrial proteins degradation. Accumulation of damaged macromolecules resulting from oxidative stress and failure of protein maintenance constitutes a hallmark of cellular and organismal ageing and is believed to participate to the age-related decline of cellular function. Hence, age-related impairment of mitochondrial protein quality control may therefore contribute to the age-associated build-up of oxidized protein and alterations of mitochondrial redox and protein homeostasis.
Collapse
|
29
|
Van Rossom S, Op de Beeck K, Hristovska V, Winderickx J, Van Camp G. The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front Cell Neurosci 2015; 9:231. [PMID: 26236191 PMCID: PMC4504148 DOI: 10.3389/fncel.2015.00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
Cell death exists in many different forms. Some are accidental, but most of them have some kind of regulation and are called programmed cell death. Programmed cell death (PCD) is a very diverse and complex mechanism and must be tightly regulated. This study investigated PCD induced by DFNA5, a gene responsible for autosomal dominant hearing loss (HL) and a tumor suppressor gene (TSG) involved in frequent forms of cancer. Mutations in DFNA5 lead to exon 8 skipping and result in HL in several families. Expression of mutant DFNA5, a cDNA construct where exon 8 is deleted, was linked to PCD both in human cell lines and in Saccharomyces cerevisiae. To further investigate the cell death mechanism induced by mutant DFNA5, we performed a microarray study in both models. We used wild-type DFNA5, which does not induce cell death, as a reference. Our data showed that the yeast pathways related to mitochondrial ATP-coupled electron transport chain, oxidative phosphorylation and energy metabolism were up-regulated, while in human cell lines, MAP kinase-related activity was up-regulated. Inhibition of this pathway was able to partially attenuate the resulting cell death induced by mutant DFNA5 in human cell lines. In yeast, the association with mitochondria was demonstrated by up-regulation of several cytochrome c oxidase (COX) genes involved in the cellular oxidative stress production. Both models show a down-regulation of protein sorting- and folding-related mechanisms suggesting an additional role for the endoplasmic reticulum (ER). The exact relationship between ER and mitochondria in DFNA5-induced cell death remains unknown at this moment, but these results suggest a potential link between the two.
Collapse
Affiliation(s)
- Sofie Van Rossom
- Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp Antwerp, Belgium ; Functional Biology, Department of Biology KU Leuven, Heverlee, Belgium
| | - Ken Op de Beeck
- Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp Antwerp, Belgium
| | - Vesna Hristovska
- Functional Biology, Department of Biology KU Leuven, Heverlee, Belgium
| | - Joris Winderickx
- Functional Biology, Department of Biology KU Leuven, Heverlee, Belgium
| | - Guy Van Camp
- Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp Antwerp, Belgium
| |
Collapse
|
30
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
31
|
Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 2014; 25:528-37. [PMID: 25048297 DOI: 10.1016/j.tem.2014.06.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria form physical interactions involved in the regulation of biologic functions including mitochondrial bioenergetics and apoptotic signaling. To coordinate these functions during stress, cells must coregulate ER and mitochondria through stress-responsive signaling pathways such as the ER unfolded protein response (UPR). Although the UPR is traditionally viewed as a signaling pathway responsible for regulating ER proteostasis, it is becoming increasingly clear that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway within the UPR can also regulate mitochondria proteostasis and function in response to pathologic insults that induce ER stress. Here, we discuss the contributions of PERK in coordinating ER-mitochondrial activities and describe the mechanisms by which PERK adapts mitochondrial proteostasis and function in response to ER stress.
