1
|
Bendahmane S, Follo M, Zhang F, Linhardt RJ. Towards Cell-Permeable Hepatitis B Virus Core Protein Variants as Potential Antiviral Agents. Microorganisms 2024; 12:1776. [PMID: 39338451 PMCID: PMC11434381 DOI: 10.3390/microorganisms12091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major health threat with limited treatment options. One of various new antiviral strategies is based on a fusion of Staphylococcus aureus nuclease (SN) with the capsid-forming HBV core protein (HBc), termed coreSN. Through co-assembly with wild-type HBc-subunits, the fusion protein is incorporated into HBV nucleocapsids, targeting the nuclease to the encapsidated viral genome. However, coreSN expression was based on transfection of a plasmid vector. Here, we explored whether introducing protein transduction domains (PTDs) into a fluorescent coreSN model could confer cell-penetrating properties for direct protein delivery into cells. Four PTDs were inserted into two different positions of the HBc sequence, comprising the amphiphilic translocation motif (TLM) derived from the HBV surface protein PreS2 domain and three basic PTDs derived from the Tat protein of human immunodeficiency virus-1 (HIV-1), namely Tat4, NP, and NS. To directly monitor the interaction with cells, the SN in coreSN was replaced with the green fluorescent protein (GFP). The fusion proteins were expressed in E. coli, and binding to and potential uptake by human cells was examined through flow cytometry and fluorescence microscopy. The data indicate PTD-dependent interactions with the cells, with evidence of uptake in particular for the basic PTDs. Uptake was enhanced by a triplicated Simian virus 40 (SV40) large T antigen nuclear localization signal (NLS). Interestingly, the basic C terminal domain of the HBV core protein was found to function as a novel PTD. Hence, further developing cell-permeable viral capsid protein fusions appears worthwhile.
Collapse
Affiliation(s)
- Sanaa Bendahmane
- Private Faculty of Health Professions and Technologies, Private University of Marrakech, Marrakech 42312, Morocco
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
2
|
Starr CA, Nair S, Huang SY, Hagan MF, Jacobson SC, Zlotnick A. Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation. J Am Chem Soc 2023; 145:2322-2331. [PMID: 36651799 PMCID: PMC10018796 DOI: 10.1021/jacs.2c10937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For a virus-like particle (VLP) to serve as a delivery platform, the VLP must be able to release its cargo in response to a trigger. Here, we use a chemical biology approach to destabilize a self-assembling capsid for a subsequent triggered disassembly. We redesigned the dimeric hepatitis B virus (HBV) capsid protein (Cp) with two differentially addressable cysteines, C150 for reversibly crosslinking the capsid and C124 to react with a destabilizing moiety. The resulting construct, Cp150-V124C, assembles into icosahedral, 120-dimer VLPs that spontaneously crosslink via the C-terminal C150, leaving C124 buried at a dimer-dimer interface. The VLP is driven into a metastable state when C124 is reacted with the bulky fluorophore, maleimidyl BoDIPY-FL. The resulting VLP is stable until exposed to modest, physiologically relevant concentrations of reducing agent. We observe dissociation with FRET relaxation of polarization, size exclusion chromatography, and resistive-pulse sensing. Dissociation is slow, minutes to hours, with a characteristic lag phase. Mathematical modeling based on the presence of a nucleation step predicts disassembly dynamics that are consistent with experimental observations. VLPs transfected into hepatoma cells show similar dissociation behavior. These results suggest a generalizable strategy for designing a VLP that can release its contents in an environmentally responsive reaction.
Collapse
Affiliation(s)
- Caleb A. Starr
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
| | - Smita Nair
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
- current address: Door Pharmaceuticals, Bloomington, IN 47401 USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN 47405 USA
| | - Michael F. Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 USA
| | | | - Adam Zlotnick
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
3
|
Zhang B, Yin S, Wang Y, Su Z, Bi J. Cost-effective purification process development for chimeric hepatitis B core (HBc) virus-like particles assisted by molecular dynamic simulation. Eng Life Sci 2021; 21:438-452. [PMID: 34140854 PMCID: PMC8182290 DOI: 10.1002/elsc.202000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Inserting foreign epitopes to hepatitis B core (HBc) virus-like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost-effective purification process was developed for two chimeric HBc VLPs displaying Epstein-Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core-HBc was found to be less stable in water environment compared with EBNA1-HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α-helix of HCV core-HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost-effective purification approach.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Shuang Yin
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Yingli Wang
- School of Chinese Medicine and Food EngineeringShanxi University of Traditional Chinese MedicineJinzhongShanxi ProvinceP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
4
|
Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. ACS NANO 2020; 14:12642-12651. [PMID: 32924431 DOI: 10.1021/acsnano.9b08756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
6
|
Rat V, Seigneuret F, Burlaud-Gaillard J, Lemoine R, Hourioux C, Zoulim F, Testoni B, Meunier JC, Tauber C, Roingeard P, de Rocquigny H. BAY 41-4109-mediated aggregation of assembled and misassembled HBV capsids in cells revealed by electron microscopy. Antiviral Res 2019; 169:104557. [PMID: 31302151 DOI: 10.1016/j.antiviral.2019.104557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
HBc is a small protein essential for the formation of the icosahedral HBV capsid. Its multiple roles in the replication cycle make this protein a promising target for the development of antiviral molecules. Based on the structure of HBc, a series of HBV assembly inhibitors, also known as capsid assembly modulators, were identified. We investigated the effect of BAY 41-4109, a heteroaryldihydropyrimidine derivative that promotes the assembly of a non-capsid polymer. We showed, by confocal microscopy, that BAY 41-4109 mediated HBc aggregation, mostly in the cytoplasm of Huh7 cells. Image analysis revealed that aggregate size depended on BAY 41-4109 concentration and treatment duration. Large aggregates in the vicinity of the nucleus were enclosed by invaginations of the nuclear envelope. This deformation of the nuclear envelope was confirmed by transmission electron microscopy (TEM) and immuno-TEM. These two techniques also revealed that the HBc aggregates were accumulations of capsid-like shells with an electron-dense material consisting of HBV core fragments. These findings, shedding light on the ultrastructural organization of HBc aggregates, provide insight into the mechanisms of action of BAY 41-4109 against HBV and will serve as a basis for comparison with other HBV capsid assembly inhibitors.
