1
|
Kim JY, Kim WS, Shin SM, Kim T, Jung SJ. Comparative analysis of immunogenicity for viral hemorrhagic septicemia virus (VHSV) vaccines inactivated by different methods. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110217. [PMID: 39986583 DOI: 10.1016/j.fsi.2025.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Viral hemorrhagic septicemia virus (VHSV) belonging to the genus Novirhabdovirus and family Rhabdoviridae is a major viral disease that causes economic loss in the olive flounder (Paralichthys olivaceus). In this study, we produced formalin-, binary ethylenimine (BEI)-, β-propiolactone (BPL)-, and heat-treated, inactivated VHSV vaccines; and observed the glycoprotein changes in the inactivated VHSV vaccines and confirmed their correlation with vaccine efficacy. The control group showed a 100 % cumulative mortality rate, but the groups immunized with formalin- and BPL-inactivated VHSV vaccines had high survival rates of 80 % and 90 %, and the virus copy numbers was significantly low. Conversely, groups immunized with BEI- and heat-inactivated VHSV vaccines had low survival rates of 20 % and 30 %, and high virus copy numbers. Fish immunized with formalin- and BPL-inactivated VHSV vaccines significantly increased VHSV-specific immunoglobulin (Ig) M titers in serum, and showed significant upregulation of several immune genes (Mx, ISG15, IL-10, IFNγ, and CD8α) in the spleen. Upon VHSV challenge, the BPL group displayed significant upregulation of IL-2, CD8α, and IgM along with downregulation of Mx, IL-10, IL-17A, and IFNγ compared to the virus infected control group. When evaluating the antigenic change of VHSV glycoprotein (G) protein using 4 different VHSV G monoclonal antibodies, formalin- and BPL-inactivated VHSV conserved VHSV monomer G similar to the non-inactivated VHSV, whereas BEI- and heat-inactivated VHSV monomer G exhibited changes. These results suggest that the conserved disulfide bond-dependent G protein structure of the inactivated VHSV may induce significant immune responses in fish, resulting in high protective efficacy.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Su-Mi Shin
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Taeho Kim
- Department of Marine Production Management, Chonnam National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
2
|
Zheng Q, Zhang Z, Guiley KZ, Shokat KM. Strain-release alkylation of Asp12 enables mutant selective targeting of K-Ras-G12D. Nat Chem Biol 2024; 20:1114-1122. [PMID: 38443470 PMCID: PMC11357986 DOI: 10.1038/s41589-024-01565-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
K-Ras is the most commonly mutated oncogene in human cancer. The recently approved non-small cell lung cancer drugs sotorasib and adagrasib covalently capture an acquired cysteine in K-Ras-G12C mutation and lock it in a signaling-incompetent state. However, covalent inhibition of G12D, the most frequent K-Ras mutation particularly prevalent in pancreatic ductal adenocarcinoma, has remained elusive due to the lack of aspartate-targeting chemistry. Here we present a set of malolactone-based electrophiles that exploit ring strain to crosslink K-Ras-G12D at the mutant aspartate to form stable covalent complexes. Structural insights from X-ray crystallography and exploitation of the stereoelectronic requirements for attack of the electrophile allowed development of a substituted malolactone that resisted attack by aqueous buffer but rapidly crosslinked with the aspartate-12 of K-Ras in both GDP and GTP state. The GTP-state targeting allowed effective suppression of downstream signaling, and selective inhibition of K-Ras-G12D-driven cancer cell proliferation in vitro and xenograft growth in mice.
Collapse
Affiliation(s)
- Qinheng Zheng
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
She YM, Jia Z, Zhang X. Region-selective and site-specific glycation of influenza proteins surrounding the viral envelope membrane. Sci Rep 2024; 14:18975. [PMID: 39152175 PMCID: PMC11329638 DOI: 10.1038/s41598-024-69793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells. Straightforward sequencing was enhanced by MS/MS fragmentation of small peptides. As a result, we determined a widespread distribution of lysine modifications attributed by the region-selectivity and site-specificity of glycation toward influenza matrix 1, hemagglutinin and neuraminidase. Topological analysis provides insights into the site-specific lysine glycation, localizing in the distinct structural regions of proteins surrounding the viral envelope membrane. Our finding highlights the proteome-wide discovery of lysine glycation of influenza membrane proteins and potential effects on the structural assembly, stability, receptor binding and enzyme activity, demonstrating that the impacts of accumulated glycation on the quality of products can be directly monitored by mass spectrometry-based structural proteomics analyses.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Beutgen V, Bhagwat AM, Steitz AM, Reinartz S, Müller R, Graumann J. Sample-Treatment with the Virucidal β-Propiolactone Does Not Preclude Analysis by Large Panel Affinity Proteomics, Including the Discovery of Biomarker Candidates. Anal Chem 2024; 96:9332-9342. [PMID: 38810147 PMCID: PMC11172684 DOI: 10.1021/acs.analchem.3c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Virus inactivation is a prerequisite for safe handling of high-risk infectious samples. β-Propiolactone (BPL) is an established reagent with proven virucidal efficacy. BPL primarily reacts with DNA, RNA, and amino acids. The latter may modify antigenic protein epitopes interfering with binding properties of affinity reagents such as antibodies and aptamers used in affinity proteomic screens. We investigated (i) the impact of BPL treatment on the analysis of protein levels in plasma samples using the aptamer-based affinity proteomic platform SomaScan and (ii) effects on protein detection in conditioned medium samples using the proximity extension assay-based Olink Target platform. In the former setup, BPL-treated and native plasma samples from patients with ovarian cancer (n = 12) and benign diseases (n = 12) were analyzed using the SomaScan platform. In the latter, conditioned media samples collected from cultured T cells with (n = 3) or without (n = 3) anti-CD3 antibody stimulation were analyzed using the Olink Target platform. BPL-related changes in protein detection were evaluated comparing native and BPL-treated states, simulating virus inactivation, and impact on measurable group differences was assessed. While approximately one-third of SomaScan measurements were significantly changed by the BPL treatment, a majority of antigen/aptamer interactions remained unaffected. Interaction effects of BPL treatment and disease state, potentially altering detectability of group differences, were observable for less than one percent of targets (0.6%). BPL effects on protein detection with Olink Target were also limited, affecting 3.6% of detected proteins with no observable interaction effects. Thus, effects of BPL treatment only moderately interfere with affinity proteomic detectability of differential protein expression between different experimental groups. Overall, the results prove high-throughput affinity proteomics well suited for the analysis of high-risk samples inactivated using BPL.