Collapse
Affiliation(s)
- T Kelly Rainbolt
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jaclyn M Saunders
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G, Losi L, Tesei A, Pinton P, Quaglino D, Cossarizza A. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28:5122-35. [DOI: 10.1096/fj.14-255869] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lara Gibellini
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Federica Boraldi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
| | - Regina Bartolomeo
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sonia Missiroli
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Lorena Losi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Anna Tesei
- Biosciences LaboratoryIRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)MeldolaItaly
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Daniela Quaglino
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Dipartimento Sperimentale Interaziendale, Campus San LazzaroUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
33
|
Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1295-307. [PMID: 24709290 DOI: 10.1016/j.bbamcr.2014.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H(2)O(2), Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(-/-) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Camilla T Ambivero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Nathan Ward
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Emad S Alnemri
- Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY 10129, USA
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA.
| |
Collapse
|
34
|
Smakowska E, Czarna M, Janska H. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 2014; 19 Pt B:245-51. [PMID: 24662487 DOI: 10.1016/j.mito.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Carbonylation is an irreversible oxidative modification of proteins induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) or by-products of oxidative stress. Carbonylation leads to the loss of protein function and is used as a marker of oxidative stress. Recent data indicate that carbonylation is not only an unfavorable chance process but may also play a significant role in the control of diverse physiological processes. In plants, carbonylated proteins have been found in all cellular compartments; however, mitochondria, one of the major sources of reactive species, show the highest levels of oxidatively modified proteins under normal or stress conditions. Carbonylated proteins tend to misfold and have to be removed to prevent the formation of harmful insoluble aggregates. Mitochondria have developed several pathways that continuously monitor and remove oxidatively damaged polypeptides, and the mitochondrial protein quality control (mtPQC) system, comprising chaperones and ATP-dependent proteases, is the first line of defense. The Lon protease has been recognized as a key protease involved in the removal of oxidized proteins in yeast and mammalian mitochondria, but not in plants. Recently, it has been reported that the inner-membrane human i-AAA and m-AAA and Arabidopsis i-AAA proteases are crucial components of the defense against accumulation of carbonylated proteins, but the molecular basis of their action is not yet clear. Altogether, the mitochondrial AAA proteases secure the mitochondrial proteome against accumulation of carbonylated proteins.
Collapse
Affiliation(s)
- Elwira Smakowska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Malgorzata Czarna
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|
35
|
Bohovych I, Donaldson G, Christianson S, Zahayko N, Khalimonchuk O. Stress-triggered activation of the metalloprotease Oma1 involves its C-terminal region and is important for mitochondrial stress protection in yeast. J Biol Chem 2014; 289:13259-72. [PMID: 24648523 DOI: 10.1074/jbc.m113.542910] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional integrity of mitochondria is critical for optimal cellular physiology. A suite of conserved mitochondrial proteases known as intramitochondrial quality control represents one of the mechanisms assuring normal mitochondrial function. We previously demonstrated that ATP-independent metalloprotease Oma1 mediates degradation of hypohemylated Cox1 subunit of cytochrome c oxidase and is active in cytochrome c oxidase-deficient mitochondria. Here we show that Oma1 is important for adaptive responses to various homeostatic insults and preservation of normal mitochondrial function under damage-eliciting conditions. Changes in membrane potential, oxidative stress, or chronic hyperpolarization lead to increased Oma1-mediated proteolysis. The stress-triggered induction of Oma1 proteolytic activity appears to be associated with conformational changes within the Oma1 homo-oligomeric complex, and these alterations likely involve C-terminal residues of the protease. Substitutions in the conserved C-terminal region of Oma1 impair its ability to form a labile proteolytically active complex in response to stress stimuli. We demonstrate that Oma1 genetically interacts with other inner membrane-bound quality control proteases. These findings indicate that yeast Oma1 is an important player in IM protein homeostasis and integrity by acting in concert with other intramitochondrial quality control components.
