1
|
Kaufman-Szymczyk A, Jalmuzna J, Lubecka-Gajewska K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br J Pharmacol 2025; 182:2259-2286. [PMID: 38528688 DOI: 10.1111/bph.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The chemopreventive and chemotherapeutic properties of soy and soy-derived compounds, especially isoflavones, have been extensively studied in recent years. However, in contrast to their anticancer effects, such as cell growth inhibition, cell cycle arrest and apoptosis induction, isoflavones have also been found to promote the growth of cancer cells. Therefore, the aim of this comprehensive review article is to present the current state of knowledge regarding the molecular mechanisms by which soy-derived isoflavones target multiple cellular signalling pathways in cancer cells. Our findings indicate that soy-derived isoflavones act as, among other things, potent modulators of HOX transcript antisense RNA (HOTAIR)/SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), vascular endothelial growth factor (VEGF)/C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor type 4 (CXCR4), 17-β-oestradiol (E2)/oestrogen receptor-α (ERα)/neuroglobin (NGB) and sonic hedgehog signalling pathways, epigenetic modulatory agents (i.a. miR-155, miR-34a and miR-10a-5p) and cancer stem cells and epithelial-to-mesenchymal transition inhibitors. The paper also discusses the latest epidemiological studies and clinical trials and provides an insight into recent extensive research on the chemo-preventive and therapeutic potential of soy-derived isoflavones. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Justyna Jalmuzna
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| | - Katarzyna Lubecka-Gajewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
2
|
Iqbal FM, Rodríguez-Nogales C, Boulens N, Delie F. Formulation and optimization of transferrin-modified genistein nanocrystals: In vitro anti-cancer assessment and pharmacokinetic evaluation. Int J Pharm 2024; 667:124863. [PMID: 39447935 DOI: 10.1016/j.ijpharm.2024.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
In this research work, nanocrystals (NC) of poorly water-soluble drug genistein (Gen) were formulated to improve its aqueous solubility and bioavailability. Genistein nanocrystals (Gen-NC) were prepared by wet ball milling. The formulation was optimized using Box Behnken Design Expert to evaluate the impact of stabilizer concentration, drug concentration and quantity of zirconium beads (milling media) on NC size, polydispersity and zeta potential. The NCs were surface-decorated with transferrin (Tf) to form Tf modified Gen-NCs (Tf-Gen-NC) for improving cancer cell selectivity and cytotoxicity. The NC formulations were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray power diffraction (XRD) and differential scanning calorimetry (DSC). The particle size distribution of the optimized formulation varied from 200 to 300 nm with poly dispersibility index (PDI) between 0.1 and 0.3. Tf-Gen-NC and Gen-NC released 96 % and 80 % of the drug content in 20 min at 37 °C, respectively, whereas only 18 % were released with the unprocessed drug. In vitro cytotoxicity was tested in pulmonary adenocarcinoma epithelial cells (A549) and fibroblast cell line (L929). The Tf-Gen-NC presented an enhanced anticancer effect. In vivo pharmacokinetic studies in mice after intraperitoneal administration showed that the Cmax of NC formulations were 2.5-fold higher compared to free Gen. The area under the curve from time of administration to 24 h was 2.5 to 3-fold higher when compared with unprocessed drug. This study shows the interest of Gen-NC in the development of new formulations for Gen as an anticancer drug.
Collapse
Affiliation(s)
- Furqan Muhammad Iqbal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Carlos Rodríguez-Nogales
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Nathalie Boulens
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Hasanpour A, Babajafari S, Mazloomi SM, Shams M. The effects of soymilk plus probiotics supplementation on cardiovascular risk factors in patients with type 2 diabetes mellitus: a randomized clinical trial. BMC Endocr Disord 2023; 23:36. [PMID: 36759798 PMCID: PMC9912676 DOI: 10.1186/s12902-023-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases. This study aimed to assess the effects of soymilk plus probiotics co-administration on cardiovascular risk factors in T2DM patients. METHODS One hundred patients with T2DM (aged 40-75 years old) were randomly assigned into 4 groups (soymilk + probiotics supplement, soymilk + placebo, conventional milk + placebo, and probiotics supplement) for 6 weeks. Standard protocols were followed for the collection of fasting blood samples, dietary intakes, and anthropometric measurements. RESULTS It was shown that soymilk + probiotics consumption significantly decreased diastolic blood pressure (DBP) (p = 0.001), triglycerides (TG) (P < 0.001), total cholesterol (TC) (p < 0.01), and insulin (P < 0.003) levels and significantly increased high-density lipoprotein cholesterol (HDL-C) (P = 0.002) levels. Soymilk + placebo administration significantly decreased DBP (p = 0.01), insulin (p = 0.006), and TG (p = 0.001) levels and significantly increased HDL-C (p = 0.03) levels. A significant decrease in insulin (p = 0.003) and systolic blood pressure (SBP) (p = 0.01) levels and an increase in HDL-C (p = 0.04) levels were observed after supplementation with probiotics. Findings from between-group comparisons showed a significant decrease in SBP levels in the probiotics supplement group compared to conventional milk group (p < 0.05). CONCLUSION Soymilk and probiotics consumption might improve some cardiovascular risk factors in patients with T2DM. However, possible synergic effects while consumption of soymilk plus probiotics supplement didn't show in this study which warranted further research.
Collapse
Affiliation(s)
- Azimeh Hasanpour
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Babajafari
- Department of Nutrition, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene and Quality Control, School and Research Center of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Department of Internal Medicine, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Inhibition of α 1-Adrenergic, Non-Adrenergic and Neurogenic Human Prostate Smooth Muscle Contraction and of Stromal Cell Growth by the Isoflavones Genistein and Daidzein. Nutrients 2022; 14:nu14234943. [PMID: 36500973 PMCID: PMC9735664 DOI: 10.3390/nu14234943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on human prostate smooth muscle contractions and stromal cell growth, which are driving factors of voiding symptoms in BPH. Smooth muscle contractions were induced in prostate tissues from radical prostatectomy. Growth-related functions were studied in cultured stromal cells (WPMY-1). Neurogenic, α1-adrenergic and non-adrenergic contractions were strongly inhibited with 50 µM and by around 50% with 10 µM genistein. Daidzein inhibited neurogenic contractions using 10 and 100 µM. Agonist-induced contractions were inhibited by 100 µM but not 10 µM daidzein. A combination of 6 µM genistein with 5 µM daidzein still inhibited neurogenic and agonist-induced contractions. Proliferation of WPMY-1 cells was inhibited by genistein (>50%) and daidzein (<50%). Genistein induced apoptosis and cell death (by seven-fold relative to controls), while daidzein induced cell death (6.4-fold) without apoptosis. Viability was reduced by genistein (maximum: 87%) and daidzein (62%). In conclusion, soy isoflavones exert sustained effects on prostate smooth muscle contractions and stromal cell growth, which may explain the inverse relationships between soy-rich nutrition, BPH and voiding symptoms.