Collapse
Affiliation(s)
- Vanessa
M. Beutgen
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aditya M. Bhagwat
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anna Mary Steitz
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Rolf Müller
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
5
|
Hellgren F, Cagigi A, Arcoverde Cerveira R, Ols S, Kern T, Lin A, Eriksson B, Dodds MG, Jasny E, Schwendt K, Freuling C, Müller T, Corcoran M, Karlsson Hedestam GB, Petsch B, Loré K. Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses. Nat Commun 2023; 14:3713. [PMID: 37349310 PMCID: PMC10287699 DOI: 10.1038/s41467-023-39421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Licensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates. The mRNA vaccine also generates higher RABV-G binding and neutralizing antibody titers than Rabipur, while the degree of somatic hypermutation and clonal diversity of the response are similar for the two vaccines. The higher overall antibody titers induced by the mRNA vaccine translates into improved cross-neutralization of related lyssavirus strains, suggesting that this platform has potential for the development of a broadly protective vaccine against these viruses.
Collapse
Affiliation(s)
- Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Nykode Therapeutics, Oslo, Norway
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Theresa Kern
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bengt Eriksson
- Astrid Fagraeus Laboratory, Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Conrad Freuling
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Thomas Müller
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Martin Corcoran
- Department of Microbiology and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
6
|
Kordyukova LV, Moiseenko AV, Serebryakova MV, Shuklina MA, Sergeeva MV, Lioznov DA, Shanko AV. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses 2023; 15:v15020480. [PMID: 36851694 PMCID: PMC9961907 DOI: 10.3390/v15020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by β-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the β-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while β-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of β-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina A. Shuklina
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Maria V. Sergeeva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Dmitry A. Lioznov
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrei V. Shanko
- R&D Department, FORT LLC, 119435 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| |
Collapse
|
7
|
Li J, Shi J, Zhou Z, Yang B, Cao J, Cao Z, Zeng Q, Hu Z, Yang X. Development of an Antigen Detection Kit Capable of Discriminating the Omicron Mutants of SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11020303. [PMID: 36851181 PMCID: PMC9964912 DOI: 10.3390/vaccines11020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the world, caused millions of deaths and a severe illness which poses a serious threat to human health. OBJECTIVE To develop an antigen detection kit that can identify Omicron novel coronavirus mutants. METHODS BALB/c mice were immunized with the nucleocapsid protein of SARS-CoV-2 Omicron mutant treated with β-propiolactone. After fusion of myeloma cells with immune cells, Elisa was used to screen the cell lines capable of producing monoclonal antibodies. The detection kit was prepared by colloidal gold immunochromatography. Finally, the sensitivity, specificity and anti-interference of the kit were evaluated by simulating positive samples. RESULTS The sensitivity of the SARS-CoV-2 antigen detection kit can reach 62.5 TCID50/mL, and it has good inclusiveness for different SARS-CoV-2 strains. The kit had no cross-reaction with common respiratory pathogens, and its sensitivity was still not affected under the action of different concentrations of interferences, indicating that it had good specificity and stability. CONCLUSION In this study, monoclonal antibodies with high specificity to the N protein of the Omicron mutant strain were obtained by monoclonal antibody screening technology. Colloidal gold immunochromatography technology was used to prepare an antigen detection kit with high sensitivity to detect and identify the mutant Omicron strain.
Collapse
Affiliation(s)
- Jiaji Li
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jinrong Shi
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhijun Zhou
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Yang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jiamin Cao
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Zhongsen Cao
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | | | - Zheng Hu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
- Correspondence: (Z.H.); (X.Y.)
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing 100029, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Correspondence: (Z.H.); (X.Y.)
| |
Collapse
|
8
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
9
|
Arunachalam AB, Post P, Rudin D. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. NPJ Vaccines 2021; 6:144. [PMID: 34857771 PMCID: PMC8640007 DOI: 10.1038/s41541-021-00403-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
The influenza vaccine field has been constantly evolving to improve the speed, scalability, and flexibility of manufacturing, and to improve the breadth and longevity of the protective immune response across age groups, giving rise to an array of next generation vaccines in development. Among these, the recombinant influenza vaccine tetravalent (RIV4), using a baculovirus expression vector system to express recombinant haemagglutinin (rHA) in insect cells, is the only one to have reached the market and has been studied extensively. We describe how the unique structural features of rHA in RIV4 improve protective immune responses compared to conventional influenza vaccines made from propagated influenza virus. In addition to the sequence integrity, characteristic of recombinant proteins, unique post-translational processing of the rHA in insect cells instills favourable tertiary and quaternary structural features. The absence of protease-driven cleavage and addition of simple N-linked glycans help to preserve and expose certain conserved epitopes on HA molecules, which are likely responsible for the high levels of broadly cross-reactive and protective antibodies with rare specificities observed with RIV4. Furthermore, the presence of uniform compact HA oligomers and absence of egg proteins, viral RNA or process impurities, typically found in conventional vaccines, are expected to eliminate potential adverse reactions to these components in susceptible individuals with the use of RIV4. These distinct structural features and purity of the recombinant HA vaccine thus provide a number of benefits in vaccine performance which can be extended to other viral targets, such as for COVID-19.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA.
| | - Penny Post
- Regulatory Affairs, Protein Sciences, a Sanofi Company, 1000 Research Parkway, Meriden, CT, 06450, USA
| | - Deborah Rudin
- Global Medical Affairs, Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, 18370, USA
| |
Collapse
|
10
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Gupta D, Parthasarathy H, Sah V, Tandel D, Vedagiri D, Reddy S, Harshan KH. Inactivation of SARS-CoV-2 by β-propiolactone causes aggregation of viral particles and loss of antigenic potential. Virus Res 2021; 305:198555. [PMID: 34487766 PMCID: PMC8416322 DOI: 10.1016/j.virusres.2021.198555] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022]
Abstract
Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. β-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.