Collapse
Affiliation(s)
- Virgile Rat
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Florian Seigneuret
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- B-Cell Resources Platform, EA4245 "Transplantation, Immunologie et Inflammation", Université de Tours, 10 Boulevard Tonnellé, 37032, Tours Cedex 1, France
| | - Christophe Hourioux
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Fabien Zoulim
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Barbara Testoni
- INSERM U1052-Cancer Research Center of Lyon (CRCL), 69008, Lyon, France; University of Lyon, UMR_S1052, CRCL, 69008, Lyon, France; Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, France
| | - Jean-Christophe Meunier
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Clovis Tauber
- UMRS Inserm U1253 - Université de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Philippe Roingeard
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France; Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité Du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Université de Tours et CHRU de Tours, 10 Boulevard Tonnellé - BP 3223, 37032, Tours Cedex 1, France.
| |
Collapse
|
7
|
Abstract
The highly immunogenic icosahedral capsid of hepatitis B virus (HBV) can be exploited as a nanoparticulate display platform for heterologous molecules. Its constituent core protein (HBc) of only ~180 amino acids spontaneously forms capsid-like particles (CLPs) even in E. coli. The immunodominant c/e1 epitope in the center of the HBc primary sequence comprises a solvent-exposed loop that tolerates insertions of flexible peptide sequences yet also of selected whole proteins as long as their 3D structures fit into the two acceptor sites. This constraint is largely overcome in the SplitCore system, where the sequences flanking the loop are expressed as two separate but self-complementing entities, with the foreign sequence fixed to the carrier at one end only. Both the contiguous and the split type of CLP strongly enhance immunogenicity of the displayed sequence but also nonvaccine applications can easily be envisaged. After a brief survey of the basic features of the two HBc carrier forms, we provide conceptual guidelines concerning which foreign proteins are likely to be presentable, or not, on either carrier type. We describe generally applicable protocols for CLP expression in E. coli, cell lysis and CLP enrichment by sucrose gradient velocity sedimentation, plus a simple but meaningful gel electrophoretic assay to assess proper particle formation.
Collapse
|
8
|
Heger-Stevic J, Zimmermann P, Lecoq L, Böttcher B, Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog 2018; 14:e1007488. [PMID: 30566530 PMCID: PMC6317823 DOI: 10.1371/journal.ppat.1007488] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.
Collapse
Affiliation(s)
- Julia Heger-Stevic
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Peter Zimmermann
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, University of Lyon1, Lyon, France
| | - Bettina Böttcher
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16:39. [PMID: 29653575 PMCID: PMC5897928 DOI: 10.1186/s12951-018-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.
Collapse
Affiliation(s)
- Jens Schumacher
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tijana Bacic
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - René Staritzbichler
- TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Matin Daneschdar
- Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thorsten Klamp
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Arnold
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.,Anatomical Institute, Otto-Hahn Platz 8, 24118, Kiel, Germany
| | - Sabrina Jägle
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Özlem Türeci
- Ganymed Pharmaceuticals AG, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany. .,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany.
| |
Collapse
|
10
|
Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, Börold J, Salzburger W, Kaderali L, Briggs JAG, Bartenschlager R. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses. Cell Host Microbe 2017; 22:387-399.e6. [PMID: 28867387 PMCID: PMC5604429 DOI: 10.1016/j.chom.2017.07.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras. Nackednaviruses are non-enveloped fish viruses related to hepadnaviruses Both virus families separated from a common ancestor >400 million years ago The envelope protein gene of hepadnaviruses emerged through two distinct processes Hepadnaviruses mainly co-evolve with hosts while nackednaviruses jump between hosts
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Seitz
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany.