Collapse
|
5
|
Zhao W, Subbiah V, Xie C, Yang Z, Shi L, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility and Bioavailability of Phenolic Compounds in Seaweed. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Wanrong Zhao
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zihong Yang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Linghong Shi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
6
|
Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients 2022; 14:nu14061225. [PMID: 35334882 PMCID: PMC8949525 DOI: 10.3390/nu14061225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The intake of selected minerals, especially zinc, calcium and selenium, and high consumption of dietary isoflavones are recognised as factors influencing prostate cancer risk. Moreover, changes in levels of some essential elements are characteristic of the disease. Here, we examined the combined effects of main dietary isoflavonoids (genistein, daidzein and its metabolite, equol) and minerals implicated in prostate cancer, namely zinc, selenium, copper, iron and calcium, on LNCaP prostate cancer cells proliferation. Secondly, we evaluated the influence of the combinations on genotoxicity of model mutagens, 4-nitroquinoline oxide (4NQO) and 2-aminoanthracene (2AA), in the umu test. All combinations of isoflavonoids and minerals inhibited prostate cancer cells growth. However, only mixtures with iron ions had significantly stronger effect than the phytochemicals. Interestingly, we observed that only genistein attenuated genotoxicity of 4NQO. The addition of any tested mineral abolished this effect. All tested isoflavonoids had anti-genotoxic activity against 2AA, which was significantly enhanced in the presence of copper sulphate. Our results indicate that the tested minerals in physiological concentrations had minimal influence on the anti-proliferative activity of isoflavonoids. However, they significantly modulated the anti-genotoxic effects of isoflavonoids against both metabolically activated and direct mutagens. Thus, the minerals intake and nutritional status may modulate protective action of isoflavonoids.
Collapse
|
7
|
Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann N Y Acad Sci 2021; 1508:54-77. [PMID: 34636052 DOI: 10.1111/nyas.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Recent data strongly indicate a relationship between prostate health and gut microbiota, in which composition and physiological function strictly depend on dietary patterns. The bidirectional interplay of foods containing polyphenols, such as ellagitannins, condensed tannins, lignans, isoflavones, and prenylated flavonoids with human gut microbiota, has been proven to contribute to their impact on prostate health. Considering the attributed role of dietary polyphenols in the prevention of prostate diseases, this paper aims to critically review the studies concerning the influence of polyphenols' postbiotic metabolites on processes associated with the pathophysiology of prostate diseases. Clinical, in vivo, and in vitro studies on polyphenols have been juxtaposed with the current knowledge regarding their pharmacokinetics, microbial metabolism, and potential interactions with microbiota harboring different niches of the human organism. Directions of future research on dietary polyphenols regarding their interaction with microbiota and prostate health have been indicated.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Stanisławska
- Faculty of Pharmacy, Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
10
|
Bosland MC, Schmoll J, Watanabe H, Randolph C, Kato I. Randomized, Placebo-Controlled Six-Month Intervention Study of Soy Protein Isolate in Men with Biochemical Recurrence after Radical Prostatectomy: A Pilot Study. Nutr Cancer 2021; 74:555-564. [PMID: 33764851 DOI: 10.1080/01635581.2021.1903949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is evidence to suggest that soy may be beneficial for prostate cancer patients, but few randomized trials have addressed this. We examined the effect of 6-8 mo soy protein supplementation on prostate specific antigen (PSA) serum levels in men who recurred (PSA > 0.1 ng/ml) within three years of prostatectomy. Sixteen men were randomized to 20 g soy protein (∼24-26/day genistein; ∼40-43/day total isoflavones) or casein placebo. PSA was measured at base line and at 1, 2, 4, and 6-8 mo. Serum genistein levels greatly increased from baseline and cholesterol decreased in the soy group. In both treatment arms PSA increased similarly and PSA doubling times were not different over the 6-8 mo study duration. Two subjects in each group had stable PSA. A literature search for clinical studies of soy, isoflavones, and PSA revealed that supplementation with soy or isoflavones did not affect PSA in virtually all clinical studies identified. Although this study is too small to draw a definitive conclusion on the effect of soy protein on PSA in men with biochemical failure, the null finding in this study is consistent with the results of virtually all reports of soy and soy isoflavones in the literature.
Collapse
Affiliation(s)
- Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA.,Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Joanne Schmoll
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Hiroko Watanabe
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Carla Randolph
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Ikuko Kato
- Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
11
|
Dev A, Sardoiwala MN, Kushwaha AC, Karmakar S, Choudhury SR. Genistein nanoformulation promotes selective apoptosis in oral squamous cell carcinoma through repression of 3PK-EZH2 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153386. [PMID: 33113500 DOI: 10.1016/j.phymed.2020.153386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity. HYPOTHESIS In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC. METHODS Lactalbumin was used to prepare nanoformulation of Genistein. The mechanism of epigenetic regulation and selective apoptosis by Genistein loaded nanoparticles was studied in OSCC cell line JHU011 and fibroblast cell line L929 using immunofluorescence, Western blotting and ChIP-qPCR assay. RESULTS We have found that GLNPs treatment selectively induced apoptosis in OSCC compared to the normal fibroblast cells. This selective effect in OSCC is achieved through enhanced reactive oxygen species (ROS) generation followed by Bax mitochondrial translocation and caspase 3 activation. Further, GLNPs induced withdrawal of epigenetic transcription repression through concurrent downregulation of the polycomb group proteins (PcG) Bmi 1 and EZH2 along with their successive targets, UbH2AK119 and H3K27me3, which have immense therapeutic implications in the treatment of OSCC. Last, we have established that GLNPs regulate EZH2expression through proteasomal mediated degradation and 3PK inhibition; 3PK protein was found physically linked with EZH2 protein and its promoter region (-1107 to -1002). This event indicates that 3PK might play some crucial role in EZH2 expression and epigenetic control of OSCC. Moreover, the formulation showed improved biodistribution, aqueous dispersibility and enhanced biocompatibility In-vivo. CONCLUSIONS These results provide evidence that GLNPs may withdraw epigenetic transcriptional repression and selectively induce apoptosis in human oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Atul Dev
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | | | - Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
12
|
Marmitt DJ, Bitencourt S, Silva GRD, Rempel C, Goettert MI. RENISUS Plants and Their Potential Antitumor Effects in Clinical Trials and Registered Patents. Nutr Cancer 2020; 73:1821-1848. [PMID: 32835511 DOI: 10.1080/01635581.2020.1810290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a significant cause of morbidity and mortality. Scientific advances, coupled with potential flaws in current treatments, are driving research into the discovery of new bioactive molecules. This systematic review focused on scientific studies with clinical trials and patents registered on the National Relation of Medicinal Plants of Interest to the Unified Health System (RENISUS) plants (or derivative compounds) with antitumor potential. Studies with 19 different forms of cancer were found, the prostate being the organ with the highest research incidence and the species Glycine max, Curcuma longa, and Zingiber officinale, beside the phytochemicals curcumin and soy isoflavone were the most tested in clinical trials/patents.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Gustavo Rodrigo da Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|
13
|
Kumar NB, Pow-Sang J, Spiess P, Dickinson S, Schell MJ. A phase II randomized clinical trial using aglycone isoflavones to treat patients with localized prostate cancer in the pre-surgical period prior to radical prostatectomy. Oncotarget 2020; 11:1218-1234. [PMID: 32292572 PMCID: PMC7147089 DOI: 10.18632/oncotarget.27529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in American men. Additionally, African American Men (AAM) are 60% more likely to be diagnosed with PCa and 2.4 times more likely to die from this disease compared to Caucasian men (CM). To date, there are few strategies effective for chemoprevention for men with localized PCa. There is thus a need to continue to evaluate agents and strategies for chemoprevention of prostate cancer. Epidemiological, laboratory and early phase clinical trials have shown that the isoflavones modulates several biomarkers implicated in prostate carcinogenesis. The goal of this phase II randomized clinical trial was to explore the comparative effectiveness and safety of 40 mgs of aglycone isoflavones in AAM and CM with localized PCa in the pre-surgical period prior to radical prostatectomy. Thirty six participants (25 CM, 6AAM) were randomized to the isoflavone arm and 34 (25 CM, 7AAM) to the placebo arm, with 62 completing the intervention. Results indicated that isoflavones at a dose of 20 mgs BID for 3-6 weeks was well tolerated but did not reduce tissue markers of proliferation. A significant reduction in serum PSA was observed with isoflavone supplementation in CM compared to the placebo arm, but not observed in AAM. We observed no changes in serum steroid hormones with isoflavone supplementation. In AAM, a reduction in serum IGF-1 concentrations and IGF1: IGFBP-3 ratios were observed with isoflavone supplementation. Well-powered studies for longer duration of intervention may inform future trials with isoflavones, for chemoprevention of PCa.