Collapse
Affiliation(s)
- Divya Gupta
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | - Vishal Sah
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixit Tandel
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhiviya Vedagiri
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashikala Reddy
- Department of Microbiology, Osmania Medical College, Koti, Hyderabad 500095, Telangana, India
| | - Krishnan H Harshan
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Gao J, Wan H, Li X, Rakic Martinez M, Klenow L, Gao Y, Ye Z, Daniels R. Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathog 2021; 17:e1009171. [PMID: 33872324 PMCID: PMC8084346 DOI: 10.1371/journal.ppat.1009171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/29/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023] Open
Abstract
Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA. Influenza vaccines are produced on a large scale to meet the annual U.S. and global demand. To efficiently produce the required number of influenza vaccine doses, virions are commonly used as the antigen source due to their high viral protein content. A draw-back to using virions is that the final antigen composition of the vaccine is determined by the inherent properties of the vaccine virus. While this approach for influenza vaccines is beneficial for the more abundant HA antigen, it likely limits the protective response generated by the less abundant NA antigen. Our results demonstrate that the NA and HA content in vaccine viruses can be optimized by changing the internal genes of the vaccine virus, thereby preserving the surface antigens. The increase in the virion NA content that was achieved elicited higher NA antibody titres and generated more balanced neutralizing antibody responses to HA and NA. Since HA and NA neutralizing antibodies are both protective, this approach could help to improve the suboptimal efficacy of current influenza vaccines and to generate vaccines that provide broader coverage against circulating strains.
Collapse
Affiliation(s)
- Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xing Li
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 2021; 184:106208. [PMID: 33766606 DOI: 10.1016/j.mimet.2021.106208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
There are many approaches available to produce inactive bacteria by termination of growth, each with a different efficacy, impact on cell integrity, and potential for application in standardized inactivation protocols. The aim of this study was to compare these approaches and develop a standardized protocol for generation of inactivated Gram-positive and Gram-negative bacteria, yielding cells that are metabolically dead with retained cellular integrity i.e., preserving the surface and limited leakage of intracellular proteins and DNA. These inactivated bacteria are required for various applications, for instance, when investigating receptor-triggered signaling or bacterial contact-dependent analysis of cell lines requiring long incubation times. We inactivated eight different bacterial strains of different species by treatment with beta-propiolactone, ethanol, formalin, sodium hydroxide, and pasteurization. Inactivation efficacy was determined by culturing, and cell wall integrity assessed by quantifying released DNA, bacterial membrane and intracellular DNA staining, and visualization by scanning electron microscopy. Based on these results, we discuss the bacterial inactivation methods, and their advantages and disadvantages to study host-microbe interactions with inactivated bacteria.
Collapse
Affiliation(s)
- Rahwa Taddese
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Steven Aalvink
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Protective cellular and mucosal immune responses following nasal administration of a whole gamma-irradiated influenza A (subtype H1N1) vaccine adjuvanted with interleukin-28B in a mouse model. Arch Virol 2021; 166:545-557. [PMID: 33409549 PMCID: PMC7787640 DOI: 10.1007/s00705-020-04900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The use of gamma-irradiated influenza A virus (γ-Flu), retains most of the viral structural antigens, represent a promising option for vaccine development. However, despite the high effectiveness of γ-Flu vaccines, the need to incorporate an adjuvant to improve vaccine-mediated protection seems inevitable. Here, we examined the protective efficacy of an intranasal gamma-irradiated HIN1 vaccine co-administered with a plasmid encoding mouse interleukin-28B (mIL-28B) as a novel adjuvant in BALB/c mice. Animals were immunized intranasally three times at one-week intervals with γ-Flu, alone or in combination with the mIL-28B adjuvant, followed by viral challenge with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific antibody, cellular and mucosal responses, and the balance of cytokines in the spleen IFN-γ, IL-12, and IL-4) and in lung homogenates (IL-6 and IL-10) were measured by ELISA. The lymphoproliferative activity of restimulated spleen cells was also determined by MTT assay. Furthermore, virus production in the lungs of infected mice was estimated using the Madin-Darby canine kidney (MDCK)/hemagglutination assay (HA). Our data showed that intranasal immunization with adjuvanted γ-Flu vaccine efficiently promoted humoral, cellular, and mucosal immune responses and efficiently decreased lung virus titers, all of which are associated with protection against challenge. This combination also reduced IL-6 and IL-10 levels in lung homogenates. The results suggest that IL-28B can enhance the ability of the vaccine to elicit virus-specific immune responses and could potentially be used as an effective adjuvant.
Collapse
|
15
|
Zhang J, Peng Q, Zhao W, Sun W, Yang J, Liu N. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res 2020; 20:110-121. [PMID: 33348980 DOI: 10.1021/acs.jproteome.0c00778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Influenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins. Considerable technical achievements in mass spectrometry-based proteomics have been made in a large number of proteome-wide surveys of PTMs in many different organisms. Herein we specifically focus on the proteomic studies regarding a variety of PTMs that occur in both the influenza viruses, mainly influenza A viruses (IAVs), and their hosts, including phosphorylation, ubiquitination and ubiquitin-like modification, glycosylation, methylation, acetylation, and some types of acylation. Integration of these data sets provides a unique scenery of the global regulation and interplay of different PTMs during the interaction between IAVs and their hosts. Various techniques used to globally profiling these PTMs, mostly MS-based approaches, are discussed regarding their increasing roles in mechanical regulation of interaction between influenza viruses and their hosts.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Qisheng Peng
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun 130021, PR China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Jingbo Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Central Laboratory, Jilin University Second Hospital, Jilin University, Changchun 130062, PR China
| |
Collapse
|
16
|
Zhao F, Liu L, Xu M, Shu X, Zheng L, Wei Z. Assessments of different inactivating reagents in formulating transmissible gastroenteritis virus vaccine. Virol J 2020; 17:163. [PMID: 33097081 PMCID: PMC7582447 DOI: 10.1186/s12985-020-01433-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV. Methods In this study, cell-cultured TGEV HN-2012 strain was inactivated by formaldehyde (FA), β-propiolactone (BPL) or binaryethylenimine (BEI), respectively. Then the inactivated TGEV vaccine was prepared with freund's adjuvant, and the immunization effects were evaluated in mice. The TGEV-specific IgG level was detected by ELISA. The positive rates of CD4+, CD8+, CD4+IFN-γ+, CD4+IL-4+ T lymphocytes were detected by flow cytometry assay. Lymphocyte proliferation assay and gross pathology and histopathology examination were also performed to assess the three different inactivating reagents in formulating TGEV vaccine. Results The results showed that the TGEV-specific IgG level in FA group (n = 17) was earlier and stronger, while the BEI group produced much longer-term IgG level. The lymphocyte proliferation test demonstrated that the BEI group had a stronger ability to induce spleen lymphocyte proliferation. The positive rates of CD4+ and CD8+ T lymphocyte subsets of peripheral blood lymphocyte in BEI group was higher than that in FA group and BPL groups by flow cytometry assay. The positive rate of CD4+IFN-γ+ T lymphocyte subset was the highest in the BPL group, and the positive rate of CD4+IL-4+ T lymphocyte subset was the highest in the FA group. There were no obvious pathological changes in the vaccinated mice and the control group after the macroscopic and histopathological examination. Conclusions These results indicated that all the three experimental groups could induce cellular and humoral immunity, and the FA group had the best humoral immunity effect, while the BEI group showed its excellent cellular immunity effect.