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236 Uppsala, Sweden
| | - Jürgen Beck
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Jennifer Herstein
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jacob Börold
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany
| | | | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany; Institute for Bioinformatics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ralf Bartenschlager
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Hepatitis B Virus Polymerase Localizes to the Mitochondria, and Its Terminal Protein Domain Contains the Mitochondrial Targeting Signal. J Virol 2016; 90:8705-19. [PMID: 27440888 DOI: 10.1128/jvi.01229-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED To understand subcellular sites of hepatitis B virus (HBV) replication, we visualized core (Cp), polymerase (Pol), and pregenomic RNA (pgRNA) in infected cells. Interestingly, we found that the majority of Pol localized to the mitochondria in cells undergoing viral replication. The mitochondrial localization of Pol was independent of both the cell type and other viral components, indicating that Pol contains an intrinsic mitochondrial targeting signal (MTS). Neither Cp nor pgRNA localized to the mitochondria during active replication, suggesting a role other than DNA synthesis for Pol at the mitochondria. The Pol of duck hepatitis B virus (DHBV) also localized to the mitochondria. This result indicates that localization of Pol to mitochondria is likely a feature of all hepadnaviruses. To map the MTS within HBV Pol, we generated a series of Pol-green fluorescent protein (Pol-GFP) fusions and found that a stretch spanning amino acids (aa) 141 to 160 of Pol was sufficient to target GFP to the mitochondria. Surprisingly, deleting aa 141 to 160 in full-length Pol did not fully ablate Pol's mitochondrial localization, suggesting that additional sequences are involved in mitochondrial targeting. Only by deleting the N-terminal 160 amino acids in full-length Pol was mitochondrial localization ablated. Crucial residues for pgRNA packaging are contained within aa 141 to 160, indicating a multifunctional role of this region of Pol in the viral life cycle. Our studies show an unexpected Pol trafficking behavior that is uncoupled from its role in viral DNA synthesis. IMPORTANCE Chronic infection by HBV is a serious health concern. Existing therapies for chronically infected individuals are not curative, underscoring the need for a better understanding of the viral life cycle to develop better antiviral therapies. To date, the most thoroughly studied function of Pol is to package the pgRNA and reverse transcribe it to double-stranded DNA within capsids. This study provides evidence for mitochondrial localization of Pol and defines the MTS. Recent findings have implicated a non-reverse transcription role for Pol in evading host innate immune responses. Mitochondria play an important role in controlling cellular metabolism, apoptosis, and innate immunity. Pol may alter one or more of these host mitochondrial functions to gain a replicative advantage and persist in chronically infected individuals.
Collapse
|
12
|
Kolb P, Wallich R, Nassal M. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS One 2015; 10:e0136180. [PMID: 26352137 PMCID: PMC4564143 DOI: 10.1371/journal.pone.0136180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023] Open
Abstract
Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.
Collapse
Affiliation(s)
- Philipp Kolb
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120, Heidelberg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2 / Molecular Biology, Hugstetter Str. 55, D-79106, Freiburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Ravin NV, Blokhina EA, Kuprianov VV, Stepanova LA, Shaldjan AA, Kovaleva AA, Tsybalova LM, Skryabin KG. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine 2015; 33:3392-7. [PMID: 25937448 DOI: 10.1016/j.vaccine.2015.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The extracellular domain of the transmembrane protein M2 (M2e) of influenza A virus is a promising target for the development of "universal" vaccines against influenza. M2e is a poor immunogen by itself; however, when M2e is linked to an appropriate carrier, such as hepatitis B virus core (HBc) particles, it becomes highly immunogenic. Insertions of target peptides into the surface-exposed major immunodominant loop region (MIR) of the HBc antigen are especially immunogenic, but such insertions often affect the protein folding and formation of recombinant virus-like particles. To facilitate an appropriate conformation of the M2e insert, we introduced flexible linkers at the junction points between the insert and flanking HBc sequences. This approach allowed the construction of recombinant HBc particles carrying 1, 2 and 4 copies of M2e in the MIR region. These particles were produced in Escherichia coli and purified to homogeneity. The immune response and protective activity of hybrid HBc particles in mice correlated with the number of inserted M2e peptides: the highest immunogenicity and complete protection of mice against the lethal challenge by influenza virus was observed with particles carrying four copies of M2e. The possibility of the simultaneous presentation of M2e peptides from several important influenza strains on a single HBc particle could also facilitate the development of a broad-specificity vaccine efficient not only against influenza A strains of human origin but also for newly emerging strains of animal origin, such as the avian influenza.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia.
| | - Elena A Blokhina
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| | - Victor V Kuprianov
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| | - Liudmila A Stepanova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Aram A Shaldjan
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Anna A Kovaleva
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Liudmila M Tsybalova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Konstantin G Skryabin
- Centre 'Bioengineering', Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow, Russia
| |
Collapse
|
14
|
Suresh V, Krishnakumar K, Asha V. A new fluorescent based screening system for high throughput screening of drugs targeting HBV-core and HBsAg interaction. Biomed Pharmacother 2015; 70:305-16. [DOI: 10.1016/j.biopha.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/08/2015] [Indexed: 12/28/2022] Open
|
15
|
Chen Q, Sun Q, Molino NM, Wang SW, Boder ET, Chen W. Sortase A-mediated multi-functionalization of protein nanoparticles. Chem Commun (Camb) 2015; 51:12107-10. [DOI: 10.1039/c5cc03769g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy was developed to create multi-functionalizaton of protein nanoparticles using Sortase A-mediated ligation, resulting in modified protein nanoparticles that are both thermally responsive and catalytic active.