Collapse
Affiliation(s)
- Nagi B Kumar
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Inc., Tampa, FL, USA
| | - Julio Pow-Sang
- Department of Urology, H. Lee Moffitt Cancer Center and Research Institute, Inc., Tampa, FL, USA
| | - Philippe Spiess
- Department of Urology, H. Lee Moffitt Cancer Center and Research Institute, Inc., Tampa, FL, USA
| | - Shohreh Dickinson
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Inc., Tampa, FL, USA
| | - Michael J Schell
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Inc., Tampa, FL, USA
| |
Collapse
|
14
|
Grainger EM, Moran NE, Francis DM, Schwartz SJ, Wan L, Thomas-Ahner J, Kopec RE, Riedl KM, Young GS, Abaza R, Bahnson RR, Clinton SK. A Novel Tomato-Soy Juice Induces a Dose-Response Increase in Urinary and Plasma Phytochemical Biomarkers in Men with Prostate Cancer. J Nutr 2019; 149:26-35. [PMID: 30476157 PMCID: PMC6351139 DOI: 10.1093/jn/nxy232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background Tomato and soy intake is associated with reduced prostate cancer risk or severity in epidemiologic and experimental studies. Objective On the basis of the principle that multiple bioactives in tomato and soy may act on diverse anticancer pathways, we developed and characterized a tomato-soy juice for clinical trials. In this phase 2 dose-escalating study, we examined plasma, prostate, and urine biomarkers of carotenoid and isoflavone exposure. Methods Men scheduled for prostatectomy were recruited to consume 0, 1, or 2 cans of tomato-soy juice/d before surgery (mean ± SD duration: 24 ± 4.6 d). The juice provided 20.6 mg lycopene and 66 mg isoflavone aglycone equivalents/177-mL can. Plasma carotenoids and urinary isoflavone metabolites were quantified by HPLC-photometric diode array and prostate carotenoids and isoflavones by HPLC-tandem mass spectrometry. Results We documented significant dose-response increases (P < 0.05) in plasma concentrations of tomato carotenoids. Plasma concentrations were 1.86-, 1.69-, 1.73-, and 1.69-fold higher for lycopene, β-carotene, phytoene, and phytofluene, respectively, for the 1-can/d group and 2.34-, 3.43-, 2.54-, and 2.29-fold higher, respectively, for the 2-cans/d group compared with 0 cans/d. Urinary isoflavones daidzein, genistein, and glycitein increased in a dose-dependent manner. Prostate carotenoid and isoflavone concentrations were not dose-dependent in this short intervention; yet, correlations between plasma carotenoid and urinary isoflavones with respective prostate concentrations were documented (R2 = 0.78 for lycopene, P < 0.001; R2 = 0.59 for dihydrodaidzein, P < 0.001). Secondary clustering analyses showed urinary isoflavone metabolite phenotypes. To our knowledge, this is the first demonstration of the phytoene and phytofluene in prostate tissue after a dietary intervention. Secondary analysis showed that the 2-cans/d group experienced a nonsignificant decrease in prostate-specific antigen slope compared with 0 cans/d (P = 0.078). Conclusion These findings provide the foundation for evaluating a well-characterized tomato-soy juice in human clinical trials to define the impact on human prostate carcinogenesis. This trial is registered at clinicaltrials.gov as NCT01009736.
Collapse
Affiliation(s)
- Elizabeth M Grainger
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Nancy E Moran
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Steven J Schwartz
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Lei Wan
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Jennifer Thomas-Ahner
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Rachel E Kopec
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Ken M Riedl
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University, Columbus, OH 43210
| | - Gregory S Young
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Center for Biostatistics College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Ronney Abaza
- Department of Urology College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Robert R Bahnson
- Department of Urology College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center College of Medicine, The Ohio State University, Columbus, OH 43210,Division of Medical Oncology, College of Medicine The Ohio State University, Columbus, OH 43210,Address correspondence to SKC (e-mail: )
| |
Collapse
|
15
|
Keating E, Martel F. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Front Nutr 2018; 5:25. [PMID: 29713632 PMCID: PMC5911477 DOI: 10.3389/fnut.2018.00025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect—an aerobic lactatogenesis—characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS, Center for Research in Health Technologies and Information Systems, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018; 10:nu10010040. [PMID: 29300347 PMCID: PMC5793268 DOI: 10.3390/nu10010040] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, accounting for 15% of all cancers in men worldwide. Asian populations consume soy foods as part of a regular diet, which may contribute to the lower PCa incidence observed in these countries. This meta-analysis provides a comprehensive updated analysis that builds on previously published meta-analyses, demonstrating that soy foods and their isoflavones (genistein and daidzein) are associated with a lower risk of prostate carcinogenesis. Thirty articles were included for analysis of the potential impacts of soy food intake, isoflavone intake, and circulating isoflavone levels, on both primary and advanced PCa. Total soy food (p < 0.001), genistein (p = 0.008), daidzein (p = 0.018), and unfermented soy food (p < 0.001) intakes were significantly associated with a reduced risk of PCa. Fermented soy food intake, total isoflavone intake, and circulating isoflavones were not associated with PCa risk. Neither soy food intake nor circulating isoflavones were associated with advanced PCa risk, although very few studies currently exist to examine potential associations. Combined, this evidence from observational studies shows a statistically significant association between soy consumption and decreased PCa risk. Further studies are required to support soy consumption as a prophylactic dietary approach to reduce PCa carcinogenesis.
Collapse
|
17
|
Bilir B, Sharma NV, Lee J, Hammarstrom B, Svindland A, Kucuk O, Moreno CS. Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer. Int J Oncol 2017; 51:223-234. [PMID: 28560383 PMCID: PMC5467777 DOI: 10.3892/ijo.2017.4017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have shown that dietary compounds have significant effects on prostate carcinogenesis. Among dietary agents, genistein, the major isoflavone in soybean, is of particular interest because high consumption of soy products has been associated with a low incidence of prostate cancer, suggesting a preventive role of genistein in prostate cancer. In spite of numerous studies to understand the effects of genistein on prostate cancer, the mechanisms of action have not been fully elucidated. We investigated the differences in methylation and gene expression levels of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy using Illumina HumanMethylation450 and Illumina HumanHT-12 v4 Expression BeadChip Microarrays. The present study was a randomized, placebo-controlled, double-blind clinical trial on Norwegian patients who received 30 mg genistein or placebo capsules daily for 3–6 weeks before prostatectomy. Gene expression changes were validated by quantitative PCR (qPCR). Whole genome methylation and expression profiling identified differentially methylated sites and expressed genes between placebo and genistein groups. Differentially regulated genes were involved in developmental processes, stem cell markers, proliferation and transcriptional regulation. Enrichment analysis suggested overall reduction in MYC activity and increased PTEN activity in genistein-treated patients. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.