Collapse
Affiliation(s)
- Iryna Bohovych
- From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | | | | | | | | |
Collapse
|
36
|
Zhang B, Shen XL, Liang R, Li Y, Huang K, Zhao C, Luo Y, Xu W. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteomics 2014; 101:154-68. [PMID: 24565693 DOI: 10.1016/j.jprot.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/29/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Ochratoxin A (OTA) is a common kind of mycotoxin and food contaminant, which has various toxicological effects, especially nephrotoxicity. Our previous work about OTA-induced renal cytotoxicity indicated that mitochondrial Lon Protease 1 (Lonp1) might play a protective role. Lonp1 is a multifunctional ATP-dependent protease which mainly participates in mitochondrial proteolysis and protein quality control. The study aimed at probing how Lonp1 functioned in OTA-induced renal cytotoxicity. By means of RNA interference, we down-regulated the expression of Lonp1 in HEK293 cells. Cell viability results revealed that cells with Lonp1 deficiency were more vulnerable to OTA. Then we identified differentially expressed proteins between Lonp1 knock-down cells and scrambled control both in the absence and presence of OTA, using iTRAQ-based quantitative proteomics approach. Thirty-four proteins were differentially expressed as a result of Lonp1 deficiency, while forty-four proteins were differentially expressed in response to both Lonp1 deficiency and OTA treatment. By function summary and pathway analysis, we presumed that Lonp1 realized its protective function in the resistance to OTA-induced renal cytotoxicity via 4 processes: defensing against OTA-induced oxidative stress in the mitochondria; regulating protein synthesis, modification and repair; maintaining the balance of carbohydrate metabolism; and assisting in mtDNA maintenance. BIOLOGICAL SIGNIFICANCE OTA is a kind of mycotoxin that seriously threatens human health and has various toxicological effects. However, the mechanisms of its toxicity have not been exactly elucidated yet. The method of combination of RNAi and iTRAQ-based quantitative proteomics paves the way to gain a better understanding of the toxicity mechanisms of OTA. The present study, for the first time, verified the protective role of Lonp1 in OTA-induced renal cytotoxicity and clarified the defensive mechanism. Proteomic changes in Lonp1 deficient cells induced by OTA added new knowledge to OTA cytotoxicity.
Collapse
Affiliation(s)
- Boyang Zhang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiao Li Shen
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Rui Liang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuzhe Li
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kunlun Huang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Yunbo Luo
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
37
|
Kim JH, Lee HO, Cho YJ, Kim J, Chun J, Choi J, Lee Y, Jung WH. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. PLoS One 2014; 9:e89122. [PMID: 24586538 PMCID: PMC3930674 DOI: 10.1371/journal.pone.0089122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Vanillin is a well-known food and cosmetic additive and has antioxidant and antimutagenic properties. It has also been suggested to have antifungal activity against major human pathogenic fungi, although it is not very effective. In this study, the antifungal activities of vanillin and 33 vanillin derivatives against the human fungal pathogen Cryptococcus neoformans, the main pathogen of cryptococcal meningitis in immunocompromised patients, were investigated. We found a structural correlation between the vanillin derivatives and antifungal activity, showing that the hydroxyl or alkoxy group is more advantageous than the halogenated or nitrated group in benzaldehyde. Among the vanillin derivatives with a hydroxyl or alkoxy group, o-vanillin and o-ethyl vanillin showed the highest antifungal activity against C. neoformans. o-Vanillin was further studied to understand the mechanism of antifungal action. We compared the transcriptome of C. neoformans cells untreated or treated with o-vanillin by using RNA sequencing and found that the compound caused mitochondrial dysfunction and triggered oxidative stress. These antifungal mechanisms of o-vanillin were experimentally confirmed by the significantly reduced growth of the mutants lacking the genes involved in mitochondrial functions and oxidative stress response.
Collapse
Affiliation(s)
- Jin Hyo Kim
- Chemical Safety Division, National Academy of Agriculture Science, Rural Development of Administration, Suwon, Republic of Korea
| | - Han-Ok Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Joon Cho
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
| | - Jeongmi Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jongsik Chun
- ChunLab, Inc., Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaehyuk Choi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongup, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
- * E-mail:
| |
Collapse
|
38
|
A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol 2014; 172:21-9. [DOI: 10.1016/j.ijfoodmicro.2013.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
|
39
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
40
|
Bayot A, Gareil M, Chavatte L, Hamon MP, L'Hermitte-Stead C, Beaumatin F, Priault M, Rustin P, Lombès A, Friguet B, Bulteau AL. Effect of Lon protease knockdown on mitochondrial function in HeLa cells. Biochimie 2013; 100:38-47. [PMID: 24355201 DOI: 10.1016/j.biochi.2013.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.