Collapse
Affiliation(s)
- Fujie Zhao
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lintao Liu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Menglong Xu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiangli Shu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lanlan Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China. .,Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
17
|
Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020; 9:E875. [PMID: 32947974 PMCID: PMC7555229 DOI: 10.3390/antiox9090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy's efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host-viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
| |
Collapse
|
18
|
Klausberger M, Leneva IA, Egorov A, Strobl F, Ghorbanpour SM, Falynskova IN, Poddubikov AV, Makhmudova NR, Krokhin A, Svitich OA, Grabherr R. Off-target effects of an insect cell-expressed influenza HA-pseudotyped Gag-VLP preparation in limiting postinfluenza Staphylococcus aureus infections. Vaccine 2020; 38:859-867. [PMID: 31718898 DOI: 10.1016/j.vaccine.2019.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/06/2023]
Abstract
Clinical and historical data underscore the ability of influenza viruses to ally with Staphylococcus aureus and predispose the host for secondary bacterial pneumonia, which is a leading cause of influenza-associated mortality. This is fundamental because no vaccine for S. aureus is available and the number of antibiotic-resistant strains is alarmingly rising. Hence, this leaves influenza vaccination the only strategy to prevent postinfluenza staphylococcal infections. In the present work, we assessed the off-target effects of a Tnms42 insect cell-expressed BEI-treated Gag-VLP preparation expressing the HA of A/Puerto Rico/8/1934 (H1N1) in preventing S. aureus superinfection in mice pre-infected with a homologous or heterologous H1N1 viral challenge strain. Our results demonstrate that matched anti-hemagglutinin immunity elicited by a VLP preparation may suffice to prevent morbidity and mortality caused by lethal secondary bacterial infection. This effect was observed even when employing a single low antigen dose of 50 ng HA per animal. However, induction of anti-hemagglutinin immunity alone was not helpful in inhibiting heterologous viral replication and subsequent bacterial infection. Our results indicate the potential of the VLP vaccine approach in terms of immunogenicity but suggest that anti-HA immunity should not be considered as the sole preventive method for combatting influenza and postinfluenza bacterial infections.
Collapse
Affiliation(s)
- Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Irina A Leneva
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Andrey Egorov
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia; Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Florian Strobl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | | | - Irina N Falynskova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Alexander V Poddubikov
- Department of Microbiology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Nailya R Makhmudova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Artem Krokhin
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Oxana A Svitich
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
19
|
Klausberger M, Leneva IA, Falynskova IN, Vasiliev K, Poddubikov AV, Lindner C, Kartaschova NP, Svitich OA, Stukova M, Grabherr R, Egorov A. The Potential of Influenza HA-Specific Immunity in Mitigating Lethality of Postinfluenza Pneumococcal Infections. Vaccines (Basel) 2019; 7:vaccines7040187. [PMID: 31744208 PMCID: PMC6963476 DOI: 10.3390/vaccines7040187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections pre-dispose an individual to secondary pneumococcal infections, which represent a serious public health concern. Matching influenza vaccination was demonstrated helpful in preventing postinfluenza bacterial infections and associated illnesses in humans. Yet, the impact of influenza hemagglutinin (HA)-specific immunity alone in this dual-infection scenario remains elusive. In the present study, we assessed the protective effect of neutralizing and non-neutralizing anti-hemagglutinin immunity in a BALB/c influenza-pneumococcus superinfection model. Our immunogens were insect cell-expressed hemagglutinin-Gag virus-like particles that had been differentially-treated for the inactivation of bioprocess-related baculovirus impurities. We evaluated the potential of several formulations to restrain the primary infection with vaccine-matched or -mismatched influenza strains and secondary bacterial replication. In addition, we investigated the effect of anti-HA immunity on the interferon status in mouse lungs prior to bacterial challenge. In our experimental setup, neutralizing anti-HA immunity provided significant but incomplete protection from postinfluenza bacterial superinfection, despite effective control of viral replication. In view of this, it was surprising to observe a survival advantage with non-neutralizing adaptive immunity when using a heterologous viral challenge strain. Our findings suggest that both neutralizing and non-neutralizing anti-HA immunity can reduce disease and mortality caused by postinfluenza pneumococcal infections.
Collapse
Affiliation(s)
- Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
- Correspondence: (M.K.); (R.G.); Tel.: +43-1-47654-79858 (M.K.); +43-1-47654-79006 (R.G.)
| | - Irina A. Leneva
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia; (I.A.L.); (I.N.F.); (N.P.K.); (O.A.S.); (A.E.)
| | - Irina N. Falynskova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia; (I.A.L.); (I.N.F.); (N.P.K.); (O.A.S.); (A.E.)
| | - Kirill Vasiliev
- Smorodintsev Research Institute of Influenza, St. Petersburg 197376, Russia; (K.V.); (M.S.)
| | - Alexander V. Poddubikov
- Department of Microbiology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia;
| | - Claudia Lindner
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
| | - Nadezhda P. Kartaschova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia; (I.A.L.); (I.N.F.); (N.P.K.); (O.A.S.); (A.E.)
| | - Oxana A. Svitich
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia; (I.A.L.); (I.N.F.); (N.P.K.); (O.A.S.); (A.E.)
| | - Marina Stukova
- Smorodintsev Research Institute of Influenza, St. Petersburg 197376, Russia; (K.V.); (M.S.)
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
- Correspondence: (M.K.); (R.G.); Tel.: +43-1-47654-79858 (M.K.); +43-1-47654-79006 (R.G.)
| | - Andrej Egorov
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia; (I.A.L.); (I.N.F.); (N.P.K.); (O.A.S.); (A.E.)