Collapse
Affiliation(s)
- Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitya V Sharma
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jeongseok Lee
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Bato Hammarstrom
- Department of Urology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Aud Svindland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin Med J (Engl) 2017; 129:341-7. [PMID: 26831238 PMCID: PMC4799580 DOI: 10.4103/0366-6999.174488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: The purpose of this review is to discuss some critical issues of isoflavones protective against the development of prostate cancer (PCa). Data Sources: Data cited in this review were obtained primarily from PubMed and Embase from 1975 to 2015. Study Selection: Articles were selected with the search terms “isoflavone”, “Phytoestrogen”, “soy”, “genistin”, and “PCa”. Results: Isoflavones do not play an important role on prostate-specific antigen levels reduction in PCa patients or healthy men. The effect of isoflavones on sex hormone levels and PCa risk may be determined by equol converting bacteria in the intestine, specific polymorphic variation and concentrations of isoflavones. The intake of various types of phytoestrogens with lower concentrations in the daily diet may produce synergistic effects against PCa. Moreover, prostate tissue may concentrate isoflavones to potentially anti-carcinogenic levels. In addition, it is noteworthy that isoflavones may act as an agonist in PCa. Conclusions: Isoflavones play a protective role against the development of PCa. However, careful consideration should be given when isoflavones are used in the prevention and treatment of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi-Ming Wang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
19
|
Yasmeen R, Fukagawa NK, Wang TT. Establishing health benefits of bioactive food components: a basic research scientist's perspective. Curr Opin Biotechnol 2017; 44:109-114. [PMID: 28056363 DOI: 10.1016/j.copbio.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 12/23/2022]
Abstract
Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects on health beyond basic nutrition. However, a question continues to lurk: are these claims for 'super foods' backed by sound science or simply an exaggerated portrayal of very small 'benefits'? Efforts to establish health benefits by scientific means pose a real challenge in regards to defining what those benefits are, as well as how effective the foods are in justifying any health claim. This review discusses the pitfalls associated with the execution, interpretation, extrapolation of the results to humans and the challenges encountered in the dietary research arena from a basic scientist's perspective.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA
| | - Naomi K Fukagawa
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA
| | - Thomas Ty Wang
- Diet, Genomics and Immunology Lab, Beltsville Human Nutrition Research Center, ARS, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
20
|
Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Naito S, Eto M, Yokomizo A. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci 2016; 107:1022-8. [PMID: 27088761 PMCID: PMC4946716 DOI: 10.1111/cas.12948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Chemopreventive and potential therapeutic effects of soy isoflavones have been shown to be effective in numerous preclinical studies as well as clinical studies in prostate cancer. Although the inhibition of androgen receptor signaling has been supposed as one mechanism underlying their effects, the precise mechanism of androgen receptor inhibition remains unclear. Thus, this study aimed to clarify their mechanism. Among soy isoflavones, equol suppressed androgen receptor as well as prostate-specific antigen expression most potently in androgen-dependent LNCaP cells. However, the inhibitory effect on androgen receptor expression and activity was less prominent in castration-resistant CxR and 22Rv1 cells. Consistently, cell proliferation was suppressed and cellular apoptosis was induced by equol in LNCaP cells, but less so in CxR and 22Rv1 cells. We revealed that the proteasome pathway through S-phase kinase-associated protein 2 (Skp2) was responsible for androgen receptor suppression. Taken together, soy isoflavones, especially equol, appear to be promising as chemopreventive and therapeutic agents for prostate cancer based on the fact that equol augments Skp2-mediated androgen receptor degradation. Moreover, because Skp2 expression was indicated to be crucial for the effect of soy isoflavones, soy isoflavones may be applicable for precancerous and cancerous prostates.
Collapse
Affiliation(s)
- Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Relationship of serum levels and dietary intake of isoflavone, and the novel bacterium Slackia sp. strain NATTS with the risk of prostate cancer: a case–control study among Japanese men. Int Urol Nephrol 2016; 48:1453-60. [DOI: 10.1007/s11255-016-1335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/24/2016] [Indexed: 01/21/2023]
|
22
|
Bernardo BD, Brandt JZ, Grassi TF, Silveira LTR, Scarano WR, Barbisan LF. Genistein reduces the noxious effects of in utero bisphenol A exposure on the rat prostate gland at weaning and in adulthood. Food Chem Toxicol 2015; 84:64-73. [DOI: 10.1016/j.fct.2015.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 01/26/2023]
|
23
|
Abstract
Soy phytoestrogens are dietary components with considerable effects on reducing the incidence of prostate cancer. Epidemiological studies demonstrated that occurrence of prostate cancer is relatively low in Asia and Southern Europe, a status associated with consuming of soy isoflavones, such as genistein, daidzein, and glycitein. Soy phytoestrogens exert their activity on molecular mechanisms, including cell-cycle control, induction of apoptosis, inhibition of angiogenesis, and metastasis. In addition, they have antioxidant activity and show regulatory effect on the expression of genes involved in DNA damage and repair. Furthermore, the epigenetic regulation of gene expression can be modified by soy phytoestrogens. They show regulatory effects on gene activity by altering DNA methylation and/or histone modification patterns. In this chapter, we discuss the role of soy phytoestrogens on the genetic and epigenetic mechanisms of prostate cancer. We attempt to provide further insight in order to understand the underlying mechanisms of protective effects of soy phytoestrogens in preventing prostate cancer.
Collapse
|
24
|
Sugiyama Y, Nagata Y, Fukuta F, Takayanagi A, Masumori N, Tsukamoto T, Akasaka H, Ohnishi H, Saito S, Miura T, Moriyama K, Tsuji H, Akaza H, Mori M. Counts of Slackia sp. strain NATTS in intestinal flora are correlated to serum concentrations of equol both in prostate cancer cases and controls in Japanese men. Asian Pac J Cancer Prev 2015; 15:2693-7. [PMID: 24761887 DOI: 10.7314/apjcp.2014.15.6.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isoflavones, which are included in soybeans, have been suggested to protect against prostate cancer. Equol, one of isoflavones, is an intestinally derived bacterial metabolite of daidzein. A newly identified equol-producing bacterium, Slackia sp. strain NATTS, with a high equol-producing activity was isolated from human feces in Japanese adults. Counts of Slackia sp. strain NATTS in intestinal flora have not been assessed with regard to prostate cancer risk. In this study, we investigated the association of serum isoflavones and counts of Slackia sp. strain NATTS with prostate cancer risk in a case-control study. MATERIALS AND METHODS Concentrations of isoflavones and counts of Slackia sp. strain NATTS in feces were measured from 44 patients with prostate cancer and 28 hospital controls. The risk of prostate cancer was evaluated in terms of odds ratios (ORs) and 95% confidence intervals (CIs) by the logistic regression analysis. RESULTS The detection proportions of Slackia sp. strain NATTS in cases and controls were 34.1% and 25.0%, respectively. Counts of Slackia sp. strain NATTS were significantly correlated with serum concentrations of equol both in cases and controls (Spearman correlation coefficients, rs=0.639 and rs=0.572, p<0.01, respectively). Serum concentrations of genistein, daidzein, glycitein, and equol were not significantly associated with risk of prostate cancer. CONCLUSIONS This study found that counts of Slackia sp. strain NATTS correlated with serum concentrations of equol both in prostate cancer cases and controls, but serum isoflavone concentrations were not associated with risk of prostate cancer in our patients.
Collapse
Affiliation(s)
- Yukiko Sugiyama
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan E-mail :
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Merkle W. Prostatakarzinomprophylaxe durch Nahrungsergänzungsmittel. Urologe A 2014; 53:1610-9. [DOI: 10.1007/s00120-014-3614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA. Phenolic compounds: their journey after intake. Food Funct 2014; 5:189-97. [PMID: 24336740 DOI: 10.1039/c3fo60361j] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant foods are rich in phenolic compounds (PCs) that display multifaceted bioactions in health promotion and disease prevention. To exert their bioactivity, they must be delivered to and absorbed in the gastrointestinal (GI) tract, transported in circulation, and reach the target tissues. During the journey from ingestion to target tissues and final excretion, PCs are subjected to modifications by many factors during their absorption, deposition, metabolism and excretion (ADME) and consequently their bioefficacy may be modified. Consistent with all nutrients in foods, PCs must first be released from the food matrix through mechanical, chemical, and enzymatic forces to facilitate absorption along the GI tract, particularly in the upper small intestine section. Further, glycosylation of PCs directs the route of their absorption with glycones being transported through active transportation and aglycones through passive diffusion. After enteral absorption, the majority of PCs are extensively transformed by the detoxification system in enterocytes and liver for excretion in bile, feces, and urine. The journey of PCs from consumption to excretion appears to be comparable to many synthetic medications, but with some dissimilarities in their fate and bioactivity after phase I and II metabolism. The overall bioavailability of PCs is determined mainly by chemical characteristics, bioaccessibility, and ADME. In this review, factors accounting for variation in PCs bioavailability are discussed because this information is crucial for validation of the health benefits of PCs and their mechanism of action.