Collapse
Affiliation(s)
- Aurélien Bayot
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France; Inserm, Hopital Robert Debré, 75019 Paris, France
| | - Monique Gareil
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Laurent Chavatte
- Centre de recherche de Gif-sur-Yvette, FRC 3115, Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette Cedex, France
| | - Marie-Paule Hamon
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Florian Beaumatin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | - Muriel Priault
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | | | - Anne Lombès
- Inserm, Institut Cochin, 75014 Paris, France
| | - Bertrand Friguet
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| | - Anne-Laure Bulteau
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
41
|
Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases. ScientificWorldJournal 2013; 2013:180759. [PMID: 24288463 PMCID: PMC3830867 DOI: 10.1155/2013/180759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.
Collapse
|
42
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
44
|
Grubbs JK, Fritchen AN, Huff-Lonergan E, Gabler NK, Lonergan SM. Selection for residual feed intake alters the mitochondria protein profile in pigs. J Proteomics 2013; 80:334-45. [DOI: 10.1016/j.jprot.2013.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
|
45
|
Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau AL. Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med 2013; 56:9-16. [PMID: 23220263 DOI: 10.1016/j.freeradbiomed.2012.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 01/20/2023]
Abstract
The Saccharomyces cerevisiae homolog of the ATP-dependent Lon protease, Pim1p, is essential for mitochondrial protein quality control, DNA maintenance, and respiration. Here, we demonstrate that Pim1p activity declines in aging cells and that Pim1p deficiency shortens the replicative life span of yeast mother cells. This accelerated aging of pim1Δ cells is accompanied by elevated cytosolic levels of oxidized and aggregated proteins, as well as reduced proteasome activity. Overproduction of Hsp104p greatly diminishes aggregation of oxidized cytosolic proteins, rescues proteasome activity, and restores life span of pim1Δ cells to near wild-type levels. Our results show that defects in mitochondrial protein quality control have global intracellular effects leading to the increased generation of misfolded proteins and cytosolic protein aggregates, which are linked to a decline in replicative potential.
Collapse
Affiliation(s)
- Nika Erjavec
- Department of Cell and Molecular Biology, Gothenburg University, Göteborg 41390, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013; 1:258-64. [PMID: 24024159 PMCID: PMC3757690 DOI: 10.1016/j.redox.2013.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- AAA, ATPases associated with diverse cellular activities
- Aco1, Aconitase 1
- Adaptation
- CDDO, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid
- CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate
- COX, cytochrome c oxidase
- COX4-1, cytochrome c oxidase subunit IV isoform 1
- COX4-2, cytochrome c oxidase subunit IV isoform 2
- Ccp1, mitochondrial cytochrome-c peroxidase
- Clp, caseinolytic protease
- ClpP, core catalytic protease unit
- ERAD, endoplasmic reticulum-associated degradation
- FRDA, Friedreich's ataxia
- Fe/S, iron/SULFUR
- HAART, highly active antiretroviral therapy
- HIF-1, hypoxia inducible factor-1
- HSP104, heat shock protein 104
- HSP60, heat shock protein 60
- Hormesis
- HsIVU, bacterial ATP-dependent protease
- Lon Protease
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MPPβ, mitochondrial processing peptidase beta subunit
- Mitochondria
- NRF-2, nuclear factor (erythroid-derived 2)-like 2
- Nfκb, nuclear factor kappa-light-chain-enhancer of activated B csells
- Oxidative stress
- PRSS15, LON gene
- Pim1, ATP-dependent Lon protease from yeast
- Protease La, ATP-dependent protease
- Protein degradation and oxidation
- Prx1, mitochondrial peroxiredoxin 1
- SLLVY-AMC, N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- SOD, cytosolic superoxide dismutase
- SOD2, mitochondrial superoxide dismutase 2
- SPG13, hereditary spastic paraplegia
- WI-38, human lung fibroblast
- Yjl200c, mitochondrial aconitase isozyme
Collapse
Affiliation(s)
- Jenny K Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