Collapse
Affiliation(s)
- Qi Chen
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Qing Sun
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Nicholas M. Molino
- Department of Chemical Engineering and Materials Science
- University of California
- Irvine
- USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science
- University of California
- Irvine
- USA
| | - Eric T. Boder
- Department of Chemical and Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| |
Collapse
|
16
|
McGonigle R, Yap WB, Ong ST, Gatherer D, Bakker SE, Tan WS, Bhella D. An N-terminal extension to the hepatitis B virus core protein forms a poorly ordered trimeric spike in assembled virus-like particles. J Struct Biol 2014; 189:73-80. [PMID: 25557498 PMCID: PMC4318616 DOI: 10.1016/j.jsb.2014.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/24/2014] [Accepted: 12/24/2014] [Indexed: 01/24/2023]
Abstract
Virus-like particles composed of the core antigen of hepatitis B virus (HBcAg) have been shown to be an effective platform for the display of foreign epitopes in vaccine development. Heterologous sequences have been successfully inserted at both amino and carboxy termini as well as internally at the major immunodominant epitope. We used cryogenic electron microscopy (CryoEM) and three-dimensional image reconstruction to investigate the structure of VLPs assembled from an N-terminal extended HBcAg that contained a polyhistidine tag. The insert was seen to form a trimeric spike on the capsid surface that was poorly resolved, most likely owing to it being flexible. We hypothesise that the capacity of N-terminal inserts to form trimers may have application in the development of multivalent vaccines to trimeric antigens. Our analysis also highlights the value of tools for local resolution assessment in studies of partially disordered macromolecular assemblies by cryoEM.
Collapse
Affiliation(s)
- Richard McGonigle
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | - Wei Boon Yap
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Swee Tin Ong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Derek Gatherer
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | - Saskia E Bakker
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
17
|
Kolb P, Vorreiter J, Habicht J, Bentrop D, Wallich R, Nassal M. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli. FEBS Open Bio 2014; 5:42-55. [PMID: 25628987 PMCID: PMC4305620 DOI: 10.1016/j.fob.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/11/2023] Open
Abstract
Tick saliva proteins Salp15 and Iric-1 promote tick feeding and pathogen transmission. We established the first bacterial expression system for soluble Salp15 and Iric-1. Using this system we mapped monoclonal antibody epitopes on Salp15 and Iric-1. We defined the interaction sites with Borrelia outer surface protein C (OspC). We elucidated first secondary structure features in Iric-1 by NMR.
Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodesricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of 1H–15N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in 13C/15N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.
Collapse
Affiliation(s)
- Philipp Kolb
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany ; University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Jolanta Vorreiter
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Jüri Habicht
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | - Detlef Bentrop
- University of Freiburg, Institute of Physiology, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany
| |
Collapse
|
18
|
Lange M, Fiedler M, Bankwitz D, Osburn W, Viazov S, Brovko O, Zekri AR, Khudyakov Y, Nassal M, Pumpens P, Pietschmann T, Timm J, Roggendorf M, Walker A. Hepatitis C virus hypervariable region 1 variants presented on hepatitis B virus capsid-like particles induce cross-neutralizing antibodies. PLoS One 2014; 9:e102235. [PMID: 25014219 PMCID: PMC4094522 DOI: 10.1371/journal.pone.0102235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.
Collapse
Affiliation(s)
- Milena Lange
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - William Osburn
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sergei Viazov
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olena Brovko
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Yury Khudyakov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Nassal
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Paul Pumpens
- Department of Recombinant biotechnology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Jörg Timm
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Bianchini P, Cardarelli F, Luca MD, Diaspro A, Bizzarri R. Nanoscale protein diffusion by STED-based pair correlation analysis. PLoS One 2014; 9:e99619. [PMID: 24967681 PMCID: PMC4072630 DOI: 10.1371/journal.pone.0099619] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/17/2014] [Indexed: 11/18/2022] Open
Abstract
We describe for the first time the combination between cross-pair correlation function analysis (pair correlation analysis or pCF) and stimulated emission depletion (STED) to obtain diffusion maps at spatial resolution below the optical diffraction limit (super-resolution). Our approach was tested in systems characterized by high and low signal to noise ratio, i.e. Capsid Like Particles (CLPs) bearing several (>100) active fluorescent proteins and monomeric fluorescent proteins transiently expressed in living Chinese Hamster Ovary cells, respectively. The latter system represents the usual condition encountered in living cell studies on fluorescent protein chimeras. Spatial resolution of STED-pCF was found to be about 110 nm, with a more than twofold improvement over conventional confocal acquisition. We successfully applied our method to highlight how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.