Collapse
Affiliation(s)
- G R Velderrain-Rodríguez
- Research Center for Food & Development (CIAD), AC., Carretera a la Victoria Km 0.6, Hermosillo (83000), Sonora, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mattison DR, Karyakina N, Goodman M, LaKind JS. Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: A review of the data and identification of knowledge gaps. Crit Rev Toxicol 2014; 44:696-724. [DOI: 10.3109/10408444.2014.930813] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014; 140:116-32. [PMID: 24373791 PMCID: PMC3962012 DOI: 10.1016/j.jsbmb.2013.12.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Lephart ED. Review: Anti-Oxidant and Anti-Aging Properties of Equol in Prostate Health (BPH). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojemd.2014.41001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Abstract
In Europe, prostate cancer (PC) is the most common malignancy in males. There are three known risk factors strongly coherent to the development of PC: heredity, ethnical origin, and age. Migration studies have shown that environmental factors may influence the development of PC. In this context, specific nutritional components may exert an influence on the tumorigenesis of PC. Primary prevention of PC is still an important issue due to its high prevalence, treatment-associated morbidities, and long-term complications. Phytoestrogenes as flavonoids seem to play an essential role in the chemoprevention of PC which is possibly due to their hormonal function and antioxidative capability. Flavonoids and their subgroups are naturally existent in traditional asian and vegetarian nutrients as coverings of plants, fruits, and vegetables. Two of the most frequently investigated flavonoids are genistein and quercetin. These nutritional components may have therapeutic potential and may impact the development of PC. Even though these flavonoids show promising results in the chemoprevention of PC, the literature is almost experimental, epidemiological, and retrospective with a missing long-term follow-up. Therefore, randomized clinical trials are urgently needed to evaluate in depth its oncologic effects in PC.
Collapse
|
31
|
Mahmoud AM, Zhu T, Parray A, Siddique HR, Yang W, Saleem M, Bosland MC. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PLoS One 2013; 8:e78479. [PMID: 24167630 PMCID: PMC3805529 DOI: 10.1371/journal.pone.0078479] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
Blocking the androgen receptor (AR) activity is the main goal of therapies for advanced prostate cancer (PCa). However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent) activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A) mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L) stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy.
Collapse
Affiliation(s)
- Abeer M. Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tian Zhu
- Center of Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Aijaz Parray
- Section of Molecular Chemoprevention and Therapeutics, the Hormel Institute, University of Minnesota, Austin, Texas, United States of America
| | - Hifzur R. Siddique
- Section of Molecular Chemoprevention and Therapeutics, the Hormel Institute, University of Minnesota, Austin, Texas, United States of America
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Mohammad Saleem
- Section of Molecular Chemoprevention and Therapeutics, the Hormel Institute, University of Minnesota, Austin, Texas, United States of America
| | - Maarten C. Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
32
|
Hamilton-Reeves JM, Banerjee S, Banerjee SK, Holzbeierlein JM, Thrasher JB, Kambhampati S, Keighley J, Van Veldhuizen P. Short-term soy isoflavone intervention in patients with localized prostate cancer: a randomized, double-blind, placebo-controlled trial. PLoS One 2013; 8:e68331. [PMID: 23874588 PMCID: PMC3710024 DOI: 10.1371/journal.pone.0068331] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/28/2013] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We describe the effects of soy isoflavone consumption on prostate specific antigen (PSA), hormone levels, total cholesterol, and apoptosis in men with localized prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS We conducted a double-blinded, randomized, placebo-controlled trial to examine the effect of soy isoflavone capsules (80 mg/d of total isoflavones, 51 mg/d aglucon units) on serum and tissue biomarkers in patients with localized prostate cancer. Eighty-six men were randomized to treatment with isoflavones (n=42) or placebo (n=44) for up to six weeks prior to scheduled prostatectomy. We performed microarray analysis using a targeted cell cycle regulation and apoptosis gene chip (GEArrayTM). Changes in serum total testosterone, free testosterone, total estrogen, estradiol, PSA, and total cholesterol were analyzed at baseline, mid-point, and at the time of radical prostatectomy. In this preliminary analysis, 12 genes involved in cell cycle control and 9 genes involved in apoptosis were down-regulated in the treatment tumor tissues versus the placebo control. Changes in serum total testosterone, free testosterone, total estrogen, estradiol, PSA, and total cholesterol in the isoflavone-treated group compared to men receiving placebo were not statistically significant. CONCLUSIONS/SIGNIFICANCE These data suggest that short-term intake of soy isoflavones did not affect serum hormone levels, total cholesterol, or PSA. TRIAL REGISTRATION ClinicalTrials.gov NCT00255125.
Collapse
Affiliation(s)
- Jill M. Hamilton-Reeves
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Snigdha Banerjee
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - Sushanta K. Banerjee
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - Jeffrey M. Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - J. Brantley Thrasher
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - John Keighley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| |
Collapse
|
33
|
Ahmad A, Biersack B, Li Y, Bao B, Kong D, Ali S, Banerjee S, Sarkar FH. Perspectives on the role of isoflavones in prostate cancer. AAPS JOURNAL 2013; 15:991-1000. [PMID: 23824838 DOI: 10.1208/s12248-013-9507-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Isoflavones have been investigated in detail for their role in the prevention and therapy of prostate cancer. This is primarily because of the overwhelming data connecting high dietary isoflavone intake with reduced risk of developing prostate cancer. A number of investigations have evaluated the mechanism(s) of anticancer action of isoflavones such as genistein, daidzein, biochanin A, equol, etc., in various prostate cancer models, both in vitro and in vivo. Genistein quickly jumped to the forefront of isoflavone cancer research, but the initial enthusiasm was followed by reports on its contradictory prometastatic and tumor-promoting effects. Use of soy isoflavone mixture has been advocated as an alternative, wherein daidzein can negate harmful effects of genistein. Recent research indicates a novel role of genistein and other isoflavones in the potentiation of radiation therapy, epigenetic regulation of key tumor suppressors and oncogenes, and the modulation of miRNAs, epithelial-to-mesenchymal transition, and cancer stem cells, which has renewed the interest of cancer researchers in this class of anticancer compounds. This comprehensive review article summarizes our current understanding of the role of isoflavones in prostate cancer research.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, Michigan, 48201,, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
D. Lephart E. Severe & Moderate BPH Symptoms in Mid-Aged Men Improve with Isoflavonoid-Equol Treatment: Pilot Intervention Study. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/oju.2013.31004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Karieb S, Fox SW. Zinc modifies the effect of phyto-oestrogens on osteoblast and osteoclast differentiation in vitro. Br J Nutr 2012; 108:1736-45. [PMID: 22289672 DOI: 10.1017/s0007114511007355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteoblast and osteoclast activity is disrupted in post-menopausal osteoporosis. Thus, to fully address this imbalance, therapies should reduce bone resorption and promote bone formation. Dietary factors such as phyto-oestrogens and Zn have beneficial effects on osteoblast and osteoclast activity. However, the effect of combinations of these factors has not been widely studied. We therefore examined the effect of coumestrol, daidzein and genistein in the presence or absence of zinc sulphate (Zn) on osteoclast and osteoblast activity. Osteoclast differentiation and bone resorption were significantly reduced by coumestrol (10- 7 m), daidzein (10- 5 m) and genistein (10- 7 m); and this direct anti-osteoclastic action was unaffected by Zn (10- 5 m). In addition, Zn augmented the inhibitory effect of phyto-oestrogens on the osteoblast-derived stimulus for osteoclast formation, significantly reducing the ratio of receptor activator of NF-κB ligand (RANKL)-to-osteoprotegerin mRNA expression in human osteoblast. We then examined the effect of these compounds on osteoblast activity. Mineralisation was enhanced by coumestrol (10- 5 to 10- 7 m), daidzein (10- 5 to 10- 6 m) and genistein (10- 5 m); and Zn significantly augmented this response. Zn and phyto-oestrogens also significantly enhanced alkaline phosphatase activity and Runt-related transcription factor 2 (Runx2) mRNA expression. On the other hand, Zn blunted phyto-oestrogen-induced type I collagen and osteocalcin expression and suppressed coumestrol and daidzein-stimulated osterix expression. Zn may therefore modify the anabolic action of phyto-oestrogens, promoting characteristics associated with early rather than late stages of osteoblast differentiation. Our data suggest that while Zn enhances the anti-osteoclastic effect of phyto-oestrogens, it may limit aspects of their anabolic action on bone matrix formation.