47
|
Voos W, Ward LA, Truscott KN. The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control. Subcell Biochem 2013; 66:223-263. [PMID: 23479443 DOI: 10.1007/978-94-007-5940-4_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mitochondria are specialised organelles that are structurally and functionally integrated into cells in the vast majority of eukaryotes. They are the site of numerous enzymatic reactions, some of which are essential for life. The double lipid membrane of the mitochondrion, that spatially defines the organelle and is necessary for some functions, also creates a physical but semi-permeable barrier to the rest of the cell. Thus to ensure the biogenesis, regulation and maintenance of a functional population of proteins, an autonomous protein handling network within mitochondria is required. This includes resident mitochondrial protein translocation machinery, processing peptidases, molecular chaperones and proteases. This review highlights the contribution of proteases of the AAA+ superfamily to protein quality and activity control within the mitochondrion. Here they are responsible for the degradation of unfolded, unassembled and oxidatively damaged proteins as well as the activity control of some enzymes. Since most knowledge about these proteases has been gained from studies in the eukaryotic microorganism Saccharomyces cerevisiae, much of the discussion here centres on their role in this organism. However, reference is made to mitochondrial AAA+ proteases in other organisms, particularly in cases where they play a unique role such as the mitochondrial unfolded protein response. As these proteases influence mitochondrial function in both health and disease in humans, an understanding of their regulation and diverse activities is necessary.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany,
| | | | | |
Collapse
|
48
|
Li L, Nelson CJ, Carrie C, Gawryluk RMR, Solheim C, Gray MW, Whelan J, Millar AH. Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis. J Biol Chem 2012; 288:5707-17. [PMID: 23271729 DOI: 10.1074/jbc.m112.432070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subcomplexes of mitochondrial respiratory complex I (CI; EC 1.6.5.3) are shown to turn over in vivo, and we propose a role in an ancestral assembly pathway. By progressively labeling Arabidopsis cell cultures with (15)N and isolating mitochondria, we have identified CI subcomplexes through differences in (15)N incorporation into their protein subunits. The 200-kDa subcomplex, containing the ancestral γ-carbonic anhydrase (γ-CA), γ-carbonic anhydrase-like, and 20.9-kDa subunits, had a significantly higher turnover rate than intact CI or CI+CIII(2). In vitro import of precursors for these CI subunits demonstrated rapid generation of subcomplexes and revealed that their specific abundance varied when different ancestral subunits were imported. Time course studies of precursor import showed the further assembly of these subcomplexes into CI and CI+CIII(2), indicating that the subcomplexes are productive intermediates of assembly. The strong transient incorporation of new subunits into the 200-kDa subcomplex in a γ-CA mutant is consistent with this subcomplex being a key initiator of CI assembly in plants. This evidence alongside the pattern of coincident occurrence of genes encoding these particular proteins broadly in eukaryotes, except for opisthokonts, provides a framework for the evolutionary conservation of these accessory subunits and evidence of their function in ancestral CI assembly.
Collapse
Affiliation(s)
- Lei Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4 oxim preparation alone or in combination with fluconazole. Tissue burden analysis revealed that oxims on their own were able to decrease fungal burdens in both Candida species. In azole-resistant isolates, oxims acted synergistically in vivo with fluconazole to reduce fungal burden to levels of azole-susceptible isolates. In conclusion, we show here the potential of milbemycins not only as drug efflux inhibitors but also as effective fungal growth inhibitors in C. glabrata and C. albicans.
Collapse
|
50
|
Attenuation of Mitochondrial Unfolded Protein Response is Associated With Hepatic Dysfunction in Septic Rats. Shock 2012; 38:642-8. [DOI: 10.1097/shk.0b013e3182734ff9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|