- Smorodintsev Research Institute of Influenza, St. Petersburg 197376, Russia; (K.V.); (M.S.)
| |
Collapse
|
20
|
Jawinski K, Hartmann M, Singh C, Kinnear E, Busse DC, Ciabattini A, Fiorino F, Medaglini D, Trombetta CM, Montomoli E, Contreras V, Le Grand R, Coiffier C, Primard C, Verrier B, Tregoning JS. Recombinant Haemagglutinin Derived From the Ciliated Protozoan Tetrahymena thermophila Is Protective Against Influenza Infection. Front Immunol 2019; 10:2661. [PMID: 31798589 PMCID: PMC6863932 DOI: 10.3389/fimmu.2019.02661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Current influenza vaccines manufactured using eggs have considerable limitations, both in terms of scale up production and the potential impact passaging through eggs can have on the antigenicity of the vaccine virus strains. Alternative methods of manufacture are required, particularly in the context of an emerging pandemic strain. Here we explore the production of recombinant influenza haemagglutinin using the ciliated protozoan Tetrahymena thermophila. For the first time we were able to produce haemagglutinin from both seasonal influenza A and B strains. This ciliate derived material was immunogenic, inducing an antibody response in both mice and non-human primates. Mice immunized with ciliate derived haemagglutinin were protected against challenge with homologous influenza A or B viruses. The antigen could also be combined with submicron particles containing a Nod2 ligand, significantly boosting the immune response and reducing the dose of antigen required. Thus, we show that Tetrahymena can be used as a manufacturing platform for viral vaccine antigens.
Collapse
Affiliation(s)
| | | | - Charanjit Singh
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Ekaterina Kinnear
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - David C Busse
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi s.r.l., Siena, Italy
| | - Vanessa Contreras
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Le Kremlin-Bicêtre, France
| | - Celine Coiffier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | | | | | - John S Tregoning
- Department of Infectious Disease, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol 2019; 29:e2074. [PMID: 31334909 DOI: 10.1002/rmv.2074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Despite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses. Here, we evaluate the potential of whole inactivated vaccines, based on chemical and physical methods, as well as new approaches to generate cross-protective immune responses. We also consider the mechanisms by which some of these vaccines may induce CD8+ T-cells cross-reactivity with different strains of influenza. In this review, we have focused on conventional and novel methods for production of whole inactivated influenza vaccine. As well as chemical modification, using formaldehyde or β-propiolactone and physical manipulation by ultraviolet radiation or gamma-irradiation, novel approaches, including visible ultrashort pulsed laser, and low-energy electron irradiation are discussed. These two latter methods are considered to be attractive approaches to design more sophisticated vaccines, due to their ability to maintain most of the viral antigenic properties during inactivation and potential to produce cross-protective immunity. However, further studies are needed to validate them before they can replace traditional methods for vaccine manufacturing.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Potency test to discriminate between differentially over-inactivated rabies vaccines: Agreement between the NIH assay and a G-protein based ELISA. Biologicals 2019; 60:49-54. [DOI: 10.1016/j.biologicals.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
|
23
|
Ghahremani M, Tran H, Biglou SG, O'Gallagher B, She YM, Plaxton WC. A glycoform of the secreted purple acid phosphatase AtPAP26 co-purifies with a mannose-binding lectin (AtGAL1) upregulated by phosphate-starved Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1139-1157. [PMID: 30156702 DOI: 10.1111/pce.13432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 05/08/2023]
Abstract
The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn365 and Asn422 were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850). MS revealed that AtGAL1 was bisphosphorylated at Tyr38 and Thr39 and glycosylated at four conserved Asn residues. When AtGAL was incubated in the presence of a thiol-reducing reagent prior to immunoblotting, its cross-reactivity with anti-AtGAL1-IgG was markedly attenuated (consistent with three predicted disulfide bonds in AtGAL1's apple domain). Secreted AtGAL1 polypeptides were upregulated to a far greater extent than AtGAL1 transcripts during Pi deprivation, indicating posttranscriptional control of AtGAL1 expression. Growth of a -Pi atgal1 mutant was unaffected, possibly due to compensation by AtGAL1's closest paralog, AtGAL2 (At1g78860). Nevertheless, AtGAL1's induction by numerous stresses combined with the broad distribution of AtGAL1-like lectins in diverse species implies an important function for AtGAL1 orthologs within the plant kingdom. We hypothesize that binding of AtPAP26-S2's high-mannose glycans by AtGAL1 enhances AtPAP26 function to facilitate Pi-scavenging by -Pi Arabidopsis.
Collapse
Affiliation(s)
| | - Hue Tran
- Oncolytics Biotech Inc., Calgary, Canada
| | - Sanaz G Biglou
- Department of Biology, Queen's University, Kingston, Canada
| | | | - Yi-Min She
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
24
|
Herrera-Rodriguez J, Signorazzi A, Holtrop M, de Vries-Idema J, Huckriede A. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine 2019; 37:1630-1637. [PMID: 30765167 PMCID: PMC7115651 DOI: 10.1016/j.vaccine.2019.01.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/27/2022]
Abstract
β-propiolactone (BPL) and formaldehyde (FA) were used to inactivate several influenza virus strains. BPL abolished the infectivity, FA was unable to completely inactivate the virus. All methods damaged the binding and fusion capacity; BPL caused greater loss than FA. FA treatments caused the highest reduction in TLR-7 stimulation. All the observed effects were strain-dependent.
The vast majority of commercially available inactivated influenza vaccines are produced from egg-grown or cell-grown live influenza virus. The first step in the production process is virus inactivation with β-propiolactone (BPL) or formaldehyde (FA). Recommendations for production of inactivated vaccines merely define the maximal concentration for both reagents, leaving the optimization of the process to the manufacturers. We assessed the effect of inactivation with BPL and FA on 5 different influenza virus strains. The properties of the viral formulation, such as successful inactivation, preservation of hemagglutinin (HA) binding ability, fusion capacity and the potential to stimulate a Toll-like receptor 7 (TLR7) reporter cell line were then assessed and compared to the properties of the untreated virus. Inactivation with BPL resulted in undetectable infectivity levels, while FA-treated virus retained very low infectious titers. Hemagglutination and fusion ability were highly affected by those treatments that conferred higher inactivation, with BPL-treated virus binding and fusing at a lower degree compared to FA-inactivated samples. On the other hand, BPL-inactivated virus induced higher levels of activation of TLR7 than FA-inactivated virus. The alterations caused by BPL or FA treatments were virus strain dependent. This data shows that the inactivation procedures should be tailored on the virus strain, and that many other elements beside the concentration of the inactivating agent, such as incubation time and temperature, buffer and virus concentration, have to be defined to achieve a functional product.