Collapse
Affiliation(s)
- Sahar Karieb
- School of Biomedical and Biological Sciences, Room 404 Davy Building, Drake Circus, Plymouth University, Plymouth PL4 8AA, UK
| | | |
Collapse
|
36
|
Lepri SR, Luiz RC, Zanelatto LC, da Silva PBG, Sartori D, Ribeiro LR, Mantovani MS. Chemoprotective activity of the isoflavones, genistein and daidzein on mutagenicity induced by direct and indirect mutagens in cultured HTC cells. Cytotechnology 2012; 65:213-22. [PMID: 22752585 DOI: 10.1007/s10616-012-9476-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022] Open
Abstract
Isoflavones are phenolic compounds widely distributed in plants and found in a high percentage in soybeans. They have important biological properties and are regarded as potential chemopreventive agents. The aim of this study was to verify the preventive effect of two soy isoflavones (genistein and daidzein) by a micronucleus assay, analysis of GST activity, and real-time RT-PCR analysis of GSTa2 gene expression. Mutagens of direct (doxorubicin) and indirect (2-aminoanthracene) DNA damage were used. Hepatoma cells (HTC) were treated with genistein or daidzein for 26 h at noncytotoxic concentrations; 10 μM when alone, and 0.1, 1.0 and 10 μM when combined with genotoxic agents. The micronucleus test demonstrated that both isoflavones alone had no genotoxic effect. Genistein showed antimutagenic effects at 10 μM with both direct and indirect DNA damage agents. On phase II enzyme regulation, the current study indicated an increase in total cytoplasmic GST activity in response to genistein and daidzein at 10 μM supplementation. However, the mRNA levels of GSTa2 isozymes were not differentially modulated by genistein or daidzein. The results point to an in vitro antimutagenic activity of genistein against direct and indirect DNA damage-induced mutagenicity.
Collapse
Affiliation(s)
- Sandra Regina Lepri
- General Biology Department, State University of Londrina (UEL), Rodovia Celso Garcia Cid, Pr 445 km 380, Campus Universitário, Cx. Postal 6001, Londrina, PR, CEP 86051-980, Brazil,
| | | | | | | | | | | | | |
Collapse
|
37
|
Phillip CJ, Giardina CK, Bilir B, Cutler DJ, Lai YH, Kucuk O, Moreno CS. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells. BMC Cancer 2012; 12:145. [PMID: 22494660 PMCID: PMC3472186 DOI: 10.1186/1471-2407-12-145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/23/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among American men, prostate cancer is the most common, non-cutaneous malignancy that accounted for an estimated 241,000 new cases and 34,000 deaths in 2011. Previous studies have suggested that Wnt pathway inhibitory genes are silenced by CpG hypermethylation, and other studies have suggested that genistein can demethylate hypermethylated DNA. Genistein is a soy isoflavone with diverse effects on cellular proliferation, survival, and gene expression that suggest it could be a potential therapeutic agent for prostate cancer. We undertook the present study to investigate the effects of genistein on the epigenome of prostate cancer cells and to discover novel combination approaches of other compounds with genistein that might be of translational utility. Here, we have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial to mesenchymal transition (EMT), to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells. METHODS Using whole genome expression profiling and whole genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and combination treatment, where cell death and cell proliferation was determined. RESULTS Contrary to earlier reports, genistein did not have an effect on CpG methylation at 20 μM, but it did affect histone H3K9 acetylation and induced increased expression of histone acetyltransferase 1 (HAT1). In addition, genistein also had differential effects on survival and cooperated with the histone deacteylase inhibitor vorinostat to induce cell death and inhibit proliferation. CONCLUSION Our results suggest that there are a number of pathways that are affected with genistein and vorinostat treatment such as Wnt, TNF, G2/M DNA damage checkpoint, and androgen signaling pathways. In addition, genistein cooperates with vorinostat to induce cell death in prostate cancer cell lines with a greater effect on early stage prostate cancer.
Collapse
Affiliation(s)
- Cornel J Phillip
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. JOURNAL OF ONCOLOGY 2011; 2012:192464. [PMID: 22187555 PMCID: PMC3236518 DOI: 10.1155/2012/192464] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 12/18/2022]
Abstract
The genesis of cancer is often a slow process and the risk of developing cancer increases with age. Altering a diet that includes consumption of beneficial phytochemicals can influence the balance and availability of dietary chemopreventive agents. In chemopreventive approaches, foods containing chemicals that have anticancer properties can be supplemented in diets to prevent precancerous lesions from occurring. This necessitates further understanding of how phytochemicals can potently maintain healthy cells. Fortunately there is a plethora of plant-based phytochemicals although few of them are well studied in terms of their application as cancer chemopreventive and therapeutic agents. In this analysis we will examine phytochemicals that have strong chemopreventive and therapeutic properties in vitro as well as the design and modification of these bioactive compounds for preclinical and clinical applications. The increasing potential of combinational approaches using more than one bioactive dietary compound in chemoprevention or cancer therapy will also be evaluated. Many novel approaches to cancer prevention are on the horizon, several of which are showing great promise in saving lives in a cost-effective manner.
Collapse
|
39
|
Daidzein attenuates inflammation and exhibits antifibrotic effect against Bleomycin-induced pulmonary fibrosis in Wistar rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
The dietary isoflavone biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis. Urol Oncol 2011; 31:331-42. [PMID: 21803611 DOI: 10.1016/j.urolonc.2011.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 11/20/2022]
Abstract
Biochanin-A, a major dietary isoflavone in soy and red clover, possesses anticancer and chemopreventive properties. Induction of apoptosis by naturally occurring dietary agents is an important event for cancer chemoprevention. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in cancer cells but not in normal cells. Soluble or expressed in immune cells, molecules TRAIL plays a significant role in surveillance and defense mechanisms against tumours. Prostate cancer is an ideal disease for nutritional prevention. The TRAIL-mediated apoptosis pathway in prostate cancer cells is an attractive target for chemopreventive activities of dietary agents. LNCaP and DU145 prostate cancer cells are resistant to TRAIL-induced apoptosis. We showed that biochanin-A markedly augmented TRAIL-induced cytotoxicity and apoptosis in both prostate cancer cell lines. Then, we investigated the mechanisms by which biochanin-A enhanced TRAIL-mediated apoptosis using the LNCaP cell line. The isoflavone sensitized the TRAIL-resistant LNCaP cells through the inhibition of transcription factor NF-κB(p65) activity, increased the expression of the death receptor TRAIL-R2 (DR5), and disrupted mitochondrial membrane potential (ΔΨm). Our study confirmed that biochanin-A overcame TRAIL-resistance by engaging both intrinsic and extrinsic apoptotic pathways and by regulating the NF-κB activity. The results suggested a potential role of biochanin-A in prostate cancer chemoprevention through the enhancement of TRAIL-mediated apoptosis.