Collapse
Affiliation(s)
- Paolo Bianchini
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Alberto Diaspro
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
| | - Ranieri Bizzarri
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, Pisa, Italy
- Istituto di Biofisica – CNR, Pisa, Italy
| |
Collapse
|
20
|
Blokhina EA, Kupriyanov VV, Ravin NV, Skryabin KG. The method of noncovalent in vitro binding of target proteins to virus-like nanoparticles formed by core antigen of hepatitis B virus. DOKL BIOCHEM BIOPHYS 2013; 448:52-4. [DOI: 10.1134/s1607672913010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Indexed: 11/23/2022]
|
21
|
Blokhina EA, Kuprianov VV, Stepanova LA, Tsybalova LM, Kiselev OI, Ravin NV, Skryabin KG. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles. Virology 2013; 435:293-300. [DOI: 10.1016/j.virol.2012.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/26/2012] [Accepted: 09/15/2012] [Indexed: 01/28/2023]
|
22
|
CɛmX peptide-carrying HBcAg virus-like particles induced antibodies that down-regulate mIgE-B lymphocytes. Mol Immunol 2012; 52:190-9. [DOI: 10.1016/j.molimm.2012.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
|
23
|
Yoo L, Park JS, Kwon KC, Kim SE, Jin X, Kim H, Lee J. Fluorescent viral nanoparticles with stable in vitro and in vivo activity. Biomaterials 2012; 33:6194-200. [DOI: 10.1016/j.biomaterials.2012.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 01/16/2023]
|
24
|
Craig PO, Alzogaray V, Goldbaum FA. Polymeric Display of Proteins through High Affinity Leucine Zipper Peptide Adaptors. Biomacromolecules 2012; 13:1112-21. [PMID: 22372794 DOI: 10.1021/bm201875p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polymeric display of proteins is a method that could be used to increase the immunogenicity of antigens and to enhance the interaction strength of binding domains for their target ligands through an avidity effect. However, the coupling of proteins to oligomeric scaffolds is challenging. The chemical conjugation and recombinant fusion techniques have limitations that prevent their general use. In this work we describe a simple and effective method for coupling proteins to the decameric structure of Brucella abortus Lumazine Synthase based on the use of a pair of high affinity heterodimeric coiled coil peptides complementary fused to the scaffold and the target protein. Results obtained with a series of proteins demonstrate the capability of this approach to generate polyvalent particles. Furthermore, we show that the method is able to increase the immunogenicity of antigens and produce polyfunctional particles with promising biomedical and nanotechnological applications.
Collapse
Affiliation(s)
- Patricio O Craig
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires, IIBBA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
SplitCore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci Rep 2011; 1:5. [PMID: 22355524 PMCID: PMC3216493 DOI: 10.1038/srep00005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 01/15/2023] Open
Abstract
Nanoparticles displaying native proteins are attractive for many applications, including vaccinology. Virus-based nanoparticles are easily tailored by genetic means, commonly by inserting heterologous sequences into surface-exposed loops. The strategy works well with short peptides but is incompatible with the structures of most native proteins, except those with closely juxtaposed termini. Here we overcome this constraint by splitting the capsid protein of hepatitis B virus, one of the most advanced and most immunogenic display platforms, inside the insertion loop (SplitCore). The split parts, coreN and coreC, efficiently form capsid-like particles (CLPs) in E. coli and so do numerous fusions to coreN and/or coreC of differently structured proteins, including human disease related antigens of >300 amino acids in length. These CLPs induced high-titer antibodies, including neutralizing ones, in mice. The concept was easily expanded to triple-layer CLPs carrying reporter plus targeting domains, and should be applicable to protein-based nanoparticle design in general.
Collapse
|
26
|
Klamp T, Schumacher J, Huber G, Kühne C, Meissner U, Selmi A, Hiller T, Kreiter S, Markl J, Türeci Ö, Sahin U. Highly Specific Auto-Antibodies against Claudin-18 Isoform 2 Induced by a Chimeric HBcAg Virus-Like Particle Vaccine Kill Tumor Cells and Inhibit the Growth of Lung Metastases. Cancer Res 2011; 71:516-27. [DOI: 10.1158/0008-5472.can-10-2292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Lin Y, Cheng X, Song Y, Zhou L, Li P, Chang Y, Xu L, Yao J, Lin J. Construction and expression of hepatitis B virus vector encoding TC-tagged core protein. FRONTIERS OF MEDICINE IN CHINA 2009; 3:396-402. [DOI: 10.1007/s11684-009-0056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Walker A, Skamel C, Vorreiter J, Nassal M. Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J Biol Chem 2008; 283:33508-15. [PMID: 18826949 DOI: 10.1074/jbc.m805211200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virus capsids find increasing use as nanoparticulate platforms for the surface display of heterologous ligands, including as multivalent vaccine carriers. Presentation on the icosahedral hepatitis B virus capsid (HBcAg) is known to strongly enhance immunogenicity of foreign sequences, most efficiently if they are inserted into the dominant c/e1 B cell epitope, a surface-exposed loop in the center of the constituent core protein primary sequence. Even some complete proteins were successfully inserted but others, e.g. the outer surface protein A (OspA) of the Lyme disease agent Borrelia burgdorferi, impaired formation of capsid-like particles (CLPs). This difference can be rationalized by the requirement for the termini of the insert to fit into the predetermined geometry of the two acceptor sites in the carrier. We reasoned that cleavage of one of the two bonds connecting insert and carrier should relieve these constraints, provided the cleaved protein fragments remain competent to support the particle structure. Indeed, HBcAg CLPs containing a recognition site for tobacco etch virus (TEV) protease in the c/e1 loop remained intact after cleavage, as did CLPs carrying a 65-residue peptide insertion. Most importantly, in situ cleavage of a core-OspA fusion protein by coexpressed TEV protease strongly enhanced CLP formation compared with the uncleaved protein. These data attest to the high structural stability of the HBcAg CLP and they significantly widen its applicability as a carrier for heterologous proteins. This approach should be adaptable to any protein-based particle with surface-exposed yet sequence-internal loops.