Collapse
Affiliation(s)
- José Herrera-Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aurora Signorazzi
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijke Holtrop
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
25
|
Barr IG, Donis RO, Katz JM, McCauley JW, Odagiri T, Trusheim H, Tsai TF, Wentworth DE. Cell culture-derived influenza vaccines in the severe 2017-2018 epidemic season: a step towards improved influenza vaccine effectiveness. NPJ Vaccines 2018; 3:44. [PMID: 30323955 PMCID: PMC6177469 DOI: 10.1038/s41541-018-0079-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
The 2017–2018 seasonal influenza epidemics were severe in the US and Australia where the A(H3N2) subtype viruses predominated. Although circulating A(H3N2) viruses did not differ antigenically from that recommended by the WHO for vaccine production, overall interim vaccine effectiveness estimates were below historic averages (33%) for A(H3N2) viruses. The majority (US) or all (Australian) vaccine doses contained multiple amino-acid changes in the hemagglutinin protein, resulting from the necessary adaptation of the virus to embryonated hen’s eggs used for most vaccine manufacturing. Previous reports have suggested a potential negative impact of egg-driven substitutions on vaccine performance. With BARDA support, two vaccines licensed in the US are produced in cell culture: recombinant influenza vaccine (RIV, Flublok™) manufactured in insect cells and inactivated mammalian cell-grown vaccine (ccIIV, Flucelvax™). Quadrivalent ccIIV (ccIIV4) vaccine for the 2017–2018 influenza season was produced using an A(H3N2) seed virus propagated exclusively in cell culture and therefore lacking egg adaptative changes. Sufficient ccIIV doses were distributed (but not RIV doses) to enable preliminary estimates of its higher effectiveness relative to the traditional egg-based vaccines, with study details pending. The increased availability of comparative product-specific vaccine effectiveness estimates for cell-based and egg-based vaccines may provide critical clues to inform vaccine product improvements moving forward.
Collapse
Affiliation(s)
- Ian G Barr
- 1WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute For Infection And Immunity, 792 Elizabeth Street, Melbourne, 3000 Australia
| | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Influenza and Emerging Infectious Diseases Division, 300 Independence Avenue, SW, Washington, DC 20201 USA
| | - Jacqueline M Katz
- 3Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road MS A-20, Atlanta, GA 30329-4027 USA
| | - John W McCauley
- 4WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT UK
| | - Takato Odagiri
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Influenza Virus Research Center, 4-7-1 Gakuen, Musashi-Murayama-shi, Tokyo 208-0011 Japan
| | - Heidi Trusheim
- IDT Biologika GmbH, Am Pharmapark, 06861 Dessau-Rosslau, Germany
| | - Theodore F Tsai
- 7Takeda Vaccines (USA), 75 Sidney St, Cambridge, MA 02139 USA
| | - David E Wentworth
- 8Influenza Division, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road MS A-20, Atlanta, GA 30329-4027 USA
| |
Collapse
|
26
|
Pushko P, Tretyakova I, Hidajat R, Sun X, Belser JA, Tumpey TM. Multi-clade H5N1 virus-like particles: Immunogenicity and protection against H5N1 virus and effects of beta-propiolactone. Vaccine 2018; 36:4346-4353. [PMID: 29885769 PMCID: PMC6070352 DOI: 10.1016/j.vaccine.2018.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
During the past decade, H5N1 highly pathogenic avian influenza (HPAI) viruses have diversified genetically and antigenically, suggesting the need for multiple H5N1 vaccines. However, preparation of multiple vaccines from live H5N1 HPAI viruses is difficult and economically not feasible representing a challenge for pandemic preparedness. Here we evaluated a novel multi-clade recombinant H5N1 virus-like particle (VLP) design, in which H5 hemagglutinins (HA) and N1 neuraminidase (NA) derived from four distinct clades of H5N1 virus were co-localized within the VLP structure. The multi-clade H5N1 VLPs were prepared by using a recombinant baculovirus expression system and evaluated for functional hemagglutination and neuraminidase enzyme activities, particle size and morphology, as well as for the presence of baculovirus in the purified VLP preparations. To remove residual baculovirus, VLP preparations were treated with beta-propiolactone (BPL). Immunogenicity and efficacy of multi-clade H5N1 VLPs were determined in an experimental ferret H5N1 HPAI challenge model, to ascertain the effect of BPL on immunogenicity and protective efficacy against lethal challenge. Although treatment with BPL reduced immunogenicity of VLPs, all vaccinated ferrets were protected from lethal challenge with influenza A/VietNam/1203/2004 (H5N1) HPAI virus, indicating that multi-clade VLP preparations treated with BPL represent a potential approach for pandemic preparedness vaccines.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| |
Collapse
|
27
|
Lei S, Gao X, Sun Y, Yu X, Zhao L. Gas chromatography-mass spectrometry method for determination of β-propiolactone in human inactivated rabies vaccine and its hydrolysis analysis. J Pharm Anal 2018; 8:373-377. [PMID: 30595943 PMCID: PMC6308022 DOI: 10.1016/j.jpha.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022] Open
Abstract
A simple method was established for the determination of β-propiolactone (BPL) in human inactivated rabies vaccine by gas chromatography-mass spectrometry (GC-MS). The determination was performed on an Agilent HP-INNOWAX (30 m × 0.32 mm i.d., 0.25 µm) capillary column at the temperature of 80 °C. Electrospray ionization (ESI) was used by selective ion detection at m/z 42. The temperature for ESI source and inlet was set at 230 °C and 200 °C, respectively. Helium was used as the carrier gas at a flow rate of 25.1 mL/min. The total run time was 8 min. Acetonitrile and other components in the sample did not interfere with the determination of BPL. The results showed good linearity of BPL in the range of 0.50–10.01 μg/mL, with the limit of detection and the limit of quantification of 0.015 μg/mL and 0.050 μg/mL, respectively. Satisfactory precision was achieved for the current developed method. The method was applied to detect 6 batches of vaccine samples, and the results indicated that the target analyte BPL was present in three batches of unpurified samples, but was not detected in the purified samples, indicating the test samples were qualified. The established method was proved to be simple, versatile and sensitive, which can meet the requirements of quality control of BPL in human inactivated rabies vaccine.