Collapse
|
41
|
Abstract
A high intake of fruits and vegetables is associated with a lower risk of cancer. In this context, considerable attention is paid to Asian populations who consume high amounts of soy and soy-derived isoflavones, and have a lower risk for several cancer types such as breast and prostate cancers than populations in Western countries. Hence, interest focuses on soyfoods, soy products, and soy ingredients such as isoflavones with regard to their possible beneficial effects that were observed in numerous experiments and studies. The outcomes of the studies are not always conclusive, are often contradictory depending on the experimental conditions, and are, therefore, difficult to interpret. Isoflavone research revealed not only beneficial but also adverse effects, for instance, on the reproductive system. This is also the case with tumor-promoting effects on, for example, breast tissue. Isoflavone extracts and supplements are often used for the treatment of menopausal symptoms and for the prevention of age-associated conditions such as cardiovascular diseases and osteoporosis in postmenopausal women. In relation to this, questions about the effectiveness and safety of isoflavones have to be clarified. Moreover, there are concerns about the maternal consumption of isoflavones due to the development of leukemia in infants. In contrast, men may benefit from the intake of isoflavones with regard to reducing the risk of prostate cancer. Therefore, this review examines the risks but also the benefits of isoflavones with regard to various kinds of cancer, which can be derived from animal and human studies as well as from in vitro experiments.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Kang HJ, Youn YK, Hong MK, Kim LS. Antiproliferation and redifferentiation in thyroid cancer cell lines by polyphenol phytochemicals. J Korean Med Sci 2011; 26:893-9. [PMID: 21738342 PMCID: PMC3124719 DOI: 10.3346/jkms.2011.26.7.893] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/06/2011] [Indexed: 01/23/2023] Open
Abstract
Thyroid carcinogenesis is accompanied by loss of thyroid-specific functions and refractory to radioiodine and thyroid stimulating hormone (TSH) suppression therapy. Redifferentiating agents have been shown to inhibit tumor growth and improve the response to conventional therapy. Polyphenol phytochemicals (PPs) in fruits and vegetables have been reported to inhibit cancer initiation, promotion, progression and induce redifferentiation in selected types. In this study we examined PPs induce redifferentiation in thyroid cancer cell lines. We investigated the effects of genistein, resveratrol, quercetin, kaempferol, and resorcinol on the F9 embryonal carcinoma cell differentiation model. The thyroid cancer cell lines, TPC-1, FTC-133, NPA, FRO, and ARO, displayed growth inhibition in response to genistein, resveratrol, quercetin. We further demonstrated that genistein decreased the dedifferention marker CD97 in NPA cells and resveratrol decreased CD97 in FTC-133, NPA, FRO cells and quercetin decreased CD97 in all cell lines. We observed increased expression of differentiation marker NIS in FTC-133 cells in response to genistein, and resveratrol but no change in NPA, FRO, ARO cells. Quercetin increased or induced NIS in FTC-133, NPA, FRO cells. These findings suggest that PPs may provide a useful therapeutic intervention in thyroid cancer redifferentiation therapy.
Collapse
Affiliation(s)
- Hee Joon Kang
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yeo-Kyu Youn
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Mi-Kyoung Hong
- Department of Breast and Endocrine Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Lee Su Kim
- Department of Breast and Endocrine Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
43
|
Barnes S, Prasain J, D'Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janle EM, Weaver CM. The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct 2011; 2:235-44. [PMID: 21779561 DOI: 10.1039/c1fo10025d] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polyphenols in dietary and botanical matrices are usually present as simple and complex O-glycosides. In fermented dietary materials, the glycosidic moiety is removed and accompanied in some cases by more complex changes to the polyphenol. As for most xenobiotics, polyphenols undergo phase II conjugation in the intestinal wall during their absorption from the gut. In contrast, a few polyphenols, such as puerarin in the kudzu vine, are C-glycosides and are stable in the gut and during absorption, distribution and excretion. Large bowel bacteria reduce polyphenol aglycones, causing opening of the heterocyclic B-ring and ring cleavage. The products are mostly absorbed and enter the bloodstream. Phase I and II metabolism events occur in the intestine and the liver - most polyphenols predominantly circulate as β-glucuronides and sulfate esters with very little as the aglycones, the presumed active forms. In addition, metabolism can occur in non-hepatic tissues and cells including breast tumor cells that have variable amounts of cytochrome P450s, sulfatase and sulfotransferase activities. Inflammatory cells produce chemical oxidants (HOCl, HOBr, ONO(2)(-)) that will react with polyphenols. The isoflavones daidzein and genistein and the flavonol quercetin form mono- and dichlorinated products in reaction with HOCl. Genistein is converted to 3'-nitrogenistein in the lung tissue of lipopolysaccharide-treated rats. Whereas polyphenols that can be converted to quinones or epoxides react with glutathione (GSH) to form adducts, chlorinated isoflavones do not react with GSH; instead, they are converted to β-glucuronides and are excreted in bile. Analysis of polyphenols and their metabolites is routinely carried out with great sensitivity, specificity and quantification by LC-tandem mass spectrometry. Critical questions about the absorption and tissue uptake of complex polyphenols such as the proanthocyanins can be answered by labeling these polyphenols with (14)C-sucrose in plant cell culture and then purifying them for use in animal experiments. The (14)C signature is quantified using accelerator mass spectrometry, a technique capable of detecting one (14)C atom in 10(15) carbon atoms. This permits the study of the penetration of the polyphenols into the interstitial fluid, the fluid that is actually in contact with non-vascular cells.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Pharmacology & Toxicology, MCLM 452, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Poppel H, Tombal B. Chemoprevention of prostate cancer with nutrients and supplements. Cancer Manag Res 2011; 3:91-100. [PMID: 21629831 PMCID: PMC3097798 DOI: 10.2147/cmr.s18503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 12/31/2022] Open
Abstract
As the adult population is increasing, prostate cancer (PCa) will become a considerable health problem in the next millennium. This has raised public interest in potential chemoprevention of this disease. As PCa is extremely common and generally slow to progress it is regarded as an ideal candidate for chemoprevention. At present, the 5 alpha-reductase inhibitors finasteride and dutasteride have been identified as preventive agents. This review describes whether selenium, alpha-tocopherol, isoflavones, lycopene green tea polyphenols, calcium, and resveratrol may be useful for decreasing the risk of PCa in men. Although encouraging results are present, some studies show negative results. Differences in study design, sample size, dose administered, and/or concentrations achieved in the body may be the reason for these inconsistencies. Today, chemopreventive agents may be appropriate for high-risk patients like those with high-grade prostatic intraepithelial neoplasia and other high-risk groups such as patients with elevated prostate specific antigen (PSA) and negative biopsy, rapid PSA velocity, and with a family history of PCa. Although larger randomized controlled studies are needed and epidemiologic evidence should be placed in a clinical context, physicians must be aware of these preventive opportunities in PCa care. Combinations of chemopreventive agents should be carefully investigated because mechanisms of action may be additive or synergistic.