Collapse
Affiliation(s)
- Andreas Walker
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|
29
|
Rahimi Y, Shrestha S, Banerjee T, Deo SK. Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal Biochem 2007; 370:60-7. [PMID: 17599800 DOI: 10.1016/j.ab.2007.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 05/23/2007] [Indexed: 11/17/2022]
Abstract
In this article, we report for the first time on the copper (Cu(2+)) binding characteristics of the far-red fluorescent protein, HcRed, and its application in the development of a reagentless sensing system for copper. The far-red emission of HcRed (lambda(max) = 645 nm) where background cellular fluorescence is low should prove to be advantageous in the development of the sensing system. In the studies performed in our laboratory, we found that the fluorescence of HcRed is quenched in the presence of copper ions (Cu(2+)). The results obtained through UV-visible and circular dichroism spectra generated in the presence and absence of copper, as well as Stern-Volmer plots at different temperatures, indicate static quenching of HcRed fluorescence in the presence of copper, possibly through the formation of a copper-protein complex. On the basis of this observation, we developed a reagentless sensing system for the detection of copper(II) based on HcRed as the biosensing element. A detection limit for Cu(2+) in the nanomolar range was obtained. HcRed was found to bind copper ions selectively when compared with other divalent ions. A dissociation constant of 3.6muM was observed for copper binding. Histidine and cysteine residues are commonly involved in copper binding within proteins; therefore, to investigate the role of these amino acids present in HcRed, we chemically modified Cys and His residues using iodoacetamide and diethyl pyrocarbonate, respectively. The effect of copper addition on the fluorescence of the chemically modified HcRed was investigated. The His modification of HcRed substantially affected copper ion binding, pointing to histidine as the possible amino acid residue involved in the binding of copper ions in HcRed. A purification strategy for HcRed was also developed based on a copper immobilized affinity column without the addition of any affinity tag on the protein. The HcRed-based copper sensing system can potentially be employed to perform intracellular copper detection by genetically encoding the biosensing element or can be employed in environmental sensing.
Collapse
Affiliation(s)
- Yasmeen Rahimi
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
30
|
Nassal M, Skamel C, Vogel M, Kratz PA, Stehle T, Wallich R, Simon MM. Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int J Med Microbiol 2007; 298:135-42. [PMID: 17888729 DOI: 10.1016/j.ijmm.2007.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The immunogenicity of peptides and small protein fragments can be considerably enhanced by their presentation on particulate carriers such as capsid-like particles (CLPs) from hepatitis B virus (HBV). HBV CLPs are icosahedral nanoparticles formed by 90 or 120 core protein dimers. Insertions into the immunodominant c/e1 B cell epitope, a surface-exposed loop on the HBV capsid protein, are especially immunogenic. Here we investigated whether the HBV core protein can be exploited as a vaccine carrier for whole-chain protein antigens, using two clinically relevant proteins derived from a bacterial human pathogen, the Lyme disease agent Borrelia burgdorferi. For this purpose we analyzed CLP formation by core fusions with the entire 255-amino-acid ectodomain of outer surface lipoprotein A (OspA), and with two distinct, 189 amino acid long variants of the dimeric OspC (OspC(a), OspC(b)) of B. burgdorferi. OspA appropriately inserted into the HBV core protein yielded a multimerization-competent fusion protein, termed coreOspA. Although only partially assembling into regular CLPs, coreOspA induced antibodies to OspA, including the Ig isotype profile and specificity for the protective epitope "LA-2", with an efficiency similar to that of recombinant lipidated OspA, the first generation vaccine against Lyme disease. Moreover, coreOspA actively and passively protected mice against subsequent challenge with B. burgdorferi. Fusions with the two OspC variants were found to efficiently form regular CLPs, most probably by OspC dimerization across different core protein dimers. In mice, both coreOspC preparations induced high-titered antibody responses to the homologous but also to the heterologous OspC variant, which conferred protection against challenge with B. burgdorferi. The data demonstrate the principal applicability of HBV CLPs to act as potent immunomodulator even for structurally complex full-length polypeptide chains, and thus open new avenues for novel vaccine designs.
Collapse
Affiliation(s)
- Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nassal M, Leifer I, Wingert I, Dallmeier K, Prinz S, Vorreiter J. A structural model for duck hepatitis B virus core protein derived by extensive mutagenesis. J Virol 2007; 81:13218-29. [PMID: 17881438 PMCID: PMC2169103 DOI: 10.1128/jvi.00846-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Duck hepatitis B virus (DHBV) shares many fundamental features with human HBV. However, the DHBV core protein (DHBc), forming the nucleocapsid shell, is much larger than that of HBV (HBc) and, in contrast to HBc, there is little direct information on its structure. Here we applied an efficient expression system for recombinant DHBc particles to the biochemical analysis of a large panel of mutant DHBc proteins. By combining these data with primary sequence alignments, secondary structure prediction, and three-dimensional modeling, we propose a model for the fold of DHBc. Its major features are a HBc-like two-domain structure with an assembly domain comprising the first about 185 amino acids and a C-terminal nucleic acid binding domain (CTD), connected by a morphogenic linker region that is longer than in HBc and extends into the CTD. The assembly domain shares with HBc a framework of four major alpha-helices but is decorated at its tip with an extra element that contains at least one helix and that is made up only in part by the previously predicted insertion sequence. All subelements are interconnected, such that structural changes at one site are transmitted to others, resulting in an unexpected variability of particle morphologies. Key features of the model are independently supported by the accompanying epitope mapping study. These data should be valuable for functional studies on the impact of core protein structure on virus replication, and some of the mutant proteins may be particularly suitable for higher-resolution structural investigations.