Collapse
Affiliation(s)
- Shuo Lei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xun Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Sun
- Liaoning Medical Device Test Institute, Shenyang 110179, China
| | - Xiangyong Yu
- Shenyang Wellwolf Pharmaceutical Science and Technology Co. Ltd, Shenyang 110022, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
28
|
Astill J, Alkie T, Yitbarek A, Taha-Abdelaziz K, Bavananthasivam J, Nagy É, Petrik JJ, Sharif S. Examination of the effects of virus inactivation methods on the induction of antibody- and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens. Vaccine 2018; 36:3908-3916. [PMID: 29853199 DOI: 10.1016/j.vaccine.2018.05.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Several types of avian influenza virus (AIV) vaccines exist, including live-attenuated, vectored, and whole inactivated virus (WIV) vaccines. Inactivated vaccines offer some advantages compared to other types of vaccines, including ease of production and lack of ability to revert to a virulent state. However, WIV are poorly immunogenic, especially when these vaccines are delivered to mucosal surfaces. There are several factors that contribute to the immunogenicity of vaccines, one of which is the method used to inactivate viruses. Several methods exist for producing influenza WIVs, including formaldehyde, a chemical that affects protein structures leading to virus inactivation. Other methods include treatment with beta-propiolactone (BPL) and the application of gamma radiation, both of which have less effects on protein structures compared to formaldehyde, and instead alter nucleic acids in the virion. Here, we sought to determine the effect of the above inactivation methods on immunogenicity of AIV vaccines. To this end, chickens were vaccinated with three different H9N2 WIVs using formaldehyde, BPL, and gamma radiation for inactivation. In addition to administering these three WIVs alone as vaccines, we also included CpG ODN 2007, a synthetic ligand recognized by Toll-like receptor (TLR)21 in chickens, as an adjuvant for each WIV. Subsequently, antibody- and cell-mediated immune responses were measured following vaccination. Antibody-mediated immune responses were increased in chickens that received the BPL and Gamma WIVs compared to the formaldehyde WIV. CpG ODN 2007 was found to significantly increase antibody responses for each WIV compared to WIV alone. Furthermore, we observed the presence of cell-mediated immune responses in chickens that received the BPL WIV combined with CpG ODN 2007. Based on these results, the BPL WIV + CpG ODN 2007 combination was the most effective vaccine at inducing adaptive immune responses against H9N2 AIV. Future studies should characterize mucosal adaptive immune responses to these vaccines.
Collapse
Affiliation(s)
- Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tamiru Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Department of Biology, Wilfred Laurier University, Waterloo, ON N2L 3C5, Canada(1)
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511 Beni-Suef, Egypt
| | - Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James John Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
29
|
Lee YH, Jang YH, Byun YH, Cheong Y, Kim P, Lee YJ, Lee YJ, Sung JM, Son A, Lee HM, Lee J, Yang SW, Song JM, Seong BL. Green Tea Catechin-Inactivated Viral Vaccine Platform. Front Microbiol 2017; 8:2469. [PMID: 29312180 PMCID: PMC5732980 DOI: 10.3389/fmicb.2017.02469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, chemical agents such as formalin (FA) and β-propiolactone (BPL) have long been used for the preparation of inactivated vaccines or toxoids. It has been shown that FA extensively modifies vaccine antigens and thus affects immunogenicity profiles, sometimes compromising the protective efficacy of the vaccines or even exacerbating the disease upon infection. In this study, we show that natural catechins from green tea extracts (GT) can be used as an inactivating agent to prepare inactivated viral vaccines. GT treatment resulted in complete and irreversible inactivation of influenza virus as well as dengue virus. In contrast to FA that reacted extensively with multiple amino acids including lysine, a major anchor residue for epitope binding to MHC molecules, GT catechin epigallocatechin-3-gallate (EGCG) crosslinked primarily with cysteine residues and thus preserved the major epitopes of the influenza hemagglutinin. In a mouse model, vaccination with GT-inactivated influenza virus (GTi virus) elicited higher levels of viral neutralizing antibodies than FA-inactivated virus (FAi virus). The vaccination completely protected the mice from a lethal challenge and restricted the challenge viral replication in the lungs. Of note, the quality of antibody responses of GTi virus was superior to that with FAi virus, in terms of the magnitude of antibody titer, cross-reactivity to hetero-subtypes of influenza viruses, and the avidity to viral antigens. As the first report of using non-toxic natural compounds for the preparation of inactivated viral vaccines, the present results could be translated into a clinically relevant vaccine platform with improved efficacy, safety, productivity, and public acceptance.
Collapse
Affiliation(s)
- Yun H Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo H Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young H Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young J Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon J Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Je M Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye M Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung W Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jae-Min Song
- Department of Global Medical Science, Health and Wellness College, Sungshin Women's University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
She YM, Farnsworth A, Li X, Cyr TD. Topological N-glycosylation and site-specific N-glycan sulfation of influenza proteins in the highly expressed H1N1 candidate vaccines. Sci Rep 2017; 7:10232. [PMID: 28860626 PMCID: PMC5579265 DOI: 10.1038/s41598-017-10714-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023] Open
Abstract
The outbreak of a pandemic influenza H1N1 in 2009 required the rapid generation of high-yielding vaccines against the A/California/7/2009 virus, which were achieved by either addition or deletion of a glycosylation site in the influenza proteins hemagglutinin and neuraminidase. In this report, we have systematically evaluated the glycan composition, structural distribution and topology of glycosylation for two high-yield candidate reassortant vaccines (NIBRG-121xp and NYMC-X181A) by combining various enzymatic digestions with high performance liquid chromatography and multiple-stage mass spectrometry. Proteomic data analyses of the full-length protein sequences determined 9 N-glycosylation sites of hemagglutinin, and defined 6 N-glycosylation sites and the glycan structures of low abundance neuraminidase, which were occupied by high-mannose, hybrid and complex-type N-glycans. A total of ~300 glycopeptides were analyzed and manually validated by tandem mass spectrometry. The specific N-glycan structure and topological location of these N-glycans are highly correlated to the spatial protein structure and the residential ligand binding. Interestingly, sulfation, fucosylation and bisecting N-acetylglucosamine of N-glycans were also reliably identified at the specific glycosylation sites of the two influenza proteins that may serve a crucial role in regulating the protein structure and increasing the protein abundance of the influenza virus reassortants.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Terry D Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
31
|
Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids. J Virol 2017; 91:JVI.00038-17. [PMID: 28148783 DOI: 10.1128/jvi.00038-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Beta-propiolactone (BPL) is an inactivating agent that is widely used in the vaccine industry. However, its effects on vaccine protein antigens and its mechanisms of action remain poorly understood. Here we present cryo-electron microscopy (cryo-EM) structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids at resolutions of 3.9 Å and 6.5 Å, respectively. Notably, both particles were found to adopt an expanded conformation resembling the 135S-like uncoating intermediate, with characteristic features including an opened 2-fold channel, the externalization of the N terminus of VP1 capsid protein, and the absence of pocket factor. However, major neutralizing epitopes are very well preserved on these particles. Further biochemical analyses revealed that BPL treatment impairs the abilities of CVA16 particles to bind to the attachment receptor heparan sulfate and to a conformation-dependent monoclonal antibody in a BPL dose-dependent manner, indicating that BPL is able to modify surface-exposed amino acid residues. Taken together, our results demonstrate that BPL treatment may induce alteration of the overall structure and surface properties of a nonenveloped viral capsid, thus revealing a novel mode of action of BPL.IMPORTANCE Beta-propiolactone (BPL) is commonly used as an inactivating reagent to produce viral vaccines. It is recognized that BPL inactivates viral infectivity through modification of viral nucleic acids. However, its effect on viral proteins remains largely unknown. Here, we present high-resolution cryo-EM structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids, which reveals an expanded overall conformation and characteristic features that are typical for the 135S-like uncoating intermediate. We further show that the BPL concentration affects the binding of inactivated CVA16 particles to their receptor/antibody. Thus, BPL treatment can alter the overall structure and surface properties of viral capsids, which may lead to antigenic and immunogenic variations. Our findings provide important information for future development of BPL-inactivated vaccines.