Collapse
|
45
|
Abstract
The health benefits associated with soya food consumption have been widely studied, with soya isoflavones and soya protein implicated in the protection of CVD, osteoporosis and cancers such as those of the breast and prostate. Equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman), a metabolite of the soya isoflavone daidzein, is produced via the formation of the intermediate dihydrodaidzein, by human intestinal bacteria, with only approximately 30-40% of the adult population having the ability to perform this transformation following a soya challenge. Inter-individual variation in conversion of daidzein to equol has been attributed, in part, to differences in the diet and in gut microflora composition, although the specific bacteria responsible for the colonic biotransformation of daidzein to equol are yet to be identified. Equol is a unique compound in that it can exert oestrogenic effects, but is also a potent antagonist of dihydrotestosterone in vivo. Furthermore, in vitro studies suggest that equol is more biologically active than its parent compound, daidzein, with a higher affinity for the oestrogen receptor and a more potent antioxidant activity. Although some observational and intervention studies suggest that the ability to produce equol is associated with reduced risk of breast and prostate cancer, CVD, improved bone health and reduced incidence of hot flushes, others have reported null or adverse effects. Studies to date have been limited and well-designed studies that are sufficiently powered to investigate the relationship between equol production and disease risk are warranted before the clinical relevance of the equol phenotype can be fully elucidated.
Collapse
Affiliation(s)
- Pamela J Magee
- Northern Ireland Centre for Food and Health, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
46
|
Karieb S, Fox SW. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressingc-fos-inducedNFATc1expression. J Cell Biochem 2011; 112:476-87. [DOI: 10.1002/jcb.22935] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Lund TD, Blake C, Bu L, Hamaker AN, Lephart ED. Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence. Reprod Biol Endocrinol 2011; 9:4. [PMID: 21232127 PMCID: PMC3032666 DOI: 10.1186/1477-7827-9-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/13/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT), in vitro effects of equol treatment in human prostate cancer (LNCap) cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. METHODS First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples). These steroids were incubated with increasing concentrations of equol (0-2,000 nM) and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol) as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours) in the presence of increasing concentrations of dimethyl sulfoxide (DMSO) (vehicle-control), 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA) levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1 cc s.c. injections of either DMSO-control vehicle (n = 8) or 1.0 mg/kg (body weight) of equol (in DMSO) (n = 8). At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH), 5alpha-DHT, testosterone and 17beta-estradiol levels. RESULTS Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate weights and serum 5alpha-DHT levels but did not alter LH, testosterone, and estradiol levels. CONCLUSIONS Equol administration appears to have potential beneficial effects for prostate health and other 5alpha-DHT mediated disorders. Equol administration: reduces PSA levels from LNCap cells under 5alpha-DHT stimulation, decreases rat prostate size, decreases serum 5alpha-DHT levels and androgen hormone action, while not altering other circulating sex steroids or LH levels.
Collapse
Affiliation(s)
| | - Crystal Blake
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Lihong Bu
- MRDDRC Imaging Core, Department of Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | - Amy N Hamaker
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Edwin D Lephart
- The Department of Physiology and Developmental Biology and the Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
48
|
Hirvonen J, Rajalin AM, Wohlfahrt G, Adlercreutz H, Wähälä K, Aarnisalo P. Transcriptional activity of estrogen-related receptor γ (ERRγ) is stimulated by the phytoestrogen equol. J Steroid Biochem Mol Biol 2011; 123:46-57. [PMID: 21056663 DOI: 10.1016/j.jsbmb.2010.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 01/24/2023]
Abstract
Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor lacking identified natural ligands. The synthetic estrogen receptor ligands 4-hydroxytamoxifen and diethylstilbestrol have, however, been shown to bind to and abolish the constitutive transcriptional activity of ERRγ. Certain phytoestrogens were recently reported to act as agonists of the related ERRα. We investigated whether phytoestrogens also modulated the transcriptional activity of ERRγ. We analyzed a selection of phytoestrogens for their potential agonistic or antagonistic activity on ERRγ. In transiently transfected PC-3 and U2-OS cells equol stimulated the transcriptional activity of ERRγ and enhanced its interaction with the coactivator GRIP1. The agonistic effect of equol was abolished by 4-hydroxytamoxifen. Equol induced a conformational change in the ERRγ ligand-binding domain. Based on structural models of the ERRγ ligand-binding domain, we were able to introduce mutations that modulated the agonistic potential of equol. Finally, equol enhanced the growth inhibitory effect of ERRγ on the prostate cancer PC-3 cells. In conclusion, we have demonstrated that the phytoestrogen equol acts as an ERRγ agonist.
Collapse
Affiliation(s)
- Johanna Hirvonen
- Institute of Biomedicine/Physiology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
49
|
de Souza PL, Russell PJ, Kearsley JH, Howes LG. Clinical pharmacology of isoflavones and its relevance for potential prevention of prostate cancer. Nutr Rev 2010; 68:542-55. [PMID: 20796219 DOI: 10.1111/j.1753-4887.2010.00314.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Isoflavones are phytoestrogens that have pleiotropic effects in a wide variety of cancer cell lines. Many of these biological effects involve key components of signal transduction pathways within cancer cells, including prostate cancer cells. Epidemiological studies have raised the hypothesis that isoflavones may play an important role in the prevention and modulation of prostate cancer growth. Since randomized phase III trials of isoflavones in prostate cancer prevention are currently lacking, the best evidence for this concept is presently provided by case control studies. However, in vitro data are much more convincing in regard to the activity of a number of isoflavones, and have led to the development of genistein and phenoxodiol in the clinic as potential treatments for cancer. In addition, the potential activity of isoflavones in combination with cytotoxics or radiotherapy warrants further investigation. This review focuses on the clinical pharmacology of isoflavones and its relevance to their development for use in the prevention of prostate cancer, and it evaluates some of the conflicting data in the literature.
Collapse
Affiliation(s)
- Paul L de Souza
- St. George Hospital Clinical School, UNSW, Kogarah, New South Wales, Australia.
| | | | | | | |
Collapse
|
50
|
Barnes S, Kim H. Cautions and research needs identified at the equol, soy, and menopause research leadership conference. J Nutr 2010; 140:1390S-4S. [PMID: 20505015 PMCID: PMC2884337 DOI: 10.3945/jn.109.120626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This summary addresses the progress and limitations of existing research on the physiologic properties of the isoflavone daidzein metabolite equol. Previous research demonstrating that physiological equol is its S-enantiomer has led to the preparation of S-(-)equol-enriched products formed by the bacterial fermentation of soy germ. Although this product has interesting properties as described in this workshop, the following important issues must be addressed: 1) the product should be evaluated against a preparation containing an equal amount of pure S-(-)equol to determine whether other components resulting from the fermentation are contributing to the physiological effects; 2) evaluation of the cellular mechanisms of S-(-)equol using cell culture methods should be conducted at concentrations consistent with those encountered physiologically (in the nmol/L range) and in several cell lines representing a target tissue; and 3) in follow-up studies in animal models and in human clinical trials, standardized preparations of S-(-)equol should be made available. Research opportunities now exist to determine whether equol's apparent effects on menopausal symptoms (hot flashes, sleep disturbances, bone health) in equol producers can be extended to equol nonproducers. It will be important to ensure that such research is not complicated by cultural differences, differences in lifetime exposure to soy products, experimental techniques, and other variables. Further areas of research that would benefit from the availability of S-(-)equol preparations include its use in skin care (either as an antioxidant or as an estrogen receptor agonist) and in the treatment of brain injury as well as postmenopausal cognitive decline.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Pharmacology and Toxicology, and Center for Nutrient-Gene Interaction, University of Alabama at Birmingham and Purdue University-University of Alabama at Birmingham Botanicals Research Center for Age-Related Disease, Birmingham, AL 35294, USA.
| | | |
Collapse
|