Collapse
Affiliation(s)
- Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Tanaka M, Hermann J, Haase I, Fischer M, Boxer SG. Frictional drag and electrical manipulation of recombinant proteins in polymer-supported membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5638-44. [PMID: 17408291 DOI: 10.1021/la0628219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We establish a lipid monolayer supported by a polymer interface that offers advantages over conventional solid-supported membranes for determining the frictional drag at the membrane-protein interface as well as for electric field manipulation of membrane-anchored proteins. Polymer-supported monolayers with functional lipid anchors allow for the specific docking of His-tagged green fluorescent protein variants (His-EGFP and His-DsRed tetramer) onto the membrane surface at a defined surface density. In the first part, we measure the lateral diffusion coefficients of lipids and proteins and calculate the frictional drag at the protein-membrane interface. The second part deals with the electric field-induced accumulation of recombinant proteins on a patterned surface. The mean drift velocity of proteins, which can be obtained analytically from the shape of the steady-state concentration gradient, can be controlled by tuning the interplay of electrophoresis and electroosmosis. The results demonstrate the potential of such molecular constructs for the local functionalization of solid substrates with membrane-associated proteins.
Collapse
Affiliation(s)
- Motomu Tanaka
- Department of Physics, Technical University of Munich, D-85748 Garching, Germany.
| | | | | | | | | |
Collapse
|
33
|
Skamel C, Ploss M, Böttcher B, Stehle T, Wallich R, Simon MM, Nassal M. Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses against Borrelia burgdorferi infection. J Biol Chem 2006; 281:17474-17481. [PMID: 16621801 DOI: 10.1074/jbc.m513571200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus capsid-like particles (CLPs), icosahedral assemblies formed by 90 or 120 core protein dimers, hold promise as immune-enhancing vaccine carriers for heterologous antigens. Insertions into the immunodominant c/e1 B cell epitope, a surface-exposed loop, are especially immunogenic. However, display of whole proteins, desirable to induce multispecific and possibly neutralizing antibody responses, can be restrained by an unsuitable structure of the foreign protein and by its propensity to undergo homomeric interactions. Here we analyzed CLP formation by core fusions with two distinct variants of the dimeric outer surface lipoprotein C (OspC) of the Lyme disease agent Borrelia burgdorferi. Although the topology of the termini in the OspC dimer does not match that of the insertion sites in the carrier dimer, both fusions, coreOspCa and coreOspCb, efficiently formed stable CLPs. Electron cryomicroscopy clearly revealed the surface disposition of the OspC domains, possibly with OspC dimerization occurring across different core protein dimers. In mice, both CLP preparations induced high-titered antibody responses against the homologous OspC variant, but with substantial cross-reactivity against the other variant. Importantly, both conferred protection to mice challenged with B. burgdorferi. These data show the principal applicability of hepatitis B virus CLPs for the display of dimeric proteins, demonstrate the presence in OspC of hitherto uncharacterized epitopes, and suggest that OspC, despite its genetic variability, may be a valid vaccine candidate.
Collapse
Affiliation(s)
- Claudia Skamel
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, D-79106 Freiburg, Germany
| | - Martin Ploss
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Bettina Böttcher
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology, D-79108 Freiburg, Germany
| | - Reinhard Wallich
- University Hospital Heidelberg, Institute of Immunology, D-61920 Heidelberg, Germany
| | - Markus M Simon
- Max Planck Institute of Immunobiology, D-79108 Freiburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, D-79106 Freiburg, Germany.
| |
Collapse
|
34
|
Böttcher B, Vogel M, Ploss M, Nassal M. High plasticity of the hepatitis B virus capsid revealed by conformational stress. J Mol Biol 2005; 356:812-22. [PMID: 16378623 DOI: 10.1016/j.jmb.2005.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) replicates through reverse transcription inside its icosahedral nucleocapsid. The internal genome status is signaled to the capsid surface, predicting regulated conformational changes in the capsid structure. To probe their nature and extent, we imposed local conformational stress on the outer surface of HBV capsid-like particles, and monitored its consequences by electron cryomicroscopy and image reconstruction. The capsid structure had an enormous flexibility and robustness as a whole, as well as within the subunits, whose spikes were able to rotate by as much as 40 degrees against the distal interdimer contact sites. The likely hinge for the swiveling movement was the conserved Gly111 residue at the inner surface of the capsid. The stress imposed from the outside also affected the internal capsid organization, implying a specific route for the flow of conformational information between capsid interior and exterior as required for signaling of the genome status.