Collapse
|
32
|
Virus Reduction of Human Plasma-Derived Biological Medicines. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Zhang L, Li Z, Zhang Q, Sun M, Li S, Su W, Hu X, He W, Su J. Efficacy assessment of an inactivated Tembusu virus vaccine candidate in ducks. Res Vet Sci 2017; 110:72-78. [DOI: 10.1016/j.rvsc.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
34
|
Characterization of Influenza Vaccine Hemagglutinin Complexes by Cryo-Electron Microscopy and Image Analyses Reveals Structural Polymorphisms. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:483-495. [PMID: 27074939 PMCID: PMC4895014 DOI: 10.1128/cvi.00085-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy. Here, using cryo-electron microscopy and image analysis, we show that recombinant H7 HA in vaccines formed macromolecular complexes consisting of variable numbers of HA subunits (range, 6 to 8). In addition, HA complexes were distributed across at least four distinct structural classes (polymorphisms). Three-dimensional (3D) reconstruction and molecular modeling indicated that HA was in the prefusion state and suggested that the oligomerization and the structural polymorphisms observed were due to hydrophobic interactions involving the transmembrane regions. These experiments suggest that characterization of the molecular structures of influenza virus HA complexes used in subunit vaccines will lead to better understanding of the differences in vaccine efficacy and to the optimization of subunit vaccines to prevent influenza virus infection.
Collapse
|
35
|
Analysis of the beta-propiolactone sensitivity and optimization of inactivation methods for human influenza H3N2 virus. J Virol Methods 2016; 235:105-111. [PMID: 27142111 DOI: 10.1016/j.jviromet.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022]
Abstract
Beta-propiolactone (BPL) is used as an inactivating reagent for influenza virus in a number of countries. However, the treatment of viruses with BPL occasionally results in a decrease in the hemagglutinin (HA) titer, which complicates vaccine development. In the present study, we examined the biological and biochemical characteristics of human H1N1 and H3N2 viruses treated with BPL, and developed an inactivation method for BPL-sensitive viruses. A significant decrease in HA titer was detected in the H3N2 viruses examined. The decrease in the pH of the virus fluid was not associated with the decreased HA titer, indicating that the decrease in HA titer for the H3N2 virus is the result of the direct effect of BPL. Excessive modification of M1 by BPL and loss of virion diameter were observed in 0.1% BPL-treated H3N2 virus. Taken together, these results suggest that the BPL sensitivity of H3N2 virus results from disruption of the virion. By contrast, the H3N2 virus was successfully inactivated by 0.02% BPL without a significant decrease in the HA titer or disruption of virion structure. Furthermore, we found that the 0.02% BPL in the virion preparation was hydrolyzed successfully by incubation at 37°C for 7h. Thus, mild treatment with a low concentration of BPL enabled us to inactivate the H3N2 virus.
Collapse
|
36
|
Psoralen Inactivation of Viruses: A Process for the Safe Manipulation of Viral Antigen and Nucleic Acid. Viruses 2015; 7:5875-88. [PMID: 26569291 PMCID: PMC4664985 DOI: 10.3390/v7112912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023] Open
Abstract
High consequence human pathogenic viruses must be handled at biosafety level 2, 3 or 4 and must be rendered non-infectious before they can be utilized for molecular or immunological applications at lower biosafety levels. Here we evaluate psoralen-inactivated Arena-, Bunya-, Corona-, Filo-, Flavi- and Orthomyxoviruses for their suitability as antigen in immunological processes and as template for reverse transcription PCR and sequencing. The method of virus inactivation using a psoralen molecule appears to have broad applicability to RNA viruses and to leave both the particle and RNA of the treated virus intact, while rendering the virus non-infectious.
Collapse
|
37
|
Study of rabies virus by Differential Scanning Calorimetry. Biochem Biophys Rep 2015; 4:329-336. [PMID: 29124221 PMCID: PMC5669403 DOI: 10.1016/j.bbrep.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
Differential Scanning Calorimetry (DSC) has been used in the past to study the thermal unfolding of many different viruses. Here we present the first DSC analysis of rabies virus. We show that non-inactivated, purified rabies virus unfolds cooperatively in two events centered at approximately 62 and 73 °C. Beta-propiolactone (BPL) treatment does not alter significantly viral unfolding behavior, indicating that viral inactivation does not alter protein structure significantly. The first unfolding event was absent in bromelain treated samples, causing an elimination of the G-protein ectodomain, suggesting that this event corresponds to G-protein unfolding. This hypothesis was confirmed by the observation that this first event was shifted to higher temperatures in the presence of three monoclonal, G-protein specific antibodies. We show that dithiothreitol treatment of the virus abolishes the first unfolding event, indicating that the reduction of G-protein disulfide bonds causes dramatic alterations to protein structure. Inactivated virus samples heated up to 70 °C also showed abolished recognition of conformational G-protein specific antibodies by Surface Plasmon Resonance analysis. The sharpness of unfolding transitions and the low standard deviations of the Tm values as derived from multiple analysis offers the possibility of using this analytical tool for efficient monitoring of the vaccine production process and lot to lot consistency. Differential Scanning Calorimetry analysis of rabies virus. Rabies virus unfolds in two thermal events. The first event corresponds to G-protein.
Collapse
|