Collapse
Affiliation(s)
- Bettina Böttcher
- European Molecular Biology Laboratory, Meyerhofstr. 1, D-69117 Heidelberg, and University Hospital Freiburg Internal Medicine II/Molecular Biology, Germany.
| | | | | | | |
Collapse
|
35
|
Gao S, Steffen J, Laughon A. Dpp-responsive Silencers Are Bound by a Trimeric Mad-Medea Complex. J Biol Chem 2005; 280:36158-64. [PMID: 16109720 DOI: 10.1074/jbc.m506882200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcriptional regulation by transforming growth factor-beta signaling is mediated by the Smad family of transcription factors. It is generally accepted that Smads must interact with other transcription factors to bind to their targets. However, recently it has been shown that a complex of the Drosophila Smad proteins, Mad and Medea, binds with high affinity to silencer elements that repress brinker and bag of marbles in response to Dpp signaling. Here we report that these silencers are bound by a heterotrimer containing two Mad subunits and one Medea subunit. We found that the MH1 domains of all three subunits contributed directly to sequence-specific DNA contact, thus accounting for the exceptionally high stability of the Smad-silencer complex. The Medea MH1 domain binds to a canonical Smad box (GTCT), whereas the Mad MH1 domains bind to a GC-rich sequence resembling Mad binding sites previously identified in Dpp-responsive enhancer elements. The consensus for this sequence, GRCGNC, differs from that of the canonical Smad box, but we found that Mad binding nonetheless required the same beta-hairpin amino acids that mediate base-specific contact with GTCT. Binding was also affected by alanine substitutions in Mad and Med at a subset of basic residues within and flanking helix 2, indicating a contribution to binding of the GRCGNC and GTCT sites. The slight alteration of the Dpp silencers caused them to activate transcription in response to Dpp signaling, indicating that the potential for Smad complexes to recognize specific targets need not be limited to repression.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
Kar AK, Iwatani N, Roy P. Assembly and intracellular localization of the bluetongue virus core protein VP3. J Virol 2005; 79:11487-95. [PMID: 16103199 PMCID: PMC1193605 DOI: 10.1128/jvi.79.17.11487-11495.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bluetongue virus (BTV) core protein VP3 plays a crucial role in the virion assembly and replication process. Although the structure of the protein is well characterized, much less is known about the intracellular processing and localization of the protein in the infected host cell. In BTV-infected cells, newly synthesized viral core particles accumulate in specific locations within the host cell in structures known as virus inclusion bodies (VIBs), which are composed predominantly of the nonstructural protein NS2. However, core protein location in the absence of VIBs remains unclear. In this study, we examined VP3 location and degradation both in the absence of any other viral protein and in the presence of NS2 or the VP3 natural associate protein, VP7. To enable real-time tracking and processing of VP3 within the host cell, a fully functional enhanced green fluorescent protein (EGFP)-VP3 chimera was synthesized, and distribution of the fusion protein was monitored in different cell types using specific markers and inhibitors. In the absence of other BTV proteins, EGFP-VP3 exhibited distinct cytoplasmic focus formation. Further evidence suggested that EGFP-VP3 was targeted to the proteasome of the host cells but was dispersed throughout the cytoplasm when MG132, a specific proteasome inhibitor, was added. However, the distribution of the chimeric EGFP-VP3 protein was altered dramatically when the protein was expressed in the presence of the BTV core protein VP7, a normal partner of VP3 during BTV assembly. Interaction of EGFP-VP3 and VP7 and subsequent assembly of core-like particles was further examined by visualizing fluorescent particles and was confirmed by biochemical analysis and by electron microscopy. These data indicated the correct assembly of EGFP-VP3 subcores, suggesting that core formation could be monitored in real time. When EGFP-VP3 was expressed in BTV-infected BSR cells, the protein was not associated with proteasomes but instead was distributed within the BTV inclusion bodies, where it colocalized with NS2. These findings expand our knowledge about VP3 localization and its fate within the host cell and illustrate the assembly capability of a VP3 molecule with a large amino-terminal extension. This also opens up the possibility of application as a delivery system.
Collapse
Affiliation(s)
- Alak Kanti Kar
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
37
|
Vogel M, Diez M, Eisfeld J, Nassal M. In vitro assembly of mosaic hepatitis B virus capsid-like particles (CLPs): Rescue into CLPs of assembly-deficient core protein fusions and FRET-suited CLPs. FEBS Lett 2005; 579:5211-6. [PMID: 16162343 DOI: 10.1016/j.febslet.2005.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis B virus core protein self-assembles into icosahedral, highly immunogenic capsid-like particles (CLPs) that can serve as molecular platforms for heterologous proteins. Insertion into the centrally located c/e1 epitope leads to surface display, fusion to the C terminus to internal disposition of the foreign domains. However, symmetry-defined space restrictions on the surface and particularly inside the CLPs limit the size of usable heterologous fusion partners. Further, CLPs carrying differing foreign domains are desirable for applications such as multivalent vaccines, and for structure probing by distance sensitive interactions like fluorescence resonance energy transfer (FRET). Here, we report an in vitro co-assembly system for such mosaic-CLPs allowing successful CLP formation with a per se assembly-deficient fusion protein, and of CLPs from two different fluoroprotein-carrying fusions that exert FRET in an assembly-status dependent way.
Collapse
Affiliation(s)
- Maren Vogel
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | | | | | | |
Collapse
|